1
|
Nappi F. Myocarditis and Inflammatory Cardiomyopathy in Dilated Heart Failure. Viruses 2025; 17:484. [PMID: 40284927 PMCID: PMC12031395 DOI: 10.3390/v17040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Inflammatory cardiomyopathy is a condition that is characterised by the presence of inflammatory cells in the myocardium, which can lead to a significant deterioration in cardiac function. The etiology of this condition involves multiple factors, both infectious and non-infectious causes. While it is primarily associated with viral infections, other potential causes include bacterial, protozoal, or fungal infections, as well as a wide variety of toxic substances and drugs, and systemic immune-mediated pathological conditions. In spite of comprehensive investigation, the presence of inflammatory cardiomyopathy accompanied by left ventricular dysfunction, heart failure or arrhythmia is indicative of an unfavourable outcome. The reasons for the occurrence of either favourable outcomes, characterised by the absence of residual myocardial injury, or unfavourable outcomes, marked by the development of dilated cardiomyopathy, in patients afflicted by the condition remain to be elucidated. The relative contributions of pathogenic agents, genomic profiles of the host, and environmental factors in disease progression and resolution remain subjects of ongoing discourse. This includes the determination of which viruses function as active inducers and which merely play a bystander role. It remains unknown which changes in the host immune profile are critical in determining the outcome of myocarditis caused by various viruses, including coxsackievirus B3 (CVB3), adenoviruses, parvoviruses B19 and SARS-CoV-2. The objective of this review is unambiguous: to provide a concise summary and comprehensive assessment of the extant evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy. Its focus is exclusively on virus-induced and virus-associated myocarditis. In addition, the extant lacunae of knowledge in this field are identified and the extant experimental models are evaluated, with the aim of proposing future directions for the research domain. This includes differential gene expression that regulates iron and lipid and metabolic remodelling. Furthermore, the current state of knowledge regarding the cardiovascular implications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is also discussed, along with the open questions that remain to be addressed.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
2
|
Bastea LI, Liu X, Fleming AK, Pandey V, Döppler H, Edenfield BH, Krishna M, Zhang L, Thompson EA, Grandgenett PM, Hollingsworth MA, Fairweather D, Clemens D, Storz P. Coxsackievirus and adenovirus receptor expression facilitates enteroviral infections to drive the development of pancreatic cancer. Nat Commun 2024; 15:10547. [PMID: 39627248 PMCID: PMC11615305 DOI: 10.1038/s41467-024-55043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
The development of pancreatic cancer requires both, acquisition of an oncogenic mutation in KRAS as well as an inflammatory insult. However, the physiological causes for pancreatic inflammation are less defined. We show here that oncogenic KRas-expressing pre-neoplastic lesion cells upregulate coxsackievirus (CVB) and adenovirus receptor (CAR). This facilitates infections from enteroviruses such as CVB3, which can be detected in approximately 50% of pancreatic cancer patients. Moreover, using an animal model we show that a one-time pancreatic infection with CVB3 in control mice is transient, but in the presence of oncogenic KRas drives chronic inflammation and rapid development of pancreatic cancer. We further demonstrate that a knockout of CAR in pancreatic lesion cells blocks these CVB3-induced effects. Our data demonstrate that KRas-caused lesions promote the development of pancreatic cancer by enabling certain viral infections.
Collapse
Affiliation(s)
- Ligia I Bastea
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Xiang Liu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alicia K Fleming
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Veethika Pandey
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Heike Döppler
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Murli Krishna
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Lizhi Zhang
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Diseases, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Dahn Clemens
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
3
|
Wen J, Ke Z, Wang Y, Li Y, Zhang D, Mo X, Yin J, Shi C, Zhou W, Zheng S, Wang Q. Coxsackievirus and adenovirus receptor inhibits tilapia lake virus infection via binding to viral segment 8 and 10 encoded protein. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109438. [PMID: 38341116 DOI: 10.1016/j.fsi.2024.109438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The global aquaculture industry of tilapia (Oreochromis niloticus) has been significantly impacted by the emergence of tilapia lake virus (TiLV). However, effective prevention and control measures are still not available due to a lack of unclear pathogenesis of TiLV. Our previous transcriptome found that coxsackievirus and adenovirus receptor (CAR) was in response to TiLV infection in tilapia. To explore the potential function of OnCAR, the effect of OnCAR on TiLV proliferation was analyzed in this study. The OnCAR open reading frame (ORF) sequence of tilapia was 516 bp in length that encoded 171 amino acids with an Ig-like domain and transmembrane region. The OnCAR gene showed widespread expression in all investigated tissues, with the highest levels in the heart. Moreover, the OnCAR gene in the liver and muscle of tilapia exhibited dynamic expression levels upon TiLV challenge. Subcellular localization analysis indicated that OnCAR protein was mainly localized on the membrane of tilapia brain (TiB) cells. Importantly, the gene transcripts, genome copy number, S8-encoded protein, cytopathic effect, and internalization of TiLV were obviously decreased in the TiB cells overexpressed with OnCAR, indicating that OnCAR could inhibit TiLV replication. Mechanically, OnCAR could interact with viral S8 and S10-encoded protein. To the best of our knowledge, OnCAR is the first potential anti-TiLV cellular surface molecular receptor discovered for inhibiting TiLV infection. This finding is beneficial for better understanding the antiviral mechanism of tilapia and lays a foundation for establishing effective prevention and control strategies against tilapia lake virus disease (TiLVD).
Collapse
Affiliation(s)
- Jing Wen
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China; College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Zishan Ke
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China
| | - Yingying Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China
| | - Yingying Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China
| | - Defeng Zhang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China
| | - Xubing Mo
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China
| | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China
| | - Wenli Zhou
- College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Shucheng Zheng
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China; State Key Lab of Marine Pollution, Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China.
| | - Qing Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Musigk N, Suwalski P, Golpour A, Fairweather D, Klingel K, Martin P, Frustaci A, Cooper LT, Lüscher TF, Landmesser U, Heidecker B. The inflammatory spectrum of cardiomyopathies. Front Cardiovasc Med 2024; 11:1251780. [PMID: 38464847 PMCID: PMC10921946 DOI: 10.3389/fcvm.2024.1251780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Infiltration of the myocardium with various cell types, cytokines and chemokines plays a crucial role in the pathogenesis of cardiomyopathies including inflammatory cardiomyopathies and myocarditis. A more comprehensive understanding of the precise immune mechanisms involved in acute and chronic myocarditis is essential to develop novel therapeutic approaches. This review offers a comprehensive overview of the current knowledge of the immune landscape in cardiomyopathies based on etiology. It identifies gaps in our knowledge about cardiac inflammation and emphasizes the need for new translational approaches to improve our understanding thus enabling development of novel early detection methods and more effective treatments.
Collapse
Affiliation(s)
- Nicolas Musigk
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Phillip Suwalski
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Ainoosh Golpour
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
| | - Karin Klingel
- Cardiopathology Institute for Pathology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Thomas F. Lüscher
- GZO-Zurich Regional Health Centre, Wetzikon & Cardioimmunology, Centre for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Royal Brompton & Harefield Hospitals and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Bettina Heidecker
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| |
Collapse
|
5
|
Zhang Y, Zhou X, Chen S, Sun X, Zhou C. Immune mechanisms of group B coxsackievirus induced viral myocarditis. Virulence 2023; 14:2180951. [PMID: 36827455 PMCID: PMC9980623 DOI: 10.1080/21505594.2023.2180951] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Viral myocarditis is known to be a primary cause of dilated cardiomyopathy (DCM) that can lead to heart failure and sudden cardiac death and is invariably caused by myocardial viral infection following active inflammatory destruction of the myocardium. Although acute viral myocarditis frequently recovers on its own, current chronic myocarditis therapies are unsatisfactory, where the persistence of viral or immunological insults to the heart may play a role. Cellular and mouse experimental models that utilized the most prevalent Coxsackievirus group B type 3 (CVB3) virus infection causing myocarditis have illustrated the pathophysiology of viral myocarditis. In this review, immunological insights into the different stages of development of viral myocarditis were discussed, concentrating on the mechanisms of innate and adaptive immunity in the development of CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Yue Zhang
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China,School of public health, Nantong University, Nantong, China
| | - Xiaobin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Shuyi Chen
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Xinchen Sun
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Chenglin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China,CONTACT Chenglin Zhou Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
6
|
Alhazmi A, Nekoua MP, Mercier A, Vergez I, Sane F, Alidjinou EK, Hober D. Combating coxsackievirus B infections. Rev Med Virol 2023; 33:e2406. [PMID: 36371612 DOI: 10.1002/rmv.2406] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022]
Abstract
Coxsackieviruses B (CVB) are small, non-enveloped, single-stranded RNA viruses belonging to the Enterovirus genus of the Picornaviridae family. They are common worldwide and cause a wide variety of human diseases ranging from those having relatively mild symptoms to severe acute and chronic pathologies such as cardiomyopathy and type 1 diabetes. The development of safe and effective strategies to combat these viruses remains a challenge. The present review outlines current approaches to control CVB infections and associated diseases. Various drugs targeting viral or host proteins involved in viral replication as well as vaccines have been developed and shown potential to prevent or combat CVB infections in vitro and in vivo in animal models. Repurposed drugs and alternative strategies targeting miRNAs or based on plant extracts and probiotics and their derivatives have also shown antiviral effects against CVB. In addition, clinical trials with vaccines and drugs are underway and offer hope for the prevention or treatment of CVB-induced diseases.
Collapse
Affiliation(s)
- Abdulaziz Alhazmi
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France.,Microbiology and Parasitology Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | | | - Ambroise Mercier
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France
| | - Ines Vergez
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France
| | - Famara Sane
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France
| | | | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France
| |
Collapse
|
7
|
Carai P, Papageorgiou AP, Van Linthout S, Deckx S, Velthuis S, Lutgens E, Wijnands E, Tschöpe C, Schmuttermaier C, Kzhyshkowska J, Jones EAV, Heymans S. Stabilin-1 mediates beneficial monocyte recruitment and tolerogenic macrophage programming during CVB3-induced viral myocarditis. J Mol Cell Cardiol 2022; 165:31-39. [DOI: 10.1016/j.yjmcc.2021.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022]
|
8
|
Human Coxsackie- and adenovirus receptor is a putative target of neutrophil elastase-mediated shedding. Mol Biol Rep 2022; 49:3213-3223. [PMID: 35122600 PMCID: PMC8924087 DOI: 10.1007/s11033-022-07153-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/17/2022] [Indexed: 12/04/2022]
Abstract
Background During viral-induced myocarditis, immune cells migrate towards the site of infection and secrete proteases, which in turn can act as sheddases by cleaving extracellular domains of transmembrane proteins. We were interested in the shedding of the Coxsackie- and adenovirus receptor (CAR) that acts as an entry receptor for both eponymous viruses, which cause myocarditis. CAR shedding by secreted immune proteases could result in a favourable outcome of myocarditis as CAR’s extracellular domain would be removed from the cardiomyocytes’ surface leading to decreased susceptibility to ongoing viral infections. Methods and results In this work, matrix metalloproteinases and serine proteinases were screened for their proteolytic activity towards human CAR. Whereas matrix metalloproteinases, proteinase 3, and cathepsin G did not cleave human recombinant CAR or only within long incubation times, neutrophil elastase showed a distinct cleavage pattern of CAR’s extracellular domain that was time- and dose-dependent. Neutrophil elastase cleaves CAR at its membrane-proximal immunoglobulin domain as we determined by nanoLC-MS/MS. Furthermore, neutrophil elastase treatment of cells reduced CAR surface levels as seen by flow cytometry and immunofluorescence microscopy. Conclusions With this study, we show that CAR might be a target for shedding by neutrophil elastase. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07153-2.
