1
|
Fedotcheva TA, Uspenskaya ME, Ulchenko DN, Shimanovsky NL. Dehydroepiandrosterone and Its Metabolite 5-Androstenediol: New Therapeutic Targets and Possibilities for Clinical Application. Pharmaceuticals (Basel) 2024; 17:1186. [PMID: 39338348 PMCID: PMC11435263 DOI: 10.3390/ph17091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Dehydroepiandrosterone and its sulfate are the most abundant steroids in humans. The metabolism of dehydroepiandrosterone can differ significantly depending on the organ or tissue and the subtype of steroid receptors expressed in it. For dehydroepiandrosterone, as a precursor of all steroid hormones, intracrine hormonal activity is inherent. This unique feature could be beneficial for the medicinal application, especially for the local treatment of various pathologies. At present, the clinical use of dehydroepiandrosterone is limited by its Intrarosa® (Quebec city, QC, Canada) prasterone) 6.5 mg vaginal suppositories for the treatment of vaginal atrophy and dyspareunia, while the dehydroepiandrosterone synthetic derivatives Triplex, BNN 27, and Fluasterone have the investigational status for the treatment of various diseases. Here, we discuss the molecular targets of dehydroepiandrosterone, which open future prospects to expand its indications for use. Dehydroepiandrosterone, as an oral drug, is surmised to have promise in the treatment of osteoporosis, cachexia, and sarcopenia, as does 10% unguent for skin and muscle regeneration. Also, 5-androstenediol, a metabolite of dehydroepiandrosterone, is a promising candidate for the treatment of acute radiation syndrome and as an immunostimulating agent during radiopharmaceutical therapy. The design and synthesis of new 5-androstenediol derivatives with increased bioavailability may lead to the appearance of highly effective cytoprotectors on the pharmaceutical market. The argumentations for new clinical applications of these steroids and novel insights into their mechanisms of action are discussed.
Collapse
Affiliation(s)
- Tatiana A Fedotcheva
- Laboratory of Molecular Pharmacology, Pirogov Russian National Research Medical University, 1 Ostrovityanova St., Moscow 117997, Russia
| | - Maria E Uspenskaya
- Laboratory of Molecular Pharmacology, Pirogov Russian National Research Medical University, 1 Ostrovityanova St., Moscow 117997, Russia
| | - Darya N Ulchenko
- Laboratory of Molecular Pharmacology, Pirogov Russian National Research Medical University, 1 Ostrovityanova St., Moscow 117997, Russia
| | - Nikolay L Shimanovsky
- Laboratory of Molecular Pharmacology, Pirogov Russian National Research Medical University, 1 Ostrovityanova St., Moscow 117997, Russia
| |
Collapse
|
2
|
Jia K, Luo X, Yi J, Zhang C. Hormonal influence: unraveling the impact of sex hormones on vascular smooth muscle cells. Biol Res 2024; 57:61. [PMID: 39227995 PMCID: PMC11373308 DOI: 10.1186/s40659-024-00542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Sex hormones play a pivotal role as endocrine hormones that exert profound effects on the biological characteristics and vascular function of vascular smooth muscle cells (VSMCs). By modulating intracellular signaling pathways, activating nuclear receptors, and regulating gene expression, sex hormones intricately influence the morphology, function, and physiological state of VSMCs, thereby impacting the biological properties of vascular contraction, relaxation, and growth. Increasing evidence suggests that abnormal phenotypic changes in VSMCs contribute to the initiation of vascular diseases, including atherosclerosis. Therefore, understanding the factors governing phenotypic alterations in VSMCs and elucidating the underlying mechanisms can provide crucial insights for refining interventions targeted at vascular diseases. Additionally, the varying levels of different types of sex hormones in the human body, influenced by sex and age, may also affect the phenotypic conversion of VSMCs. This review aims to explore the influence of sex hormones on the phenotypic switching of VSMCs and the development of associated vascular diseases in the human body.
Collapse
Affiliation(s)
- Keran Jia
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xin Luo
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
3
|
Wang J, Liu C, Huang SS, Wang HF, Cheng CY, Ma JS, Li RN, Lian TY, Li XM, Ma YJ, Jing ZC. Functions and novel regulatory mechanisms of key glycolytic enzymes in pulmonary arterial hypertension. Eur J Pharmacol 2024; 970:176492. [PMID: 38503401 DOI: 10.1016/j.ejphar.2024.176492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive vascular disease characterized by remodeling of the pulmonary vasculature and elevated pulmonary arterial pressure, ultimately leading to right heart failure and death. Despite its clinical significance, the precise molecular mechanisms driving PAH pathogenesis warrant confirmation. Compelling evidence indicates that during the development of PAH, pulmonary vascular cells exhibit a preference for energy generation through aerobic glycolysis, known as the "Warburg effect", even in well-oxygenated conditions. This metabolic shift results in imbalanced metabolism, increased proliferation, and severe pulmonary vascular remodeling. Exploring the Warburg effect and its interplay with glycolytic enzymes in the context of PAH has yielded current insights into emerging drug candidates targeting enzymes and intermediates involved in glucose metabolism. This sheds light on both opportunities and challenges in the realm of antiglycolytic therapy for PAH.
Collapse
Affiliation(s)
- Jia Wang
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, China
| | - Chao Liu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Shen-Shen Huang
- The First Affiliated Hospital of Henan University of Science and Technology Clinical Medical College, Henan University of Science and Technology, Luoyang, 471003, China
| | - Hui-Fang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine Sciences, Hebei Medical University, Shijiazhuang, 050011, China
| | - Chun-Yan Cheng
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University. Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Jing-Si Ma
- Department of School of Pharmacy, Henan University, North Section of Jinming Avenue, Longting District, Kaifeng, 475100, China
| | - Ruo-Nan Li
- Department of School of Pharmacy, Henan University, North Section of Jinming Avenue, Longting District, Kaifeng, 475100, China
| | - Tian-Yu Lian
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University. Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Xian-Mei Li
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yue-Jiao Ma
- National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University. Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Liu T, Liu Y, Zhao X, Zhang L, Wang W, Bai D, Liao Y, Wang Z, Wang M, Zhang J. Thermodynamically stable ionic liquid microemulsions pioneer pathways for topical delivery and peptide application. Bioact Mater 2024; 32:502-513. [PMID: 38026438 PMCID: PMC10643103 DOI: 10.1016/j.bioactmat.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/09/2023] [Accepted: 10/01/2023] [Indexed: 12/01/2023] Open
Abstract
Copper peptides (GHK-Cu) are a powerful hair growth promoter with minimal side effects when compared with minoxidil and finasteride; however, challenges in delivering GHK-Cu topically limits their non-invasive applications. Using theoretical calculations and pseudo-ternary phase diagrams, we designed and constructed a thermodynamically stable ionic liquid (IL)-based microemulsion (IL-M), which integrates the high drug solubility of ILs and high skin permeability of microemulsions, thus improving the local delivery of copper peptides by approximately three-fold while retaining their biological function. Experiments in mice validated the effectiveness of our proposed IL-M system. Furthermore, the exact effects of the IL-M system on the expression of growth factors, such as vascular endothelial growth factor, were revealed, and it was found that microemulsion increased the activation of the Wnt/β-catenin signaling pathway, which includes factors involved in hair growth regulation. Overall, the safe and non-invasive IL microemulsion system developed in this study has great potential for the clinical treatment of hair loss.
