1
|
Sadler RL, Greenman AC, Methawasin M, Fan J, Harris SP. The L348P point mutation in cardiac myosin binding protein-C alters transient responses to stretch, slows cardiac relaxation, and is embryonic lethal in homozygous CRISPR gene-edited mice. J Mol Cell Cardiol 2025; 203:35-46. [PMID: 40222553 DOI: 10.1016/j.yjmcc.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Mutations in cardiac myosin binding protein-C (cMyBP-C) are a common cause of hypertrophic cardiomyopathy (HCM), an inherited autosomal dominant disease affecting 1 in 250-500 people. We previously identified a single amino acid substitution (L348P) in the regulatory motif (M-domain) of cMyBP-C that slowed relaxation and caused diastolic dysfunction in transgenic mice. Here we attempted to increase expression of the mutant protein by creating a CRISPR gene-edited knock-in mouse model (L348P-CR) and breeding mice to homozygosity for the mutant allele. Results showed that L348P-CR homozygous mice died in utero, but that heterozygous knock-in mice developed contractile deficits and diastolic dysfunction comparable to transgenic mice. To overcome the lethal homozygous expression of the L348P mutation, we used our "cut-and-paste" approach to fully replace endogenous wild-type cMyBP-C with recombinant L348P cMyBP-C in permeabilized cardiomyocytes from SpyC3 mice. Results showed that replacement of wild-type cMyBP-C with recombinant L348P recapitulated mechanical effects seen in transgenic and L348P-CR mice, validating the utility of our cut-and-paste method for evaluating functional effects of cMyBP-C. We conclude that L348P-CR knock-in mice are a robust model of diastolic dysfunction due to a single point mutation in cMyBP-C and that the cut-and-paste approach offers a rapid and cost-effective approach for evaluating mutations in cMyBP-C, especially those that are lethal in traditional animal models.
Collapse
Affiliation(s)
- Rachel L Sadler
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Angela C Greenman
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Julie Fan
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Samantha P Harris
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
2
|
van den Dolder FW, Dinani R, Warnaar VAJ, Vučković S, Passadouro AS, Nassar AA, Ramsaroep AX, Burchell GB, Schoonmade LJ, van der Velden J, Goversen B. Experimental Models of Hypertrophic Cardiomyopathy: A Systematic Review. JACC Basic Transl Sci 2025; 10:511-546. [PMID: 40306862 DOI: 10.1016/j.jacbts.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 05/02/2025]
Abstract
To advance research in hypertrophic cardiomyopathy (HCM), and guide researchers in choosing the optimal model to answer their research questions, we performed a systematic review of all models investigating HCM induced by gene variants ranging from animal models to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Our research question entailed: which experimental models of HCM have been created thus far, and which major hallmarks of HCM do they present? Out of the 603 included papers, the majority included animal models, though a clear transition to hiPSC-CM is visible since 2010. Our review showed that only 36 mouse models showed minimal 4 out of 6 HCM disease markers (cell/cardiac hypertrophy, disarray, fibrosis, diastolic dysfunction, and arrhythmias), while only 17 hiPSC-CM models showed 3 out of 4 HCM cell characteristics. Our review emphasizes the need to better report data on sample size, sex, age, and relevant disease-specific characteristics.
Collapse
Affiliation(s)
- Floor W van den Dolder
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Rafeeh Dinani
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Vincent A J Warnaar
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Sofija Vučković
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Adriana S Passadouro
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
| | - Ali A Nassar
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Azhaar X Ramsaroep
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands
| | - George B Burchell
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Linda J Schoonmade
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands.
| | - Birgit Goversen
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| |
Collapse
|
3
|
van den Dolder FW, Warnaar VAJ, Onderwater YL, Baas AF, Kuster DWD, van der Velden J. Generation of induced pluripotent stem cell lines from five individuals from two families carrying a pathogenic Dutch MYBPC3 founder variant with variable degrees of hypertrophic cardiomyopathy. Stem Cell Res 2025; 86:103697. [PMID: 40250125 DOI: 10.1016/j.scr.2025.103697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 04/20/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is often caused by pathogenic or likely pathogenic variants, of which 30-50 % involve a variant in the gene encoding cardiac myosin-binding protein-C (MYBPC3). We generated human induced pluripotent stem cell lines from five individuals from two families carrying a pathogenic Dutch MYBPC3 founder variant: c.2373insG (n = 2) and c.2827C > T (n = 3), with highly variable disease expression. Peripheral blood mononuclear cells were reprogrammed using episomal plasmids. All cell lines express pluripotent markers, exhibit a normal karyotype, and could differentiate into derivatives of each germ layers in vitro. These cell lines can serve as disease model to investigate HCM pathogenesis.
Collapse
Affiliation(s)
- Floor W van den Dolder
- Physiology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Vincent A J Warnaar
- Physiology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Yeszamin L Onderwater
- Physiology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Annette F Baas
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Diederik W D Kuster
- Physiology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Physiology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Greer-Short A, Greenwood A, Leon EC, Qureshi TN, von Kraut K, Wong J, Tsui JH, Reid CA, Cheng Z, Easter E, Yang J, Ho J, Steltzer S, Budan A, Cho M, Chandrakumar R, Cisne-Thompson O, Feathers C, Chung TW, Rodriguez N, Jones S, Alleyne-Levy C, Liu J, Jing F, Prince WS, Lin J, Ivey KN, Tingley WG, Hoey T, Lombardi LM. AAV9-mediated MYBPC3 gene therapy with optimized expression cassette enhances cardiac function and survival in MYBPC3 cardiomyopathy models. Nat Commun 2025; 16:2196. [PMID: 40038304 PMCID: PMC11880196 DOI: 10.1038/s41467-025-57481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) affects approximately 600,000 people in the United States. Loss-of-function mutations in Myosin Binding Protein C3, MYBPC3, are the most common genetic cause of HCM, with the majority of mutations resulting in haploinsufficiency. To restore cardiac MYBPC3, we use an adeno-associated virus (AAV9) vector and engineer an optimized expression cassette with a minimal promoter and cis-regulatory elements (TN-201) to enhance packaging efficiency and cardiomyocyte expression. Rather than simply preventing cardiac dysfunction preclinically, we demonstrate in a symptomatic MYBPC3-deficient murine model the ability of AAV gene therapy to reverse cardiac hypertrophy and systolic dysfunction, improve diastolic dysfunction, and prolong survival. Dose-ranging efficacy studies exhibit restoration of wild-type MYBPC3 protein levels and saturation of cardiac improvement at the clinically relevant dose of 3E13 vg/kg, outperforming a previously published construct. These findings suggest that TN-201 may offer therapeutic benefits in MYBPC3-associated cardiomyopathy, pending further validation in clinical settings.
Collapse
Affiliation(s)
| | | | - Elena C Leon
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Justin Wong
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Ze Cheng
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | - Jin Yang
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Jaclyn Ho
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | - Ana Budan
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Marie Cho
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Jun Liu
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Frank Jing
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | - JianMin Lin
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Timothy Hoey
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | |
Collapse
|
5
|
Juvik B, Falcucci L, Lundegaard PR, Stainier DYR. A new hypothesis to explain disease dominance. Trends Genet 2025; 41:187-193. [PMID: 39788833 DOI: 10.1016/j.tig.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 01/12/2025]
Abstract
The onset and progression of dominant diseases are thought to result from haploinsufficiency or dominant negative effects. Here, we propose transcriptional adaptation (TA), a newly identified response to mRNA decay, as an additional cause of some dominant diseases. TA modulates the expression of so-called adapting genes, likely via mRNA decay products, resulting in genetic compensation or a worsening of the phenotype. Recent studies have challenged the current concepts of haploinsufficiency or poison proteins as the mechanisms underlying certain dominant diseases, including Brugada syndrome, hypertrophic cardiomyopathy, and frontotemporal lobar degeneration. We hypothesize that for these and other dominant diseases, when the underlying mutation leads to mRNA decay, the phenotype is due at least partly to the dysregulation of gene expression via TA.
Collapse
Affiliation(s)
- Brian Juvik
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Hessen, 61231, Germany
| | - Lara Falcucci
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Hessen, 61231, Germany
| | - Pia R Lundegaard
- Department of Biomedical Sciences, Faculty of Health and Medical sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Hessen, 61231, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany.
| |
Collapse
|
6
|
Wood PT, Seffrood MM, Colson BA, Stelzer JE. cMyBP-C in hypertrophic cardiomyopathy: gene therapy and small-molecule innovations. Front Cardiovasc Med 2025; 12:1550649. [PMID: 40134985 PMCID: PMC11935118 DOI: 10.3389/fcvm.2025.1550649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/13/2025] [Indexed: 03/27/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disorder in the heart caused by variants in sarcomeric proteins that disrupt myocardial function, leading to hypercontractility, hypertrophy, and fibrosis. Optimal cardiac function relies on the precise coordination of thin and thick filament proteins that control the timing, magnitude of cellular force generation and relaxation, and in vivo systolic and diastolic function. Sarcomeric proteins, such as cardiac myosin binding protein C (cMyBP-C) play a crucial role in myocardial contractile function by modulating actomyosin interactions. Genetic variants in cMyBP-C are a frequent cause of HCM, highlighting its importance in cardiac health. This review explores the molecular mechanisms underpinning HCM and the rapidly advancing field of HCM translational research, including gene therapy and small-molecule interventions targeting sarcomere function. We will highlight novel approaches, including gene therapy using recombinant AAV vectors and small-molecule drugs targeting sarcomere function.
Collapse
Affiliation(s)
- Patrick T. Wood
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Morgan M. Seffrood
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Brett A. Colson
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
7
|
Moradi A, Khoshniyat S, Nzeako T, Khazeei Tabari MA, Olanisa OO, Tabbaa K, Alkowati H, Askarianfard M, Daoud D, Oyesanmi O, Rodriguez A, Lin Y. The Future of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 Gene Therapy in Cardiomyopathies: A Review of Its Therapeutic Potential and Emerging Applications. Cureus 2025; 17:e79372. [PMID: 40130092 PMCID: PMC11930791 DOI: 10.7759/cureus.79372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 03/26/2025] Open
Abstract
Cardiomyopathies, among the leading causes of heart failure and sudden cardiac death, are often driven by genetic mutations affecting the heart's structural proteins. Despite significant advancements in understanding the genetic basis of hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC), effective long-term therapies remain limited. The advent of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) gene editing offers a promising therapeutic strategy to address these genetic disorders at their root. CRISPR-Cas9 enables precise modification of pathogenic variants (PVs) in genes encoding sarcomeric and desmosomal proteins, which are frequently implicated in cardiomyopathies. By inducing site-specific double-stranded breaks in DNA, followed by repair through nonhomologous end joining (NHEJ) or homology-directed repair (HDR), this system allows for targeted correction of mutations. In preclinical models, CRISPR-Cas9 has shown promise in correcting HCM-associated mutations in β-myosin heavy chain 7 (MYH7), preventing disease phenotypes such as ventricular hypertrophy and myocardial fibrosis. Similarly, gene editing has successfully rectified DCM-linked mutations in Titin (TTN) and LMNA, resulting in improved heart function and reduced pathological remodeling. For ARVC, CRISPR-Cas9 has demonstrated the ability to repair mutations in desmosomal genes such as plakophilin 2 (PKP2), thereby restoring normal cardiac function and cellular adhesion. Despite these successes, challenges remain, including mosaicism, delivery efficiency, and off-target effects. Nevertheless, CRISPR-Cas9 represents a transformative approach to treating genetic cardiomyopathies, potentially offering long-lasting cures by directly addressing their underlying genetic causes.
Collapse
Affiliation(s)
- Ali Moradi
- Internal Medicine, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| | - Sina Khoshniyat
- Biomedicine, School of Sciences, La Trobe University, Melbourne, AUS
| | | | | | | | - Kutiba Tabbaa
- Cardiology, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| | - Hamza Alkowati
- Internal Medicine, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| | | | - Daoud Daoud
- Internal Medicine, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| | - Olu Oyesanmi
- Internal Medicine, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| | - Angelina Rodriguez
- Family Medicine, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| | - Yizhi Lin
- Internal Medicine, HCA Florida Blake Hospital, University of South Florida (USF) Morsani College of Medicine, Bradenton, USA
| |
Collapse
|
8
|
Sarwer K, Lashari S, Rafaqat N, Maher, Raheem A, Rehman MU, Abbas SMI. Obstructive hypertrophic cardiomyopathy: from genetic insights to a multimodal therapeutic approach with mavacamten, aficamten, and beyond. Egypt Heart J 2024; 76:156. [PMID: 39645546 PMCID: PMC11625047 DOI: 10.1186/s43044-024-00587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND A cardiac condition marked by excessive growth of heart muscle cells, hypertrophic cardiomyopathy (HCM) is a complex genetic disorder characterized by left ventricular hypertrophy, microvascular ischemia, myocardial fibrosis, and diastolic dysfunction. Obstructive hypertrophic cardiomyopathy (oHCM), a subset of HCM, involves significant obstruction in the left ventricular outflow tract (LVOT), leading to symptoms like dyspnea, fatigue, and potentially life-threatening cardiac events. With advancements in genetic understanding and the introduction of novel pharmacologic agents, including cardiac myosin inhibitors like mavacamten and aficamten, there is a paradigm shift in the therapeutic approach to oHCM. MAIN BODY The underlying mechanisms of HCM are closely tied to genetic mutations affecting sarcomere proteins, particularly those encoded by the MYH7 and MYBPC3 genes. These mutations lead to disrupted sarcomere function, resulting in hypertrophic changes and LVOT obstruction. While genetic heterogeneity is a hallmark of HCM, clinical diagnosis relies heavily on imaging techniques such as Echocardiography and cardiac magnetic resonance imaging to assess the extent of hypertrophy and obstruction. Current pharmacological management of obstructive HCM (oHCM) focuses on alleviating symptoms rather than modifying disease progression. Beta-blockers and calcium channel blockers are primary treatment options, although their effectiveness varies among patients. Recent clinical trials have highlighted the potential of novel cardiac myosin inhibitors, including mavacamten and aficamten, in enhancing exercise capacity, reducing LVOT obstruction, and improving overall cardiac function. These innovative agents represent a significant breakthrough in targeting the fundamental pathophysiological mechanisms driving oHCM. A comprehensive literature review was conducted, utilizing top-tier databases such as PubMed, Scopus, and Google Scholar, to compile an authoritative and up-to-date overview of the current advancements in the field. This review sheds light on the updated 2024 American Heart Association (AHA) guidelines for HCM management, emphasizing the treatment cascade and tailored management for each stage of oHCM. By introducing a new paradigm for personalized medicine in oHCM, this research leverages advanced genomics, biomarkers, and imaging techniques to optimize treatment strategies. CONCLUSIONS The introduction of cardiac myosin inhibitors heralds a new era in the management of oHCM. By directly targeting the molecular mechanisms underpinning the disease, these novel therapies offer improved symptom relief and functional outcomes. Ongoing research into the genetic basis of HCM and the development of targeted treatments holds promise for further enhancing patient care. Future studies should continue to refine these therapeutic strategies and explore their long-term benefits and potential in diverse patient populations. This review makes a significant contribution to the field by synthesizing the most recent AHA guidelines, emphasizing the crucial role of tailored management strategies in optimizing outcomes for patients with oHCM, and promoting the incorporation of cutting-edge genomics and imaging modalities to enhance personalized care.