Collapse
|
9
|
Zhang T, Wang C, Wei J, Zhu Z, Wang X, Sun C. Ligand-of-Numb protein X1 controls the coxsackievirus B3-induced myocarditis via regulating the stability of coxsackievirus and adenovirus receptor. Genes Immun 2022; 23:42-46. [PMID: 35115665 DOI: 10.1038/s41435-022-00163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 11/09/2022]
Abstract
Group B coxsackieviruses (CVBs) are the main cause of virus-induced myocarditis. CVBs use coxsackievirus and adenovirus receptor (CAR) for infection and targeting CAR has been shown to ameliorate CVBs-induced myocarditis. Ligand-of-Numb protein X1 (LNX1) is an E3 ubiquitin ligase that was shown to interact with CAR. However, the precise effect of LNX1 on CAR and the roles of LNX1 on CVBs-induced myocarditis remain unknown. In the present study, we generated mice deficient in LNX1 in the heart and evaluated the symptoms of myocarditis after CVB3 infection. We also monitored the expression and ubiquitination of CAR in LNX1-deficient cardiomyocytes after CVBs infection. We found that CVBs infection decreased CAR expression while promoted the expression of LNX1. Mice with deficiency of LNX1 in the heart had normal myocardial development while had deteriorated myocarditis symptoms after CVB3 infection. In LNX1-deficient cardiomyocytes, decreased ubiquitination of CAR and upregulation of CAR were observed after CVB3 infection. In summary, LNX1 controls CVB3-induced myocarditis by regulating the expression of CAR.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Cardiology, XI'AN International Medical Center Hospital, No. 777, Xitai Road, Chang'an District, Xi'an, 710100, Shaanxi, China
| | - Changying Wang
- Department of Cardiology, XI'AN International Medical Center Hospital, No. 777, Xitai Road, Chang'an District, Xi'an, 710100, Shaanxi, China
| | - Jinjuan Wei
- Department of Cardiology, XI'AN International Medical Center Hospital, No. 777, Xitai Road, Chang'an District, Xi'an, 710100, Shaanxi, China
| | - Zhenyin Zhu
- Department of Cardiology, XI'AN International Medical Center Hospital, No. 777, Xitai Road, Chang'an District, Xi'an, 710100, Shaanxi, China
| | - Xiaoni Wang
- Department of Cardiology, XI'AN International Medical Center Hospital, No. 777, Xitai Road, Chang'an District, Xi'an, 710100, Shaanxi, China
| | - Chuang Sun
- Department of Cardiology, XI'AN International Medical Center Hospital, No. 777, Xitai Road, Chang'an District, Xi'an, 710100, Shaanxi, China.
| |
Collapse
|
10
|
Schultheiss HP, Baumeier C, Pietsch H, Bock CT, Poller W, Escher F. Cardiovascular consequences of viral infections: from COVID to other viral diseases. Cardiovasc Res 2021; 117:2610-2623. [PMID: 34609508 PMCID: PMC8500164 DOI: 10.1093/cvr/cvab315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Infection of the heart muscle with cardiotropic viruses is one of the major aetiologies of myocarditis and acute and chronic inflammatory cardiomyopathy (DCMi). However, viral myocarditis and subsequent dilated cardiomyopathy is still a challenging disease to diagnose and to treat and is therefore a significant public health issue globally. Advances in clinical examination and thorough molecular genetic analysis of intramyocardial viruses and their activation status have incrementally improved our understanding of molecular pathogenesis and pathophysiology of viral infections of the heart muscle. To date, several cardiotropic viruses have been implicated as causes of myocarditis and DCMi. These include, among others, classical cardiotropic enteroviruses (Coxsackieviruses B), the most commonly detected parvovirus B19, and human herpes virus 6. A newcomer is the respiratory virus that has triggered the worst pandemic in a century, SARS-CoV-2, whose involvement and impact in viral cardiovascular disease is under scrutiny. Despite extensive research into the pathomechanisms of viral infections of the cardiovascular system, our knowledge regarding their treatment and management is still incomplete. Accordingly, in this review, we aim to explore and summarize the current knowledge and available evidence on viral infections of the heart. We focus on diagnostics, clinical relevance and cardiovascular consequences, pathophysiology, and current and novel treatment strategies.
Collapse
Affiliation(s)
| | - Christian Baumeier
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, Berlin, Germany
| | - Heiko Pietsch
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, Berlin, Germany
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 13353, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - C -Thomas Bock
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin 13353 Germany
- Institute of Tropical Medicine, University of Tübingen, Tübingen 72074, Germany
| | - Wolfgang Poller
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin12203, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 13353, Germany
| | - Felicitas Escher
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, Berlin, Germany
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 13353, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
11
|
Pinkert S, Pryshliak M, Pappritz K, Knoch K, Hazini A, Dieringer B, Schaar K, Dong F, Hinze L, Lin J, Lassner D, Klopfleisch R, Solimena M, Tschöpe C, Kaya Z, El-Shafeey M, Beling A, Kurreck J, Van Linthout S, Klingel K, Fechner H. Development of a new mouse model for coxsackievirus-induced myocarditis by attenuating coxsackievirus B3 virulence in the pancreas. Cardiovasc Res 2021; 116:1756-1766. [PMID: 31598635 DOI: 10.1093/cvr/cvz259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/29/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022] Open
Abstract
AIMS The coxsackievirus B3 (CVB3) mouse myocarditis model is the standard model for investigation of virus-induced myocarditis but the pancreas, rather than the heart, is the most susceptible organ in mouse. The aim of this study was to develop a CVB3 mouse myocarditis model in which animals develop myocarditis while attenuating viral infection of the pancreas and the development of severe pancreatitis. METHODS AND RESULTS We developed the recombinant CVB3 variant H3N-375TS by inserting target sites (TS) of miR-375, which is specifically expressed in the pancreas, into the 3'UTR of the genome of the pancreo- and cardiotropic CVB3 variant H3. In vitro evaluation showed that H3N-375TS was suppressed in pancreatic miR-375-expressing EndoC-βH1 cells >5 log10, whereas its replication was not suppressed in isolated primary embryonic mouse cardiomyocytes. In vivo, intraperitoneal (i.p.) administration of H3N-375TS to NMRI mice did not result in pancreatic or cardiac infection. In contrast, intravenous (i.v.) administration of H3N-375TS to NMRI and Balb/C mice resulted in myocardial infection and acute and chronic myocarditis, whereas the virus was not detected in the pancreas and the pancreatic tissue was not damaged. Acute myocarditis was characterized by myocardial injury, inflammation with mononuclear cells, induction of proinflammatory cytokines, and detection of replicating H3N-375TS in the heart. Mice with chronic myocarditis showed myocardial fibrosis and persistence of H3N-375TS genomic RNA but no replicating virus in the heart. Moreover, H3N-375TS infected mice showed distinctly less suffering compared with mice that developed pancreatitis and myocarditis after i.p. or i.v application of control virus. CONCLUSION In this study, we demonstrate that by use of the miR-375-sensitive CVB3 variant H3N-375TS, CVB3 myocarditis can be established without the animals developing severe systemic infection and pancreatitis. As the H3N-375TS myocarditis model depends on pancreas-attenuated H3N-375TS, it can easily be used in different mouse strains and for various applications.
Collapse
Affiliation(s)
- Sandra Pinkert
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Virchowweg 6, 10117 Berlin, Germany
| | - Markian Pryshliak
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| | - Kathleen Pappritz
- Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Föhrer Str. 15, 13353 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin-Charité, Oudenarder Straße 16, 13316 Berlin, Germany
| | - Klaus Knoch
- Faculty of Medicine, Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Ahmet Hazini
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| | - Babette Dieringer
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| | - Katrin Schaar
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| | - Fengquan Dong
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin-Charité, Oudenarder Straße 16, 13316 Berlin, Germany
| | - Luisa Hinze
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| | - Jie Lin
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin-Charité, Oudenarder Straße 16, 13316 Berlin, Germany
| | - Dirk Lassner
- Institut Kardiale Diagnostik und Therapie (IKDT), Moltkestraße 31, 12203 Berlin, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Kaiserswerther Str. 16-18, 14195 Berlin, Germany
| | - Michele Solimena
- Faculty of Medicine, Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Carsten Tschöpe
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Charitéplatz 1, 10117 Berlin, Germany
| | - Ziya Kaya
- Department of Medicine III, University of Heidelberg, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany
| | - Muhammad El-Shafeey
- Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Föhrer Str. 15, 13353 Berlin, Germany.,Medical Biotechnology Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Antje Beling
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Virchowweg 6, 10117 Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| | - Sophie Van Linthout
- Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Föhrer Str. 15, 13353 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin-Charité, Oudenarder Straße 16, 13316 Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Charitéplatz 1, 10117 Berlin, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen, Liebermeisterstr. 8, 72076 Tübingen, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| |
Collapse
|
12
|
Alghamri MS, Sharma P, Williamson TL, Readler JM, Yan R, Rider SD, Hostetler HA, Cool DR, Kolawole AO, Excoffon KJDA. MAGI-1 PDZ2 Domain Blockade Averts Adenovirus Infection via Enhanced Proteolysis of the Apical Coxsackievirus and Adenovirus Receptor. J Virol 2021; 95:e0004621. [PMID: 33762416 PMCID: PMC8437357 DOI: 10.1128/jvi.00046-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Adenoviruses (AdVs) are etiological agents of gastrointestinal, heart, eye, and respiratory tract infections that can be lethal for immunosuppressed people. Many AdVs use the coxsackievirus and adenovirus receptor (CAR) as a primary receptor. The CAR isoform resulting from alternative splicing that includes the eighth exon, CAREx8, localizes to the apical surface of polarized epithelial cells and is responsible for the initiation of AdV infection. We have shown that the membrane level of CAREx8 is tightly regulated by two MAGI-1 PDZ domains, PDZ2 and PDZ4, resulting in increased or decreased AdV transduction, respectively. We hypothesized that targeting the interactions between the MAGI-1 PDZ2 domain and CAREx8 would decrease the apical CAREx8 expression level and prevent AdV infection. Decoy peptides that target MAGI-1 PDZ2 were synthesized (TAT-E6 and TAT-NET1). PDZ2 binding peptides decreased CAREx8 expression and reduced AdV transduction. CAREx8 degradation was triggered by the activation of the regulated intramembrane proteolysis (RIP) pathway through a disintegrin and metalloproteinase (ADAM17) and γ-secretase. Further analysis revealed that ADAM17 interacts directly with the MAGI-1 PDZ3 domain, and blocking the PDZ2 domain enhanced the accessibility of ADAM17 to the substrate (CAREx8). Finally, we validated the efficacy of TAT-PDZ2 peptides in protecting the epithelia from AdV transduction in vivo using a novel transgenic animal model. Our data suggest that TAT-PDZ2 binding peptides are novel anti-AdV molecules that act by enhanced RIP of CAREx8 and decreased AdV entry. This strategy has additional translational potential for targeting other viral receptors that have PDZ binding domains, such as the angiotensin-converting enzyme 2 receptor. IMPORTANCE Adenovirus is a common threat in immunosuppressed populations and military recruits. There are no currently approved treatments/prophylactic agents that protect from most AdV infections. Here, we developed peptide-based small molecules that can suppress AdV infection of polarized epithelia by targeting the AdV receptor, coxsackievirus and adenovirus receptor (CAREx8). The newly discovered peptides target a specific PDZ domain of the CAREx8-interacting protein MAGI-1 and decrease AdV transduction in multiple polarized epithelial models. Peptide-induced CAREx8 degradation is triggered by extracellular domain (ECD) shedding through ADAM17 followed by γ-secretase-mediated nuclear translocation of the C-terminal domain. The enhanced shedding of the CAREx8 ECD further protected the epithelium from AdV infection. Taken together, these novel molecules protect the epithelium from AdV infection. This approach may be applicable to the development of novel antiviral molecules against other viruses that use a receptor with a PDZ binding domain.
Collapse
Affiliation(s)
- Mahmoud S. Alghamri
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Priyanka Sharma
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | | | - James M. Readler
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Ran Yan
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - S. Dean Rider
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Heather A. Hostetler
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - David R. Cool
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio, USA
| | | | | |
Collapse
|
13
|
Geisler A, Hazini A, Heimann L, Kurreck J, Fechner H. Coxsackievirus B3-Its Potential as an Oncolytic Virus. Viruses 2021; 13:v13050718. [PMID: 33919076 PMCID: PMC8143167 DOI: 10.3390/v13050718] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy represents one of the most advanced strategies to treat otherwise untreatable types of cancer. Despite encouraging developments in recent years, the limited fraction of patients responding to therapy has demonstrated the need to search for new suitable viruses. Coxsackievirus B3 (CVB3) is a promising novel candidate with particularly valuable features. Its entry receptor, the coxsackievirus and adenovirus receptor (CAR), and heparan sulfate, which is used for cellular entry by some CVB3 variants, are highly expressed on various cancer types. Consequently, CVB3 has broad anti-tumor activity, as shown in various xenograft and syngeneic mouse tumor models. In addition to direct tumor cell killing the virus induces a strong immune response against the tumor, which contributes to a substantial increase in the efficiency of the treatment. The toxicity of oncolytic CVB3 in healthy tissues is variable and depends on the virus strain. It can be abrogated by genetic engineering the virus with target sites of microRNAs. In this review, we present an overview of the current status of the development of CVB3 as an oncolytic virus and outline which steps still need to be accomplished to develop CVB3 as a therapeutic agent for clinical use in cancer treatment.