Collapse
Affiliation(s)
- Tianqi Liu
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Research Center of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Ying Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Xiaoyu Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liguo Zhang
- Harbin Voolga Technology Co., Ltd., Harbin, 150070, China
| | - Wei Wang
- Harbin Voolga Technology Co., Ltd., Harbin, 150070, China
| | - De Bai
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Research Center of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Ya Liao
- Shenzhen Shinehigh Innovation Technology Co., Ltd., Shenzhen, 518055, China
| | - Zhenyuan Wang
- Shenzhen Shinehigh Innovation Technology Co., Ltd., Shenzhen, 518055, China
| | - Mi Wang
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Research Center of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Research Center of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
- Shenzhen Shinehigh Innovation Technology Co., Ltd., Shenzhen, 518055, China
| |
Collapse
|
5
|
Feng Y, Huang Z, Ma X, Zong X, Wu CY, Lee RH, Lin HW, Hamblin MR, Zhang Q. Activation of testosterone-androgen receptor mediates cerebrovascular protection by photobiomodulation treatment in photothrombosis-induced stroke rats. CNS Neurosci Ther 2024; 30:e14574. [PMID: 38421088 PMCID: PMC10851319 DOI: 10.1111/cns.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 03/02/2024] Open
Abstract
RATIONALE Numerous epidemiological studies have reported a link between low testosterone levels and an increased risk of cerebrovascular disease in men. However, there is ongoing controversy surrounding testosterone replacement therapy due to potential side effects. PBMT has been demonstrated to improve cerebrovascular function and promote testosterone synthesis in peripheral tissues. Despite this, the molecular mechanisms that could connect PBMT with testosterone and vascular function in the brain of photothrombosis (PT)-induced stroke rats remain largely unknown. METHODS We measured behavioral performance, cerebral blood flow (CBF), vascular permeability, and the expression of vascular-associated and apoptotic proteins in PT-induced stroke rats treated with flutamide and seven consecutive days of PBM treatment (350 mW, 808 nM, 2 min/day). To gain further insights into the mechanism of PBM on testosterone synthesis, we used testosterone synthesis inhibitors to study their effects on bEND.3 cells. RESULTS We showed that PT stroke caused a decrease in cerebrovascular testosterone concentration, which was significantly increased by 7-day PBMT (808 nm, 350 mW/cm2 , 42 J/cm2 ). Furthermore, PBMT significantly increased cerebral blood flow (CBF) and the expression of vascular-associated proteins, while inhibiting vascular permeability and reducing endothelial cell apoptosis. This ultimately mitigated behavioral deficits in PT stroke rats. Notably, treatment with the androgen receptor antagonist flutamide reversed the beneficial effects of PBMT. Cellular experiments confirmed that PBMT inhibited cell apoptosis and increased vascular-associated protein expression in brain endothelial cell line (bEnd.3) subjected to oxygen-glucose deprivation (OGD). However, these effects were inhibited by flutamide. Moreover, mechanistic studies revealed that PBMT-induced testosterone synthesis in bEnd.3 cells was partly mediated by 17β-hydroxysteroid dehydrogenase 5 (17β-HSD5). CONCLUSIONS Our study provides evidence that PBMT attenuates cerebrovascular injury and behavioral deficits associated with testosterone/AR following ischemic stroke. Our findings suggest that PBMT may be a promising alternative approach for managing cerebrovascular diseases.
Collapse
Affiliation(s)
- Yu Feng
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Zhihai Huang
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Xiaohui Ma
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Xuemei Zong
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Celeste Yin‐Chieh Wu
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Reggie Hui‐Chao Lee
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Hung Wen Lin
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Michael R. Hamblin
- Wellman Center for PhotomedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Quanguang Zhang
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| |
Collapse
|
6
|
Zhang P, Huang C, Liu H, Zhang M, Liu L, Zhai Y, Zhang J, Yang J, Yang J. The mechanism of the NFAT transcription factor family involved in oxidative stress response. J Cardiol 2024; 83:30-36. [PMID: 37149283 DOI: 10.1016/j.jjcc.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
As a transcriptional activator widely expressed in various tissues, nuclear factor of activated T cells (NFAT) is involved in the regulation of the immune system, the development of the heart and brain systems, and classically mediating pathological processes such as cardiac hypertrophy. Oxidative stress is an imbalance of intracellular redox status, characterized by excessive generation of reactive oxygen species, accompanied by mitochondrial dysfunction, calcium overload, and subsequent lipid peroxidation, inflammation, and apoptosis. Oxidative stress occurs during various pathological processes, such as chronic hypoxia, vascular smooth muscle cell phenotype switching, ischemia-reperfusion, and cardiac remodeling. Calcium overload leads to an increase in intracellular calcium concentration, while NFAT can be activated through calcium-calcineurin, which is also the main regulatory mode of NFAT factors. This review focuses on the effects of NFAT transcription factors on reactive oxygen species production, calcium overload, mitochondrial dysfunction, redox reactions, lipid peroxidation, inflammation, and apoptosis in response to oxidative stress. We hope to provide a reference for the functions and characteristics of NFAT involved in various stages of oxidative stress as well as related potential targets.
Collapse
Affiliation(s)
- Peiyue Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Cuiyuan Huang
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Haiyin Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Mengting Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Li Liu
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yuhong Zhai
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing Zhang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China.
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China.
| |
Collapse
|
7
|
Clark BJ, Klinge CM. Structure-function of DHEA binding proteins. VITAMINS AND HORMONES 2022; 123:587-617. [PMID: 37717999 DOI: 10.1016/bs.vh.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) and its sulfated metabolite DHEA-S are the most abundant circulating steroids and are precursors for active sex steroid hormones, estradiol and testosterone. DHEA has a broad range of reported effects in the central nervous system (CNS), cardiovascular system, adipose tissue, kidney, liver, and in the reproductive system. The mechanisms by which DHEA and DHEA-S initiate their biological effects are diverse. DHEA and DHEA-S may directly bind to plasma membrane (PM) receptors, including a DHEA-specific, G-protein coupled receptor (GPCR) in endothelial cells; various neuroreceptors, e.g., aminobutyric-acid-type A (GABA(A)), N-methyl-d-aspartate (NMDA) and sigma-1 (S1R) receptors (NMDAR and SIG-1R). DHEA and DHEA-S directly bind the nuclear androgen and estrogen receptors (AR, ERα, or ERβ) although with significantly lower binding affinities compared to the steroid hormones, e.g., testosterone, dihydrotestosterone, and estradiol, which are the cognate ligands for AR and ERs. Thus, extra-gonadal metabolism of DHEA to the sex hormones must be considered for many of the biological benefits of DHEA. DHEA also actives GPER1 (G protein coupled estrogen receptor 1). DHEA activates constitutive androstane receptor CAR (CAR) and proliferator activated receptor (PPARα) by indirect dephosphorylation. DHEA affects voltage-gated sodium and calcium ion channels and DHEA-2 activates TRPM3 (Transient Receptor Potential Cation Channel Subfamily M Member 3). This chapter updates our previous 2018 review pertaining to the physiological, biochemical, and molecular mechanisms of DHEA and DHEA-S activity.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry & Molecular Genetics, Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville School of Medicine, Louisville, KY, United States
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville School of Medicine, Louisville, KY, United States.
| |
Collapse
|
8
|
Zhang X, Xiao J, Li X, Cui J, Wang K, He Q, Liu M. Low Serum Dehydroepiandrosterone Is Associated With Diabetic Kidney Disease in Men With Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:915494. [PMID: 35784547 PMCID: PMC9240345 DOI: 10.3389/fendo.2022.915494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background The associations of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) with diabetic kidney disease (DKD) remained unclear. Thus, this cross-sectional study aimed to explore the associations of DHEA and DHEAS with the risk of DKD in patients with T2DM. Methods The information of 1251 patients with T2DM were included in this study. Serum DHEA and DHEAS were quantified using liquid chromatography-tandem mass spectrometry assays. Multivariate logistic regression analyses were used to assess the associations of DHEA and DHEAS with DKD as well as high urine albumin to creatinine ratio (ACR). Results In men with T2DM, the risk of DKD decreased with an increasing DHEA concentration after adjustment for traditional risk factors; the fully adjusted OR (95% CI) for tertile3 vs tertile1 was 0.37 (0.19-0.70; P = 0.010 for trend). Similarly, when taking high ACR as the outcome, low DHEA levels were still significantly associated with increased odds of high ACR (OR, 0.37; 95% CI, 0.19-0.72 for tertile3 vs tertile1; P = 0.012 for trend). The restricted cubic spline showed that the risk of DKD gradually decreased with the increment of serum DHEA levels (P-overall = 0.007; P-nonlinear = 0.161). DHEAS was not independently associated with the risk of DKD in men. In contrast, no significant relationships were found between DHEA and DHEAS and the risk of DKD in women (all P > 0.05). Conclusions In men with T2DM, low serum DHEA levels were independently related to the risk of DKD after adjustment for traditional risk factors. Our finding highlights the potential role of DHEA in the development of DKD in men with T2DM.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinfeng Xiao
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingqiu Cui
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Kunling Wang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing He
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Endocrinology, Tianjin, China
| |
Collapse
|
9
|
Guler SA, Machahua C, Geiser TK, Kocher G, Marti TM, Tan B, Trappetti V, Ryerson CJ, Funke-Chambour M. Dehydroepiandrosterone in fibrotic interstitial lung disease: a translational study. Respir Res 2022; 23:149. [PMID: 35676709 PMCID: PMC9178848 DOI: 10.1186/s12931-022-02076-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dehydroepiandrosterone (DHEA) is a precursor sex hormone with antifibrotic properties. The aims of this study were to investigate antifibrotic mechanisms of DHEA, and to determine the relationship between DHEA-sulfate (DHEAS) plasma levels, disease severity and survival in patients with fibrotic interstitial lung diseases (ILDs). METHODS Human precision cut lung slices (PCLS) and normal human lung fibroblasts were treated with DHEA and/or transforming growth factor (TGF)-β1 before analysis of pro-fibrotic genes and signal proteins. Cell proliferation, cytotoxicity, cell cycle and glucose-6-phosphate dehydrogenase (G6PD) activity were assessed. DHEAS plasma levels were correlated with pulmonary function, the composite physiologic index (CPI), and time to death or lung transplantation in a derivation cohort of 31 men with idiopathic pulmonary fibrosis (IPF) and in an independent validation cohort of 238 men and women with fibrotic ILDs. RESULTS DHEA decreased the expression of pro-fibrotic markers in-vitro and ex-vivo. There was no cytotoxic effect for the applied concentrations, but DHEA interfered in proliferation by modulating the cell cycle through reduction of G6PD activity. In men with IPF (derivation cohort) DHEAS plasma levels in the lowest quartile were associated with poor lung function and higher CPI (adjusted OR 1.15 [95% CI 1.03-1.38], p = 0.04), which was confirmed in the fibrotic ILD validation cohort (adjusted OR 1.03 [95% CI 1.00-1.06], p = 0.01). In both cohorts the risk of early mortality was higher in patients with low DHEAS levels, after accounting for potential confounding by age in men with IPF (HR 3.84, 95% CI 1.25-11.7, p = 0.02), and for age, sex, IPF diagnosis and prednisone treatment in men and women with fibrotic ILDs (HR 3.17, 95% CI 1.35-7.44, p = 0.008). CONCLUSIONS DHEA reduces lung fibrosis and cell proliferation by inducing cell cycle arrest and inhibition of G6PD activity. The association between low DHEAS levels and disease severity suggests a potential prognostic and therapeutic role of DHEAS in fibrotic ILD.