Collapse
Affiliation(s)
- Khadija Sarwer
- Liaquat University of Medical and Health Sciences, Jamshoro, Hyderabad, Sindh, Pakistan
| | - Saeeda Lashari
- Liaquat University of Medical and Health Sciences, Jamshoro, Hyderabad, Sindh, Pakistan
| | - Nida Rafaqat
- Liaquat University of Medical and Health Sciences, Jamshoro, Hyderabad, Sindh, Pakistan
| | - Maher
- Liaquat University of Medical and Health Sciences, Jamshoro, Hyderabad, Sindh, Pakistan
| | - Abdul Raheem
- Baqai Medical University, 51, Deh Tor, Gadap Road, Near Toll Plaza, SuperHighway,, P.O. Box 2407, Karachi, 75340, Sindh, Pakistan.
| | - Muneeb Ur Rehman
- CMH Lahore Medical College & IOD, Abdur Rehman Road, Lahore Cantt, Pakistan
| | - Syed Muhammad Iraj Abbas
- Baqai Medical University, 51, Deh Tor, Gadap Road, Near Toll Plaza, SuperHighway,, P.O. Box 2407, Karachi, 75340, Sindh, Pakistan
| |
Collapse
|
9
|
Hassanzada F, Jansen M, van Lint FHM, Bosman LP, Schmidt AF, Dooijes D, van de Sande D, Miah B, van der Crabben SN, Wilde AAM, Lekanne Deprez RH, de Boer RA, Christiaans I, Jongbloed JDH, Jorstad HT, Asselbergs FW, van Tintelen JP, Baas AF, Te Riele ASJM. Recreational and Occupational Physical Activity and Risk of Adverse Events in Truncating MYBPC3 Founder Variant Carriers. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004561. [PMID: 39689185 DOI: 10.1161/circgen.124.004561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/10/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND MYBPC3 founder variants cause hypertrophic cardiomyopathy leading to heart failure and malignant ventricular arrhythmias. Exercise is typically regarded as a risk factor for disease expression although evidence is conflicting. Stratifying by type of exercise may discriminate low- from high-risk activities in these patients. Here, we evaluate the effects of exercise, stratified by high-static and high-dynamic components, on the risk of major cardiomyopathy-related events (MCEs) and cardiomyopathy penetrance among MYBPC3 founder variant carriers. METHODS We interviewed 188 carriers (57.4% male; aged 43.0±15.0 years) on exercise participation since the age of 10 years. The exercise was quantified as the metabolic equivalent of task-h/wk before the presentation. MCE was defined as a composite of malignant ventricular arrhythmia (sustained ventricular tachycardia/fibrillation), heart failure (heart failure hospitalizations or transplantation), and septal reduction therapy. Static and dynamic exercises were defined per the Bethesda classification. Associations of exercise with MCE and cardiomyopathy penetrance were adjusted for sex and assessed using Cox regression. RESULTS Overall, 43 (22.9%) subjects experienced MCE and 139 (73.9%) were diagnosed with cardiomyopathy. No association was found between overall physical activity and high-static activity with MCE (P=0.587 overall; P=0.322 high static) or cardiomyopathy penetrance (P=0.317 overall; P=0.623 high static). In contrast, high-dynamic activity was associated with malignant ventricular arrhythmia (dichotomized at the 75th percentile: adjusted hazard ratio, 3.26 [95% CI, 1.26-8.44]; P=0.015). CONCLUSIONS Overall exercise participation does not generally increase the risk of adverse events among MYBPC3 founder variant carriers. Nonetheless, an increased risk of malignant ventricular arrhythmia was observed among those engaged in the highest quartile of high-dynamic sports, suggesting that high-level high-intensity exercise activities should be entertained with caution.
Collapse
Affiliation(s)
- Fahima Hassanzada
- Department of Genetics (F.H., M.J., F.H.M.v.L., D.D., B.M., J.P.v.T., A.F.B.), University Medical Center Utrecht, Utrecht University, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, the Netherlands (F.H., M.J., F.H.M.v.L., L.P.B., A.F.S., D.D., S.N.v.d.C., A.A.M.W., R.H.L.D., R.A.d.B., F.W.A., J.P.v.T., A.F.B., A.S.J.M.t.R.)
| | - Mark Jansen
- Department of Genetics (F.H., M.J., F.H.M.v.L., D.D., B.M., J.P.v.T., A.F.B.), University Medical Center Utrecht, Utrecht University, the Netherlands
- Department of Cardiology (M.J., L.P.B., A.F.S., D.v.d.S., A.S.J.M.t.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, the Netherlands (F.H., M.J., F.H.M.v.L., L.P.B., A.F.S., D.D., S.N.v.d.C., A.A.M.W., R.H.L.D., R.A.d.B., F.W.A., J.P.v.T., A.F.B., A.S.J.M.t.R.)
| | - Freyja H M van Lint
- Department of Genetics (F.H., M.J., F.H.M.v.L., D.D., B.M., J.P.v.T., A.F.B.), University Medical Center Utrecht, Utrecht University, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, the Netherlands (F.H., M.J., F.H.M.v.L., L.P.B., A.F.S., D.D., S.N.v.d.C., A.A.M.W., R.H.L.D., R.A.d.B., F.W.A., J.P.v.T., A.F.B., A.S.J.M.t.R.)
- Department of Genetics, Radboud University Medical Center, Nijmegen, the Netherlands (F.H.M.v.L.)
- Department of Human Genetics (F.H.M.v.L., S.N.v.d.C., R.H.L.D., J.P.v.T.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| | - Laurens P Bosman
- Department of Cardiology (M.J., L.P.B., A.F.S., D.v.d.S., A.S.J.M.t.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, the Netherlands (F.H., M.J., F.H.M.v.L., L.P.B., A.F.S., D.D., S.N.v.d.C., A.A.M.W., R.H.L.D., R.A.d.B., F.W.A., J.P.v.T., A.F.B., A.S.J.M.t.R.)
| | - Amand F Schmidt
- Department of Cardiology (M.J., L.P.B., A.F.S., D.v.d.S., A.S.J.M.t.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, the Netherlands (F.H., M.J., F.H.M.v.L., L.P.B., A.F.S., D.D., S.N.v.d.C., A.A.M.W., R.H.L.D., R.A.d.B., F.W.A., J.P.v.T., A.F.B., A.S.J.M.t.R.)
- Netherlands Heart Institute, Utrecht (A.F.S.)
| | - Dennis Dooijes
- Department of Genetics (F.H., M.J., F.H.M.v.L., D.D., B.M., J.P.v.T., A.F.B.), University Medical Center Utrecht, Utrecht University, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, the Netherlands (F.H., M.J., F.H.M.v.L., L.P.B., A.F.S., D.D., S.N.v.d.C., A.A.M.W., R.H.L.D., R.A.d.B., F.W.A., J.P.v.T., A.F.B., A.S.J.M.t.R.)
| | - Danny van de Sande
- Department of Cardiology (M.J., L.P.B., A.F.S., D.v.d.S., A.S.J.M.t.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Bristi Miah
- Department of Genetics (F.H., M.J., F.H.M.v.L., D.D., B.M., J.P.v.T., A.F.B.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Saskia N van der Crabben
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, the Netherlands (F.H., M.J., F.H.M.v.L., L.P.B., A.F.S., D.D., S.N.v.d.C., A.A.M.W., R.H.L.D., R.A.d.B., F.W.A., J.P.v.T., A.F.B., A.S.J.M.t.R.)
- Department of Human Genetics (F.H.M.v.L., S.N.v.d.C., R.H.L.D., J.P.v.T.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| | - Arthur A M Wilde
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, the Netherlands (F.H., M.J., F.H.M.v.L., L.P.B., A.F.S., D.D., S.N.v.d.C., A.A.M.W., R.H.L.D., R.A.d.B., F.W.A., J.P.v.T., A.F.B., A.S.J.M.t.R.)
- Department of Cardiology (A.A.M.W., F.W.A.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam University Medical Center, the Netherlands (A.A.M.W., F.W.A.)
| | - Ronald H Lekanne Deprez
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, the Netherlands (F.H., M.J., F.H.M.v.L., L.P.B., A.F.S., D.D., S.N.v.d.C., A.A.M.W., R.H.L.D., R.A.d.B., F.W.A., J.P.v.T., A.F.B., A.S.J.M.t.R.)
- Department of Human Genetics (F.H.M.v.L., S.N.v.d.C., R.H.L.D., J.P.v.T.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| | - Rudolf A de Boer
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, the Netherlands (F.H., M.J., F.H.M.v.L., L.P.B., A.F.S., D.D., S.N.v.d.C., A.A.M.W., R.H.L.D., R.A.d.B., F.W.A., J.P.v.T., A.F.B., A.S.J.M.t.R.)
- Department of Cardiology (R.A.d.B.), University Medical Center Groningen, University of Groningen, the Netherlands
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Erasmus University Rotterdam, the Netherlands (R.A.d.B.)
| | - Imke Christiaans
- Department of Genetics (I.C., J.D.H.J.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Jan D H Jongbloed
- Department of Genetics (I.C., J.D.H.J.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Harald T Jorstad
- Department of Cardiology, Heart Center, Amsterdam Movement Sciences, Amsterdam Cardiovascular Sciences (H.T.J.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| | - Folkert W Asselbergs
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, the Netherlands (F.H., M.J., F.H.M.v.L., L.P.B., A.F.S., D.D., S.N.v.d.C., A.A.M.W., R.H.L.D., R.A.d.B., F.W.A., J.P.v.T., A.F.B., A.S.J.M.t.R.)
- Department of Cardiology (A.A.M.W., F.W.A.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam University Medical Center, the Netherlands (A.A.M.W., F.W.A.)
- Health Data Research UK and Institute of Health Informatics, University College London, United Kingdom (F.W.A.)
| | - J Peter van Tintelen
- Department of Genetics (F.H., M.J., F.H.M.v.L., D.D., B.M., J.P.v.T., A.F.B.), University Medical Center Utrecht, Utrecht University, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, the Netherlands (F.H., M.J., F.H.M.v.L., L.P.B., A.F.S., D.D., S.N.v.d.C., A.A.M.W., R.H.L.D., R.A.d.B., F.W.A., J.P.v.T., A.F.B., A.S.J.M.t.R.)
- Department of Human Genetics (F.H.M.v.L., S.N.v.d.C., R.H.L.D., J.P.v.T.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| | - Annette F Baas
- Department of Genetics (F.H., M.J., F.H.M.v.L., D.D., B.M., J.P.v.T., A.F.B.), University Medical Center Utrecht, Utrecht University, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, the Netherlands (F.H., M.J., F.H.M.v.L., L.P.B., A.F.S., D.D., S.N.v.d.C., A.A.M.W., R.H.L.D., R.A.d.B., F.W.A., J.P.v.T., A.F.B., A.S.J.M.t.R.)
| | - Anneline S J M Te Riele
- Department of Cardiology (M.J., L.P.B., A.F.S., D.v.d.S., A.S.J.M.t.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart, Amsterdam, the Netherlands (F.H., M.J., F.H.M.v.L., L.P.B., A.F.S., D.D., S.N.v.d.C., A.A.M.W., R.H.L.D., R.A.d.B., F.W.A., J.P.v.T., A.F.B., A.S.J.M.t.R.)
| |
Collapse
|
10
|
Spudich JA. From amoeboid myosin to unique targeted medicines for a genetic cardiac disease. Front Physiol 2024; 15:1496569. [PMID: 39529926 PMCID: PMC11550953 DOI: 10.3389/fphys.2024.1496569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The importance of fundamental basic research in the quest for much needed clinical treatments is a story that constantly must be retold. Funding of basic science in the USA by the National Institutes of Health and other agencies is provided under the assumption that fundamental research eventually will lead to improvements in healthcare worldwide. Understanding how basic research is connected to clinical developments is important, but just part of the story. Many basic science discoveries never see the light of day in a clinical setting because academic scientists are not interested in or do not have the inclination and/or support for entering the world of biotechnology. Even if the interest and inclination are there, often the unknowns about how to enter that world inhibit taking the initial step. Young investigators often ask me how I incorporated biotech opportunities into my otherwise purely academic research endeavors. Here I tell the story of the foundational basic science and early events of my career that led to forming the biotech companies responsible for the development of unique cardiac drugs, including mavacamten, a first in class human β-cardiac myosin inhibitor that is changing the lives of hypertrophic cardiomyopathy patients.
Collapse
Affiliation(s)
- James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
11
|
Lynn ML, Jimenez J, Castillo RL, Vasquez C, Klass MM, Baldo A, Kim A, Gibson C, Murphy AM, Tardiff JC. Arg92Leu-cTnT Alters the cTnC-cTnI Interface Disrupting PKA-Mediated Relaxation. Circ Res 2024; 135:974-989. [PMID: 39328062 PMCID: PMC11502267 DOI: 10.1161/circresaha.124.325223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Impaired left ventricular relaxation, high filling pressures, and dysregulation of Ca2+ homeostasis are common findings contributing to diastolic dysfunction in hypertrophic cardiomyopathy (HCM). Studies have shown that impaired relaxation is an early observation in the sarcomere-gene-positive preclinical HCM cohort, which suggests the potential involvement of myofilament regulators in relaxation. A molecular-level understanding of mechanism(s) at the level of the myofilament is lacking. We hypothesized that mutation-specific, allosterically mediated, changes to the cTnC (cardiac troponin C)-cTnI (cardiac troponin I) interface can account for the development of early-onset diastolic dysfunction via decreased PKA accessibility to cTnI. METHODS HCM mutations R92L-cTnT (cardiac troponin T; Arg92Leu) and Δ160E-cTnT (Glu160 deletion) were studied in vivo, in vitro, and in silico via 2-dimensional echocardiography, Western blotting, ex vivo hemodynamics, stopped-flow kinetics, time-resolved fluorescence resonance energy transfer, and molecular dynamics simulations. RESULTS The HCM-causative mutations R92L-cTnT and Δ160E-cTnT result in different time-of-onset diastolic dysfunction. R92L-cTnT demonstrated early-onset diastolic dysfunction accompanied by a localized decrease in phosphorylation of cTnI. Constitutive phosphorylation of cTnI (cTnI-D23D24) was sufficient to recover diastolic function to non-Tg levels only for R92L-cTnT. Mutation-specific changes in Ca2+ dissociation rates associated with R92L-cTnT reconstituted with cTnI-D23D24 led us to investigate potential involvement of structural changes in the cTnC-cTnI interface as an explanation for these observations. We probed the interface via time-resolved fluorescence resonance energy transfer revealing a repositioning of the N-terminus of cTnI, closer to cTnC, and concomitant decreases in distance distributions at sites flanking the PKA consensus sequence. Implementing time-resolved fluorescence resonance energy transfer distances as constraints into our atomistic model identified additional electrostatic interactions at the consensus sequence. CONCLUSIONS These data show that the early diastolic dysfunction observed in a subset of HCM is attributable to allosterically mediated structural changes at the cTnC-cTnI interface that impair accessibility of PKA, thereby blunting β-adrenergic responsiveness and identifying a potential molecular target for therapeutic intervention.