Collapse
Affiliation(s)
- Anja Geisler
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.G.); (L.H.); (J.K.)
| | - Ahmet Hazini
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| | - Lisanne Heimann
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.G.); (L.H.); (J.K.)
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.G.); (L.H.); (J.K.)
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.G.); (L.H.); (J.K.)
- Correspondence: ; Tel.: +49-30-31-47-21-81
| |
Collapse
|
14
|
Hepatocytes trap and silence coxsackieviruses, protecting against systemic disease in mice. Commun Biol 2020; 3:580. [PMID: 33067530 PMCID: PMC7568585 DOI: 10.1038/s42003-020-01303-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Previous research suggests that hepatocytes catabolize chemical toxins but do not remove microbial agents, which are filtered out by other liver cells (Kupffer cells and endothelial cells). Here we show that, contrary to current understanding, hepatocytes trap and rapidly silence type B coxsackieviruses (CVBs). In genetically wildtype mice, this activity causes hepatocyte damage, which is alleviated in mice carrying a hepatocyte-specific deletion of the coxsackievirus-adenovirus receptor. However, in these mutant mice, there is a dramatic early rise in blood-borne virus, followed by accelerated systemic disease and increased mortality. Thus, wild type hepatocytes act similarly to a sponge for CVBs, protecting against systemic illness at the expense of their own survival. We speculate that hepatocytes may play a similar role in other viral infections as well, thereby explaining why hepatocytes have evolved their remarkable regenerative capacity. Our data also suggest that, in addition to their many other functions, hepatocytes might be considered an integral part of the innate immune system. Kimura, Flynn and Whitton find that hepatocytes act as a sponge to trap viruses, but that doing so damages the liver cells. They show that, when mouse hepatocytes are altered to prevent trapping of circulating virus, the mice are more likely to develop systemic disease and die, providing strong evidence for an important overlooked function of hepatocytes.
Collapse
|
15
|
Abstract
Inflammatory cardiomyopathy, characterized by inflammatory cell infiltration into the myocardium and a high risk of deteriorating cardiac function, has a heterogeneous aetiology. Inflammatory cardiomyopathy is predominantly mediated by viral infection, but can also be induced by bacterial, protozoal or fungal infections as well as a wide variety of toxic substances and drugs and systemic immune-mediated diseases. Despite extensive research, inflammatory cardiomyopathy complicated by left ventricular dysfunction, heart failure or arrhythmia is associated with a poor prognosis. At present, the reason why some patients recover without residual myocardial injury whereas others develop dilated cardiomyopathy is unclear. The relative roles of the pathogen, host genomics and environmental factors in disease progression and healing are still under discussion, including which viruses are active inducers and which are only bystanders. As a consequence, treatment strategies are not well established. In this Review, we summarize and evaluate the available evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy, with a special focus on virus-induced and virus-associated myocarditis. Furthermore, we identify knowledge gaps, appraise the available experimental models and propose future directions for the field. The current knowledge and open questions regarding the cardiovascular effects associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also discussed. This Review is the result of scientific cooperation of members of the Heart Failure Association of the ESC, the Heart Failure Society of America and the Japanese Heart Failure Society.
Collapse
|
16
|
Single-Point Mutations within the Coxsackie B Virus Receptor-Binding Site Promote Resistance against Soluble Virus Receptor Traps. J Virol 2020; 94:JVI.00952-20. [PMID: 32669334 PMCID: PMC7495374 DOI: 10.1128/jvi.00952-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/18/2020] [Indexed: 12/28/2022] Open
Abstract
Coxsackie B viruses (CVB) cause a wide spectrum of diseases, ranging from mild respiratory syndromes and hand, foot, and mouth disease to life-threatening conditions, such as pancreatitis, myocarditis, and encephalitis. Previously, we and others found that the soluble virus receptor trap sCAR-Fc strongly attenuates CVB3 infection in mice. In this study, we investigated whether treatment with sCAR-Fc results in development of resistance by CVB3. Two CVB3 strains (CVB3-H3 and CVB3 Nancy) were passaged in HeLa cells in the presence of sCAR-Fc. The CVB3-H3 strain did not develop resistance, whereas two populations of CVB3 Nancy mutants emerged, one with complete (CVB3M) and one with partial (CVB3K) resistance. DNA sequence alignment of the resistant virus variant CVB3M with CVB3 Nancy revealed an amino acid exchange from Asn(N) to Ser(S) at position 139 of the CVB3 capsid protein VP2 (N2139S), an amino acid predicted to be involved in the virus's interaction with its cognate receptor CAR. Insertion of the N2139S mutation into CVB3-H3 by site-directed mutagenesis promoted resistance of the engineered CVB3-H3N2139S to sCAR-Fc. Interestingly, development of resistance by CVB3-H3N2139S and the exemplarily investigated CVB3M-clone 2 (CVB3M2) against soluble CAR did not compromise the use of cellular CAR for viral infection. Infection of HeLa cells showed that sCAR-Fc resistance, however, negatively affected both virus stability and viral replication compared to that of the parental strains. These data demonstrate that during sCAR-Fc exposure, CVB3 can develop resistance against sCAR-Fc by single-amino-acid exchanges within the virus-receptor binding site, which, however, come at the expense of viral fitness.IMPORTANCE The emergence of resistant viruses is one of the most frequent obstacles preventing successful therapy of viral infections, representing a significant threat to human health. We investigated the emergence of resistant viruses during treatment with sCAR-Fc, a well-studied, highly effective antiviral molecule against CVB infections. Our data show the molecular aspects of resistant CVB3 mutants that arise during repetitive sCAR-Fc usage. However, drug resistance comes at the price of lower viral fitness. These results extend our knowledge of the development of resistance by coxsackieviruses and indicate potential limitations of antiviral therapy using soluble receptor molecules.
Collapse
|
17
|
Daba TM, Zhao Y, Pan Z. Advancement of Mechanisms of Coxsackie Virus B3-Induced Myocarditis Pathogenesis and the Potential Therapeutic Targets. Curr Drug Targets 2020; 20:1461-1473. [PMID: 31215390 DOI: 10.2174/1389450120666190618124722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Viral myocarditis is a cardiac disease caused by Group B Coxsackie virus of Enterovirus genus in the Picorna viridae family. It causes heart failure in children, young and adults. Ten Percent (10%) of acute heart failure and 12% of sudden deaths in young and adults who are less than 40 years is due to this viral myocarditis. If treatment action is not taken earlier, the viral disease can develop into chronic myocarditis and Dilated Cardiomyopathy which lead to congestive heart failure. And these eventually result in a reduced cardiac function which finally brings the victim to death. The only treatment option of the disease is heart transplantation once the acute stage of disease develops to chronic and Dilated Cardiomyopathy. Currently, there is a limitation in daily clinical treatments and even some available treatment options are ineffective. Therefore, focusing on search for treatment options through investigation is imperative. Recent studies have reported that biological molecules show a promising role. But their mechanism of pathogenesis is still unclear. A detailed study on identifying the role of biological molecules involved in Coxsackie B3 virus induced myocarditis and their mechanisms of pathogenesis; compiling and disseminating the findings of the investigation to the scientific communities contribute one step forward to the solution. Therefore, this review is aimed at compiling information from findings of current studies on the potential therapeutic role of micro RNA, cytokines and chemokines on the mechanism of pathogenesis of Coxsackie virus B3- induced myocarditis to give brief information for scholars to conduct a detailed study in the area.
Collapse
Affiliation(s)
- Tolessa Muleta Daba
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China.,Department of Biology, College of Natural and Computational Sciences, Bule Hora University, Bule Hora, Ethiopia
| | - Yue Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Lasrado N, Reddy J. An overview of the immune mechanisms of viral myocarditis. Rev Med Virol 2020; 30:1-14. [PMID: 32720461 DOI: 10.1002/rmv.2131] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
Viral myocarditis has been identified as a major cause of dilated cardiomyopathy (DCM) that can lead to heart failure. Historically, Coxsackieviruses and adenoviruses have been commonly suspected in myocarditis/DCM patients in North America and Europe. However, this notion is changing as other viruses such as Parvovirus B19 and human herpesvirus-6 are increasingly reported as causes of myocarditis in the United States, with the most recent example being the severe acute respiratory syndrome coronavirus 2, causing the Coronavirus Disease-19. The mouse model of Coxsackievirus B3 (CVB3)-induced myocarditis, which may involve mediation of autoimmunity, is routinely used in the study of immune pathogenesis of viral infections as triggers of DCM. In this review, we discuss the immune mechanisms underlying the development of viral myocarditis with an emphasis on autoimmunity in the development of post-infectious myocarditis induced with CVB3.
Collapse
Affiliation(s)
- Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
19
|
Zhang C, Xiong Y, Zeng L, Peng Z, Liu Z, Zhan H, Yang Z. The Role of Non-coding RNAs in Viral Myocarditis. Front Cell Infect Microbiol 2020; 10:312. [PMID: 32754448 PMCID: PMC7343704 DOI: 10.3389/fcimb.2020.00312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Viral myocarditis (VMC) is a disease characterized as myocardial parenchyma or interstitium inflammation caused by virus infection, especially Coxsackievirus B3 (CVB3) infection, which has no accurate non-invasive examination for diagnosis and specific drugs for treatment. The mechanism of CVB3-induced VMC may be related to direct myocardial damage of virus infection and extensive damage of abnormal immune response after infection. Non-coding RNA (ncRNA) refers to RNA that is not translated into protein and plays a vital role in many biological processes. There is expanding evidence to reveal that ncRNAs regulate the occurrence and development of VMC, which may provide new treatment or diagnosis targets. In this review, we mainly demonstrate an overview of the potential role of ncRNAs in the pathogenesis, diagnosis and treatment of CVB3-induced VMC.
Collapse
Affiliation(s)
- Cong Zhang
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Yan Xiong
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lijin Zeng
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Zhihua Peng
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Zhihao Liu
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Zhan
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhen Yang
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| |
Collapse
|
20
|
Excoffon KJDA. The coxsackievirus and adenovirus receptor: virological and biological beauty. FEBS Lett 2020; 594:1828-1837. [PMID: 32298477 DOI: 10.1002/1873-3468.13794] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Abstract
The coxsackievirus and adenovirus receptor (CAR) is an essential multifunctional cellular protein that is only beginning to be understood. CAR serves as a receptor for many adenoviruses, human group B coxsackieviruses, swine vesicular disease virus, and possibly other viruses. While named for its function as a viral receptor, CAR is also involved in cell adhesion, immune cell activation, synaptic transmission, and signaling. Knockout mouse models were first to identify some of these biological functions; however, tissue-specific model systems have shed light on the complexity of different CAR isoforms and their specific activities. Many of these functions are mediated by the large number of interacting proteins described so far, and several new putative interactions have recently been discovered. As antiviral and gene therapy strategies that target CAR continue to emerge, future work poised to understand the biological implications of manipulating CAR in vivo is critical.