Collapse
Affiliation(s)
- Sabina A Guler
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland. .,Department for BioMedical Research DBMR, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Carlos Machahua
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland.,Department for BioMedical Research DBMR, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas K Geiser
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland.,Department for BioMedical Research DBMR, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gregor Kocher
- Department for BioMedical Research DBMR, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas M Marti
- Department for BioMedical Research DBMR, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Benjamin Tan
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, Canada.,Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| | - Manuela Funke-Chambour
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland.,Department for BioMedical Research DBMR, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Jian Y, Kong L, Xu H, Shi Y, Huang X, Zhong W, Huang S, Li Y, Shi D, Xiao Y, Yang M, Li S, Chen X, Ouyang Y, Hu Y, Chen X, Song L, Ye R, Wei W. Protein phosphatase 1 regulatory inhibitor subunit 14C promotes triple-negative breast cancer progression via sustaining inactive glycogen synthase kinase 3 beta. Clin Transl Med 2022; 12:e725. [PMID: 35090098 PMCID: PMC8797469 DOI: 10.1002/ctm2.725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/28/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is fast-growing and highly metastatic with the poorest prognosis among the breast cancer subtypes. Inactivation of glycogen synthase kinase 3 beta (GSK3β) plays a vital role in the aggressiveness of TNBC; however, the underlying mechanism for sustained GSK3β inhibition remains largely unknown. Here, we find that protein phosphatase 1 regulatory inhibitor subunit 14C (PPP1R14C) is upregulated in TNBC and relevant to poor prognosis in patients. Overexpression of PPP1R14C facilitates cell proliferation and the aggressive phenotype of TNBC cells, whereas the depletion of PPP1R14C elicits opposite effects. Moreover, PPP1R14C is phosphorylated and activated by protein kinase C iota (PRKCI) at Thr73. p-PPP1R14C then represses Ser/Thr protein phosphatase type 1 (PP1) to retain GSK3β phosphorylation at high levels. Furthermore, p-PPP1R14C recruits E3 ligase, TRIM25, toward the ubiquitylation and degradation of non-phosphorylated GSK3β. Importantly, the blockade of PPP1R14C phosphorylation inhibits xenograft tumorigenesis and lung metastasis of TNBC cells. These findings provide a novel mechanism for sustained GSK3β inactivation in TNBC and suggest that PPP1R14C might be a potential therapeutic target.
Collapse
Affiliation(s)
- Yunting Jian
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Pathology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory for Major Obstetric Diseases of Guangdong ProvinceThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Lingzhi Kong
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Hongyi Xu
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yawei Shi
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xinjian Huang
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Wenjing Zhong
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shumei Huang
- Department of Biochemistry, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yue Li
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Dongni Shi
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Yunyun Xiao
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Muwen Yang
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Siqi Li
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xiangfu Chen
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Ying Ouyang
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Yameng Hu
- Department of Biochemistry, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xin Chen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Guangzhou Institute of OncologyTumor Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Libing Song
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Runyi Ye
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Weidong Wei
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
11
|
Zhang X, Xiao J, Liu T, He Q, Cui J, Tang S, Li X, Liu M. Low Serum Dehydroepiandrosterone and Dehydroepiandrosterone Sulfate Are Associated With Coronary Heart Disease in Men With Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:890029. [PMID: 35832423 PMCID: PMC9271610 DOI: 10.3389/fendo.2022.890029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Sex hormones play an important role in the pathogenesis of cardiovascular disease (CVD). This cross-sectional study aimed to explore the associations of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) with coronary heart disease (CHD) and stroke in middle-aged and elderly patients with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS A total of 995 patients with T2DM were included in the study analysis. Serum levels of DHEA and DHEAS were quantified using liquid chromatography-tandem mass spectrometry. Binary logistic regression analyses were performed to assess the associations of DHEA and DHEAS with CHD and stroke. Receiver operating characteristic (ROC) curve analysis was performed to determine the optimal DHEA and DHEAS cutoff values for the detection of CHD in men with T2DM. RESULTS In men with T2DM, after adjustment for potential confounders in model 3, the risk of CHD decreased with an increasing serum DHEA level [odds ratio (OR) = 0.38, quartile 4 vs. quartile 1; 95% confidence interval (CI) = 0.16-0.90; p = 0.037 for trend). Consistently, when considered as a continuous variable, this association remained significant in the fully adjusted model (OR = 0.59, 95% CI = 0.40-0.87, p < 0.05). When taken as a continuous variable in model 3, serum DHEAS level was also inversely related to the risk of CHD among men (OR = 0.56, 95% CI = 0.38-0.82, p < 0.05). Similarly, this relationship remained statistically significant when DHEAS was categorized into quartiles (OR = 0.27, quartile 4 vs. quartile 1; 95% CI = 0.11-0.67; p = 0.018 for trend). ROC curve analyses revealed that the optimal cutoff values to detect CHD in men with T2DM were 6.43 nmol/L for DHEA and 3.54 μmol/L for DHEAS. In contrast, no significant associations were found between DHEA and DHEAS on the one hand and stroke on the other in men and women with T2DM (all p > 0.05). CONCLUSIONS Serum DHEA and DHEAS were significantly and negatively associated with CHD in middle-aged and elderly men with T2DM. This study suggests potential roles of DHEA and DHEAS in CHD pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaofang Tang
- *Correspondence: Ming Liu, ; Xin Li, ; Shaofang Tang,
| | - Xin Li
- *Correspondence: Ming Liu, ; Xin Li, ; Shaofang Tang,
| | - Ming Liu
- *Correspondence: Ming Liu, ; Xin Li, ; Shaofang Tang,
| |
Collapse
|
12
|
Walsh TP, Baird GL, Atalay MK, Agarwal S, Arcuri D, Klinger JR, Mullin CJ, Morreo H, Normandin B, Shiva S, Whittenhall M, Ventetuolo CE. Experimental design of the Effects of Dehydroepiandrosterone in Pulmonary Hypertension (EDIPHY) trial. Pulm Circ 2021; 11:2045894021989554. [PMID: 34094503 PMCID: PMC8142004 DOI: 10.1177/2045894021989554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/15/2020] [Indexed: 12/02/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) remains life-limiting despite numerous approved vasodilator therapies. Right ventricular (RV) function determines outcome in PAH but no treatments directly target RV adaptation. PAH is more common in women, yet women have better RV function and survival as compared to men with PAH. Lower levels of the adrenal steroid dehydroepiandrosterone (DHEA) and its sulfate ester are associated with more severe pulmonary vascular disease, worse RV function, and mortality independent of other sex hormones in men and women with PAH. DHEA has direct effects on nitric oxide (NO) and endothelin-1 (ET-1) synthesis and signaling, direct antihypertrophic effects on cardiomyocytes, and mitigates oxidative stress. Effects of Dehydroepiandrosterone in Pulmonary Hypertension (EDIPHY) is an on-going randomized double-blind placebo-controlled crossover trial of DHEA in men (n = 13) and pre- and post-menopausal women (n = 13) with Group 1 PAH funded by the National Heart, Lung and Blood Institute. We will determine whether orally administered DHEA 50 mg daily for 18 weeks affects RV longitudinal strain measured by cardiac magnetic resonance imaging, markers of RV remodeling and oxidative stress, NO and ET-1 signaling, sex hormone levels, other PAH intermediate end points, side effects, and safety. The crossover design will elucidate sex-based phenotypes in PAH and whether active treatment with DHEA impacts NO and ET-1 biosynthesis. EDIPHY is the first clinical trial of an endogenous sex hormone in PAH. Herein we present the study’s rationale and experimental design.