Collapse
Affiliation(s)
- Melissa L. Lynn
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
| | - Jesus Jimenez
- Department of Medicine, Washington University at St. Louis, St. Louis, MO
| | - Romi L. Castillo
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
| | - Catherine Vasquez
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Matthew M. Klass
- Department of Physiological Sciences, University of Arizona, Tucson, AZ
| | - Anthony Baldo
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ
| | - Andrew Kim
- Department of Physiology, University of Arizona, Tucson, AZ
| | - Cyonna Gibson
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
| | - Anne M. Murphy
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jil C. Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
- Department of Medicine, Washington University at St. Louis, St. Louis, MO
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
- Department of Physiological Sciences, University of Arizona, Tucson, AZ
- Department of Physiology, University of Arizona, Tucson, AZ
| |
Collapse
|
12
|
Mertens J, De Lange WJ, Farrell ET, Harbaugh EC, Gauchan A, Fitzsimons DP, Moss RL, Ralphe JC. The W792R HCM missense mutation in the C6 domain of cardiac myosin binding protein-C increases contractility in neonatal mouse myocardium. J Mol Cell Cardiol 2024; 195:14-23. [PMID: 39059462 DOI: 10.1016/j.yjmcc.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Missense mutations in cardiac myosin binding protein C (cMyBP-C) are known to cause hypertrophic cardiomyopathy (HCM). The W792R mutation in the C6 domain of cMyBP-C causes severe, early onset HCM in humans, yet its impact on the function of cMyBP-C and the mechanism through which it causes disease remain unknown. To fully characterize the effect of the W792R mutation on cardiac morphology and function in vivo, we generated a murine knock-in model. We crossed heterozygous W792RWR mice to produce homozygous mutant W792RRR, heterozygous W792RWR, and control W792RWW mice. W792RRR mice present with cardiac hypertrophy, myofibrillar disarray and fibrosis by postnatal day 10 (PND10), and do not survive past PND21. Full-length cMyBP-C is present at similar levels in W792RWW, W792RWR and W792RRR mice and is properly incorporated into the sarcomere. Heterozygous W792RWR mice displayed normal heart morphology and contractility. Permeabilized myocardium from PND10 W792RRR mice showed increased Ca2+ sensitivity, accelerated cross-bridge cycling kinetics, decreased cooperativity in the activation of force, and increased expression of hypertrophy-related genes. In silico modeling suggests that the W792R mutation destabilizes the fold of the C6 domain and increases torsion in the C5-C7 region, possibly impacting regulatory interactions of cMyBP-C with myosin and actin. Based on the data presented here, we propose a model in which mutant W792R cMyBP-C preferentially forms Ca2+ sensitizing interactions with actin, rather than inhibitory interactions with myosin. The W792R-cMyBP-C mouse model provides mechanistic insights into the pathology of this mutation and may provide a mechanism by which other central domain missense mutations in cMyBP-C may alter contractility, leading to HCM.
Collapse
Affiliation(s)
- Jasmine Mertens
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Willem J De Lange
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Emily T Farrell
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Ella C Harbaugh
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Angeela Gauchan
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Daniel P Fitzsimons
- UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Richard L Moss
- UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America.
| |
Collapse
|
13
|
Spudich JA, Nandwani N, Robert-Paganin J, Houdusse A, Ruppel KM. Reassessing the unifying hypothesis for hypercontractility caused by myosin mutations in hypertrophic cardiomyopathy. EMBO J 2024; 43:4139-4155. [PMID: 39192034 PMCID: PMC11445530 DOI: 10.1038/s44318-024-00199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Significant advances in structural and biochemical research validate the 9-year-old hypothesis that cardiac hypercontractility seen in patients with hypertrophic cardiomyopathy is primarily caused by sarcomeric mutations that increase the number of myosin molecules available for actin interaction.
Collapse
Affiliation(s)
- James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Neha Nandwani
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Julien Robert-Paganin
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005, Paris, France
| | - Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005, Paris, France
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
14
|
Zhang X, Avellaneda J, Spletter ML, Lemke SB, Mangeol P, Habermann BH, Schnorrer F. Mechanoresponsive regulation of myogenesis by the force-sensing transcriptional regulator Tono. Curr Biol 2024; 34:4143-4159.e6. [PMID: 39163855 DOI: 10.1016/j.cub.2024.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/26/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Muscle morphogenesis is a multi-step program, starting with myoblast fusion, followed by myotube-tendon attachment and sarcomere assembly, with subsequent sarcomere maturation, mitochondrial amplification, and specialization. The correct chronological order of these steps requires precise control of the transcriptional regulators and their effectors. How this regulation is achieved during muscle development is not well understood. In a genome-wide RNAi screen in Drosophila, we identified the BTB-zinc-finger protein Tono (CG32121) as a muscle-specific transcriptional regulator. tono mutant flight muscles display severe deficits in mitochondria and sarcomere maturation, resulting in uncontrolled contractile forces causing muscle rupture and degeneration during development. Tono protein is expressed during sarcomere maturation and localizes in distinct condensates in flight muscle nuclei. Interestingly, internal pressure exerted by the maturing sarcomeres deforms the muscle nuclei into elongated shapes and changes the Tono condensates, suggesting that Tono senses the mechanical status of the muscle cells. Indeed, external mechanical pressure on the muscles triggers rapid liquid-liquid phase separation of Tono utilizing its BTB domain. Thus, we propose that Tono senses high mechanical pressure to adapt muscle transcription, specifically at the sarcomere maturation stages. Consistently, tono mutant muscles display specific defects in a transcriptional switch that represses early muscle differentiation genes and boosts late ones. We hypothesize that a similar mechano-responsive regulation mechanism may control the activity of related BTB-zinc-finger proteins that, if mutated, can result in uncontrolled force production in human muscle.
Collapse
Affiliation(s)
- Xu Zhang
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany; School of Life Science and Engineering, Foshan University, Foshan 52800, Guangdong, China
| | - Jerome Avellaneda
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France
| | - Maria L Spletter
- Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany; Department of Physiological Chemistry, Biomedical Center, Ludwig Maximilians University of Munich, Großhaderner Strasse, Martinsried, 82152 Munich, Germany; Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Rockhill Road, Kansas City, MO 64110, USA
| | - Sandra B Lemke
- Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany
| | - Pierre Mangeol
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France
| | - Bianca H Habermann
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany.
| |
Collapse
|
15
|
Liang LW, Lumish HS, Sewanan LR, Shimada YJ, Maurer MS, Weiner SD, Clerkin KJ. Evolving Strategies for the Management of Obstructive Hypertrophic Cardiomyopathy. J Card Fail 2024; 30:1136-1153. [PMID: 38777216 PMCID: PMC11415289 DOI: 10.1016/j.cardfail.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
For many years, treatment of hypertrophic cardiomyopathy (HCM) has focused on non-disease-specific therapies. Cardiac myosin modulators (ie, mavacamten and aficamten) reduce the pathologic actin-myosin interactions that are characteristic of HCM, leading to improved cardiac energetics and reduction in hypercontractility. Several recently published randomized clinical trials have demonstrated that mavacamten improves exercise capacity, left ventricular outflow tract obstruction and symptoms in patients with obstructive HCM and may delay the need for septal-reduction therapy. Long-term data in real-world populations will be needed to fully assess the safety and efficacy of mavacamten. Importantly, HCM is a complex and heterogeneous disease, and not all patients will respond to mavacamten; therefore, careful patient selection and shared decision making will be necessary in guiding the use of mavacamten in obstructive HCM.
Collapse
Affiliation(s)
- Lusha W Liang
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Heidi S Lumish
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Lorenzo R Sewanan
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Yuichi J Shimada
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Mathew S Maurer
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Shepard D Weiner
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Kevin J Clerkin
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY.
| |
Collapse
|
16
|
Grzeczka A, Graczyk S, Pasławski R, Pasławska U. Genetic Basis of Hypertrophic Cardiomyopathy in Cats. Curr Issues Mol Biol 2024; 46:8752-8766. [PMID: 39194734 DOI: 10.3390/cimb46080517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common cardiovascular condition in cats, affecting yth males and females of all ages. Some breeds, such as Ragdolls and Maine Coons, can develop HCM at a young age. The disease has a wide range of progression and severity, characterized by various pathological changes in the heart, including arteritis, fibrous tissue deposition, and myocardial cell hypertrophy. Left ventricular hypertrophy, which can restrict blood flow, is a common feature of HCM. The disease may persist into old age and eventually lead to heart failure and increased diastolic pressure. The basis of HCM in cats is thought to be genetic, although the exact mechanisms are not fully understood. Mutations in sarcomeric proteins, in particular myosin-binding protein C (MYBPC3), have been identified in cats with HCM. Two specific mutations, MYBPC3 [R818W] and MYBPC3 [A31P], have been classified as 'pathogenic'. Other variants in genes such as MYBPC3, TNNT2, ALMS1, and MYH7 are also associated with HCM. However, there are cases where cats without known genetic mutations still develop HCM, suggesting the presence of unknown genetic factors contributing to the disease. This work aims to summarise the new knowledge of HCM in cats and the alterations in cardiac tissue as a result of genetic variants.
Collapse
Affiliation(s)
- Arkadiusz Grzeczka
- Department for Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Szymon Graczyk
- Department for Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Robert Pasławski
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Urszula Pasławska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
17
|
Mori H, Xu D, Shimoda Y, Yuan Z, Murakata Y, Xi B, Sato K, Yamamoto M, Tajiri K, Ishizu T, Ieda M, Murakoshi N. Metabolic remodeling and calcium handling abnormality in induced pluripotent stem cell-derived cardiomyocytes in dilated phase of hypertrophic cardiomyopathy with MYBPC3 frameshift mutation. Sci Rep 2024; 14:15422. [PMID: 38965264 PMCID: PMC11224225 DOI: 10.1038/s41598-024-62530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited disorder characterized by left ventricular hypertrophy and diastolic dysfunction, and increases the risk of arrhythmias and heart failure. Some patients with HCM develop a dilated phase of hypertrophic cardiomyopathy (D-HCM) and have poor prognosis; however, its pathogenesis is unclear and few pathological models exist. This study established disease-specific human induced pluripotent stem cells (iPSCs) from a patient with D-HCM harboring a mutation in MYBPC3 (c.1377delC), a common causative gene of HCM, and investigated the associated pathophysiological mechanisms using disease-specific iPSC-derived cardiomyocytes (iPSC-CMs). We confirmed the expression of pluripotent markers and the ability to differentiate into three germ layers in D-HCM patient-derived iPSCs (D-HCM iPSCs). D-HCM iPSC-CMs exhibited disrupted myocardial sarcomere structures and an increased number of damaged mitochondria. Ca2+ imaging showed increased abnormal Ca2+ signaling and prolonged decay time in D-HCM iPSC-CMs. Cell metabolic analysis revealed increased basal respiration, maximal respiration, and spare-respiratory capacity in D-HCM iPSC-CMs. RNA sequencing also showed an increased expression of mitochondrial electron transport system-related genes. D-HCM iPSC-CMs showed abnormal Ca2+ handling and hypermetabolic state, similar to that previously reported for HCM patient-derived iPSC-CMs. Although further studies are required, this is expected to be a useful pathological model for D-HCM.
Collapse
Affiliation(s)
- Haruka Mori
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
- Master's Program in Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Dongzhu Xu
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuzuno Shimoda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Zixun Yuan
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshiko Murakata
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Binyang Xi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kimi Sato
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masayoshi Yamamoto
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kazuko Tajiri
- Department of Cardiology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tomoko Ishizu
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masaki Ieda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
18
|
Ribeiro M, Jager J, Furtado M, Carvalho T, Cabral JMS, Brito D, Carmo-Fonseca M, Martins S, da Rocha ST. Generation of induced pluripotent stem cells from an individual with early onset and severe hypertrophic cardiomyopathy linked to MYBPC3: c.772G > A mutation. Hum Cell 2024; 37:1205-1214. [PMID: 38762696 PMCID: PMC11194200 DOI: 10.1007/s13577-024-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is frequently caused by mutations in the MYPBC3 gene, which encodes the cardiac myosin-binding protein C (cMyBP-C). Most pathogenic variants in MYPBC3 are either nonsense mutations or result in frameshifts, suggesting that the primary disease mechanism involves reduced functional cMyBP-C protein levels within sarcomeres. However, a subset of MYPBC3 variants are missense mutations, and the molecular mechanisms underlying their pathogenicity remain elusive. Upon in vitro differentiation into cardiomyocytes, induced pluripotent stem cells (iPSCs) derived from HCM patients represent a valuable resource for disease modeling. In this study, we generated two iPSC lines from peripheral blood mononuclear cells (PBMCs) of a female with early onset and severe HCM linked to the MYBPC3: c.772G > A variant. Although this variant was initially classified as a missense mutation, recent studies indicate that it interferes with splicing and results in a frameshift. The generated iPSC lines exhibit a normal karyotype and display hallmark characteristics of pluripotency, including the ability to undergo trilineage differentiation. These novel iPSCs expand the existing repertoire of MYPBC3-mutated cell lines, broadening the spectrum of resources for exploring how diverse mutations induce HCM. They additionally offer a platform to study potential secondary genetic elements contributing to the pronounced disease severity observed in this individual.
Collapse
Affiliation(s)
- Marta Ribeiro
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joanna Jager
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - Marta Furtado
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa Carvalho
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Dulce Brito
- Heart and Vessels Department, Cardiology Division, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Maria Carmo-Fonseca
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra Martins
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.
| | - Simão Teixeira da Rocha
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
19
|
Steczina S, Mohran S, Bailey LRJ, McMillen TS, Kooiker KB, Wood NB, Davis J, Previs MJ, Olivotto I, Pioner JM, Geeves MA, Poggesi C, Regnier M. MYBPC3-c.772G>A mutation results in haploinsufficiency and altered myosin cycling kinetics in a patient induced stem cell derived cardiomyocyte model of hypertrophic cardiomyopathy. J Mol Cell Cardiol 2024; 191:27-39. [PMID: 38648963 PMCID: PMC11116032 DOI: 10.1016/j.yjmcc.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/13/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Approximately 40% of hypertrophic cardiomyopathy (HCM) mutations are linked to the sarcomere protein cardiac myosin binding protein-C (cMyBP-C). These mutations are either classified as missense mutations or truncation mutations. One mutation whose nature has been inconsistently reported in the literature is the MYBPC3-c.772G > A mutation. Using patient-derived human induced pluripotent stem cells differentiated to cardiomyocytes (hiPSC-CMs), we have performed a mechanistic study of the structure-function relationship for this MYBPC3-c.772G > A mutation versus a mutation corrected, isogenic cell line. Our results confirm that this mutation leads to exon skipping and mRNA truncation that ultimately suggests ∼20% less cMyBP-C protein (i.e., haploinsufficiency). This, in turn, results in increased myosin recruitment and accelerated myofibril cycling kinetics. Our mechanistic studies suggest that faster ADP release from myosin is a primary cause of accelerated myofibril cross-bridge cycling due to this mutation. Additionally, the reduction in force generating heads expected from faster ADP release during isometric contractions is outweighed by a cMyBP-C phosphorylation mediated increase in myosin recruitment that leads to a net increase of myofibril force, primarily at submaximal calcium activations. These results match well with our previous report on contractile properties from myectomy samples of the patients from whom the hiPSC-CMs were generated, demonstrating that these cell lines are a good model to study this pathological mutation and extends our understanding of the mechanisms of altered contractile properties of this HCM MYBPC3-c.772G > A mutation.