Collapse
Affiliation(s)
- Katherine J D A Excoffon
- Biological Sciences, Wright State University, Dayton, OH, USA.,Spirovant Sciences, Inc, Philadelphia, PA, USA
| |
Collapse
|
21
|
Inhibition of RNA Helicase Activity Prevents Coxsackievirus B3-Induced Myocarditis in Human iPS Cardiomyocytes. Int J Mol Sci 2020; 21:ijms21093041. [PMID: 32344926 PMCID: PMC7246926 DOI: 10.3390/ijms21093041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
AIMS Coxsackievirus B3 (CVB3) is known to be an important cause of myocarditis and dilated cardiomyopathy. Enterovirus-2C (E2C) is a viral RNA helicase. It inhibits host protein synthesis. Based on these facts, we hypothesize that the inhibition of 2C may suppress virus replication and prevent enterovirus-mediated cardiomyopathy. METHODS AND RESULTS We generated a chemically modified enterovirus-2C inhibitor (E2CI). From the in vitro assay, E2CI was showed strong antiviral effects. For in vivo testing, mice were treated with E2CI intraperitoneally injected daily for three consecutive days at a dose of 8mg/kg per day, after CVB3 post-infection (p.i) (CVB3 + E2CI, n = 33). For the infected controls (CVB3 only, n = 35), mice were injected with PBS (phosphate buffered saline) in a DBA/2 strain to establish chronic myocarditis. The four-week survival rate of E2CI-treated mice was significantly higher than that of controls (92% vs. 71%; p < 0.05). Virus titers and myocardial damage were significantly reduced in the E2CI treated group. In addition, echocardiography indicated that E2CI administration dramatically maintained mouse heart function compared to control at day 28 p.i chronic stage (LVIDD, 3.1 ± 0.08 vs. 3.9 ± 0.09, p < 0.01; LVDS, 2.0 ± 0.07 vs. 2.5 ± 0.07, p < 0.001; FS, 34.8 ± 1.6% vs. 28.5 ± 1.5%; EF, 67. 9 ± 2.9% vs. 54.7 ± 4.7%, p < 0.05; CVB3 + E2CI, n = 6 vs. CVB3, n = 4). Moreover, E2CI is effectively worked in human iPS (induced pluripotent stem cell) derived cardiomyocytes. CONCLUSION Enterovirus-2C inhibitor (E2CI) was significantly reduced viral replication, chronic myocardium damage, and CVB3-induced mortality in DBA/2 mice. These results suggested that E2CI is a novel therapeutic agent for the treatment of enterovirus-mediated diseases.
Collapse
|
22
|
Pinkert S, Dieringer B, Klopfleisch R, Savvatis K, Van Linthout S, Pryshliak M, Tschöpe C, Klingel K, Kurreck J, Beling A, Fechner H. Early Treatment of Coxsackievirus B3-Infected Animals With Soluble Coxsackievirus-Adenovirus Receptor Inhibits Development of Chronic Coxsackievirus B3 Cardiomyopathy. Circ Heart Fail 2019; 12:e005250. [PMID: 31718319 DOI: 10.1161/circheartfailure.119.005250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Coxsackie-B-viruses (CVB) are frequent causes of acute myocarditis and dilated cardiomyopathy, but an effective antiviral therapy is still not available. Previously, we and others have demonstrated that treatment with an engineered sCAR-Fc (soluble coxsackievirus-adenovirus receptor fused to the carboxyl-terminus of human IgG) efficiently neutralizes CVB3 and inhibits the development of cardiac dysfunction in mice with acute CVB3-induced myocarditis. In this study, we analyzed the potential of sCAR-Fc for treatment of chronic CVB3-induced myocarditis in an outbred NMRI mouse model. METHODS NMRI mice were infected with the CVB3 strain 31-1-93 and treated with a sCAR-Fc expressing adeno-associated virus 9 vector 1, 3, and 7 days after CVB3 infection. Chronic myocarditis was analyzed on day 28 after infection. RESULTS Initial investigations showed that NMRI mice develop pronounced chronic myocarditis between day 18 and day 28 after infection with the CVB3 strain 31-1-93. Chronic cardiac infection was characterized by inflammation and fibrosis as well as persistence of viral genomes in the heart tissue and by cardiac dysfunction. Treatment of NMRI mice resulted in a distinct reduction of cardiac inflammation and fibrosis and almost complete elimination of virus RNA from the heart by day 28 after infection. Moreover, hemodynamic measurement revealed improved cardiac contractility and diastolic relaxation in treated mice compared with mice treated with a control vector (mean±SD; maximal pressure, 81.9±9.2 versus 69.4±8.6 mm Hg, P=0.02; left ventricular ejection fraction, 68.9±8.5 versus 54.2±11.5%, P=0.02; dP/dtmax, 7275.2±1674 versus 4432.6±1107 mm Hg/s, P=0.004; dP/dtmin, -4046.9±776 versus -3146.3±642 mm Hg/s, P=0.046). The therapeutic potential of sCAR-Fc is limited, however, since postponed start of sCAR-Fc treatment either 3 or 7 days after infection could not attenuate myocardial injury. CONCLUSIONS Early therapeutic employment of sCAR-Fc, initiated at the beginning of the primary viremia, inhibits the development of chronic CVB3-induced myocarditis and improves the cardiac function to a level equivalent to that of uninfected animals.
Collapse
Affiliation(s)
- Sandra Pinkert
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Germany (S.P., A.B.).,Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., B.D., M.P., J.K., H.F.)
| | - Babette Dieringer
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., B.D., M.P., J.K., H.F.)
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Germany (R.K.)
| | - Konstantinos Savvatis
- Inherited Cardiovascular Diseases Unit, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (K.S.).,William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London (K.S.)
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Germany (S.V.L., C.T.)
| | - Markian Pryshliak
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., B.D., M.P., J.K., H.F.)
| | - Carsten Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Germany (S.V.L., C.T.)
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen, Germany (K.K.)
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., B.D., M.P., J.K., H.F.)
| | - Antje Beling
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany (A.B.)
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., B.D., M.P., J.K., H.F.)
| |
Collapse
|
23
|
Zanatta A, Carturan E, Rizzo S, Basso C, Thiene G. Story telling of myocarditis. Int J Cardiol 2019; 294:61-64. [PMID: 31378380 DOI: 10.1016/j.ijcard.2019.07.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/21/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
Abstract
Myocarditis was discovered as heart disease at autopsy with the use of microscope. In 1900, with the name of acute interstitial myocarditis, Carl Ludwig Alfred Fiedler first reported the history of a sudden cardiac heart failure, in the absence of coronary, valve, pericardial disease or classical specific infections with multiorgan involvement. He postulated a peculiar isolated acute inflammation of the myocardium with poor prognosis due to invisible microorganisms, which years later would have been identified as viruses. Subsequent revision of Fiedler original histologic slides by Schmorl showed cases with either lymphocytic or giant cell infiltrates. The in vivo diagnosis became possible with the right heart catheterism and endomyocardial biopsy. Employment of immunohistochemistry and molecular techniques improved the diagnosis and etiology identification. The mechanism of myocyte injury by coxsackie virus was identified in protease 2A coded by the virus and disrupting the dystrophin in the cytoskeleton. Both RNA and DNA viruses may be cardiotropic, and coxsackie and adenovirus share a common receptor (CAR). Unfortunately, vaccination is not yet available. Cardiac Magnetic Resonance is a revolutionary diagnostic tool by detecting edema, of myocardial inflammation. However endomyocardial biopsy remains the gold standard for etiological and histotype diagnosis, with limited sensitivity due to sampling error. Viral lymphocytic fulminant myocarditis may not be fatal and the employment of mechanical assistant device - ECMO in acute phase for temporary support may be lifesaving with good prognosis.
Collapse
Affiliation(s)
| | - Elisa Carturan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Stefania Rizzo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Gaetano Thiene
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy.
| |
Collapse
|
24
|
Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol 2019; 114:19. [PMID: 30887214 DOI: 10.1007/s00395-019-0722-5] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Heart failure is a consequence of various cardiovascular diseases and associated with poor prognosis. Despite progress in the treatment of heart failure in the past decades, prevalence and hospitalisation rates are still increasing. Heart failure is typically associated with cardiac remodelling. Here, inflammation and fibrosis are thought to play crucial roles. During cardiac inflammation, immune cells invade the cardiac tissue and modulate tissue-damaging responses. Cardiac fibrosis, however, is characterised by an increased amount and a disrupted composition of extracellular matrix proteins. As evidence exists that cardiac inflammation and fibrosis are potentially reversible in experimental and clinical set ups, they are interesting targets for innovative heart failure treatments. In this context, animal models are important as they mimic clinical conditions of heart failure patients. The advantages of mice in this respect are short generation times and genetic modifications. As numerous murine models of heart failure exist, the selection of a proper disease model for a distinct research question is demanding. To facilitate this selection, this review aims to provide an overview about the current understanding of the pathogenesis of cardiac inflammation and fibrosis in six frequently used murine models of heart failure. Hence, it compares the models of myocardial infarction with or without reperfusion, transverse aortic constriction, chronic subjection to angiotensin II or deoxycorticosterone acetate, and coxsackievirus B3-induced viral myocarditis in this context. It furthermore provides information about the clinical relevance and the limitations of each model, and, if applicable, about the recent advancements in their methodological proceedings.
Collapse
|
25
|
Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, Leistner DM, Jakob P, Nakagawa S, Blankenberg S, Engelhardt S, Thum T, Weber C, Meder B, Hajjar R, Landmesser U. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J 2018; 39:2704-2716. [PMID: 28430919 PMCID: PMC6454570 DOI: 10.1093/eurheartj/ehx165] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/14/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Recent research has demonstrated that the non-coding genome plays a key role in genetic programming and gene regulation during development as well as in health and cardiovascular disease. About 99% of the human genome do not encode proteins, but are transcriptionally active representing a broad spectrum of non-coding RNAs (ncRNAs) with important regulatory and structural functions. Non-coding RNAs have been identified as critical novel regulators of cardiovascular risk factors and cell functions and are thus important candidates to improve diagnostics and prognosis assessment. Beyond this, ncRNAs are rapidly emgerging as fundamentally novel therapeutics. On a first level, ncRNAs provide novel therapeutic targets some of which are entering assessment in clinical trials. On a second level, new therapeutic tools were developed from endogenous ncRNAs serving as blueprints. Particularly advanced is the development of RNA interference (RNAi) drugs which use recently discovered pathways of endogenous short interfering RNAs and are becoming versatile tools for efficient silencing of protein expression. Pioneering clinical studies include RNAi drugs targeting liver synthesis of PCSK9 resulting in highly significant lowering of LDL cholesterol or targeting liver transthyretin (TTR) synthesis for treatment of cardiac TTR amyloidosis. Further novel drugs mimicking actions of endogenous ncRNAs may arise from exploitation of molecular interactions not accessible to conventional pharmacology. We provide an update on recent developments and perspectives for diagnostic and therapeutic use of ncRNAs in cardiovascular diseases, including atherosclerosis/coronary disease, post-myocardial infarction remodelling, and heart failure.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Johann Wolfgang Goethe Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
- DZHK, Site Rhein-Main, Frankfurt, Germany
| | - Stephane Heymans
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Jan Haas
- Institute for Cardiomyopathies Heidelberg (ICH), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
- DZHK, Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Mahir Karakas
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - David-Manuel Leistner
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Philipp Jakob
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo, Japan
| | - Stefan Blankenberg
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Stefan Engelhardt
- Institute for Pharmacology and Toxikology, Technische Universität München, Biedersteiner Strasse 29, München, Germany
- DZHK, Site Munich, Munich, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Christian Weber
- DZHK, Site Munich, Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstrasse 8a/9, Munich, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg (ICH), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
- DZHK, Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Roger Hajjar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ulf Landmesser
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
- Berlin Institute of Health, Kapelle-Ufer 2, Berlin, Germany
| |
Collapse
|
26
|
Poller W, Haghikia A, Kasner M, Kaya Z, Bavendiek U, Wedemeier H, Epple HJ, Skurk C, Landmesser U. Cardiovascular Involvement in Chronic Hepatitis C Virus Infections - Insight from Novel Antiviral Therapies. J Clin Transl Hepatol 2018; 6:161-167. [PMID: 29951361 PMCID: PMC6018314 DOI: 10.14218/jcth.2017.00057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/06/2017] [Accepted: 12/23/2017] [Indexed: 12/11/2022] Open
Abstract
Whereas statistical association of hepatitis C virus (HCV) infection with cardiomyopathy is long known, establishment of a causal relationship has not been achieved so far. Patients with advanced heart failure (HF) are mostly unable to tolerate interferon (IFN)-based treatment, resulting in limited experience regarding the possible pathogenic role of HCV in this patient group. HCV infection often triggers disease in a broad spectrum of extrahepatic organs, with innate immune and autoimmune pathogenic processes involved. The fact that worldwide more than 70 million patients are chronically infected with HCV illustrates the possible clinical impact arising if cardiomyopathies were induced or aggravated by HCV, resulting in progressive HF or severe arrhythmias. A novel path has been opened to finally resolve the long-standing question of cause-effect relationship between HCV infection and cardiac dysfunction, by the recent development of IFN-free, highly efficient, and well tolerable anti-HCV regimens. The new direct-acting antiviral (DAA) agents are highly virus-specific and lack unspecific side-effects upon cardiac function which have always confounded the interpretation of IFN treatment data. The actual frequency of unexplained HF in chronic HCV infection will be determined from a planned large-scale study. Whereas such patients probably constitute a rather small fraction of all those harboring HCV, they have major clinical relevance. It is not yet known which fraction of these patients will significantly benefit from HCV eradication, but this issue will be addressed now in a prospective study.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Site Berlin, Berlin, Germany
- *Correspondence to: Wolfgang Poller, Department of Cardiology, Campus Benjamin Franklin, Charite Centrum 11, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin 12200, Germany. Tel: +49-30-450-513765, Fax: +49-30-450-513984, E-mail:
| | - Arash Haghikia
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Site Berlin, Berlin, Germany
| | - Mario Kasner
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ziya Kaya
- German Center for Cardiovascular Research (DZHK) Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, University Hospital, Heidelberg, Germany
| | | | | | - Hans-Jörg Epple
- Department of Gastroenterology, Infectiology and Rheumatology, CC 13, Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Site Berlin, Berlin, Germany
| |
Collapse
|
27
|
Hazini A, Pryshliak M, Brückner V, Klingel K, Sauter M, Pinkert S, Kurreck J, Fechner H. Heparan Sulfate Binding Coxsackievirus B3 Strain PD: A Novel Avirulent Oncolytic Agent Against Human Colorectal Carcinoma. Hum Gene Ther 2018; 29:1301-1314. [PMID: 29739251 DOI: 10.1089/hum.2018.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coxsackievirus B3 (CVB3), a single-stranded RNA virus of the picornavirus family, has been described as a novel oncolytic virus. However, the CVB3 strain used induced hepatitis and myocarditis in vivo. It was hypothesized that oncolytic activity and safety of CVB3 depends on the virus strain and its specific receptor tropism. Different laboratory strains of CVB3 (Nancy, 31-1-93, and H3), which use the coxsackievirus and adenovirus receptor (CAR), and the strain PD, which uses N- and 6-O-sulfated heparan sulfate (HS) for entry into the cells, were investigated for their potential to lyse tumor cells and for their safety profile. The investigations were carried out in colorectal carcinoma. In vitro investigations showed variable infection efficiency and lysis of colorectal carcinoma cell lines by the CVB3 strains. The most efficient strain was PD, which was the only one that could lyse all investigated colorectal carcinoma cell lines. Lytic activity of CAR-dependent CVB3 did not correlate with CAR expression on cells, whereas there was a clear correlation between lytic activity of PD and its ability to bind to HS at the cell surface of colorectal carcinoma cells. Intratumoral injection of Nancy, 31-1-93, or PD into subcutaneous colorectal DLD1 cell tumors in BALB/c nude mice resulted in strong inhibition of tumor growth. The effect was seen in the injected tumor, as well as in a non-injected, contralateral tumor. However, all animals treated with 31-1-93 and Nancy developed systemic infection and died or were moribund and sacrificed within 8 days post virus injection. In contrast, five of the six animals treated with PD showed no signs of a systemic viral infection, and PD was not detected in any organ. The data demonstrate the potential of PD as a new oncolytic virus and HS-binding of PD as a key feature of oncolytic activity and improved safety.