Collapse
Affiliation(s)
| | - Grayson L Baird
- Lifespan Health System, Providence, RI, USA.,Department of Diagnostic Imaging, Alpert Medical School of Brown University, Providence, RI, USA
| | - Michael K Atalay
- Department of Diagnostic Imaging, Alpert Medical School of Brown University, Providence, RI, USA
| | - Saurabh Agarwal
- Department of Diagnostic Imaging, Alpert Medical School of Brown University, Providence, RI, USA
| | - Daniel Arcuri
- Department of Diagnostic Imaging, Alpert Medical School of Brown University, Providence, RI, USA
| | - James R Klinger
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Christopher J Mullin
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | | | | | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, NO Metabolomics Core Facility, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary Whittenhall
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Corey E Ventetuolo
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA.,Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, RI, USA
| |
Collapse
|
13
|
Kearney K, Kotlyar E, Lau EMT. Pulmonary Vascular Disease as a Systemic and Multisystem Disease. Clin Chest Med 2021; 42:167-177. [PMID: 33541610 DOI: 10.1016/j.ccm.2020.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a disease of progressive pulmonary vascular remodeling due to abnormal proliferation of pulmonary vascular endothelial and smooth muscle cells and endothelial dysfunction. PAH is a multisystem disease with systemic manifestations and complications. This article covers the chronic heart failure syndrome, including the systemic consequences of right ventricle-pulmonary artery uncoupling and neurohormonal activation, skeletal and respiratory muscle effects, systemic endothelial dysfunction and coronary artery disease, systemic inflammation and infection, endocrine and metabolic changes, the liver and gut axis, sleep, neurologic complications, and skin and iron metabolic changes.
Collapse
Affiliation(s)
- Katherine Kearney
- Cardiology Department, St Vincent's Hospital, 394 Victoria Street, Darlinghurst, New South Wales 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Eugene Kotlyar
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Heart Transplant Unit, St Vincent's Hospital, 394 Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | - Edmund M T Lau
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Missenden Road, Camperdown, New South Wales 2050, Australia; Sydney Medical School, University of Sydney, Camperdown, Australia.
| |
Collapse
|
14
|
Jia X, Sun C, Tang O, Gorlov I, Nambi V, Virani SS, Villareal DT, Taffet GE, Yu B, Bressler J, Boerwinkle E, Windham BG, de Lemos JA, Matsushita K, Selvin E, Michos ED, Hoogeveen RC, Ballantyne CM. Plasma Dehydroepiandrosterone Sulfate and Cardiovascular Disease Risk in Older Men and Women. J Clin Endocrinol Metab 2020; 105:dgaa518. [PMID: 32785663 PMCID: PMC7526732 DOI: 10.1210/clinem/dgaa518] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/05/2020] [Indexed: 01/08/2023]
Abstract
CONTEXT Lower dehydroepiandrosterone-sulfate (DHEA-S) levels have been inconsistently associated with coronary heart disease (CHD) and mortality. Data are limited for heart failure (HF) and association between DHEA-S change and events. OBJECTIVE Assess associations between low DHEA-S/DHEA-S change and incident HF hospitalization, CHD, and mortality in older adults. DESIGN DHEA-S was measured in stored plasma from visits 4 (1996-1998) and 5 (2011-2013) of the Atherosclerosis Risk in Communities study. Follow-up for incident events: 18 years for DHEA-S level; 5.5 years for DHEA-S change. SETTING General community. PARTICIPANTS Individuals without prevalent cardiovascular disease (n = 8143, mean age 63 years). MAIN OUTCOME MEASURE Associations between DHEA-S and incident HF hospitalization, CHD, or mortality; associations between 15-year change in DHEA-S (n = 3706) and cardiovascular events. RESULTS DHEA-S below the 15th sex-specific percentile of the study population (men: 55.4 µg/dL; women: 27.4 µg/dL) was associated with increased HF hospitalization (men: hazard ratio [HR] 1.30, 95% confidence interval [CI], 1.07-1.58; women: HR 1.42, 95% CI, 1.13-1.79); DHEA-S below the 25th sex-specific percentile (men: 70.0 µg/dL; women: 37.1 µg/dL) was associated with increased death (men: HR 1.12, 95% CI, 1.01-1.25; women: HR 1.19, 95% CI, 1.03-1.37). In men, but not women, greater percentage decrease in DHEA-S was associated with increased HF hospitalization (HR 1.94, 95% CI, 1.11-3.39). Low DHEA-S and change in DHEA-S were not associated with incident CHD. CONCLUSIONS Low DHEA-S is associated with increased risk for HF and mortality but not CHD. Further investigation is warranted to evaluate mechanisms underlying these associations.
Collapse
Affiliation(s)
| | | | - Olive Tang
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Vijay Nambi
- Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Salim S Virani
- Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | | | | | - Bing Yu
- University of Texas Health Science Center at Houston, Houston, Texas
| | - Jan Bressler
- University of Texas Health Science Center at Houston, Houston, Texas
| | - Eric Boerwinkle
- University of Texas Health Science Center at Houston, Houston, Texas
| | - B Gwen Windham
- University of Mississippi School of Medicine, Jackson, Mississippi
| | | | | | - Elizabeth Selvin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Erin D Michos
- Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
15
|
The ion channel activator CyPPA inhibits melanogenesis via the GSK3β/β-catenin pathway. Chem Biol Interact 2019; 300:1-7. [PMID: 30597128 DOI: 10.1016/j.cbi.2018.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022]
Abstract
Research into materials that inhibit melanogenesis in skin has gained interest. Screening for such compounds in B16F10 cells revealed that cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA), a positive modulator of small-conductance Ca2+-activated K+ channels, is a strong inhibitor of melanogenesis. We investigated the anti-melanogenic activity of CyPPA and the molecular mechanism by which CyPPA reduced melanin production in normal human melanocytes (NHM). CyPPA treatment resulted in a significant concentration-dependent reduction in melanin content without significant cytotoxicity; treatment likewise resulted in a significant time-dependent reduction in tyrosinase (TYR) activity. Treatment with CyPPA also decreased transcription of melanogenesis-related genes, including the gene encoding microphthalmia-associated transcription factor (MITF). In addition, visual evaluation of the MelanoDerm™ human skin model revealed significantly lower melanin content in the CyPPA-treated condition than in the untreated control. CyPPA was determined to modulate glycogen synthase kinase-3β (GSK3β) activity, thereby leading to a decrease in β-catenin/MITF expression. Thus, CyPPA acts as a melanogenesis inhibitor by modulating the GSK3β/β-catenin/MITF pathway.
Collapse
|
16
|
Jiménez MC, Tucker KL, Rodriguez F, Porneala BC, Meigs JB, López L. Cardiovascular Risk Factors and Dehydroepiandrosterone Sulfate Among Latinos in the Boston Puerto Rican Health Study. J Endocr Soc 2018; 3:291-303. [PMID: 30623167 PMCID: PMC6320241 DOI: 10.1210/js.2018-00205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/27/2018] [Indexed: 11/19/2022] Open
Abstract
Low blood dehydroepiandrosterone sulfate (DHEAS) levels have strong positive associations with stroke and coronary heart disease. However, it is unclear whether DHEAS is independently associated with cardiovascular risk factors. Therefore, we examined the association between cardiovascular risk factors and DHEAS concentration among a high-risk population of Latinos (Puerto Ricans aged 45 to 75 years at baseline) in a cross-sectional analysis of the Boston Puerto Rican Health Study. Of eligible participants, 72% completed baseline interviews and provided blood samples. Complete data were available for 1355 participants. Associations between cardiovascular risk factors (age, sex, total cholesterol, high-density lipid cholesterol, triglycerides, and glucose) and log-transformed DHEAS (μg/dL) were assessed. In robust multivariable regression analyses, DHEAS was significantly inversely associated with age (β = -12.4; 95% CI: -15.2, -9.7; per 5 years), being female (vs. male) (β = -46; 95% CI: -55.3, -36.6), and plasma triglyceride concentration (β = -0.2; 95% CI: -0.3, -0.1; per 10 mg/dL) and was positively associated with total cholesterol and plasma glucose levels (β = 1.8; 95% CI: 0.6, 3 and β = 0.2; 95% CI: 0.04, 0.3, respectively, per 10 mg/dL) after adjustment for smoking, alcohol, and physical activity and for postmenopausal hormone use in women. Estimates were unchanged after adjustment for measures of chronic disease and inflammation. Women exhibited a stronger age-related decline in DHEAS and a positive association with glucose in contrast to findings among men (P interaction < 0.05). In conclusion, in this large study of Latinos with a heavy cardiovascular risk factor burden, we observed significant associations between cardiovascular disease (CVD) risk factors and DHEAS, with variations by sex. These findings improve our understanding of the role DHEAS may play in CVD etiology.