Collapse
Affiliation(s)
- Sonette Steczina
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Saffie Mohran
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Logan R J Bailey
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Molecular and Cellular Biology, University of Washington, Seattle, WA 98109, USA; Department of Lab Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
| | - Timothy S McMillen
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, USA
| | - Kristina B Kooiker
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Neil B Wood
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05404, USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Lab Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
| | - Michael J Previs
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05404, USA
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, Division of Physiology, University of Florence, Italy
| | | | | | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, Division of Physiology, University of Florence, Italy
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
20
|
Sequeira V, Maack C, Reil GH, Reil JC. Exploring the Connection Between Relaxed Myosin States and the Anrep Effect. Circ Res 2024; 134:117-134. [PMID: 38175910 DOI: 10.1161/circresaha.123.323173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The Anrep effect is an adaptive response that increases left ventricular contractility following an acute rise in afterload. Although the mechanistic origin remains undefined, recent findings suggest a two-phase activation of resting myosin for contraction, involving strain-sensitive and posttranslational phases. We propose that this mobilization represents a transition among the relaxed states of myosin-specifically, from the super-relaxed (SRX) to the disordered-relaxed (DRX)-with DRX myosin ready to participate in force generation. This hypothesis offers a unified explanation that connects myosin's SRX-DRX equilibrium and the Anrep effect as parts of a singular phenomenon. We underscore the significance of this equilibrium in modulating contractility, primarily studied in the context of hypertrophic cardiomyopathy, the most common inherited cardiomyopathy associated with diastolic dysfunction, hypercontractility, and left ventricular hypertrophy. As we posit that the cellular basis of the Anrep effect relies on a two-phased transition of myosin from the SRX to the contraction-ready DRX configuration, any dysregulation in this equilibrium may result in the pathological manifestation of the Anrep phenomenon. For instance, in hypertrophic cardiomyopathy, hypercontractility is linked to a considerable shift of myosin to the DRX state, implying a persistent activation of the Anrep effect. These valuable insights call for additional research to uncover a clinical Anrep fingerprint in pathological states. Here, we demonstrate through noninvasive echocardiographic pressure-volume measurements that this fingerprint is evident in 12 patients with hypertrophic obstructive cardiomyopathy before septal myocardial ablation. This unique signature is characterized by enhanced contractility, indicated by a leftward shift and steepening of the end-systolic pressure-volume relationship, and a prolonged systolic ejection time adjusted for heart rate, which reverses post-procedure. The clinical application of this concept has potential implications beyond hypertrophic cardiomyopathy, extending to other genetic cardiomyopathies and even noncongenital heart diseases with complex etiologies across a broad spectrum of left ventricular ejection fractions.
Collapse
Affiliation(s)
- Vasco Sequeira
- Department of Translational Science Universitätsklinikum, Deutsche Zentrum für Herzinsuffizienz (DZHI), Würzburg, Germany (V.S., C.M.)
| | - Christoph Maack
- Department of Translational Science Universitätsklinikum, Deutsche Zentrum für Herzinsuffizienz (DZHI), Würzburg, Germany (V.S., C.M.)
| | - Gert-Hinrich Reil
- Klinik für Kardiologie, Klinikum Oldenburg, Innere Medizin I, Germany (G.-H.R.)
| | - Jan-Christian Reil
- Klinik für Allgemeine und Interventionelle Kardiologie, Herz- und Diabetes-Zentrum Nordrhein-Westphalen, Germany (J.-C.R.)
| |
Collapse
|
21
|
Ananthamohan K, Stelzer JE, Sadayappan S. Hypertrophic cardiomyopathy in MYBPC3 carriers in aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:9. [PMID: 38406555 PMCID: PMC10883298 DOI: 10.20517/jca.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal thickening of the myocardium, leading to arrhythmias, heart failure, and elevated risk of sudden cardiac death, particularly among the young. This inherited disease is predominantly caused by mutations in sarcomeric genes, among which those in the cardiac myosin binding protein-C3 (MYBPC3) gene are major contributors. HCM associated with MYBPC3 mutations usually presents in the elderly and ranges from asymptomatic to symptomatic forms, affecting numerous cardiac functions and presenting significant health risks with a spectrum of clinical manifestations. Regulation of MYBPC3 expression involves various transcriptional and translational mechanisms, yet the destiny of mutant MYBPC3 mRNA and protein in late-onset HCM remains unclear. Pathogenesis related to MYBPC3 mutations includes nonsense-mediated decay, alternative splicing, and ubiquitin-proteasome system events, leading to allelic imbalance and haploinsufficiency. Aging further exacerbates the severity of HCM in carriers of MYBPC3 mutations. Advancements in high-throughput omics techniques have identified crucial molecular events and regulatory disruptions in cardiomyocytes expressing MYBPC3 variants. This review assesses the pathogenic mechanisms that promote late-onset HCM through the lens of transcriptional, post-transcriptional, and post-translational modulation of MYBPC3, underscoring its significance in HCM across carriers. The review also evaluates the influence of aging on these processes and MYBPC3 levels during HCM pathogenesis in the elderly. While pinpointing targets for novel medical interventions to conserve cardiac function remains challenging, the emergence of personalized omics offers promising avenues for future HCM treatments, particularly for late-onset cases.
Collapse
Affiliation(s)
- Kalyani Ananthamohan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
22
|
Burkart V, Kowalski K, Disch A, Hilfiker-Kleiner D, Lal S, Dos Remedios C, Perrot A, Zeug A, Ponimaskin E, Kosanke M, Dittrich-Breiholz O, Kraft T, Montag J. Nonsense mediated decay factor UPF3B is associated with cMyBP-C haploinsufficiency in hypertrophic cardiomyopathy patients. J Mol Cell Cardiol 2023; 185:26-37. [PMID: 37797718 DOI: 10.1016/j.yjmcc.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited cardiac disease. Up to 40% of cases are associated with heterozygous mutations in myosin binding protein C (cMyBP-C, MYBPC3). Most of these mutations lead to premature termination codons (PTC) and patients show reduction of functional cMyBP-C. This so-called haploinsufficiency most likely contributes to disease development. We analyzed mechanisms underlying haploinsufficiency using cardiac tissue from HCM-patients with truncation mutations in MYBPC3 (MYBPC3trunc). We compared transcriptional activity, mRNA and protein expression to donor controls. To differentiate between HCM-specific and general hypertrophy-induced mechanisms we used patients with left ventricular hypertrophy due to aortic stenosis (AS) as an additional control. We show that cMyBP-C haploinsufficiency starts at the mRNA level, despite hypertrophy-induced increased transcriptional activity. Gene set enrichment analysis (GSEA) of RNA-sequencing data revealed an increased expression of NMD-components. Among them, Up-frameshift protein UPF3B, a regulator of NMD was upregulated in MYBPC3trunc patients and not in AS-patients. Strikingly, we show that in sarcomeres UPF3B but not UPF1 and UPF2 are localized to the Z-discs, the presumed location of sarcomeric protein translation. Our data suggest that cMyBP-C haploinsufficiency in HCM-patients is established by UPF3B-dependent NMD during the initial translation round at the Z-disc.
Collapse
Affiliation(s)
- Valentin Burkart
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| | - Kathrin Kowalski
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Alina Disch
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | | | - Sean Lal
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Cristobal Dos Remedios
- Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Andreas Perrot
- Charité - Universitätsmedizin Berlin, Experimental & Clinical Research Center, Berlin, Germany
| | - Andre Zeug
- Institute of Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Evgeni Ponimaskin
- Institute of Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Maike Kosanke
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | | | - Theresia Kraft
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Judith Montag
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
23
|
Beltrami M, Fedele E, Fumagalli C, Mazzarotto F, Girolami F, Ferrantini C, Coppini R, Tofani L, Bertaccini B, Poggesi C, Olivotto I. Long-Term Prevalence of Systolic Dysfunction in MYBPC3 Versus MYH7-Related Hypertrophic Cardiomyopathy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:363-371. [PMID: 37409452 DOI: 10.1161/circgen.122.003832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The 2 sarcomere genes most commonly associated with hypertrophic cardiomyopathy (HCM), MYBPC3 (myosin-binding protein C3) and MYH7 (β-myosin heavy chain), are indistinguishable at presentation, and genotype-phenotype correlations have been elusive. Based on molecular and pathophysiological differences, however, it is plausible to hypothesize a different behavior in myocardial performance, impacting lifetime changes in left ventricular (LV) function. METHODS We reviewed the initial and final echocardiograms of 402 consecutive HCM patients with pathogenic or likely pathogenic MYBPC3 (n=251) or MYH7 (n=151) mutations, followed over 9±8 years. RESULTS At presentation, MYBPC3 patients were less frequently obstructive (15% versus 26%; P=0.005) and had lower LV ejection fraction compared with MYH7 (66±8% versus 68±8%, respectively; P=0.03). Both HCM patients harboring MYBPC3 and MYH7 mutations exhibited a small but significant decline in LV systolic function during follow-up; however, new onset of severe LV systolic dysfunction (LV ejection fraction, <50%) was greater among MYBPC3 patients (15% versus 5% among MYH7; P=0.013). Prevalence of grade II/III diastolic dysfunction at final evaluation was comparable between MYBPC3 and MYH7 patients (P=0.509). In a Cox multivariable analysis, MYBPC3-positive status (hazard ratio, 2.53 [95% CI, 1.09-5.82]; P=0.029), age (hazard ratio, 1.03 [95% CI, 1.00-1.06]; P=0.027), and atrial fibrillation (hazard ratio, 2.39 [95% CI, 1.14-5.05]; P=0.020) were independent predictors of severe systolic dysfunction. No statistically significant differences occurred with regard to incidence of atrial fibrillation, heart failure, appropriate implanted cardioverter defibrillator shock, or cardiovascular death. CONCLUSIONS MYBPC3-related HCM showed increased long-term prevalence of systolic dysfunction compared with MYH7, in spite of similar outcome. Such observations suggest different pathophysiology of clinical progression in the 2 subsets and may prove relevant for understanding of genotype-phenotype correlations in HCM.
Collapse
Affiliation(s)
- Matteo Beltrami
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (M.B., C.F.)
| | - Elisa Fedele
- Department of Cardiology, Policlinico Casilino, Rome, Italy (E.F.)
| | - Carlo Fumagalli
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (M.B., C.F.)
- Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania "Luigi Vanvitelli," Naples, Italy (C.F.)
| | - Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Italy (F.M.)
| | | | - Cecilia Ferrantini
- Department of Experimental and Clinical Medicine (C.F., C.P., I.O.), University of Florence, Italy
| | - Raffaele Coppini
- Division of Pharmacology, Department of Neuroscience, Psychology, Drug Sciences and Child Health (NeuroFarBa) (R.C.), University of Florence, Italy
| | - Lorenzo Tofani
- Department of Statistics, Computer Science, Applications (L.T., B.B.), University of Florence, Italy
| | - Bruno Bertaccini
- Department of Statistics, Computer Science, Applications (L.T., B.B.), University of Florence, Italy
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine (C.F., C.P., I.O.), University of Florence, Italy
| | - Iacopo Olivotto
- Meyer Children's Hospital, IRCSS, Florence, Italy (F.G., I.O.)
- Department of Experimental and Clinical Medicine (C.F., C.P., I.O.), University of Florence, Italy
| |
Collapse
|
24
|
Lynn ML, Jimenez J, Castillo RL, Klass MM, Vasquez C, Baldo A, Gibson C, Murphy AM, Tardiff JC. The HCM - Linked Mutation Arg92Leu in TNNT2 Allosterically Alters the cTnC - cTnI Interface and Disrupts the PKA-mediated Regulation of Myofilament Relaxation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549569. [PMID: 37503299 PMCID: PMC10370115 DOI: 10.1101/2023.07.18.549569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Impaired left ventricular relaxation, high filling pressures, and dysregulation of Ca 2+ homeostasis are common findings contributing to diastolic dysfunction in hypertrophic cardiomyopathy (HCM). Studies have shown that impaired relaxation is an early observation in the sarcomere-gene-positive preclinical HCM cohort which suggests potential involvement of myofilament regulators of relaxation. Yet, a molecular level understanding of mechanism(s) at the level of the myofilament is lacking. We hypothesized that mutation-specific, allosterically mediated, changes to the cardiac troponin C-cardiac troponin I (cTnC-cTnI) interface can account for the development of early-onset diastolic dysfunction via decreased PKA accessibility to cTnI. Methods HCM mutations R92L-cTnT (Arg92Leu) and Δ160E-cTnT (Glu160 deletion) were studied in vivo , in vitro, and in silico via 2D echocardiography, western blotting, ex vivo hemodynamics, stopped-flow kinetics, time resolved fluorescence resonance energy transfer (TR-FRET), and molecular dynamics simulations. Results The HCM-causative mutations R92L-cTnT and Δ160E-cTnT result in different time-of-onset of diastolic dysfunction. R92L-cTnT demonstrated early-onset diastolic dysfunction accompanied by a localized decrease in phosphorylation of cTnI. Constitutive phosphorylation of cTnI (cTnI-D 23 D 24 ) was sufficient to recover diastolic function to Non-Tg levels only for R92L-cTnT. Mutation-specific changes in Ca 2+ dissociation rates associated with R92L-cTnT reconstituted with cTnI-D 23 D 24 led us to investigate potential involvement of structural changes in the cTnC-cTnI interface as an explanation for these observations. We probed the interface via TR-FRET revealing a repositioning of the N-terminus of cTnI, closer to cTnC, and concomitant decreases in distance distributions at sites flanking the PKA consensus sequence. Implementing TR-FRET distances as constraints into our atomistic model identified additional electrostatic interactions at the consensus sequence. Conclusion These data indicate that the early diastolic dysfunction observed in a subset of HCM is likely attributable to structural changes at the cTnC-cTnI interface that impair accessibility of PKA thereby blunting β-adrenergic responsiveness and identifying a potential molecular target for therapeutic intervention.
Collapse
|
25
|
Lewis CT, Tabrizian L, Nielsen J, Laitila J, Beck TN, Olsen MS, Ognjanovic MM, Aagaard P, Hokken R, Laugesen S, Ingersen A, Andersen JL, Soendenbroe C, Helge JW, Dela F, Larsen S, Sahl RE, Rømer T, Hansen MT, Frandsen J, Suetta C, Ochala J. Physical activity impacts resting skeletal muscle myosin conformation and lowers its ATP consumption. J Gen Physiol 2023; 155:e202213268. [PMID: 37227464 PMCID: PMC10225618 DOI: 10.1085/jgp.202213268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/07/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023] Open
Abstract
It has recently been established that myosin, the molecular motor protein, is able to exist in two conformations in relaxed skeletal muscle. These conformations are known as the super-relaxed (SRX) and disordered-relaxed (DRX) states and are finely balanced to optimize ATP consumption and skeletal muscle metabolism. Indeed, SRX myosins are thought to have a 5- to 10-fold reduction in ATP turnover compared with DRX myosins. Here, we investigated whether chronic physical activity in humans would be associated with changes in the proportions of SRX and DRX skeletal myosins. For that, we isolated muscle fibers from young men of various physical activity levels (sedentary, moderately physically active, endurance-trained, and strength-trained athletes) and ran a loaded Mant-ATP chase protocol. We observed that in moderately physically active individuals, the amount of myosin molecules in the SRX state in type II muscle fibers was significantly greater than in age-matched sedentary individuals. In parallel, we did not find any difference in the proportions of SRX and DRX myosins in myofibers between highly endurance- and strength-trained athletes. We did however observe changes in their ATP turnover time. Altogether, these results indicate that physical activity level and training type can influence the resting skeletal muscle myosin dynamics. Our findings also emphasize that environmental stimuli such as exercise have the potential to rewire the molecular metabolism of human skeletal muscle through myosin.