Collapse
Affiliation(s)
- Ahmet Hazini
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany .,2 Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University , Davutpasa Campus, Istanbul, Turkey
| | - Markian Pryshliak
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| | - Vanessa Brückner
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| | - Karin Klingel
- 3 Department of Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen , Tübingen, Germany
| | - Martina Sauter
- 3 Department of Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen , Tübingen, Germany
| | - Sandra Pinkert
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| | - Jens Kurreck
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| | - Henry Fechner
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| |
Collapse
|
28
|
Wei S, Fu J, Chen L, Yu S. Performance of Cardiac Magnetic Resonance Imaging for Diagnosis of Myocarditis Compared with Endomyocardial Biopsy: A Meta-Analysis. Med Sci Monit 2017; 23:3687-3696. [PMID: 28755532 PMCID: PMC5546764 DOI: 10.12659/msm.902155] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Cardiac magnetic resonance imaging (CMRI) is considered to be useful for the diagnosis of myocarditis, and the Lake Louise Criteria (LLC) has been proved to be of significance as the standard of diagnosis. However, the diagnostic performance of LLC-based CMRI for myocarditis compared with endomyocardial biopsy (EMB) has not been quantitatively evaluated in a meta-analysis. Material/Methods The databases PubMed, Cochrane’s Library, and EMBASE were searched to identify studies on LLC and its individual components for the diagnosis of myocarditis. EMB was the control reference. The sensitivity, specificity, and positive and negative diagnostic likelihood ratios were calculated with a random-effects model. The area under the receiver operating characteristic curve (AUC) was estimated to show overall effectiveness. Results We included 9 cohorts (614 patients) of patients with suspected MC. The combined sensitivities, specificities, and AUCs for T1-weighed global relative enhancement were 0.66, 0.73, and 0.71; for T2-weighed edema ratio they were 0.52, 0.73, and 0.72; for the late gadolinium enhancement, they were 0.70, 0.57, and 0.67; and for LLC-based CMRI they were 0.70, 0.56, and 0.70, respectively. Subgroup analysis indicated that the sensitivities, specificities, and diagnostic accuracies of LLC and its individual component-based CMRI seemed to be similar in patients with acute or chronic myocarditis. Results of the Deeks’ funnel plot asymmetry test showed no significant publication bias among the studies. Conclusions CMRI based on LLC or its individual components seems to have moderate accuracy in diagnosis of acute or chronic myocarditis.
Collapse
Affiliation(s)
- Shuheng Wei
- Department of CT Diagnostics, The Central Hospital of Cangzhou, Cangzhou, Hebei, China (mainland)
| | - Jing Fu
- Department of Food and Bioengineering, Cangzhou Technical College, Cangzhou, Hebei, China (mainland)
| | - Liang Chen
- Second Department of Surgical Oncology, The Central Hospital of Cangzhou, Cangzhou, Hebei, China (mainland)
| | - Shujing Yu
- Department of CT Diagnostics, The Central Hospital of Cangzhou, Cangzhou, Hebei, China (mainland)
| |
Collapse
|
29
|
Stegmann C, Hochdorfer D, Lieber D, Subramanian N, Stöhr D, Laib Sampaio K, Sinzger C. A derivative of platelet-derived growth factor receptor alpha binds to the trimer of human cytomegalovirus and inhibits entry into fibroblasts and endothelial cells. PLoS Pathog 2017; 13:e1006273. [PMID: 28403220 PMCID: PMC5389858 DOI: 10.1371/journal.ppat.1006273] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/06/2017] [Indexed: 12/03/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a widely distributed herpesvirus that causes significant morbidity in immunocompromised hosts. Inhibitors of viral DNA replication are available, but adverse effects limit their use. Alternative antiviral strategies may include inhibition of entry. We show that soluble derivatives of the platelet-derived growth factor receptor alpha (PDGFR-alpha), a putative receptor of HCMV, can inhibit HCMV infection of various cell types. A PDGFR-alpha-Fc fusion protein binds to and neutralizes cell-free virus particles at an EC50 of 10–30 ng/ml. Treatment of particles reduced both attachment to and fusion with cells. In line with the latter, PDGFR-alpha-Fc was also effective when applied postattachment. A peptide scan of the extracellular domain of PDGFR-alpha identified a 40mer peptide that inhibits infection at an EC50 of 1–2 nmol/ml. Both, peptide and fusion protein, were effective against various HCMV strains and are hence promising candidates for the development of novel anti-HCMV therapies. Human cytomegalovirus (HCMV) depends on expression of platelet-derived growth factor receptor alpha (PDGFR-alpha) for infection of fibroblasts whereas this cell surface protein is not required for infection of endothelial cells. Surprisingly, pretreatment of HCMV with a soluble derivative of PDGFR-alpha prevents infection of both cell types, most probably via specific binding to the trimeric gH/gL/pUL74 complex. While adsorption is inhibited in both cell types, an additional penetration block occurs only in fibroblasts. The finding that an essential molecular interaction of HCMV with fibroblasts can be subverted for inhibition of the virus provides an antiviral strategy that may be hard to circumvent by the virus.
Collapse
Affiliation(s)
- Cora Stegmann
- Institute of Virology, University of Ulm, Ulm, Germany
| | | | - Diana Lieber
- Institute of Virology, University of Ulm, Ulm, Germany
| | | | - Dagmar Stöhr
- Institute of Virology, University of Ulm, Ulm, Germany
| | | | | |
Collapse
|
30
|
Soluble coxsackie- and adenovirus receptor (sCAR-Fc); a highly efficient compound against laboratory and clinical strains of coxsackie-B-virus. Antiviral Res 2016; 136:1-8. [PMID: 27773751 DOI: 10.1016/j.antiviral.2016.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/06/2016] [Accepted: 10/19/2016] [Indexed: 12/11/2022]
Abstract
Coxsackie-B-viruses (CVB) cause a wide variety of diseases, ranging from mild syndromes to life-threatening conditions such as pancreatitis, myocarditis, meningitis and encephalitis. Especially newborns and young infants develop severe diseases and long-term sequelae may occur among survivors. Due to lack of specific antiviral therapy the current treatment of CVB infection is limited to symptomatic treatment. Here we analyzed the antiviral activity of a soluble receptor fusion protein, containing the extracellular part of the coxsackievirus and adenovirus receptor (CAR) fused to the constant domain of the human IgG - sCAR-Fc - against laboratory and clinical CVB strains. We found a high overall antiviral activity of sCAR-Fc against various prototypic laboratory strains of CVB, with an inhibition of viral replication up to 3 orders of magnitude (99.9%) at a concentration of 2.5 μg/ml. These include isolates that are not dependent on CAR for infection and isolates that are resistant against pleconaril, the currently most promising anti-CVB therapeutic. A complete inhibition was observed using higher concentration of sCAR-Fc. Further analysis of 23 clinical CVB isolates revealed overall high antiviral efficiency (up to 99.99%) of sCAR-Fc. In accordance with previous data, our results confirm the strong antiviral activity of sCAR-Fc against laboratory CVB strains and demonstrate for the first time that sCAR-Fc is also highly efficient at neutralizing clinical CVB isolates. Importantly, during the sCAR-Fc inhibition experiments, no naturally occurring resistant mutants were observed.
Collapse
|
31
|
Abstract
Viral myocarditis remains a prominent infectious-inflammatory disease for patients throughout the lifespan. The condition presents several challenges including varied modes of clinical presentation, a range of timepoints when patients come to attention, a diversity of approaches to diagnosis, a spectrum of clinical courses, and unsettled perspectives on therapeutics in different patient settings and in the face of different viral pathogens. In this review, we examine current knowledge about viral heart disease and especially provide information on evolving understanding of mechanisms of disease and efforts by investigators to identify and evaluate potential therapeutic avenues for intervention.