Collapse
Affiliation(s)
- Monik C Jiménez
- Division of Women's Health, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Katherine L Tucker
- Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
| | - Fátima Rodriguez
- Division of Cardiovascular Medicine, Stanford University, Palo Alto, California
| | - Bianca C Porneala
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Division of General Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Lenny López
- Division of Hospital Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
17
|
Huang L, Li L, Yang T, Li W, Song L, Meng X, Gu Q, Xiong C, He J. Transgelin as a potential target in the reversibility of pulmonary arterial hypertension secondary to congenital heart disease. J Cell Mol Med 2018; 22:6249-6261. [PMID: 30338626 PMCID: PMC6237561 DOI: 10.1111/jcmm.13912] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The reversibility of pulmonary arterial hypertension (PAH) in congenital heart disease (CHD) is of great importance for the operability of CHD. Proteomics analysis found that transgelin was significantly up-regulated in the lung tissue of CHD-PAH patients, especially in the irreversible group. However, how exactly it participated in CHD-PAH development is unknown. METHODS Immunohistochemical staining and Western blot were performed for further qualitative and quantitative analysis of transgelin in the lung tissues of CHD-PAH patients. The mechanism of transgelin in CHD-PAH development was explored in vitro. Primary human pulmonary arterial smooth muscle cells (hPASMCs) were cultured and infected with TAGLN siRNA or TAGLN lentiviral vector. Cell morphologic change (Coomassie Brilliant Blue staining), proliferation (cell count and EdU assay), apoptosis (terminal deoxyribonucleotidyl transferase mediated dUTP nick end labeling assay and Annexin-V flow cytometry) and migration (transwell) were evaluated following the cell treatment. The mRNA and protein expression levels were detected in real-time PCR and Western blot. RESULTS In line with the proteomic findings, transgelin was obviously expressed in PASMC of the middle pulmonary arterioles, especially in the irreversible PAH group. Also, transgelin expression showed positive relation with pathological grading. Experiment in vitro demonstrated that transgelin overexpression promoted PASMC proliferation and migration, strengthened cytoskeleton and was accompanied by increased expression of synthetic phenotype markers (osteopontin, proliferating cell nuclear antigen) and anti-apoptotic protein (bcl-2). On the other hand, suppression of transgelin expression activated PASMC apoptosis, reducing cell proliferation and migration. CONCLUSIONS Transgelin may be a potential target in the development of irreversible CHD-PAH through inducing PASMC phenotype change, proliferation, migration and reducing cell apoptosis.
Collapse
Affiliation(s)
- Li Huang
- Center of Pulmonary Vascular DiseaseState Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Li Li
- Department of PathologyState Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tao Yang
- Center of Pulmonary Vascular DiseaseState Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wen Li
- Center of Pulmonary Vascular DiseaseState Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Li Song
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xianmin Meng
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qing Gu
- Center of Pulmonary Vascular DiseaseState Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Changming Xiong
- Center of Pulmonary Vascular DiseaseState Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianguo He
- Center of Pulmonary Vascular DiseaseState Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
18
|
Li B, Zhu Y, Sun Q, Yu C, Chen L, Tian Y, Yan J. Reversal of the Warburg effect with DCA in PDGF‑treated human PASMC is potentiated by pyruvate dehydrogenase kinase‑1 inhibition mediated through blocking Akt/GSK‑3β signalling. Int J Mol Med 2018; 42:1391-1400. [PMID: 29956736 PMCID: PMC6089770 DOI: 10.3892/ijmm.2018.3745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/25/2018] [Indexed: 01/12/2023] Open
Abstract
There is accumulating evidence indicating that the growth inhibitory effect of dichloroacetate (DCA) on pulmonary arterial smooth muscle cells (PASMCs) may be associated with the reversal of the Warburg effect and initiation of the mitochondria‑dependent apoptotic pathway. Previous studies indicated that platelet‑derived growth factor (PDGF) promoted the Warburg effect and resulted in apoptotic resistance of PASMCs, which was attributed to activation of the phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (Akt) signalling pathway. However, the mechanism underlying the pro‑apoptotic effect of DCA on PDGF‑treated PASMCs has not been thoroughly elucidated, and the effect of the Akt/glycogen synthase kinase‑3β (GSK‑3β) pathway inhibition concomitant with the effect of DCA on PASMC proliferation remains unclear. The growth of human PASMCs and the lactate concentration in extracellular medium of PASMCs were detected by Cell Counting Kit‑8 assays and a Lactate Colorimetric Assay kit, respectively. Cell apoptosis was evaluated by fluorescence activated cell sorting. The mitochondrial membrane potential (ΔΨm) was assessed with 5,5',6,6'‑tetrachloro‑1,1',3,3'‑tetraethylbenzimidazol‑carbocyanine iodide assays. The expression levels of phosphorylated Akt and GSK‑3β, pyruvate dehydrogenase, cleaved caspase‑3, pyruvate dehydrogenase kinase‑1 (PDK‑1), hypoxia inducible factor‑1α (HIF‑1α) and hexokinase‑2 (HK‑2) were measured with western blot analysis. Confocal analyses were employed to determine HK‑2 co‑localisation with the mitochondria. The results indicated that DCA inhibited human PASMC proliferation in a dose‑dependent manner. DCA at 10 mM promoted apoptosis and the upregulation of activated caspase‑3 in PASMCs pre‑treated with 20 ng/ml PDGF‑homeodimer BB (BB). Treatment with 5 µM LY294002 produced minimal anti‑proliferative effects on human PASMCs and barely induced cellular apoptosis and caspase‑3 activation. However, co‑administration of 10 mM DCA with LY294002 significantly decreased the cell proliferation index and induced cell apoptosis and caspase‑3 activation. The combined administration of LY294002 with DCA significantly decreased lactate concentration, promoted the depolarisation of the ΔΨm and repressed HIF‑1α upregulation and HK‑2 activation in PASMCs treated with PDGF, which was attributed to the potentiation of DCA‑induced PDK‑1 inhibition by LY294002 via blockade of the Akt/GSK‑3β/HIF‑1α signalling pathway. In conclusion, inhibition of the Akt/GSK‑3β pathway improved the pro‑apoptotic effect of DCA on human PASMCs, which may be attributed to a reversal of the Warburg effect by blocking the mutual interaction between HIF‑1α and PDK‑1, consequently downregulating HK‑2. Therefore, combinatory treatment with DCA and PI3K inhibitors may represent a novel therapeutic strategy for the reversal of apoptosis resistance exhibited by PASMCs as a result of mitochondrial bioenergetic abnormalities, as well as the treatment of pulmonary vascular remodelling in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Bingbing Li
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008
| | - Yuling Zhu
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008
| | - Qing Sun
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008
| | - Chunfang Yu
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008
| | - Lian Chen
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008
| | - Yali Tian
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008
| | - Jie Yan
- Department of Anaesthesiology, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| |
Collapse
|
19
|
Eid AH, El-Yazbi AF, Zouein F, Arredouani A, Ouhtit A, Rahman MM, Zayed H, Pintus G, Abou-Saleh H. Inositol 1,4,5-Trisphosphate Receptors in Hypertension. Front Physiol 2018; 9:1018. [PMID: 30093868 PMCID: PMC6071574 DOI: 10.3389/fphys.2018.01018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
Abstract
Chronic hypertension remains a major cause of global mortality and morbidity. It is a complex disease that is the clinical manifestation of multiple genetic, environmental, nutritional, hormonal, and aging-related disorders. Evidence supports a role for vascular aging in the development of hypertension involving an impairment in endothelial function together with an alteration in vascular smooth muscle cells (VSMCs) calcium homeostasis leading to increased myogenic tone. Changes in free intracellular calcium levels ([Ca2+] i ) are mediated either by the influx of Ca2+ from the extracellular space or release of Ca2+ from intracellular stores, mainly the sarcoplasmic reticulum (SR). The influx of extracellular Ca2+ occurs primarily through voltage-gated Ca2+ channels (VGCCs), store-operated Ca2+ channels (SOC), and Ca2+ release-activated channels (CRAC), whereas SR-Ca2+ release occurs through inositol trisphosphate receptor (IP3R) and ryanodine receptors (RyRs). IP3R-mediated SR-Ca2+ release, in the form of Ca2+ waves, not only contributes to VSMC contraction and regulates VGCC function but is also intimately involved in structural remodeling of resistance arteries in hypertension. This involves a phenotypic switch of VSMCs as well as an alteration of cytoplasmic Ca2+ signaling machinery, a phenomena tightly related to the aging process. Several lines of evidence implicate changes in expression/function levels of IP3R isoforms in the development of hypertension, VSMC phenotypic switch, and vascular aging. The present review discusses the current knowledge of these mechanisms in an integrative approach and further suggests potential new targets for hypertension management and treatment.