Collapse
Affiliation(s)
- Christopher T.A. Lewis
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lee Tabrizian
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Jenni Laitila
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas N. Beck
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mathilde S. Olsen
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marija M. Ognjanovic
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Rune Hokken
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Simon Laugesen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Arthur Ingersen
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper L. Andersen
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Casper Soendenbroe
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørn W. Helge
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Dela
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Geriatric and Palliative Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Steen Larsen
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Ronni E. Sahl
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tue Rømer
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel T. Hansen
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Frandsen
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Suetta
- Department of Geriatric and Palliative Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julien Ochala
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Tudurachi BS, Zăvoi A, Leonte A, Țăpoi L, Ureche C, Bîrgoan SG, Chiuariu T, Anghel L, Radu R, Sascău RA, Stătescu C. An Update on MYBPC3 Gene Mutation in Hypertrophic Cardiomyopathy. Int J Mol Sci 2023; 24:10510. [PMID: 37445689 PMCID: PMC10341819 DOI: 10.3390/ijms241310510] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent genetically inherited cardiomyopathy that follows an autosomal dominant inheritance pattern. The majority of HCM cases can be attributed to mutation of the MYBPC3 gene, which encodes cMyBP-C, a crucial structural protein of the cardiac muscle. The manifestation of HCM's morphological, histological, and clinical symptoms is subject to the complex interplay of various determinants, including genetic mutation and environmental factors. Approximately half of MYBPC3 mutations give rise to truncated protein products, while the remaining mutations cause insertion/deletion, frameshift, or missense mutations of single amino acids. In addition, the onset of HCM may be attributed to disturbances in the protein and transcript quality control systems, namely, the ubiquitin-proteasome system and nonsense-mediated RNA dysfunctions. The aforementioned genetic modifications, which appear to be associated with unfavorable lifelong outcomes and are largely influenced by the type of mutation, exhibit a unique array of clinical manifestations ranging from asymptomatic to arrhythmic syncope and even sudden cardiac death. Although the current understanding of the MYBPC3 mutation does not comprehensively explain the varied phenotypic manifestations witnessed in patients with HCM, patients with pathogenic MYBPC3 mutations can exhibit an array of clinical manifestations ranging from asymptomatic to advanced heart failure and sudden cardiac death, leading to a higher rate of adverse clinical outcomes. This review focuses on MYBPC3 mutation and its characteristics as a prognostic determinant for disease onset and related clinical consequences in HCM.
Collapse
Affiliation(s)
- Bogdan-Sorin Tudurachi
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Alexandra Zăvoi
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Andreea Leonte
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Laura Țăpoi
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Carina Ureche
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Silviu Gabriel Bîrgoan
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Traian Chiuariu
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Larisa Anghel
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Rodica Radu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Radu Andy Sascău
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| | - Cristian Stătescu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania; (B.-S.T.); (L.Ț.); (C.U.); (L.A.); (R.R.); (R.A.S.); (C.S.)
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania; (A.L.); (S.G.B.); (T.C.)
| |
Collapse
|
27
|
Sequeira V, Waddingham MT, Tsuchimochi H, Maack C, Pearson JT. Mechano-energetic uncoupling in hypertrophic cardiomyopathy: Pathophysiological mechanisms and therapeutic opportunities. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 4:100036. [PMID: 39801694 PMCID: PMC11708264 DOI: 10.1016/j.jmccpl.2023.100036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 01/16/2025]
Abstract
Hypertrophic cardiomyopathy (HCM) is a frequent inherited form of heart failure. The underlying cause of HCM is generally attributed to mutations in genes that encode for sarcomeric proteins, but the pathogenesis of the disease is also influenced by non-genetic factors, which can contribute to diastolic dysfunction and hypertrophic remodeling. Central to the pathogenesis of HCM is hypercontractility, a state that is an antecedent to several key derangements, including increased mitochondrial workload and oxidative stress. As a result, energy depletion and mechano-energetic uncoupling drive cardiac growth through signaling pathways such as ERK and/or potentially AMPK downregulation. Metabolic remodeling also occurs in HCM, characterized by decreased fatty acid oxidation and increased glucose uptake. In some instances, ketones may also feed the heart with energy and act as signaling molecules to reduce oxidative stress and hypertrophic signaling. In addition, arrhythmias are frequently triggered in HCM, resulting from the high Ca2+-buffering of the myofilaments and changes in the ATP/ADP ratio. Understanding the mechanisms driving the progression of HCM is critical to the development of effective therapeutic strategies. This paper presents evidence from both experimental and clinical studies that support the role of hypercontractility and cellular energy alterations in the progression of HCM towards heart failure and sudden cardiac death.
Collapse
Affiliation(s)
- Vasco Sequeira
- DZHI, Department of Translational Science Universitätsklinikum, Würzburg, Germany
| | - Mark T. Waddingham
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
| | - Christoph Maack
- DZHI, Department of Translational Science Universitätsklinikum, Würzburg, Germany
| | - James T. Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
- Department of Physiology and Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
28
|
De Lange WJ, Farrell ET, Hernandez JJ, Stempien A, Kreitzer CR, Jacobs DR, Petty DL, Moss RL, Crone WC, Ralphe JC. cMyBP-C ablation in human engineered cardiac tissue causes progressive Ca2+-handling abnormalities. J Gen Physiol 2023; 155:e202213204. [PMID: 36893011 PMCID: PMC10038829 DOI: 10.1085/jgp.202213204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/02/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
Truncation mutations in cardiac myosin binding protein C (cMyBP-C) are common causes of hypertrophic cardiomyopathy (HCM). Heterozygous carriers present with classical HCM, while homozygous carriers present with early onset HCM that rapidly progress to heart failure. We used CRISPR-Cas9 to introduce heterozygous (cMyBP-C+/-) and homozygous (cMyBP-C-/-) frame-shift mutations into MYBPC3 in human iPSCs. Cardiomyocytes derived from these isogenic lines were used to generate cardiac micropatterns and engineered cardiac tissue constructs (ECTs) that were characterized for contractile function, Ca2+-handling, and Ca2+-sensitivity. While heterozygous frame shifts did not alter cMyBP-C protein levels in 2-D cardiomyocytes, cMyBP-C+/- ECTs were haploinsufficient. cMyBP-C-/- cardiac micropatterns produced increased strain with normal Ca2+-handling. After 2 wk of culture in ECT, contractile function was similar between the three genotypes; however, Ca2+-release was slower in the setting of reduced or absent cMyBP-C. At 6 wk in ECT culture, the Ca2+-handling abnormalities became more pronounced in both cMyBP-C+/- and cMyBP-C-/- ECTs, and force production became severely depressed in cMyBP-C-/- ECTs. RNA-seq analysis revealed enrichment of differentially expressed hypertrophic, sarcomeric, Ca2+-handling, and metabolic genes in cMyBP-C+/- and cMyBP-C-/- ECTs. Our data suggest a progressive phenotype caused by cMyBP-C haploinsufficiency and ablation that initially is hypercontractile, but progresses to hypocontractility with impaired relaxation. The severity of the phenotype correlates with the amount of cMyBP-C present, with more severe earlier phenotypes observed in cMyBP-C-/- than cMyBP-C+/- ECTs. We propose that while the primary effect of cMyBP-C haploinsufficiency or ablation may relate to myosin crossbridge orientation, the observed contractile phenotype is Ca2+-mediated.
Collapse
Affiliation(s)
- Willem J. De Lange
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Emily T. Farrell
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan J. Hernandez
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alana Stempien
- Departments of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Caroline R. Kreitzer
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Derek R. Jacobs
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Dominique L. Petty
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard L. Moss
- Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Wendy C. Crone
- Departments of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA
- Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - J. Carter Ralphe
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
29
|
Barefield DY. Is haploinsufficiency a sufficient mechanism for MYBPC3 truncating mutations? J Gen Physiol 2023; 155:e202313351. [PMID: 36946992 PMCID: PMC10072154 DOI: 10.1085/jgp.202313351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Reduced expression of MYBPC3 causes early dysfunction in human cell culture models prior to reduced cMyBP-C levels.
Collapse
Affiliation(s)
- David Y. Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
30
|
Pioner JM, Vitale G, Steczina S, Langione M, Margara F, Santini L, Giardini F, Lazzeri E, Piroddi N, Scellini B, Palandri C, Schuldt M, Spinelli V, Girolami F, Mazzarotto F, van der Velden J, Cerbai E, Tesi C, Olivotto I, Bueno-Orovio A, Sacconi L, Coppini R, Ferrantini C, Regnier M, Poggesi C. Slower Calcium Handling Balances Faster Cross-Bridge Cycling in Human MYBPC3 HCM. Circ Res 2023; 132:628-644. [PMID: 36744470 PMCID: PMC9977265 DOI: 10.1161/circresaha.122.321956] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND The pathogenesis of MYBPC3-associated hypertrophic cardiomyopathy (HCM) is still unresolved. In our HCM patient cohort, a large and well-characterized population carrying the MYBPC3:c772G>A variant (p.Glu258Lys, E258K) provides the unique opportunity to study the basic mechanisms of MYBPC3-HCM with a comprehensive translational approach. METHODS We collected clinical and genetic data from 93 HCM patients carrying the MYBPC3:c772G>A variant. Functional perturbations were investigated using different biophysical techniques in left ventricular samples from 4 patients who underwent myectomy for refractory outflow obstruction, compared with samples from non-failing non-hypertrophic surgical patients and healthy donors. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and engineered heart tissues (EHTs) were also investigated. RESULTS Haplotype analysis revealed MYBPC3:c772G>A as a founder mutation in Tuscany. In ventricular myocardium, the mutation leads to reduced cMyBP-C (cardiac myosin binding protein-C) expression, supporting haploinsufficiency as the main primary disease mechanism. Mechanical studies in single myofibrils and permeabilized muscle strips highlighted faster cross-bridge cycling, and higher energy cost of tension generation. A novel approach based on tissue clearing and advanced optical microscopy supported the idea that the sarcomere energetics dysfunction is intrinsically related with the reduction in cMyBP-C. Studies in single cardiomyocytes (native and hiPSC-derived), intact trabeculae and hiPSC-EHTs revealed prolonged action potentials, slower Ca2+ transients and preserved twitch duration, suggesting that the slower excitation-contraction coupling counterbalanced the faster sarcomere kinetics. This conclusion was strengthened by in silico simulations. CONCLUSIONS HCM-related MYBPC3:c772G>A mutation invariably impairs sarcomere energetics and cross-bridge cycling. Compensatory electrophysiological changes (eg, reduced potassium channel expression) appear to preserve twitch contraction parameters, but may expose patients to greater arrhythmic propensity and disease progression. Therapeutic approaches correcting the primary sarcomeric defects may prevent secondary cardiomyocyte remodeling.
Collapse
Affiliation(s)
- Josè Manuel Pioner
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
- Department of Biology (J.M.P.), University of Florence, Italy
| | - Giulia Vitale
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Sonette Steczina
- Department of Bioengineering, University of Washington, Seattle, WA (S.S., M.R.)
| | - Marianna Langione
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Francesca Margara
- Department of Computer Science, University of Oxford, United Kingdom (F. Margara, A.B.-O.)
| | - Lorenzo Santini
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
| | - Francesco Giardini
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| | - Erica Lazzeri
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| | - Nicoletta Piroddi
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Beatrice Scellini
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Chiara Palandri
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
| | - Maike Schuldt
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Physiology, The Netherlands (M.S., J.v.d.V.)
| | - Valentina Spinelli
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
| | - Francesca Girolami
- Pediatric Cardiology (F. Girolami), IRCCS Meyer Children’s Hospital, Florence, Italy
| | - Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Italy (F. Mazzarotto)
- National Heart and Lung Institute, Imperial College London, London, United Kingdom (F. Mazzarotto)
| | - Jolanda van der Velden
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Physiology, The Netherlands (M.S., J.v.d.V.)
| | - Elisabetta Cerbai
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| | - Chiara Tesi
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
| | - Iacopo Olivotto
- Cardiogenetics Unit (I.O.), IRCCS Meyer Children’s Hospital, Florence, Italy
- Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (I.O.)
| | - Alfonso Bueno-Orovio
- Department of Computer Science, University of Oxford, United Kingdom (F. Margara, A.B.-O.)
| | - Leonardo Sacconi
- Institute of Clinical Physiology (IFC), National Research Council, Florence, Italy (L. Sacconi)
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University of Freiburg (L. Sacconi)
| | - Raffaele Coppini
- Department of NeuroFarBa (L. Santini, C. Palandri, V. Spinelli, E. Cerbai, R. Coppini), University of Florence, Italy
| | - Cecilia Ferrantini
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA (S.S., M.R.)
| | - Corrado Poggesi
- Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS) (F. Giardini, E. Lazzeri, C.F., C.P., E. Cerbai), University of Florence, Italy
| |
Collapse
|
31
|
Song T, Landim-Vieira M, Ozdemir M, Gott C, Kanisicak O, Pinto JR, Sadayappan S. Etiology of genetic muscle disorders induced by mutations in fast and slow skeletal MyBP-C paralogs. Exp Mol Med 2023; 55:502-509. [PMID: 36854776 PMCID: PMC10073172 DOI: 10.1038/s12276-023-00953-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 03/02/2023] Open
Abstract
Skeletal muscle, a highly complex muscle type in the eukaryotic system, is characterized by different muscle subtypes and functions associated with specific myosin isoforms. As a result, skeletal muscle is the target of numerous diseases, including distal arthrogryposes (DAs). Clinically, DAs are a distinct disorder characterized by variation in the presence of contractures in two or more distal limb joints without neurological issues. DAs are inherited, and up to 40% of patients with this condition have mutations in genes that encode sarcomeric protein, including myosin heavy chains, troponins, and tropomyosin, as well as myosin binding protein-C (MYBPC). Our research group and others are actively studying the specific role of MYBPC in skeletal muscles. The MYBPC family of proteins plays a critical role in the contraction of striated muscles. More specifically, three paralogs of the MYBPC gene exist, and these are named after their predominant expression in slow-skeletal, fast-skeletal, and cardiac muscle as sMyBP-C, fMyBP-C, and cMyBP-C, respectively, and encoded by the MYBPC1, MYBPC2, and MYBPC3 genes, respectively. Although the physiology of various types of skeletal muscle diseases is well defined, the molecular mechanism underlying the pathological regulation of DAs remains to be elucidated. In this review article, we aim to highlight recent discoveries involving the role of skeletal muscle-specific sMyBP-C and fMyBP-C as well as their expression profile, localization in the sarcomere, and potential role(s) in regulating muscle contractility. Thus, this review provides an overall summary of MYBPC skeletal paralogs, their potential roles in skeletal muscle function, and future research directions.