Collapse
Affiliation(s)
- Gabriel Fung
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Honglin Luo
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Ye Qiu
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Decheng Yang
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce McManus
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
32
|
The Coxsackievirus and Adenovirus Receptor: Glycosylation and the Extracellular D2 Domain Are Not Required for Coxsackievirus B3 Infection. J Virol 2016; 90:5601-5610. [PMID: 27030267 DOI: 10.1128/jvi.00315-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/23/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The coxsackievirus and adenovirus receptor (CAR) is a member of the immunoglobulin superfamily (IgSF) and functions as a receptor for coxsackie B viruses (CVBs). The extracellular portion of CAR comprises two glycosylated immunoglobulin-like domains, D1 and D2. CAR-D1 binds to the virus and is essential for virus infection; however, it is not known whether D2 is also important for infection, and the role of glycosylation has not been explored. To understand the function of these structural components in CAR-mediated CVB3 infection, we generated a panel of human (h) CAR deletion and substitution mutants and analyzed their functionality as CVB receptors, examining both virus binding and replication. Lack of glycosylation of the CAR-D1 or -D2 domains did not adversely affect CVB3 binding or infection, indicating that the glycosylation of CAR is not required for its receptor functions. Deletion of the D2 domain reduced CVB3 binding, with a proportionate reduction in the efficiency of virus infection. Replacement of D2 with the homologous D2 domain from chicken CAR, or with the heterologous type C2 immunoglobulin-like domain from IgSF11, another IgSF member, fully restored receptor function; however, replacement of CAR-D2 with domains from CD155 or CD80 restored function only in part. These data indicate that glycosylation of the extracellular domain of hCAR plays no role in CVB3 receptor function and that CAR-D2 is not specifically required. The D2 domain may function largely as a spacer permitting virus access to D1; however, the data may also suggest that D2 affects virus binding by influencing the conformation of D1. IMPORTANCE An important step in virus infection is the initial interaction of the virus with its cellular receptor. Although the role in infection of the extracellular CAR-D1, cytoplasmic, and transmembrane domains have been analyzed extensively, nothing is known about the function of CAR-D2 and the extracellular glycosylation of CAR. Our data indicate that glycosylation of the extracellular CAR domain has only minor importance for the function of CAR as CVB3 receptor and that the D2 domain is not essential per se but contributes to receptor function by promoting the exposure of the D1 domain on the cell surface. These results contribute to our understanding of the coxsackievirus-receptor interactions.
Collapse
|
33
|
Pollack A, Kontorovich AR, Fuster V, Dec GW. Viral myocarditis--diagnosis, treatment options, and current controversies. Nat Rev Cardiol 2015; 12:670-80. [PMID: 26194549 DOI: 10.1038/nrcardio.2015.108] [Citation(s) in RCA: 402] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myocarditis--a frequent cause of dilated cardiomyopathy and sudden cardiac death--typically results from cardiotropic viral infection followed by active inflammatory destruction of the myocardium. Characterization of this disease has been hampered by its heterogeneous clinical presentations and diverse aetiologies. Advances in cardiac MRI and molecular detection of viruses by endomyocardial biopsy have improved our ability to diagnose and understand the pathophysiological mechanisms of this elusive disease. However, therapeutic options are currently limited for both the acute and chronic phases of myocarditis. Several randomized, controlled trials have demonstrated potential benefit with immunosuppressive and immunomodulatory therapies, but further investigations are warranted. In this Review, we explore the pathophysiology, natural history, and modes of diagnosis of myocarditis, as well as evidence-based treatment strategies. As novel imaging techniques and human in vitro models of the disease emerge, the landscape of therapies for myocarditis is poised to improve.
Collapse
Affiliation(s)
- Ari Pollack
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Amy R Kontorovich
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Valentin Fuster
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - G William Dec
- Cardiology Division, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
34
|
Pozzuto T, Röger C, Kurreck J, Fechner H. Enhanced suppression of adenovirus replication by triple combination of anti-adenoviral siRNAs, soluble adenovirus receptor trap sCAR-Fc and cidofovir. Antiviral Res 2015; 120:72-8. [PMID: 26026665 DOI: 10.1016/j.antiviral.2015.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 01/04/2023]
Abstract
Adenoviruses (Ad) generally induce mild self-limiting respiratory or intestinal infections but can also cause serious disease with fatal outcomes in immunosuppressed patients. Antiviral drug therapy is an important treatment for adenoviral infections but its efficiency is limited. Recently, we have shown that gene silencing by RNA interference (RNAi) is a promising new approach to inhibit adenoviral infection. In the present in vitro study, we examined whether the efficiency of an RNAi-based anti-adenoviral therapy can be further increased by combination with a virus receptor trap sCAR-Fc and with the antiviral drug cidofovir. Initially, three siRNAs, siE1A_4, siIVa2_2 and Pol-si2, targeting the adenoviral E1A, IVa2 and DNA polymerase mRNAs, respectively, were used for gene silencing. Replication of the Ad was inhibited in a dose dependent manner by each siRNA, but the efficiency of inhibition differed (Pol-si2>siIVa2_2>siE1A_4). Double or triple combinations of the siRNAs compared with single siRNAs did not result in a measurably higher suppression of Ad replication. Combination of the siRNAs (alone or mixes of two or three siRNAs) with sCAR-Fc markedly increased the suppression of adenoviral replication compared to the same siRNA treatment without sCAR-Fc. Moreover, the triple combination of a mix of all three siRNAs, sCAR-Fc and cidofovir was about 23-fold more efficient than the combination of siRNAs mix/sCAR-Fc and about 95-fold more efficient than the siRNA mix alone. These data demonstrate that co-treatment of cells with sCAR-Fc and cidofovir is suitable to increase the efficiency of anti-adenoviral siRNAs.
Collapse
Affiliation(s)
- Tanja Pozzuto
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Carsten Röger
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| |
Collapse
|
35
|
Cai Z, Shen L, Ma H, Yang J, Yang D, Chen H, Wei J, Lu Q, Wang DW, Xiang M, Wang J. Involvement of Endoplasmic Reticulum Stress-Mediated C/EBP Homologous Protein Activation in Coxsackievirus B3-Induced Acute Viral Myocarditis. Circ Heart Fail 2015; 8:809-18. [PMID: 25985795 DOI: 10.1161/circheartfailure.114.001244] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/07/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study tested the hypothesis whether endoplasmic reticulum (ER) stress/C/EBP homologous protein (CHOP) signaling is linked with coxsackievirus B3 (CVB3)-induced acute viral myocarditis (AVMC) in vivo. METHODS AND RESULTS AVMC was induced by intraperitoneal injection of 1000 tissue culture infectious dose (TCID50) of CVB3 virus in mice. In AVMC mouse hearts (n=11), ER stress and CHOP were significantly activated, and were linked to the induction of proapoptotic signaling including reduction of Bcl-2, activation of Bax and caspase 3, compared with the controls (n=10), whereas these could be markedly blocked by ER stress inhibitor tauroursodeoxycholic acid administration (n=11). Moreover, chemical inhibition of ER stress significantly attenuated cardiomyocytes apoptosis, and prevented cardiac troponin I elevation, ameliorated cardiac dysfunction assessed by both hemodynamic and echocardiographic analysis, reduced viral replication, and increased survival rate after CVB3 inoculation. We further discovered that genetic ablation of CHOP (n=10) suppressed cardiac Bcl-2/Bax ratio reduction and caspase 3 activation, and prevented cardiomyotes apoptosis in vivo, compared with wild-type receiving CVB3 inoculation (n=10). Strikingly, CHOP deficiency exhibited dramatic protective effects on cardiac damage, cardiac dysfunction, viral replication, and promoted survival in CVB3-caused AVMC. CONCLUSIONS Our data imply the involvement of ER stress/CHOP signaling in CVB3-induced AVMC via proapoptotic pathways, and provide a novel strategy for AVMC treatment.
Collapse
Affiliation(s)
- Zhejun Cai
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.)
| | - Li Shen
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.)
| | - Hong Ma
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.)
| | - Jin Yang
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.)
| | - Du Yang
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.)
| | - Han Chen
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.)
| | - Jia Wei
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.)
| | - Qiulun Lu
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.)
| | - Dao Wen Wang
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.)
| | - Meixiang Xiang
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.).
| | - Jian'an Wang
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.).
| |
Collapse
|
36
|
Röger C, Pozzuto T, Klopfleisch R, Kurreck J, Pinkert S, Fechner H. Expression of an engineered soluble coxsackievirus and adenovirus receptor by a dimeric AAV9 vector inhibits adenovirus infection in mice. Gene Ther 2015; 22:458-66. [PMID: 25786873 DOI: 10.1038/gt.2015.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/07/2015] [Accepted: 01/29/2015] [Indexed: 12/28/2022]
Abstract
Immunosuppressed (IS) patients, such as recipients of hematopoietic stem cell transplantation, occasionally develop severe and fatal adenovirus (Ad) infections. Here, we analyzed the potential of a virus receptor trap based on a soluble coxsackievirus and Ad receptor (sCAR) for inhibition of Ad infection. In vitro, a dimeric fusion protein, sCAR-Fc, consisting of the extracellular domain of CAR and the Fc portion of human IgG1 and a monomeric sCAR lacking the Fc domain, were expressed in cell culture. More sCAR was secreted into the cell culture supernatant than sCAR-Fc, but it had lower Ad neutralization activity than sCAR-Fc. Further investigations showed that sCAR-Fc reduced the Ad infection by a 100-fold and Ad-induced cytotoxicity by ~20-fold. Not only was Ad infection inhibited by sCAR-Fc applied prior to infection, it also inhibited infection when used to treat ongoing Ad infection. In vivo, sCAR-Fc was delivered to IS mice by an AAV9 vector, resulting in persistent and high (>40 μg ml(-1)) sCAR-Fc serum levels. The sCAR-Fc serum concentration was sufficient to significantly inhibit hepatic and cardiac wild-type Ad5 infection. Treatment with sCAR-Fc did not induce side effects. Thus, sCAR-Fc virus receptor trap may be a promising novel therapeutic for treatment of Ad infections.
Collapse
Affiliation(s)
- C Röger
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - T Pozzuto
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - R Klopfleisch
- Department of Vetrinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, Berlin, Germany
| | - J Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - S Pinkert
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - H Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| |
Collapse
|
37
|
Lim BK, Yun SH, Ju ES, Kim BK, Lee YJ, Yoo DK, Kim YC, Jeon ES. Soluble coxsackievirus B3 3C protease inhibitor prevents cardiomyopathy in an experimental chronic myocarditis murine model. Virus Res 2015; 199:1-8. [PMID: 25485472 DOI: 10.1016/j.virusres.2014.11.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/28/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Coxsackievirus B3 (CVB3) is a common cause of myocarditis and dilated cardiomyopathy. CVB3 3C protease (3CP) cleaves the viral polyprotein during replication. We tested whether a water soluble 3CP inhibitor (3CPI) had antiviral effects in a chronic myocarditis model. METHODS Chronic myocarditis was established using DBA/2 strain mice. Starting on post-infection (p.i) day 3, CVB3-infected mice (n=41) were treated with 3CPI by daily intraperitoneal (i.p.) injection at a concentration of 50 μM (1.7 mg/kg/day) per day for 3 consecutive days. Additional mice (n=49) were injected with PBS as a control. RESULTS The 5-week survival rate was significantly higher with 3CPI treatment (82.3% versus 47.9%; P<0.05). Organ virus titers at day 3 and 7 and myocardial damage were significantly lower in 3CPI-treated mice. Echocardiography at day 31 indicated strong protection of heart function by 3CPI (FS, 51.2±1.5 versus 26.1±1.5%; P<0.001). Hemodynamic measurements indicated that 3CPI treatment markedly reduced CVB3-induced LV dysfunction on day 31 (dP/dTmax, 5302±352 versus 4103±408 mmHg/s, P<0.05; dP/dTmin, -3798±212 versus -2814±206 mmHg/s, P<0.01). CONCLUSIONS Water soluble 3CPI was delivered through i.p. injection after CVB3 infection. This agent preserved heart function and decreased organ viral titers and myocardial damage. Soluble 3CPI may be beneficial in the treatment of cardiomyopathy associated with enterovirus infection.
Collapse
Affiliation(s)
- Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, Goesan-gun, South Korea
| | - Soo-Hyeon Yun
- Cardiac and Vascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Eun-Seon Ju
- Cardiac and Vascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Bo-Kyoung Kim
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - You-Jung Lee
- Cardiac and Vascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dong-Kyeom Yoo
- Center for Molecular & Cellular Imaging, Samsung Biomedical Research Institute, Seoul, South Korea
| | - Young-Chul Kim
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Eun-Seok Jeon
- Cardiac and Vascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
38
|
Massilamany C, Gangaplara A, Reddy J. Intricacies of cardiac damage in coxsackievirus B3 infection: implications for therapy. Int J Cardiol 2014; 177:330-339. [PMID: 25449464 DOI: 10.1016/j.ijcard.2014.09.136] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/27/2014] [Accepted: 09/15/2014] [Indexed: 02/06/2023]
Abstract
Heart disease is the leading cause of death in humans, and myocarditis is one predominant cause of heart failure in young adults. Patients affected with myocarditis can develop dilated cardiomyopathy (DCM), a common reason for heart transplantation, which to date is the only viable option for combatting DCM. Myocarditis/DCM patients show antibodies to coxsackievirus B (CVB)3 and cardiac antigens, suggesting a role for CVB-mediated autoimmunity in the disease pathogenesis; however, a direct causal link remains to be determined clinically. Experimentally, myocarditis can be induced in susceptible strains of mice using the human isolates of CVB3, and the disease pathogenesis of postinfectious myocarditis resembles that of human disease, making the observations made in animals relevant to humans. In this review, we discuss the complex nature of CVB3-induced myocarditis as it relates to the damage caused by both the virus and the host's response to infection. Based on recent data we obtained in the mouse model of CVB3 infection, we provide evidence to suggest that CVB3 infection accompanies the generation of cardiac myosin-specific CD4 T cells that can transfer the disease to naïve recipients. The therapeutic implications of these observations are also discussed.