Collapse
Affiliation(s)
- Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Fouad Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdelilah Arredouani
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Allal Ouhtit
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Md M. Rahman
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Haissam Abou-Saleh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
20
|
Serum Amyloid A, Paraoxonase-1 Activity, and Apolipoprotein Concentrations as Biomarkers of Subclinical Atherosclerosis Risk in Adrenal Incidentaloma Patients. Arch Med Res 2018; 49:182-190. [PMID: 30031631 DOI: 10.1016/j.arcmed.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/02/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Adrenal incidentalomas (AIs), particularly subclinical hypercortisolism (SH), are related to an increased risk of atherosclerosis. The anti-oxidative enzyme paraoxonase-1 (PON1) and the acute phase reactant serum amyloid A (SAA) are transported by highdensity lipoprotein and reciprocally regulated in acute inflammatory response. Our aim was to investigate serum SAA, PON1, and apolipoprotein levels as indicators of subclinical atherosclerosis in patients with nonfunctioning AI (NFAI) and SH. METHODS The study group consisted of 60 controls, 14 SH, and 86 NFAI subjects. Serum amyloid A (SAA), PON1 activity, lipid profiles, apoA and B, lipoprotein A (LpA), hsCRP, and HOMA-IR levels were compared in all groups. RESULTS Serum insulin, triglyceride, SAA, SAA/PON1 ratio, LpA, apoB, hsCRP, and morning cortisol levels were found to be higher while PON1 and apoAI levels were lower in the SH and NFAI groups compared with the controls, and these parameters were found to be more impaired in SH group than NFAI group (p <0.001). HOMA-IR was higher and DHEAS was lower in the SH group than in the other groups. The SAA/PON1 ratio was positively correlated with LpA (r = 0.460; p <0.001), apoB (r = 0.515; p <0.001), insulin (r = 0.275; p = 0.026), triglyceride (r = 0.248; p = 0.002), morning cortisol (r = 0.259; p = 0.045), and UFC (r = 0.274; p <0.001) and negatively correlated with apoAI (r = 0.329; p <0.001), ACTH (r = -0.384; p <0.001), and DHEAS (r = -0.521, p <0.001) levels. The cut-off value of the SAA/PON1 ratio for NFAI was >0.23, and for SH it was >1.33. CONCLUSION The serum SAA/PON1 ratio was high in both the NFAI and SH groups and also exhibited higher levels in SH group. An increased SAA/PON1 ratio and low DHEAS could be attributable to subclinical atherosclerosis risk in SH patients.
Collapse
|
21
|
Baird GL, Archer-Chicko C, Barr RG, Bluemke DA, Foderaro AE, Fritz JS, Hill NS, Kawut SM, Klinger JR, Lima JAC, Mullin CJ, Ouyang P, Palevsky HI, Palmisicano AJ, Pinder D, Preston IR, Roberts KE, Smith KA, Walsh T, Whittenhall M, Ventetuolo CE. Lower DHEA-S levels predict disease and worse outcomes in post-menopausal women with idiopathic, connective tissue disease- and congenital heart disease-associated pulmonary arterial hypertension. Eur Respir J 2018; 51:13993003.00467-2018. [PMID: 29954925 DOI: 10.1183/13993003.00467-2018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/26/2018] [Indexed: 12/28/2022]
Abstract
High oestradiol (E2) and low dehydroepiandrosterone-sulfate (DHEA-S) levels are risk factors for pulmonary arterial hypertension (PAH) in men, but whether sex hormones are related to PAH in women is unknown.Post-menopausal women aged ≥55 years with PAH were matched by age and body mass index to women without cardiovascular disease. Plasma sex hormone levels were measured by immunoassay.Lower levels of DHEA-S (p<0.001) and higher levels of E2 (p=0.02) were associated with PAH. In PAH cases (n=112), lower DHEA-S levels were associated with worse haemodynamics (all p<0.01) and more right ventricular dilatation and dysfunction (both p=0.001). Lower DHEA-S levels were associated with shorter 6-min walking distance (6MWD) (p=0.01) and worse functional class (p=0.004). Each Ln(1 µg·dL-1) decrease in DHEA-S was associated with a doubling in the risk of death (hazard ratio 2.0, 95% CI 1.5-2.7; p<0.001). Higher levels of E2 were associated with shorter 6MWD (p=0.03) and worse functional class (p=0.01).High E2 and low DHEA-S levels are associated with the risk and severity of PAH in post-menopausal women. Hormonal modulation should be studied as a treatment strategy in PAH.
Collapse
Affiliation(s)
- Grayson L Baird
- Dept of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Christine Archer-Chicko
- Dept of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R Graham Barr
- Dept of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - David A Bluemke
- Dept of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Andrew E Foderaro
- Dept of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Jason S Fritz
- Dept of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas S Hill
- Dept of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Steven M Kawut
- Dept of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Clinical Epidemiology and Biostatistics, Philadelphia, PA, USA.,Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James R Klinger
- Dept of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Joao A C Lima
- Dept of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Christopher J Mullin
- Dept of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Pamela Ouyang
- Dept of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Harold I Palevsky
- Dept of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy J Palmisicano
- Dept of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Diane Pinder
- Dept of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ioana R Preston
- Dept of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Kari E Roberts
- Dept of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - K Akaya Smith
- Dept of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Walsh
- Dept of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Mary Whittenhall
- Dept of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Corey E Ventetuolo
- Dept of Medicine, Alpert Medical School of Brown University, Providence, RI, USA.,Dept of Health Services, Policy and Practice, Brown University, Providence, RI, USA
| |
Collapse
|
22
|
Zhou Y, Tian X, Wang X, Wang Y, Fan R, Wang Y, Feng N, Zhang S, Guo H, Gu X, Jia M, Yin W, Hou Z, Li J, Pei J. Quaternary ammonium salt of U50,488H elicits protective effects against hypoxic pulmonary hypertension. Eur J Pharmacol 2018; 832:129-137. [PMID: 29782857 DOI: 10.1016/j.ejphar.2018.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 12/01/2022]
Abstract
The present study aimed to investigate the role of quaternary ammonium salt of U50,488H (Q-U50,488H) in hypoxic pulmonary hypertension (HPH) and underlying mechanisms involved. A HPH animal model was established in rats under hypoxia and the mean pulmonary arterial pressure (mPAP) and right ventricular pressure (RVP) were measured. Relaxation of the pulmonary artery in response to Q-U50,488H was determined. In addition, expression and activity of endothelial nitric oxide (NO) synthase (eNOS) and inducible NO synthase (iNOS) with NO content, Akt expression, total antioxidant capacity (T-AOC), and gp91phox were evaluated. Cell viability was determined by the cell counting kit-8 (CCK-8) assay. We demonstrated that both the molecular weight and solubility of Q-U50,488H were higher than that of U50,488H. Q-U50,488H reduced mPAP and RVP and prevented the development of HPH. Moreover, Q-U50,488H relaxed the pulmonary arteries from both normal and HPH rats in a time-dependent manner. Under hypoxic conditions, Q-U50,488H significantly increased Akt phosphorylation, eNOS phosphorylation, NO content in serum, and T-AOC in pulmonary arteries of HPH rats. In addition, the activity of eNOS was elevated, but the activity of iNOS was reduced when Q-U50,488H was given under hypoxia. Q-U50,488H significantly counteracted the increase of gp91phox expression in pulmonary arteries under hypoxia. In addition, in vitro studies suggested that Q-U50,488H inhibited pulmonary artery smooth muscle cells (PASMCs) proliferation under hypoxic conditions and that the effects of Q-U50,488H were blocked by nor-binaltorphimine (nor-BNI). Thus, our results provided evidence that Q-U50,488H plays a protective role against HPH via κ-opioid receptor stimulation.