Collapse
Affiliation(s)
- Taejeong Song
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Mustafa Ozdemir
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Caroline Gott
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
32
|
Untargeted Metabolomics Identifies Potential Hypertrophic Cardiomyopathy Biomarkers in Carriers of MYBPC3 Founder Variants. Int J Mol Sci 2023; 24:ijms24044031. [PMID: 36835444 PMCID: PMC9961357 DOI: 10.3390/ijms24044031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disease, commonly caused by pathogenic MYBPC3 variants, and a significant cause of sudden cardiac death. Severity is highly variable, with incomplete penetrance among genotype-positive family members. Previous studies demonstrated metabolic changes in HCM. We aimed to identify metabolite profiles associated with disease severity in carriers of MYBPC3 founder variants using direct-infusion high-resolution mass spectrometry in plasma of 30 carriers with a severe phenotype (maximum wall thickness ≥20 mm, septal reduction therapy, congestive heart failure, left ventricular ejection fraction <50%, or malignant ventricular arrhythmia) and 30 age- and sex-matched carriers with no or a mild phenotype. Of the top 25 mass spectrometry peaks selected by sparse partial least squares discriminant analysis, XGBoost gradient boosted trees, and Lasso logistic regression (42 total), 36 associated with severe HCM at a p < 0.05, 20 at p < 0.01, and 3 at p < 0.001. These peaks could be clustered to several metabolic pathways, including acylcarnitine, histidine, lysine, purine and steroid hormone metabolism, and proteolysis. In conclusion, this exploratory case-control study identified metabolites associated with severe phenotypes in MYBPC3 founder variant carriers. Future studies should assess whether these biomarkers contribute to HCM pathogenesis and evaluate their contribution to risk stratification.
Collapse
|
33
|
Lewis CTA, Ochala J. Myosin Heavy Chain as a Novel Key Modulator of Striated Muscle Resting State. Physiology (Bethesda) 2023; 38:0. [PMID: 36067133 DOI: 10.1152/physiol.00018.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
After years of intense research using structural, biological, and biochemical experimental procedures, it is clear that myosin molecules are essential for striated muscle contraction. However, this is just the tip of the iceberg of their function. Interestingly, it has been shown recently that these molecules (especially myosin heavy chains) are also crucial for cardiac and skeletal muscle resting state. In the present review, we first overview myosin heavy chain biochemical states and how they influence the consumption of ATP. We then detail how neighboring partner proteins including myosin light chains and myosin binding protein C intervene in such processes, modulating the ATP demand in health and disease. Finally, we present current experimental drugs targeting myosin ATP consumption and how they can treat muscle diseases.
Collapse
Affiliation(s)
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Sevrieva IR, Ponnam S, Yan Z, Irving M, Kampourakis T, Sun YB. Phosphorylation-dependent interactions of myosin-binding protein C and troponin coordinate the myofilament response to protein kinase A. J Biol Chem 2023; 299:102767. [PMID: 36470422 PMCID: PMC9826837 DOI: 10.1016/j.jbc.2022.102767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
PKA-mediated phosphorylation of sarcomeric proteins enhances heart muscle performance in response to β-adrenergic stimulation and is associated with accelerated relaxation and increased cardiac output for a given preload. At the cellular level, the latter translates to a greater dependence of Ca2+ sensitivity and maximum force on sarcomere length (SL), that is, enhanced length-dependent activation. However, the mechanisms by which PKA phosphorylation of the most notable sarcomeric PKA targets, troponin I (cTnI) and myosin-binding protein C (cMyBP-C), lead to these effects remain elusive. Here, we specifically altered the phosphorylation level of cTnI in heart muscle cells and characterized the structural and functional effects at different levels of background phosphorylation of cMyBP-C and with two different SLs. We found Ser22/23 bisphosphorylation of cTnI was indispensable for the enhancement of length-dependent activation by PKA, as was cMyBP-C phosphorylation. This high level of coordination between cTnI and cMyBP-C may suggest coupling between their regulatory mechanisms. Further evidence for this was provided by our finding that cardiac troponin (cTn) can directly interact with cMyBP-C in vitro, in a phosphorylation- and Ca2+-dependent manner. In addition, bisphosphorylation at Ser22/Ser23 increased Ca2+ sensitivity at long SL in the presence of endogenously phosphorylated cMyBP-C. When cMyBP-C was dephosphorylated, bisphosphorylation of cTnI increased Ca2+ sensitivity and decreased cooperativity at both SLs, which may translate to deleterious effects in physiological settings. Our results could have clinical relevance for disease pathways, where PKA phosphorylation of cTnI may be functionally uncoupled from cMyBP-C phosphorylation due to mutations or haploinsufficiency.
Collapse
Affiliation(s)
- Ivanka R Sevrieva
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom.
| | - Saraswathi Ponnam
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Ziqian Yan
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| |
Collapse
|
35
|
Snelders M, Koedijk IH, Schirmer J, Mulleners O, van Leeuwen J, de Wagenaar NP, Bartulos O, Voskamp P, Braam S, Guttenberg Z, Danser AJ, Majoor-Krakauer D, Meijering E, van der Pluijm I, Essers J. Contraction pressure analysis using optical imaging in normal and MYBPC3-mutated hiPSC-derived cardiomyocytes grown on matrices with tunable stiffness. BIOMATERIALS AND BIOSYSTEMS 2022; 8:100068. [PMID: 36824378 PMCID: PMC9934435 DOI: 10.1016/j.bbiosy.2022.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/09/2022] [Accepted: 10/15/2022] [Indexed: 12/04/2022] Open
Abstract
Current in vivo disease models and analysis methods for cardiac drug development have been insufficient in providing accurate and reliable predictions of drug efficacy and safety. Here, we propose a custom optical flow-based analysis method to quantitatively measure recordings of contracting cardiomyocytes on polydimethylsiloxane (PDMS), compatible with medium-throughput systems. Movement of the PDMS was examined by covalently bound fluorescent beads on the PDMS surface, differences caused by increased substrate stiffness were compared, and cells were stimulated with β-agonist. We further validated the system using cardiomyocytes treated with endothelin-1 and compared their contractions against control and cells incubated with receptor antagonist bosentan. After validation we examined two MYBPC3-mutant patient-derived cell lines. Recordings showed that higher substrate stiffness resulted in higher contractile pressure, while beating frequency remained similar to control. β-agonist stimulation resulted in both higher beating frequency as well as higher pressure values during contraction and relaxation. Cells treated with endothelin-1 showed an increased beating frequency, but a lower contraction pressure. Cells treated with both endothelin-1 and bosentan remained at control level of beating frequency and pressure. Lastly, both MYBPC3-mutant lines showed a higher beating frequency and lower contraction pressure. Our validated method is capable of automatically quantifying contraction of hiPSC-derived cardiomyocytes on a PDMS substrate of known shear modulus, returning an absolute value. Our method could have major benefits in a medium-throughput setting.
Collapse
Affiliation(s)
- Matthijs Snelders
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Iris H. Koedijk
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands
| | | | - Otto Mulleners
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands
| | | | - Nathalie P. de Wagenaar
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands,Department of Cardiology, Erasmus MC, Rotterdam, the Netherlands
| | | | | | | | | | - A.H. Jan Danser
- Department of Internal Medicine - Pharmacology, Erasmus MC, Rotterdam, the Netherlands
| | | | - Erik Meijering
- School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands,Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands,Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands,Department of Radiotherapy, Erasmus MC, Rotterdam, the Netherlands,Corresponding author: Erasmus Medical Center, Wytemaweg 80, Rotterdam 3015CN, The Netherlands
| |
Collapse
|
36
|
Sequeira V, Wang L, Wijnker PJ, Kim K, Pinto JR, dos Remedios C, Redwood C, Knollmann BC, van der Velden J. Low expression of the K280N TNNT2 mutation is sufficient to increase basal myofilament activation in human hypertrophy cardiomyopathy. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2022; 1:100007. [PMID: 37159677 PMCID: PMC10160007 DOI: 10.1016/j.jmccpl.2022.100007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 05/11/2023]
Abstract
Background Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disorder with patients typically showing heterozygous inheritance of a pathogenic variant in a gene encoding a contractile protein. Here, we study the contractile effects of a rare homozygous mutation using explanted tissue and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to gain insight into how the balance between mutant and WT protein expression affects cardiomyocyte function. Methods Force measurements were performed in cardiomyocytes isolated from a HCM patient carrying a homozygous troponin T mutation (cTnT-K280N) and healthy donors. To discriminate between mutation-mediated and phosphorylation-related effects on Ca2+-sensitivity, cardiomyocytes were treated with alkaline phosphatase (AP) or protein kinase A (PKA). Troponin exchange experiments characterized the relation between mutant levels and myofilament function. To define mutation-mediated effects on Ca2+-dynamics we used CRISPR/Cas9 to generate hiPSC-CMs harbouring heterozygous and homozygous TnT-K280N mutations. Ca2+-transient and cell shortening experiments compared these lines against isogenic controls. Results Myofilament Ca2+-sensitivity was higher in homozygous cTnT-K280N cardiomyocytes and was not corrected by AP- and PKA-treatment. In cTnT-K280N cells exchanged with cTnT-WT, a low level (14%) of cTnT-K280N mutation elevated Ca2+-sensitivity. Similarly, exchange of donor cells with 45 ± 2% cTnT-K280N increased Ca2+-sensitivity and was not corrected by PKA. cTnT-K280N hiPSC-CMs show elevated diastolic Ca2+ and increases in cell shortening. Impaired cardiomyocyte relaxation was only evident in homozygous cTnT-K280N hiPSC-CMs. Conclusions The cTnT-K280N mutation increases myofilament Ca2+-sensitivity, elevates diastolic Ca2+, enhances contractility and impairs cellular relaxation. A low level (14%) of the cTnT-K280N sensitizes myofilaments to Ca2+, a universal finding of human HCM.
Collapse
Affiliation(s)
- Vasco Sequeira
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
- Division of Clinical Pharmacology, Vanderbilt School of Medicine, Nashville, United States
- Comprehensive Heart Failure Center (CHFC) University Clinic Würzburg, Würzburg, Germany
| | - Lili Wang
- Division of Clinical Pharmacology, Vanderbilt School of Medicine, Nashville, United States
| | - Paul J.M. Wijnker
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Kyungsoo Kim
- Division of Clinical Pharmacology, Vanderbilt School of Medicine, Nashville, United States
| | - Jose R. Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Cris dos Remedios
- Muscle Research Unit, Discipline of Anatomy & Histology, Bosch Institute, The University of Sydney, Sydney, Australia
| | | | - Bjorn C. Knollmann
- Division of Clinical Pharmacology, Vanderbilt School of Medicine, Nashville, United States
| | - Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| |
Collapse
|
37
|
Burkart V, Kowalski K, Aldag-Niebling D, Beck J, Frick DA, Holler T, Radocaj A, Piep B, Zeug A, Hilfiker-Kleiner D, dos Remedios CG, van der Velden J, Montag J, Kraft T. Transcriptional bursts and heterogeneity among cardiomyocytes in hypertrophic cardiomyopathy. Front Cardiovasc Med 2022; 9:987889. [PMID: 36082122 PMCID: PMC9445301 DOI: 10.3389/fcvm.2022.987889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022] Open
Abstract
Transcriptional bursting is a common expression mode for most genes where independent transcription of alleles leads to different ratios of allelic mRNA from cell to cell. Here we investigated burst-like transcription and its consequences in cardiac tissue from Hypertrophic Cardiomyopathy (HCM) patients with heterozygous mutations in the sarcomeric proteins cardiac myosin binding protein C (cMyBP-C, MYBPC3) and cardiac troponin I (cTnI, TNNI3). Using fluorescence in situ hybridization (RNA-FISH) we found that both, MYBPC3 and TNNI3 are transcribed burst-like. Along with that, we show unequal allelic ratios of TNNI3-mRNA among single cardiomyocytes and unequally distributed wildtype cMyBP-C protein across tissue sections from heterozygous HCM-patients. The mutations led to opposing functional alterations, namely increasing (cMyBP-Cc.927−2A>G) or decreasing (cTnIR145W) calcium sensitivity. Regardless, all patients revealed highly variable calcium-dependent force generation between individual cardiomyocytes, indicating contractile imbalance, which appears widespread in HCM-patients. Altogether, we provide strong evidence that burst-like transcription of sarcomeric genes can lead to an allelic mosaic among neighboring cardiomyocytes at mRNA and protein level. In HCM-patients, this presumably induces the observed contractile imbalance among individual cardiomyocytes and promotes HCM-development.
Collapse
Affiliation(s)
- Valentin Burkart
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- Valentin Burkart
| | - Kathrin Kowalski
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - David Aldag-Niebling
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Julia Beck
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Dirk Alexander Frick
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Tim Holler
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Ante Radocaj
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Birgit Piep
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Andre Zeug
- Institute for Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | | | - Cristobal G. dos Remedios
- Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | | | - Judith Montag
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- *Correspondence: Judith Montag
| | - Theresia Kraft
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
38
|
Wood NB, Kelly CM, O’Leary TS, Martin JL, Previs MJ. Cardiac Myosin Filaments are Maintained by Stochastic Protein Replacement. Mol Cell Proteomics 2022; 21:100274. [PMID: 35921914 PMCID: PMC9528119 DOI: 10.1016/j.mcpro.2022.100274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023] Open
Abstract
Myosin and myosin-binding protein C are exquisitely organized into giant filamentous macromolecular complexes within cardiac muscle sarcomeres, yet these proteins must be continually replaced to maintain contractile fidelity. The overall hypothesis that myosin filament structure is dynamic and allows for the stochastic replacement of individual components was tested in vivo, using a combination of mass spectrometry- and fluorescence-based proteomic techniques. Adult mice were fed a diet that marked all newly synthesized proteins with a stable isotope-labeled amino acid. The abundance of unlabeled and labeled proteins was quantified by high-resolution mass spectrometry over an 8-week period. The rates of change in the abundance of these proteins were well described by analytical models in which protein synthesis defined stoichiometry and protein degradation was governed by the stochastic selection of individual molecules. To test whether the whole myosin filaments or the individual components were selected for replacement, cardiac muscle was chemically skinned to remove the cellular membrane and myosin filaments were solubilized with ionic solutions. The composition of the filamentous and soluble fractions was quantified by mass spectrometry, and filament depolymerization was visualized by real-time fluorescence microscopy. Myosin molecules were preferentially extracted from ends of the filaments in the presence of the ionic solutions, and there was only a slight bias in the abundance of unlabeled molecules toward the innermost region on the myosin filaments. These data demonstrate for the first time that the newly synthesized myosin and myosin-binding protein C molecules are randomly mixed into preexisting thick filaments in vivo and the rate of mixing may not be equivalent along the length of the thick filament. These data collectively support a new model of cardiac myosin filament structure, with the filaments being dynamic macromolecular assemblies that allow for replacement of their components, rather than rigid bodies.