Collapse
Affiliation(s)
| | - Arunakumar Gangaplara
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of health, Bethesda, MD
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
39
|
Stein EA, Pinkert S, Becher PM, Geisler A, Zeichhardt H, Klopfleisch R, Poller W, Tschöpe C, Lassner D, Fechner H, Kurreck J. Combination of RNA Interference and Virus Receptor Trap Exerts Additive Antiviral Activity in Coxsackievirus B3-induced Myocarditis in Mice. J Infect Dis 2014; 211:613-22. [DOI: 10.1093/infdis/jiu504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
40
|
Basso C, Calabrese F, Angelini A, Carturan E, Thiene G. Classification and histological, immunohistochemical, and molecular diagnosis of inflammatory myocardial disease. Heart Fail Rev 2014; 18:673-81. [PMID: 23096264 DOI: 10.1007/s10741-012-9355-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the WHO 1996 classification of cardiomyopathies, myocarditis is defined as an "inflammatory disease of the myocardium associated with cardiac dysfunction" and is listed among "specific cardiomyopathies". Myocarditis is diagnosed on endomyocardial biopsy (EMB) by established histological, immunological, and immunohistochemical criteria, and molecular techniques are recommended to identify viral etiology. Infectious, autoimmune, and idiopathic forms of inflammatory cardiomyopathy are recognized that may lead to dilated cardiomyopathy. According to Dallas criteria, myocarditis is diagnosed in the setting of an "inflammatory infiltrate of the myocardium with necrosis and/or degeneration of adjacent myocytes, not typical of ischemic damage associated with coronary artery disease". The majority of experts in the field agree that an actual increase in sensitivity of EMB has now been reached by using immunohistochemistry together with histology. A value of >14 leukocytes/mm(2) with the presence of T lymphocytes >7 cells/mm(2) has been considered a realistic cut off to reach a diagnosis of myocarditis. The development of molecular biological techniques, particularly amplification methods like polymerase chain reaction (PCR) or nested-PCR, allows the detection of low copy viral genomes even from an extremely small amount of tissue such as in EMB specimens. Positive PCR results obtained on EMB should always be accompanied by a parallel investigation on blood samples collected at the time of the EMB. According to the recent Association for European Cardiovascular Pathology guidelines, optimal specimen procurement and triage indicates at least three, preferably four, EMB fragments, each 1-2 mm in size, that should immediately be fixed in 10 % buffered formalin at room temperature for light microscopic examination. In expected focal myocardial lesions, additional sampling is recommended. Moreover, one or two specimens should be snap-frozen in liquid nitrogen and stored at -80 °C or alternatively stored in RNA-later for possible molecular tests or specific stains. A sample of peripheral blood (5-10 ml) in EDTA or citrate from patients with suspected myocarditis allows molecular testing for the same viral genomes sought in the myocardial tissue.
Collapse
Affiliation(s)
- Cristina Basso
- Pathological Anatomy, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Via A. Gabelli, 61, 35121, Padua, Italy,
| | | | | | | | | |
Collapse
|
41
|
Grabmaier U, Theiss HD, Keithahn A, Kreiner J, Brenner C, Huber B, von der Helm C, Gross L, Klingel K, Franz WM, Brunner S. The role of 1.5 tesla MRI and anesthetic regimen concerning cardiac analysis in mice with cardiomyopathy. PLoS One 2014; 9:e94615. [PMID: 24747816 PMCID: PMC3991627 DOI: 10.1371/journal.pone.0094615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/18/2014] [Indexed: 02/07/2023] Open
Abstract
Accurate assessment of left ventricular function in rodent models is essential for the evaluation of new therapeutic approaches for cardiac diseases. In our study, we provide new insights regarding the role of a 1.5 Tesla (T) magnetic resonance imaging (MRI) device and different anesthetic regimens on data validity. As dedicated small animal MRI and echocardiographic devices are not broadly available, we evaluated whether monitoring cardiac function in small rodents with a clinical 1.5 T MRI device is feasible. On a clinical electrocardiogram (ECG) synchronized 1.5 T MRI scanner we therefore studied cardiac function parameters of mice with chronic virus-induced cardiomyopathy. Thus, reduced left ventricular ejection fraction (LVEF) could be verified compared to healthy controls. However, our results showed a high variability. First, anesthesia with medetomidine, midazolam and fentanyl (MMF) led to depressed cardiac function parameters and more variability than isoflurane gas inhalation anesthesia, especially at high concentrations. Furthermore, calculation of an average ejection fraction value from sequenced scans significantly reduced the variance of the results. To sum up, we introduce the clinical 1.5 T MRI device as a new tool for effective analysis of left ventricular function in mice with cardiomyopathy. Besides, we suggest isoflurane gas inhalation anesthesia at high concentrations for variance reduction and recommend calculation of an average ejection fraction value from multiple sequenced MRI scans to provide valid data and a solid basis for further clinical testing.
Collapse
Affiliation(s)
- Ulrich Grabmaier
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Hans D. Theiss
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Alexandra Keithahn
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Munich, Germany
| | - Julia Kreiner
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Christoph Brenner
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Bruno Huber
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | | | - Lisa Gross
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Karin Klingel
- Department of Molecular Pathology, University of Tübingen, Tübingen, Germany
| | - Wolfgang-M. Franz
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Stefan Brunner
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| |
Collapse
|
42
|
Größl T, Hammer E, Bien-Möller S, Geisler A, Pinkert S, Röger C, Poller W, Kurreck J, Völker U, Vetter R, Fechner H. A novel artificial microRNA expressing AAV vector for phospholamban silencing in cardiomyocytes improves Ca2+ uptake into the sarcoplasmic reticulum. PLoS One 2014; 9:e92188. [PMID: 24670775 PMCID: PMC3966758 DOI: 10.1371/journal.pone.0092188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 02/19/2014] [Indexed: 01/09/2023] Open
Abstract
In failing rat hearts, post-transcriptonal inhibition of phospholamban (PLB) expression by AAV9 vector-mediated cardiac delivery of short hairpin RNAs directed against PLB (shPLBr) improves both impaired SERCA2a controlled Ca2+ cycling and contractile dysfunction. Cardiac delivery of shPLB, however, was reported to cause cardiac toxicity in canines. Thus we developed a new AAV vector, scAAV6-amiR155-PLBr, expressing a novel engineered artificial microRNA (amiR155-PLBr) directed against PLB under control of a heart-specific hybrid promoter. Its PLB silencing efficiency and safety were compared with those of an AAV vector expressing shPLBr (scAAV6-shPLBr) from an ubiquitously active U6 promoter. Investigations were carried out in cultured neonatal rat cardiomyocytes (CM) over a period of 14 days. Compared to shPLBr, amiR155-PLBr was expressed at a significantly lower level, resulting in delayed and less pronounced PLB silencing. Despite decreased knockdown efficiency of scAAV6-amiR155-PLBr, a similar increase of the SERCA2a-catalyzed Ca2+ uptake into sarcoplasmic reticulum (SR) vesicles was observed for both the shPLBr and amiR155-PLBr vectors. Proteomic analysis confirmed PLB silencing of both therapeutic vectors and revealed that shPLBr, but not the amiR155-PLBr vector, increased the proinflammatory proteins STAT3, STAT1 and activated STAT1 phosphorylation at the key amino acid residue Tyr701. Quantitative RT-PCR analysis detected alterations in the expression of several cardiac microRNAs after treatment of CM with scAAV6-shPLBr and scAAV6-amiR155-PLBr, as well as after treatment with its related amiR155- and shRNAs-expressing control AAV vectors. The results demonstrate that scAAV6-amiR155-PLBr is capable of enhancing the Ca2+ transport function of the cardiac SR PLB/SERCA2a system as efficiently as scAAV6-shPLBr while offering a superior safety profile.
Collapse
Affiliation(s)
- Tobias Größl
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Bien-Möller
- Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | - Anja Geisler
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Sandra Pinkert
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Carsten Röger
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Wolfgang Poller
- Department of Cardiology & Pneumology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Roland Vetter
- Institute of Clinical Pharmacology & Toxicology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
43
|
Galectin-9 induced myeloid suppressor cells expand regulatory T cells in an IL-10-dependent manner in CVB3-induced acute myocarditis. Int J Mol Sci 2014; 15:3356-72. [PMID: 24573249 PMCID: PMC3975342 DOI: 10.3390/ijms15033356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/06/2014] [Accepted: 02/11/2014] [Indexed: 01/24/2023] Open
Abstract
The objective of the study was to explore the effects of galectin-9 on myeloid suppressor cells in Coxsackievirus B3 (CVB3)-induced myocarditis and the possible mechanisms involved. For this purpose, BALB/c male mice were infected with CVB3 on day 0 and then received intraperitoneal (IP) administration of recombinant galectin-9 or phosphate-buffered saline (PBS) daily from day 3 to day 7. The phenotypes and functions of myeloid suppressor cells were evaluated. The role and mechanism of myeloid suppressor cells and subsets in CVB3-induced myocarditis in vitro were explored. We found that galectin-9 remarkably increased the frequencies of CD11b+Gr-1+ cells in the cardiac tissue and spleen with myocarditis. Ly-6G+ cells were decreased and Ly-6C+ cells were increased in galectin-9-treated mice. In addition, CD11b+Gr-1+ cells were highly effective in suppressing CD4+ T cells. Moreover, our data demonstrate that CD11b+Gr-1+ cells are capable of expanding regulatory T cells (Tregs) from a preexisting population of natural Tregs, which depends on IL-10 but not TGF-β. Our results indicate that galectin-9 therapy may represent a useful approach to ameliorate CVB3-induced myocarditis.
Collapse
|
44
|
Abstract
Understanding of the roles of noncoding RNAs (ncRNAs) within complex organisms has fundamentally changed. It is increasingly possible to use ncRNAs as diagnostic and therapeutic tools in medicine. Regarding disease pathogenesis, it has become evident that confinement to the analysis of protein-coding regions of the human genome is insufficient because ncRNA variants have been associated with important human diseases. Thus, inclusion of noncoding genomic elements in pathogenetic studies and their consideration as therapeutic targets is warranted. We consider aspects of the evolutionary and discovery history of ncRNAs, as far as they are relevant for the identification and selection of ncRNAs with likely therapeutic potential. Novel therapeutic strategies are based on ncRNAs, and we discuss here RNA interference as a highly versatile tool for gene silencing. RNA interference-mediating RNAs are small, but only parts of a far larger spectrum encompassing ncRNAs up to many kilobasepairs in size. We discuss therapeutic options in cardiovascular medicine offered by ncRNAs and key issues to be solved before clinical translation. Convergence of multiple technical advances is highlighted as a prerequisite for the translational progress achieved in recent years. Regarding safety, we review properties of RNA therapeutics, which may immunologically distinguish them from their endogenous counterparts, all of which underwent sophisticated evolutionary adaptation to specific biological contexts. Although our understanding of the noncoding human genome is only fragmentary to date, it is already feasible to develop RNA interference against a rapidly broadening spectrum of therapeutic targets and to translate this to the clinical setting under certain restrictions.