Collapse
Affiliation(s)
- Yaguang Zhou
- Departemnt of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China; Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xin Tian
- Departemnt of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China; Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China; Department of Cardiology, Traditional Chinese Medicine Hospital of Shaanxi Province, Xi'an, Shaanxi Province, China
| | - Xueying Wang
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yuanbo Wang
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Rong Fan
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yuemin Wang
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Na Feng
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Shumiao Zhang
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Haitao Guo
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiaoming Gu
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Min Jia
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wen Yin
- Departemnt of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zuoxu Hou
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Juan Li
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| | - Jianming Pei
- Departemnt of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China; Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
23
|
Takov K, Wu J, Denvir MA, Smith LB, Hadoke PWF. The role of androgen receptors in atherosclerosis. Mol Cell Endocrinol 2018; 465:82-91. [PMID: 29024781 DOI: 10.1016/j.mce.2017.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 10/02/2017] [Accepted: 10/07/2017] [Indexed: 12/19/2022]
Abstract
Male disadvantage in cardiovascular health is well recognised. However, the influence of androgens on atherosclerosis, one of the major causes of many life-threatening cardiovascular events, is not well understood. With the dramatic increase in clinical prescription of testosterone in the past decade, concerns about the cardiovascular side-effects of androgen supplementation or androgen deprivation therapy are increasing. Potential atheroprotective effects of testosterone could be secondary to (aromatase-mediated) conversion into oestradiol or, alternatively, to direct activation of androgen receptors (AR). Recent development of animal models with cell-specific AR knockout has indicated a complex role for androgen action in atherosclerosis. Most studies suggest androgens are atheroprotective but the precise role of AR remains unclear. Increased use of AR knockout models should clarify the role of AR in atherogenesis and, thus, lead to exploitation of this pathway as a therapeutic target.
Collapse
Affiliation(s)
- Kaloyan Takov
- University/ BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Junxi Wu
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK; University/ BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Martin A Denvir
- University/ BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK; School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Patrick W F Hadoke
- University/ BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
24
|
Clark BJ, Prough RA, Klinge CM. Mechanisms of Action of Dehydroepiandrosterone. VITAMINS AND HORMONES 2018; 108:29-73. [PMID: 30029731 DOI: 10.1016/bs.vh.2018.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) and its sulfated metabolite DHEA-S are the most abundant steroids in circulation and decline with age. Rodent studies have shown that DHEA has a wide variety of effects on liver, kidney, adipose, reproductive tissues, and central nervous system/neuronal function. The mechanisms by which DHEA and DHEA-S impart their physiological effects may be direct actions on plasma membrane receptors, including a DHEA-specific, G-protein-coupled receptor in endothelial cells; various neuroreceptors, e.g., aminobutyric-acid-type A, N-methyl-d-aspartate (NMDA), and sigma-1 (S1R) receptors; by binding steroid receptors: androgen and estrogen receptors (ARs, ERα, or ERβ); or by their metabolism to more potent sex steroid hormones, e.g., testosterone, dihydrotestosterone, and estradiol, which bind with higher affinity to ARs and ERs. DHEA inhibits voltage-gated T-type calcium channels. DHEA activates peroxisome proliferator-activated receptor (PPARα) and CAR by a mechanism apparently involving PP2A, a protein phosphatase dephosphorylating PPARα and CAR to activate their transcriptional activity. We review our recent study showing DHEA activated GPER1 (G-protein-coupled estrogen receptor 1) in HepG2 cells to stimulate miR-21 transcription. This chapter reviews some of the physiological, biochemical, and molecular mechanisms of DHEA and DHEA-S activity.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry and Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, United States.
| |
Collapse
|
25
|
Wang Y, Huang X, Leng D, Li J, Wang L, Liang Y, Wang J, Miao R, Jiang T. DNA methylation signatures of pulmonary arterial smooth muscle cells in chronic thromboembolic pulmonary hypertension. Physiol Genomics 2018; 50:313-322. [PMID: 29473816 DOI: 10.1152/physiolgenomics.00069.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a life-threatening disease, which is often underpinned by vascular remodeling. Pulmonary arterial smooth muscle cells (PASMCs) are the main participants in vascular remodeling. However, their biological role in CTEPH is not entirely clear. In the present study, we analyzed the whole epigenome-wide DNA methylation profile of cultured PASMCs from CTEPH and control cell lines with the Illumina Human Methylation 450K BeadChip. A total of 6,829 significantly differentially methylated probes (DMPs) were detected between these two groups. Among these, 4,246 DMPs were hypermethylated, while 2,583 DMPs were hypomethylated. The functional enrichment analysis of 1,743 DMPs in the promoter regions and corresponding genes indicated that DNA hypermethylation and hypomethylation might be involved in the regulation of genes that have multifarious biological roles, including roles in cancer-related diseases, the regulation of the actin cytoskeleton, cell adhesion, and pattern specification processes. The observed methylations were categorized into the most important functions, including those involved in cell proliferation, immunity, and migration. We speculate that these methylations were most likely involved in the possible pathophysiology of CTEPH. Gene interaction analysis pertaining to signal networks confirmed that PIK3CA and PIK3R1 were important mediators in these whole networks. The mRNA levels of PIK3CA, HIC1, and SSH1 were verified by qPCR and corresponded with DNA methylation differences. Understanding epigenetic features associated with CTEPH may provide new insights into the mechanism that underlie this condition.
Collapse
Affiliation(s)
- Ying Wang
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , People's Republic of China.,Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine , Beijing , People's Republic of China
| | - Xiaoxi Huang
- Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine , Beijing , People's Republic of China.,Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , People's Republic of China
| | - Dong Leng
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , People's Republic of China.,Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine , Beijing , People's Republic of China
| | - Jifeng Li
- Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine , Beijing , People's Republic of China.,Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , People's Republic of China
| | - Lei Wang
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital, Capital Medical University , Beijing , People's Republic of China
| | - Yan Liang
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , People's Republic of China.,Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine , Beijing , People's Republic of China
| | - Jun Wang
- Department of Physiology, Capital Medical University , Beijing , People's Republic of China
| | - Ran Miao
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , People's Republic of China.,Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine , Beijing , People's Republic of China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University , Beijing , People's Republic of China.,Beijing Neurosurgical Institute, Capital Medical University , Beijing , People's Republic of China
| |
Collapse
|
26
|
Vegliante R, Ciriolo MR. Autophagy and Autophagic Cell Death: Uncovering New Mechanisms Whereby Dehydroepiandrosterone Promotes Beneficial Effects on Human Health. VITAMINS AND HORMONES 2018; 108:273-307. [PMID: 30029730 DOI: 10.1016/bs.vh.2018.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dehydroepiandrosterone (DHEA) is the most abundant steroid hormone in human serum and a precursor of sexual hormones. Its levels, which are maximum between the age of 20 and 30, dramatically decline with aging thus raising the question that many pathological conditions typical of the elderly might be associated with the decrement of circulating DHEA. Moreover, since its very early discovery, DHEA and its metabolites have been shown to be active in many pathophysiological contexts, including cardiovascular disease, brain disorders, and cancer. Indeed, treatment with DHEA has beneficial effects for the cure of these and many other pathologies in vitro, in vivo, and in patient studies. However, the molecular mechanisms underlying DHEA effects have been only partially elucidated. Autophagy is a self-digestive process, by which cell homeostasis is maintained, damaged organelles removed, and cell survival assured upon stress stimuli. However, high rate of autophagy is detrimental and leads to a form of programmed cell death known as autophagic cell death (ACD). In this chapter, we describe the process of autophagy and the morphological and biochemical features of ACD. Moreover, we analyze the beneficial effects of DHEA in several pathologies and the molecular mechanisms with particular emphasis on its regulation of cell death processes. Finally, we review data indicating DHEA and structurally related steroid hormones as modulators of both autophagy and ACD, a research field that opens new avenues in the therapeutic use of these compounds.
Collapse
Affiliation(s)
- Rolando Vegliante
- MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Hopital Civil-Institut d'Hématologie et Immunologie, Strasbourg, France
| | - Maria R Ciriolo
- University of Rome 'Tor Vergata', Rome, Italy; IRCCS San Raffaele 'La Pisana', Rome, Italy.
| |
Collapse
|
27
|
|
28
|
Nie X, Dai Y, Tan J, Chen Y, Qin G, Mao W, Zou J, Chang Y, Wang Q, Chen J. α-Solanine reverses pulmonary vascular remodeling and vascular angiogenesis in experimental pulmonary artery hypertension. J Hypertens 2017; 35:2419-2435. [PMID: 28704260 DOI: 10.1097/hjh.0000000000001475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Similar to cancer, pulmonary arterial hypertension (PAH) is characterized by vascular remodeling, which leads to obliteration of the small pulmonary arteriole, with marked proliferation of pulmonary artery smooth muscle cells (PASMC) and/or endothelial cells dysfunction. Aberrant expression of tumor suppressor genes is closely associated with susceptibility to PAH. We hypothesized that α-solanine, a glycoalkaloid found in members of the nightshade family known to have antitumor activity in different cancers, reverses experimental PAH by activating the tumor suppressor-axis inhibition protein 2 (AXIN2). METHODS AND RESULTS We investigated the effects of α-solanine on PASMC proliferation and apoptosis by using 5-ethynyl-2'-deoxyuridine proliferation assay, proliferating cell nuclear antigen and Ki67 staining, TUNEL and Anexine V assays. Scratch wound healing and tube formation assays were also used to study migration of endothelial cells. In vitro, we demonstrated, using cultured human PASMC from PAH patients, that α-solanine reversed dysfunctional AXIN2, β-catenin and bone morphogenetic protein receptor type-2 signaling, whereas restored [Ca]i, IL-6 and IL-8, contributing to the decrease of PAH-PASMC proliferation and resistance to apoptosis. Meanwhile, α-solanine inhibits proliferation, migration and tube formation of PAH-pulmonary artery endothelial cells by inhibiting Akt/GSK-3α activation. In vivo, α-solanine administration decreases distal pulmonary arteries remodeling, mean pulmonary arteries pressure and right ventricular hypertrophy in both monocrotaline-induced and Sugen/hypoxia-induced PAH in mice. CONCLUSION This study demonstrates that AXIN2/β-catenin axis and Akt pathway can be therapeutically targeted by α-solanine in PAH. α-Solanine could be used as a new therapeutic strategy for the treatment of PAH.