Collapse
Affiliation(s)
- Neil B. Wood
- Department of Molecular Physiology and Biophysics, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Colleen M. Kelly
- Department of Molecular Physiology and Biophysics, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Thomas S. O’Leary
- Department of Molecular Physiology and Biophysics, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Jody L. Martin
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Michael J. Previs
- Department of Molecular Physiology and Biophysics, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA,For correspondence: Michael J. Previs, Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Health Science Research Facility, 149 Beaumont Avenue, Room 108, Burlington, Vermont 05405
| |
Collapse
|
39
|
Katyal G, Ebanks B, Dowle A, Shephard F, Papetti C, Lucassen M, Chakrabarti L. Quantitative Proteomics and Network Analysis of Differentially Expressed Proteins in Proteomes of Icefish Muscle Mitochondria Compared with Closely Related Red-Blooded Species. BIOLOGY 2022; 11:biology11081118. [PMID: 35892974 PMCID: PMC9330239 DOI: 10.3390/biology11081118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary Antarctic icefish are unusual in that they are the only vertebrates that survive without the protein haemoglobin. One way to try and understand the biological processes that support this anomaly is to record how proteins are regulated in these animals and to compare what we find to closely related Antarctic fish that do still retain haemoglobin. The part of the cell that most clearly utilises oxygen, which is normally transported by haemoglobin, is the mitochondrion. Therefore, we chose to catalogue all the proteins and their relative quantities in the mitochondria (pl.) from two different muscle types in two species of icefish and two species of red-blooded notothenioids. We used an approach called mass spectrometry to reveal relative amounts of the proteins from the muscles of each fish. We present analysis that shows how the connections and relative quantities of proteins differ between these species. Abstract Antarctic icefish are extraordinary in their ability to thrive without haemoglobin. We wanted to understand how the mitochondrial proteome has adapted to the loss of this protein. Metabolic pathways that utilise oxygen are most likely to be rearranged in these species. Here, we have defined the mitochondrial proteomes of both the red and white muscle of two different icefish species (Champsocephalus gunnari and Chionodraco rastrospinosus) and compared these with two related red-blooded Notothenioids (Notothenia rossii, Trematomus bernacchii). Liquid Chromatography-Mass spectrometry (LC-MS/MS) was used to generate and examine the proteomic profiles of the two groups. We recorded a total of 91 differentially expressed proteins in the icefish red muscle mitochondria and 89 in the white muscle mitochondria when compared with the red-blooded related species. The icefish have a relatively higher abundance of proteins involved with Complex V of oxidative phosphorylation, RNA metabolism, and homeostasis, and fewer proteins for striated muscle contraction, haem, iron, creatine, and carbohydrate metabolism. Enrichment analyses showed that many important pathways were different in both red muscle and white muscle, including the citric acid cycle, ribosome machinery and fatty acid degradation. Life in the Antarctic waters poses extra challenges to the organisms that reside within them. Icefish have successfully inhabited this environment and we surmise that species without haemoglobin uniquely maintain their physiology. Our study highlights the mitochondrial protein pathway differences between similar fish species according to their specific tissue oxygenation idiosyncrasies.
Collapse
Affiliation(s)
- Gunjan Katyal
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK; (G.K.); (B.E.); (F.S.)
| | - Brad Ebanks
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK; (G.K.); (B.E.); (F.S.)
| | - Adam Dowle
- Department of Biology, Bioscience Technology Facility, University of York, York YO10 5DD, UK;
| | - Freya Shephard
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK; (G.K.); (B.E.); (F.S.)
| | - Chiara Papetti
- Biology Department, University of Padova, Via U. Bassi, 58/b, 35121 Padova, Italy;
| | | | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK; (G.K.); (B.E.); (F.S.)
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Liverpool L7 8TX, UK
- Correspondence:
| |
Collapse
|
40
|
Desai DA, Rao VJ, Jegga AG, Dhandapany PS, Sadayappan S. Heterogeneous Distribution of Genetic Mutations in Myosin Binding Protein-C Paralogs. Front Genet 2022; 13:896117. [PMID: 35832193 PMCID: PMC9272480 DOI: 10.3389/fgene.2022.896117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
Myosin binding protein-C (MyBP-C) is a sarcomeric protein which regulates the force of contraction in striated muscles. Mutations in the MYBPC family of genes, including slow skeletal (MYBPC1), fast skeletal (MYBPC2) and cardiac (MYBPC3), can result in cardiac and skeletal myopathies. Nonetheless, their evolutionary pattern, pathogenicity and impact on MyBP-C protein structure remain to be elucidated. Therefore, the present study aimed to systematically assess the evolutionarily conserved and epigenetic patterns of MYBPC family mutations. Leveraging a machine learning (ML) approach, the Genome Aggregation Database (gnomAD) provided variants in MYBPC1, MYBPC2, and MYBPC3 genes. This was followed by an analysis with Ensembl’s variant effect predictor (VEP), resulting in the identification of 8,618, 3,871, and 3,071 variants in MYBPC1, MYBPC2, and MYBPC3, respectively. Missense variants comprised 61%–66% of total variants in which the third nucleotide positions in the codons were highly altered. Arginine was the most mutated amino acid, important because most disease-causing mutations in MyBP-C proteins are arginine in origin. Domains C5 and C6 of MyBP-C were found to be hotspots for most mutations in the MyBP-C family of proteins. A high percentage of truncated mutations in cMyBP-C cause cardiomyopathies. Arginine and glutamate were the top hits in fMyBP-C and cMyBP-C, respectively, and tryptophan and tyrosine were the most common among the three paralogs changing to premature stop codons and causing protein truncations at the carboxyl terminus. A heterogeneous epigenetic pattern was identified among the three MYBP-C paralogs. Overall, it was shown that databases using computational approaches can facilitate diagnosis and drug discovery to treat muscle disorders caused by MYBPC mutations.
Collapse
Affiliation(s)
- Darshini A. Desai
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, United States
| | - Vinay J. Rao
- Cardiovascular Biology and Disease Theme, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Perundurai S. Dhandapany
- Cardiovascular Biology and Disease Theme, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, United States
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Sakthivel Sadayappan,
| |
Collapse
|
41
|
Suay-Corredera C, Alegre-Cebollada J. The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP-C. FEBS Lett 2022; 596:703-746. [PMID: 35224729 DOI: 10.1002/1873-3468.14301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Hypertrophic cardiomyopathy (HCM), a disease characterized by cardiac muscle hypertrophy and hypercontractility, is the most frequently inherited disorder of the heart. HCM is mainly caused by variants in genes encoding proteins of the sarcomere, the basic contractile unit of cardiomyocytes. The most frequently mutated among them is MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), a key regulator of sarcomere contraction. In this review, we summarize clinical and genetic aspects of HCM and provide updated information on the function of the healthy and HCM sarcomere, as well as on emerging therapeutic options targeting sarcomere mechanical activity. Building on what is known about cMyBP-C activity, we examine different pathogenicity drivers by which MYBPC3 variants can cause disease, focussing on protein haploinsufficiency as a common pathomechanism also in nontruncating variants. Finally, we discuss recent evidence correlating altered cMyBP-C mechanical properties with HCM development.
Collapse
|
42
|
Ušaj M, Moretto L, Månsson A. Critical Evaluation of Current Hypotheses for the Pathogenesis of Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 23:2195. [PMID: 35216312 PMCID: PMC8880276 DOI: 10.3390/ijms23042195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Hereditary hypertrophic cardiomyopathy (HCM), due to mutations in sarcomere proteins, occurs in more than 1/500 individuals and is the leading cause of sudden cardiac death in young people. The clinical course exhibits appreciable variability. However, typically, heart morphology and function are normal at birth, with pathological remodeling developing over years to decades, leading to a phenotype characterized by asymmetric ventricular hypertrophy, scattered fibrosis and myofibrillar/cellular disarray with ultimate mechanical heart failure and/or severe arrhythmias. The identity of the primary mutation-induced changes in sarcomere function and how they trigger debilitating remodeling are poorly understood. Support for the importance of mutation-induced hypercontractility, e.g., increased calcium sensitivity and/or increased power output, has been strengthened in recent years. However, other ideas that mutation-induced hypocontractility or non-uniformities with contractile instabilities, instead, constitute primary triggers cannot yet be discarded. Here, we review evidence for and criticism against the mentioned hypotheses. In this process, we find support for previous ideas that inefficient energy usage and a blunted Frank-Starling mechanism have central roles in pathogenesis, although presumably representing effects secondary to the primary mutation-induced changes. While first trying to reconcile apparently diverging evidence for the different hypotheses in one unified model, we also identify key remaining questions and suggest how experimental systems that are built around isolated primarily expressed proteins could be useful.
Collapse
Affiliation(s)
| | | | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-39182 Kalmar, Sweden; (M.U.); (L.M.)
| |
Collapse
|
43
|
Palyam V, Azam AT, Odeyinka O, Alhashimi R, Thoota S, Ashok T, Sange I. Hypertrophic Cardiomyopathy and Atrial Fibrillation: A Review. Cureus 2022; 14:e21101. [PMID: 35165560 PMCID: PMC8830388 DOI: 10.7759/cureus.21101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited cardiological condition that exhibits various clinical symptoms. The leading cause of atrial fibrillation (AF) in patients with HCM is advanced diastolic dysfunction and left atrial dilatation and remodeling. In addition to the gradual symptomatic and functional decline caused by AF, there is an increased risk of thromboembolic disease and mortality, especially if there is a rapid ventricular rate or obstruction of the left ventricular outflow tract. The mainstay of management of AF in HCM is a combination of non-pharmacological lifestyle and risk factor modification, long-term anticoagulation, and rhythm control with anti-arrhythmic medications, septal ablation, and radiofrequency catheter ablation. This article has examined the development of AF in HCM, its clinical symptomatology, and its impact, highlighting its management and the mortality associated with AF in HCM.
Collapse
|
44
|
de Boer RA, Heymans S, Backs J, Carrier L, Coats AJS, Dimmeler S, Eschenhagen T, Filippatos G, Gepstein L, Hulot JS, Knöll R, Kupatt C, Linke WA, Seidman CE, Tocchetti CG, van der Velden J, Walsh R, Seferovic PM, Thum T. Targeted therapies in genetic dilated and hypertrophic cardiomyopathies: From molecular mechanisms to therapeutic targets. Eur J Heart Fail 2021; 24:406-420. [PMID: 34969177 PMCID: PMC9305112 DOI: 10.1002/ejhf.2414] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 11/15/2022] Open
Abstract
Genetic cardiomyopathies are disorders of the cardiac muscle, most often explained by pathogenic mutations in genes encoding sarcomere, cytoskeleton, or ion channel proteins. Clinical phenotypes such as heart failure and arrhythmia are classically treated with generic drugs, but aetiology‐specific and targeted treatments are lacking. As a result, cardiomyopathies still present a major burden to society, and affect many young and older patients. The Translational Committee of the Heart Failure Association (HFA) and the Working Group of Myocardial Function of the European Society of Cardiology (ESC) organized a workshop to discuss recent advances in molecular and physiological studies of various forms of cardiomyopathies. The study of cardiomyopathies has intensified after several new study setups became available, such as induced pluripotent stem cells, three‐dimensional printing of cells, use of scaffolds and engineered heart tissue, with convincing human validation studies. Furthermore, our knowledge on the consequences of mutated proteins has deepened, with relevance for cellular homeostasis, protein quality control and toxicity, often specific to particular cardiomyopathies, with precise effects explaining the aberrations. This has opened up new avenues to treat cardiomyopathies, using contemporary techniques from the molecular toolbox, such as gene editing and repair using CRISPR‐Cas9 techniques, antisense therapies, novel designer drugs, and RNA therapies. In this article, we discuss the connection between biology and diverse clinical presentation, as well as promising new medications and therapeutic avenues, which may be instrumental to come to precision medicine of genetic cardiomyopathies.
Collapse
Affiliation(s)
- Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Center (MUMC+), PO Box 5800, 6202, AZ, Maastricht, the Netherlands.,Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | | | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Gerasimos Filippatos
- Department of Cardiology, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| | - Lior Gepstein
- Department of Cardiology, Rambam Health Care Campus, Haaliya Street, 31096, Haifa, Israel
| | - Jean-Sebastien Hulot
- Université de Paris, INSERM, PARCC, F-75006, Paris, France.,CIC1418 and DMU CARTE, AP- HP, Hôpital Européen Georges-Pompidou, F-75015, Paris, France
| | - Ralph Knöll
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institute, Stockholm, SE-171 77, Sweden.,Bioscience, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christian Kupatt
- Department of Cardiology, University Clinic rechts der Isar, Technical University of Munich, Germany and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Muenster, Robert-Koch-Str. 27B, 48149, Muenster, Germany
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard University, Boston, MA, USA
| | - C Gabriele Tocchetti
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI); Interdepartmental Center for Clinical and Translational Research (CIRCET); Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Roddy Walsh
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, University of Amsterdam, Heart Center, Amsterdam, The Netherlands
| | - Petar M Seferovic
- Serbian Academy of Sciences and Arts, Belgrade, 11000, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
45
|
Schwäbe FV, Peter EK, Taft MH, Manstein DJ. Assessment of the Contribution of a Thermodynamic and Mechanical Destabilization of Myosin-Binding Protein C Domain C2 to the Pathomechanism of Hypertrophic Cardiomyopathy-Causing Double Mutation MYBPC3Δ25bp/D389V. Int J Mol Sci 2021; 22:ijms222111949. [PMID: 34769381 PMCID: PMC8584774 DOI: 10.3390/ijms222111949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023] Open
Abstract
Mutations in the gene encoding cardiac myosin-binding protein-C (MyBPC), a thick filament assembly protein that stabilizes sarcomeric structure and regulates cardiac function, are a common cause for the development of hypertrophic cardiomyopathy. About 10% of carriers of the Δ25bp variant of MYBPC3, which is common in individuals from South Asia, are also carriers of the D389V variant on the same allele. Compared with noncarriers and those with MYBPC3Δ25bp alone, indicators for the development of hypertrophic cardiomyopathy occur with increased frequency in MYBPC3Δ25bp/D389V carriers. Residue D389 lies in the IgI-like C2 domain that is part of the N-terminal region of MyBPC. To probe the effects of mutation D389V on structure, thermostability, and protein–protein interactions, we produced and characterized wild-type and mutant constructs corresponding to the isolated 10 kDa C2 domain and a 52 kDa N-terminal fragment that includes subdomains C0 to C2. Our results show marked reductions in the melting temperatures of D389V mutant constructs. Interactions of construct C0–C2 D389V with the cardiac isoforms of myosin-2 and actin remain unchanged. Molecular dynamics simulations reveal changes in the stiffness and conformer dynamics of domain C2 caused by mutation D389V. Our results suggest a pathomechanism for the development of HCM based on the toxic buildup of misfolded protein in young MYBPC3Δ25bp/D389V carriers that is supplanted and enhanced by C-zone haploinsufficiency at older ages.
Collapse
Affiliation(s)
- Frederic V. Schwäbe
- Fritz Hartmann Centre for Medical Research, Institute for Biophysical Chemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany; (F.V.S.); (E.K.P.); (M.H.T.)
| | - Emanuel K. Peter
- Fritz Hartmann Centre for Medical Research, Institute for Biophysical Chemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany; (F.V.S.); (E.K.P.); (M.H.T.)
| | - Manuel H. Taft
- Fritz Hartmann Centre for Medical Research, Institute for Biophysical Chemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany; (F.V.S.); (E.K.P.); (M.H.T.)
| | - Dietmar J. Manstein
- Fritz Hartmann Centre for Medical Research, Institute for Biophysical Chemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany; (F.V.S.); (E.K.P.); (M.H.T.)