Collapse
Affiliation(s)
- Wolfgang Poller
- From the Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Juliane Tank
- From the Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Skurk
- From the Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Gast
- From the Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
45
|
Geisler A, Schön C, Größl T, Pinkert S, Stein EA, Kurreck J, Vetter R, Fechner H. Application of mutated miR-206 target sites enables skeletal muscle-specific silencing of transgene expression of cardiotropic AAV9 vectors. Mol Ther 2013; 21:924-33. [PMID: 23439498 PMCID: PMC3666623 DOI: 10.1038/mt.2012.276] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/03/2012] [Indexed: 01/11/2023] Open
Abstract
Insertion of completely complementary microRNA (miR) target sites (miRTS) into a transgene has been shown to be a valuable approach to specifically repress transgene expression in non-targeted tissues. miR-122TS have been successfully used to silence transgene expression in the liver following systemic application of cardiotropic adeno-associated virus (AAV) 9 vectors. For miR-206-mediated skeletal muscle-specific silencing of miR-206TS-bearing AAV9 vectors, however, we found this approach failed due to the expression of another member (miR-1) of the same miR family in heart tissue, the intended target. We introduced single-nucleotide substitutions into the miR-206TS and searched for those which prevented miR-1-mediated cardiac repression. Several mutated miR-206TS (m206TS), in particular m206TS-3G, were resistant to miR-1, but remained fully sensitive to miR-206. All these variants had mismatches in the seed region of the miR/m206TS duplex in common. Furthermore, we found that some m206TS, containing mismatches within the seed region or within the 3' portion of the miR-206, even enhanced the miR-206- mediated transgene repression. In vivo expression of m206TS-3G- and miR-122TS-containing transgene of systemically applied AAV9 vectors was strongly repressed in both skeletal muscle and the liver but remained high in the heart. Thus, site-directed mutagenesis of miRTS provides a new strategy to differentiate transgene de-targeting of related miRs.
Collapse
Affiliation(s)
- Anja Geisler
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Christian Schön
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Größl
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Sandra Pinkert
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Elisabeth A Stein
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Roland Vetter
- Institute of Clinical Pharmacology & Toxicology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
46
|
Zhang K, Yu H, Xie W, Xu Z, Zhou S, Huang C, Sheng H, He X, Xiong J, Qian G. Expression of coxsackievirus and adenovirus receptor (CAR)-Fc fusion protein in Pichia pastoris and characterization of its anti-coxsackievirus activity. J Biotechnol 2013; 164:461-8. [PMID: 23376619 DOI: 10.1016/j.jbiotec.2013.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 11/19/2022]
Abstract
Coxsackievirus and adenovirus receptors (CARs) are the common cellular receptors which mediate coxsackievirus or adenovirus infection. Receptor trap therapy, which uses soluble viral receptors to block the attachment and internalization of virus, has been developed for the inhibition of virus infection. In this study, we have constructed a pPIC3.5K/CAR-Fc expression plasmid for the economical and scale-up production of CAR-Fc fusion protein in Pichia pastoris. The coding sequence of the fusion protein was optimized according to the host codon usage bias. The amount of the CAR-Fc protein to total cell protein was up to 10% by 1% methanol induction for 96h and the purity was up to 96% after protein purification. Next, the virus pull-down assay demonstrated the binding activity of the CAR-Fc to coxsackievirus. The analyses of MTT assay, immunofluorescence staining and quantitative real-time PCR after virus neutralization assay revealed that CAR-Fc could significantly block coxsackievirus B3 infection in vitro. In coxsackievirus B3 infected mouse models, CAR-Fc treatment reduced mortality, myocardial edema, viral loads and inflammation, suggesting the significant virus blocking effect in vivo. Our results indicated that the P. pastoris expression system could be used to produce large quantities of bioactive CAR-Fc for further clinical purpose.
Collapse
Affiliation(s)
- Kebin Zhang
- Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shi W, Schmarkey LS, Jiang R, Bone CC, Condit ME, Dillehay DL, Engler RL, Rubanyi GM, Vinten-Johansen J. Ischemia-reperfusion increases transfection efficiency of intracoronary adenovirus type 5 in pig heart in situ. Hum Gene Ther Methods 2012; 23:204-12. [PMID: 22816318 DOI: 10.1089/hgtb.2012.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Efficiency of intracoronary (IC) adenoviral vector transfection is impaired by the vascular endothelium. Ischemia and substances that increase vascular permeability (sodium nitroprusside, nitroglycerin) may augment adenoviral vector transfection efficiency (TE). We tested whether TE of adenoviral vector following IC infusion is improved by nitrates or by ischemia. Fluoroscopically guided angioplasty balloon catheters occluded the coronary artery in Yorkshire pigs and delivered adenoviral type 5 vector encoding the luciferase gene (Ad5Luc, 10(11) viral particles). TE (luciferase activity) was minimal and was not augmented by IC co-administration of 50 μg/min sodium nitroprusside to nonischemic myocardium. Two (but not one) 3-min episodes of occlusion tended to increase luciferase activity (p=0.06), and luciferase activity was further increased by IC co-administration of nitroglycerin (p<0.001). After 75 min of coronary artery occlusion, luciferase activity was greater than with shorter periods of ischemia, and was significantly greater in the ischemia-reperfused zone compared to the border zone 3 and 14 days after infusion; there was no transfection in nonischemic myocardium. IC delivery of Ad5Luc into post-ischemic myocardium caused no local inflammation or hemodynamic instability. We conclude that the uptake of IC Ad5 to ischemic reperfused myocardium validates use of IC Ad5 delivery protocols in future human gene therapy trials in patients following myocardial ischemia.
Collapse
Affiliation(s)
- Weiwei Shi
- Cardiothoracic Research Laboratory, Carlyle Fraser Heart Center, Emory University, Atlanta, GA 30308, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Miteva K, Haag M, Peng J, Savvatis K, Becher PM, Seifert M, Warstat K, Westermann D, Ringe J, Sittinger M, Schultheiss HP, Tschöpe C, Van Linthout S. Human cardiac-derived adherent proliferating cells reduce murine acute Coxsackievirus B3-induced myocarditis. PLoS One 2011; 6:e28513. [PMID: 22174827 PMCID: PMC3235117 DOI: 10.1371/journal.pone.0028513] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/09/2011] [Indexed: 11/23/2022] Open
Abstract
Background Under conventional heart failure therapy, inflammatory cardiomyopathy typically has a progressive course, indicating a need for alternative therapeutic strategies to improve long-term outcomes. We recently isolated and identified novel cardiac-derived cells from human cardiac biopsies: cardiac-derived adherent proliferating cells (CAPs). They have similarities with mesenchymal stromal cells, which are known for their anti-apoptotic and immunomodulatory properties. We explored whether CAPs application could be a novel strategy to improve acute Coxsackievirus B3 (CVB3)-induced myocarditis. Methodology/Principal Findings To evaluate the safety of our approach, we first analyzed the expression of the coxsackie- and adenovirus receptor (CAR) and the co-receptor CD55 on CAPs, which are both required for effective CVB3 infectivity. We could demonstrate that CAPs only minimally express both receptors, which translates to minimal CVB3 copy numbers, and without viral particle release after CVB3 infection. Co-culture of CAPs with CVB3-infected HL-1 cardiomyocytes resulted in a reduction of CVB3-induced HL-1 apoptosis and viral progeny release. In addition, CAPs reduced CD4 and CD8 T cell proliferation. All CAPs-mediated protective effects were nitric oxide- and interleukin-10-dependent and required interferon-γ. In an acute murine model of CVB3-induced myocarditis, application of CAPs led to a decrease of cardiac apoptosis, cardiac CVB3 viral load and improved left ventricular contractility parameters. This was associated with a decline in cardiac mononuclear cell activity, an increase in T regulatory cells and T cell apoptosis, and an increase in left ventricular interleukin-10 and interferon-γ mRNA expression. Conclusions We conclude that CAPs are a unique type of cardiac-derived cells and promising tools to improve acute CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Kapka Miteva
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Marion Haag
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Laboratory for Tissue Engineering, Charité, University Medicine Berlin, Berlin, Germany
| | - Jun Peng
- Department of Cardiology and Pneumology, Charité, University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Kostas Savvatis
- Department of Cardiology and Pneumology, Charité, University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Peter Moritz Becher
- Department of Cardiology and Pneumology, Charité, University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Martina Seifert
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Institute of Medical Immunology, Charité, University Medicine Berlin, Germany
| | - Katrin Warstat
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Dirk Westermann
- Department of Cardiology and Pneumology, Charité, University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Jochen Ringe
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Laboratory for Tissue Engineering, Charité, University Medicine Berlin, Berlin, Germany
| | - Michael Sittinger
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Laboratory for Tissue Engineering, Charité, University Medicine Berlin, Berlin, Germany
| | - Heinz-Peter Schultheiss
- Department of Cardiology and Pneumology, Charité, University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Carsten Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Department of Cardiology and Pneumology, Charité, University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
- * E-mail:
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Department of Cardiology and Pneumology, Charité, University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
49
|
Leone O, Veinot JP, Angelini A, Baandrup UT, Basso C, Berry G, Bruneval P, Burke M, Butany J, Calabrese F, d'Amati G, Edwards WD, Fallon JT, Fishbein MC, Gallagher PJ, Halushka MK, McManus B, Pucci A, Rodriguez ER, Saffitz JE, Sheppard MN, Steenbergen C, Stone JR, Tan C, Thiene G, van der Wal AC, Winters GL. 2011 consensus statement on endomyocardial biopsy from the Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology. Cardiovasc Pathol 2011; 21:245-74. [PMID: 22137237 DOI: 10.1016/j.carpath.2011.10.001] [Citation(s) in RCA: 387] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/28/2011] [Accepted: 10/07/2011] [Indexed: 01/04/2023] Open
Abstract
The Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology have produced this position paper concerning the current role of endomyocardial biopsy (EMB) for the diagnosis of cardiac diseases and its contribution to patient management, focusing on pathological issues, with these aims: • Determining appropriate EMB use in the context of current diagnostic strategies for cardiac diseases and providing recommendations for its rational utilization • Providing standard criteria and guidance for appropriate tissue triage and pathological analysis • Promoting a team approach to EMB use, integrating the competences of pathologists, clinicians, and imagers.
Collapse
Affiliation(s)
- Ornella Leone
- U.O. di Anatomia ed Istologia Patologica, Azienda Ospedaliero-Universitaria S.Orsola-Malpighi, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fechner H, Pinkert S, Geisler A, Poller W, Kurreck J. Pharmacological and biological antiviral therapeutics for cardiac coxsackievirus infections. Molecules 2011; 16:8475-503. [PMID: 21989310 PMCID: PMC6264230 DOI: 10.3390/molecules16108475] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 01/16/2023] Open
Abstract
Subtype B coxsackieviruses (CVB) represent the most commonly identified infectious agents associated with acute and chronic myocarditis, with CVB3 being the most common variant. Damage to the heart is induced both directly by virally mediated cell destruction and indirectly due to the immune and autoimmune processes reacting to virus infection. This review addresses antiviral therapeutics for cardiac coxsackievirus infections discovered over the last 25 years. One group represents pharmacologically active low molecular weight substances that inhibit virus uptake by binding to the virus capsid (e.g., pleconaril) or inactivate viral proteins (e.g., NO-metoprolol and ribavirin) or inhibit cellular proteins which are essential for viral replication (e.g., ubiquitination inhibitors). A second important group of substances are interferons. They have antiviral but also immunomodulating activities. The third and most recently discovered group includes biological and cellular therapeutics. Soluble receptor analogues (e.g., sCAR-Fc) bind to the virus capsid and block virus uptake. Small interfering RNAs, short hairpin RNAs and antisense oligonucleotides bind to and led to degradation of the viral RNA genome or cellular RNAs, thereby preventing their translation and viral replication. Most recently mesenchymal stem cell transplantation has been shown to possess antiviral activity in CVB3 infections. Taken together, a number of antiviral therapeutics has been developed for the treatment of myocardial CVB infection in recent years. In addition to low molecular weight inhibitors, biological therapeutics have become promising anti-viral agents.
Collapse
Affiliation(s)
- Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (S.P.); (J.K.)
- Author to whom correspondence should be addressed; ; Tel.: +49-30-31472181; Fax: +49-30-31427502
| | - Sandra Pinkert
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (S.P.); (J.K.)
| | - Anja Geisler
- Department of Cardiology & Pneumology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany; (A.G.); wolfgang.poller@charite (W.P.)
| | - Wolfgang Poller
- Department of Cardiology & Pneumology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany; (A.G.); wolfgang.poller@charite (W.P.)
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (S.P.); (J.K.)
| |
Collapse
|