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany
- Correspondence:
| |
Collapse
|
46
|
Ion Channel Impairment and Myofilament Ca 2+ Sensitization: Two Parallel Mechanisms Underlying Arrhythmogenesis in Hypertrophic Cardiomyopathy. Cells 2021; 10:cells10102789. [PMID: 34685769 PMCID: PMC8534456 DOI: 10.3390/cells10102789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Life-threatening ventricular arrhythmias are the main clinical burden in patients with hypertrophic cardiomyopathy (HCM), and frequently occur in young patients with mild structural disease. While massive hypertrophy, fibrosis and microvascular ischemia are the main mechanisms underlying sustained reentry-based ventricular arrhythmias in advanced HCM, cardiomyocyte-based functional arrhythmogenic mechanisms are likely prevalent at earlier stages of the disease. In this review, we will describe studies conducted in human surgical samples from HCM patients, transgenic animal models and human cultured cell lines derived from induced pluripotent stem cells. Current pieces of evidence concur to attribute the increased risk of ventricular arrhythmias in early HCM to different cellular mechanisms. The increase of late sodium current and L-type calcium current is an early observation in HCM, which follows post-translation channel modifications and increases the occurrence of early and delayed afterdepolarizations. Increased myofilament Ca2+ sensitivity, commonly observed in HCM, may promote afterdepolarizations and reentry arrhythmias with direct mechanisms. Decrease of K+-currents due to transcriptional regulation occurs in the advanced disease and contributes to reducing the repolarization-reserve and increasing the early afterdepolarizations (EADs). The presented evidence supports the idea that patients with early-stage HCM should be considered and managed as subjects with an acquired channelopathy rather than with a structural cardiac disease.
Collapse
|
47
|
Hassoun R, Budde H, Mügge A, Hamdani N. Cardiomyocyte Dysfunction in Inherited Cardiomyopathies. Int J Mol Sci 2021; 22:11154. [PMID: 34681814 PMCID: PMC8541428 DOI: 10.3390/ijms222011154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023] Open
Abstract
Inherited cardiomyopathies form a heterogenous group of disorders that affect the structure and function of the heart. Defects in the genes encoding sarcomeric proteins are associated with various perturbations that induce contractile dysfunction and promote disease development. In this review we aimed to outline the functional consequences of the major inherited cardiomyopathies in terms of myocardial contraction and kinetics, and to highlight the structural and functional alterations in some sarcomeric variants that have been demonstrated to be involved in the pathogenesis of the inherited cardiomyopathies. A particular focus was made on mutation-induced alterations in cardiomyocyte mechanics. Since no disease-specific treatments for familial cardiomyopathies exist, several novel agents have been developed to modulate sarcomere contractility. Understanding the molecular basis of the disease opens new avenues for the development of new therapies. Furthermore, the earlier the awareness of the genetic defect, the better the clinical prognostication would be for patients and the better the prevention of development of the disease.
Collapse
Affiliation(s)
- Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| | - Heidi Budde
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
48
|
Patel PN, Ito K, Willcox JAL, Haghighi A, Jang MY, Gorham JM, DePalma SR, Lam L, McDonough B, Johnson R, Lakdawala NK, Roberts A, Barton PJR, Cook SA, Fatkin D, Seidman CE, Seidman JG. Contribution of Noncanonical Splice Variants to TTN Truncating Variant Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003389. [PMID: 34461741 DOI: 10.1161/circgen.121.003389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heterozygous TTN truncating variants cause 10% to 20% of idiopathic dilated cardiomyopathy (DCM). Although variants which disrupt canonical splice signals (ie, invariant dinucleotide of the splice donor site, invariant dinucleotide of the splice acceptor site) at exon-intron junctions are readily recognized as TTN truncating variants, the effects of other nearby sequence variations on splicing and their contribution to disease is uncertain. METHODS Rare variants of unknown significance located in the splice regions of highly expressed TTN exons from 203 DCM cases, 3329 normal subjects, and clinical variant databases were identified. The effects of these variants on splicing were assessed using an in vitro splice assay. RESULTS Splice-altering variants of unknown significance were enriched in DCM cases over controls and present in 2% of DCM patients (P=0.002). Application of this method to clinical variant databases demonstrated 20% of similar variants of unknown significance in TTN splice regions affect splicing. Noncanonical splice-altering variants were most frequently located at position +5 of the donor site (P=4.4×107) and position -3 of the acceptor site (P=0.002). SpliceAI, an emerging in silico prediction tool, had a high positive predictive value (86%-95%) but poor sensitivity (15%-50%) for the detection of splice-altering variants. Alternate exons spliced out of most TTN transcripts frequently lacked the consensus base at +5 donor and -3 acceptor positions. CONCLUSIONS Noncanonical splice-altering variants in TTN explain 1-2% of DCM and offer a 10-20% increase in the diagnostic power of TTN sequencing in this disease. These data suggest rules that may improve efforts to detect splice-altering variants in other genes and may explain the low percent splicing observed for many alternate TTN exons.
Collapse
Affiliation(s)
- Parth N Patel
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital (P.N.P., A.H., M.Y.J.), Harvard Medical School, Boston, MA
| | - Kaoru Ito
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA.,Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan (K.I.)
| | - Jon A L Willcox
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA
| | - Alireza Haghighi
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital (P.N.P., A.H., M.Y.J.), Harvard Medical School, Boston, MA.,Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, MA (A.H.)
| | - Min Young Jang
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital (P.N.P., A.H., M.Y.J.), Harvard Medical School, Boston, MA
| | - Joshua M Gorham
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA
| | - Steven R DePalma
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA
| | - Lien Lam
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA
| | - Barbara McDonough
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA
| | - Renee Johnson
- Victor Chang Cardiac Research Institute, Darlinghurst (R.J., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia (R.J., D.F.)
| | - Neal K Lakdawala
- Division of Cardiovascular Medicine, Brigham and Women's Hospital (N.K.L., C.E.S.)
| | - Amy Roberts
- Department of Cardiology, Boston Children's Hospital, MA (A.R.)
| | - Paul J R Barton
- National Heart and Lung Institute (P.J.R.B., S.A.C.).,Cardiovascular Research Centre, Royal Brompton and Harefield Hospitals, London, United Kingdom (P.J.R.B.)
| | - Stuart A Cook
- National Heart and Lung Institute (P.J.R.B., S.A.C.).,MRC London Institute of Medical Sciences, Imperial College London (S.A.C.).,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (S.A.C.).,National Heart Research Institute Singapore, National Heart Centre Singapore (S.A.C.)
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst (R.J., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia (R.J., D.F.).,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia (D.F.)
| | - Christine E Seidman
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA.,Howard Hughes Medical Institute (C.E.S.), Harvard Medical School, Boston, MA.,Division of Cardiovascular Medicine, Brigham and Women's Hospital (N.K.L., C.E.S.)
| | - J G Seidman
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA
| |
Collapse
|
49
|
Tiesmeier J, Gaertner A, Homm S, Jakob T, Stanasiuk C, Bachmann-Mennenga B, Henzler D, Grautoff S, Veit G, Hori E, Kellner U, Gummert JF, Hitz MP, Kostareva A, Klingel K, Paluszkiewicz L, Laser KT, Pfeiffer H, Fox H, Milting H. The emergency medical service has a crucial role to unravel the genetics of sudden cardiac arrest in young, out of hospital resuscitated patients: Interim data from the MAP-IT study. Resuscitation 2021; 168:176-185. [PMID: 34389451 DOI: 10.1016/j.resuscitation.2021.07.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/05/2021] [Accepted: 07/27/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Genetics of sudden cardiac deaths (SCD) remains frequently undetected. Genetic analysis is recommended in undefined selected cases in the 2021 ERC-guideline. The emergency medical service and physicians (EMS) may play a pivotal role for unraveling SCD by saving biomaterial for later molecular autopsy. Since for high-throughput DNA-sequencing (NGS) high quality genomic DNA is needed. We investigated in a prospective proof-of-concept study the role of the EMS for the identification of genetic forms of SCDs in the young. METHODS We included patients aged 1-50 years with need for cardiopulmonary resuscitation attempts (CPR). Cases with non-natural deaths were excluded. In two German counties with 562,904 residents 39,506 services were analysed. Paired end panel-sequencing was performed, and variants were classified according to guidelines of the American College of Medical Genetics (ACMG). RESULTS 769 CPR-attempts were recorded (1.95% of all EMS-services; CPR-incidence 68/100,000). In 103 cases CPR were performed in patients < 50y. 58% died on scene, 26% were discharged from hospital. 24 subjects were included for genotyping. Of these 33% died on scene, 37.5% were discharged from hospital. 25% of the genotyped patients were carriers of (likely) pathogenic (ACMG-4/-5) variants. 67% carried variants with unknown significance (ACMG-3). 2 of them had familial history for arrhythmogenic cardiomyopathy or had to be re-classified as ACMG-4 carriers due to whole exome sequencing. CONCLUSION The EMS contributes especially in fatal OHCA-cases to increase the yield of identified genetic conditions by collecting a blood sample on scene. Thus, the EMS can contribute significantly to primary and secondary prophylaxis in affected families.
Collapse
Affiliation(s)
- Jens Tiesmeier
- Institute for Anesthesiology, Intensive Care- and Emergency Medicine, MKK-Hospital Luebbecke, Campus OWL, Ruhr-University Bochum, Germany; Erich and Hanna Klessmann-Institute for Cardiovascular Research and Development & Clinic for Thoracic and Cardiovascular Surgery, Heart- and Diabetescenter NRW, D-32545 Bad Oeynhausen, University Hospital of the Ruhr-University Bochum, Germany
| | - Anna Gaertner
- Erich and Hanna Klessmann-Institute for Cardiovascular Research and Development & Clinic for Thoracic and Cardiovascular Surgery, Heart- and Diabetescenter NRW, D-32545 Bad Oeynhausen, University Hospital of the Ruhr-University Bochum, Germany
| | - Sören Homm
- Institute for Anesthesiology, Intensive Care- and Emergency Medicine, MKK-Johannes Wesling Hospital Minden, Campus OWL, Ruhr-University Bochum, Germany
| | - Thomas Jakob
- Department of Anesthesiology, Surgical Intensive Care, Emergency Medicine and Pain Therapy, Herford Hospital, Campus OWL, Ruhr-University Bochum, Germany
| | - Caroline Stanasiuk
- Erich and Hanna Klessmann-Institute for Cardiovascular Research and Development & Clinic for Thoracic and Cardiovascular Surgery, Heart- and Diabetescenter NRW, D-32545 Bad Oeynhausen, University Hospital of the Ruhr-University Bochum, Germany
| | - Bernd Bachmann-Mennenga
- Institute for Anesthesiology, Intensive Care- and Emergency Medicine, MKK-Johannes Wesling Hospital Minden, Campus OWL, Ruhr-University Bochum, Germany
| | - Dietrich Henzler
- Department of Anesthesiology, Surgical Intensive Care, Emergency Medicine and Pain Therapy, Herford Hospital, Campus OWL, Ruhr-University Bochum, Germany
| | - Steffen Grautoff
- Emergency Department, Herford Hospital, Campus OWL, Ruhr-University Bochum, Germany
| | - Gunter Veit
- Institute for Anesthesiology, Intensive Care- and Emergency Medicine, MKK-Hospital Luebbecke, Campus OWL, Ruhr-University Bochum, Germany
| | - Erika Hori
- Institute for Pathology, Johannes Wessling Hospital Minden, D-32429 Minden, Campus OWL, Ruhr-University Bochum, Germany
| | - Udo Kellner
- Institute for Pathology, Johannes Wessling Hospital Minden, D-32429 Minden, Campus OWL, Ruhr-University Bochum, Germany
| | - Jan F Gummert
- Erich and Hanna Klessmann-Institute for Cardiovascular Research and Development & Clinic for Thoracic and Cardiovascular Surgery, Heart- and Diabetescenter NRW, D-32545 Bad Oeynhausen, University Hospital of the Ruhr-University Bochum, Germany
| | - Marc P Hitz
- Institute for Human Genetics, Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Anna Kostareva
- Almazov National Medical Research Centre, Saint Petersburg 197341, Russia; Department of Women's and Children's Health & Center for Molecular Medicine, Karolinska Institute, 17177 Stockholm, Sweden
| | - Karin Klingel
- Institute for Pathology and Neuropathology, Dept. Molecular Pathology, University Tuebingen, D-72076 Tuebingen, Germany
| | - Lech Paluszkiewicz
- Erich and Hanna Klessmann-Institute for Cardiovascular Research and Development & Clinic for Thoracic and Cardiovascular Surgery, Heart- and Diabetescenter NRW, D-32545 Bad Oeynhausen, University Hospital of the Ruhr-University Bochum, Germany
| | - Kai Thorsten Laser
- Center for Congenital Heart Diseases, Heart and Diabetescenter NRW, 32545 Bad Oeynhausen, University Hospital of the Ruhr-University Bochum, Germany
| | - Heidi Pfeiffer
- Institute for Forensic Medicine, University Hospital, Wilhelms-University Muenster, Germany
| | - Henrik Fox
- Erich and Hanna Klessmann-Institute for Cardiovascular Research and Development & Clinic for Thoracic and Cardiovascular Surgery, Heart- and Diabetescenter NRW, D-32545 Bad Oeynhausen, University Hospital of the Ruhr-University Bochum, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann-Institute for Cardiovascular Research and Development & Clinic for Thoracic and Cardiovascular Surgery, Heart- and Diabetescenter NRW, D-32545 Bad Oeynhausen, University Hospital of the Ruhr-University Bochum, Germany.
| |
Collapse
|
50
|
Kim KH, Pereira NL. Genetics of Cardiomyopathy: Clinical and Mechanistic Implications for Heart Failure. Korean Circ J 2021; 51:797-836. [PMID: 34327881 PMCID: PMC8484993 DOI: 10.4070/kcj.2021.0154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/11/2022] Open
Abstract
Genetic cardiomyopathies are an important cause of sudden cardiac death across all age groups. Genetic testing in heart failure clinics is useful for family screening and providing individual prognostic insight. Obtaining a family history of at least three generations, including the creation of a pedigree, is recommended for all patients with primary cardiomyopathy. Additionally, when appropriate, consultation with a genetic counsellor can aid in the success of a genetic evaluation. Clinical screening should be performed on all first-degree relatives of patients with genetic cardiomyopathy. Genetics has played an important role in the understanding of different cardiomyopathies, and the field of heart failure (HF) genetics is progressing rapidly. Much research has also focused on distinguishing markers of risk in patients with cardiomyopathy using genetic testing. While these efforts currently remain incomplete, new genomic technologies and analytical strategies provide promising opportunities to further explore the genetic architecture of cardiomyopathies, afford insight into the early manifestations of cardiomyopathy, and help define the molecular pathophysiological basis for cardiac remodeling. Cardiovascular physicians should be fully aware of the utility and potential pitfalls of incorporating genetic test results into pre-emptive treatment strategies for patients in the preliminary stages of HF. Future work will need to be directed towards elucidating the biological mechanisms of both rare and common gene variants and environmental determinants of plasticity in the genotype-phenotype relationship. This future research should aim to further our ability to identify, diagnose, and treat disorders that cause HF and sudden cardiac death in young patients, as well as prioritize improving our ability to stratify the risk for these patients prior to the onset of the more severe consequences of their disease.
Collapse
Affiliation(s)
- Kyung Hee Kim
- Division of Cardiology, Incheon Sejong General Hospital, Incheon, Korea.
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|