Collapse
Affiliation(s)
- Xiaowei Nie
- aJiangsu Key Laboratory of Organ Transplantation bLung Transplant Group cCenter of Clinical Research dDepartment of Anesthesiology eDepartment of Pathology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi fDepartment of Anesthesiology, Children's Hospital Affiliated to Soochow University, Suzhou, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Marinko M, Jankovic G, Nenezic D, Milojevic P, Stojanovic I, Kanjuh V, Novakovic A. (-)-Epicatechin-induced relaxation of isolated human saphenous vein: Roles of K + and Ca 2+ channels. Phytother Res 2017; 32:267-275. [PMID: 29193528 DOI: 10.1002/ptr.5969] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/02/2017] [Accepted: 10/09/2017] [Indexed: 01/05/2023]
Abstract
In this study, we aimed to investigate relaxant effect of flavanol (-)-epicatechin on the isolated human saphenous vein (HSV), as a part of its cardioprotective action, and to define the mechanisms underlying this vasorelaxation. (-)-Epicatechin induced a concentration-dependent relaxation of HSV pre-contracted by phenylephrine. Among K+ channel blockers, 4-aminopyridine, margatoxin, and iberiotoxin significantly inhibited relaxation of HSV, while glibenclamide considerably reduced effects of the high concentrations of (-)-epicatechin. Additionally, (-)-epicatechin relaxed contraction induced by 80 mM K+ , whereas in the presence of nifedipine produced partial relaxation of HSV rings pre-contracted by phenylephrine. In Ca2+ -free solution, (-)-epicatechin relaxed contraction induced by phenylephrine, but had no effect on contraction induced by caffeine. A sarcoplasmic reticulum Ca2+ -ATPase inhibitor, thapsigargin, significantly reduced relaxation of HSV produced by (-)-epicatechin. These results demonstrate that (-)-epicatechin produces endothelium-independent relaxation of isolated HSV rings. Vasorelaxation to (-)-epicatechin probably involves activation of 4-aminopyridine- and margatoxin-sensitive KV channels, BKCa channels, and at least partly, KATP channels. In addition, not only the inhibition of extracellular Ca2+ influx, but regulation of the intracellular Ca2+ release, via inositol-trisphosphate receptors and reuptake into sarcoplasmic reticulum, via stimulation of Ca2+ -ATPase, as well, most likely participate in (-)-epicatechin-induced relaxation of HSV.
Collapse
Affiliation(s)
- Marija Marinko
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Goran Jankovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Dragoslav Nenezic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Predrag Milojevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Ivan Stojanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | | | - Aleksandra Novakovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
30
|
Ke R, Xie X, Li S, Pan Y, Wang J, Yan X, Zang W, Gao L, Li M. 5-HT induces PPAR γ reduction and proliferation of pulmonary artery smooth muscle cells via modulating GSK-3β/β-catenin pathway. Oncotarget 2017; 8:72910-72920. [PMID: 29069835 PMCID: PMC5641178 DOI: 10.18632/oncotarget.20582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/02/2017] [Indexed: 12/15/2022] Open
Abstract
Studies have shown that peroxisome proliferator-activated receptor γ (PPAR γ) is down-regulated in pulmonary vascular lesions of patients with pulmonary hypertension (PH) and animal models of PH. Yet, the detailed molecular mechanisms underlying this alteration are not fully defined; the aim of this study is to address this issue. 5-HT dose- and time-dependently reduced PPAR γ expression and promoted pulmonary artery smooth muscle cells (PASMCs) proliferation; this was accompanied with the phosphorylation of Akt, inactivation of GSK-3β and up-regulation of β-catenin. Importantly, pre-treatment of cells with PI3K inhibitor (Ly294002) or prior silencing of β-catenin with siRNA blocked 5-HT-induced PPAR γ reduction and PASMCs proliferation. In addition, inactivation or lack of GSK-3β or inhibition of proteasome function up-regulated β-catenin protein without affecting its mRNA level and reduced PPAR γ protein expression. Taken together, our study indicates that 5-HT suppresses PPAR γ expression and stimulates PASMCs proliferation by modulating GSK-3β/β-catenin axis, and suggests that targeting this pathway might have potential value in the management of PH.
Collapse
Affiliation(s)
- Rui Ke
- Department of Respiratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xinming Xie
- Department of Respiratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shaojun Li
- Department of Respiratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yilin Pan
- Department of Respiratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jian Wang
- Department of Respiratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xin Yan
- Department of Respiratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Weijin Zang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Li Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Manxiang Li
- Department of Respiratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
31
|
Meloche J, Lampron MC, Nadeau V, Maltais M, Potus F, Lambert C, Tremblay E, Vitry G, Breuils-Bonnet S, Boucherat O, Charbonneau E, Provencher S, Paulin R, Bonnet S. Implication of Inflammation and Epigenetic Readers in Coronary Artery Remodeling in Patients With Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2017; 37:1513-1523. [DOI: 10.1161/atvbaha.117.309156] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/25/2017] [Indexed: 01/08/2023]
Abstract
Objective—
Pulmonary arterial hypertension (PAH) is a vascular disease not restricted to the lungs. Many signaling pathways described in PAH are also of importance in other vascular remodeling diseases, such as coronary artery disease (CAD). Intriguingly, CAD is 4× more prevalent in PAH compared with the global population, suggesting a link between these 2 diseases. Both PAH and CAD are associated with sustained inflammation and smooth muscle cell proliferation/apoptosis imbalance and we demonstrated in PAH that this phenotype is, in part, because of the miR-223/DNA damage/Poly[ADP-ribose] polymerase 1/miR-204 axis activation and subsequent bromodomain protein 4 (BRD4) overexpression. Interestingly, BRD4 is also a trigger for calcification and remodeling processes, both of which are important in CAD. Thus, we hypothesize that BRD4 activation in PAH influences the development of CAD.
Approach and Results—
PAH was associated with significant remodeling of the coronary arteries in both human and experimental models of the disease. As observed in PAH distal pulmonary arteries, coronary arteries of patients with PAH also exhibited increased DNA damage, inflammation, and BRD4 overexpression. In vitro, using human coronary artery smooth muscle cells from PAH, CAD and non-PAH–non-CAD patients, we showed that both PAH and CAD smooth muscle cells exhibited increased proliferation and suppressed apoptosis in a BRD4-dependent manner. In vivo, improvement of PAH by BRD4 inhibitor was associated with a reduction in coronary remodeling and interleukin-6 expression.
Conclusions—
Overall, this study demonstrates that increased BRD4 expression in coronary arteries of patient with PAH contributes to vascular remodeling and comorbidity development.
Collapse
Affiliation(s)
- Jolyane Meloche
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Marie-Claude Lampron
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Valérie Nadeau
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Mélanie Maltais
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - François Potus
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Caroline Lambert
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Eve Tremblay
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Géraldine Vitry
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Sandra Breuils-Bonnet
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Olivier Boucherat
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Eric Charbonneau
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Steeve Provencher
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Roxane Paulin
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Sébastien Bonnet
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| |
Collapse
|
32
|
Zhang ML, Zheng B, Tong F, Yang Z, Wang ZB, Yang BM, Sun Y, Zhang XH, Zhao YL, Wen JK. iNOS-derived peroxynitrite mediates high glucose-induced inflammatory gene expression in vascular smooth muscle cells through promoting KLF5 expression and nitration. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2821-2834. [PMID: 28711598 DOI: 10.1016/j.bbadis.2017.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/19/2017] [Accepted: 07/11/2017] [Indexed: 12/24/2022]
Abstract
Inducible NO synthase (iNOS) expression and peroxynitrite formation are significantly increased in diabetic vascular tissues. Transcription factor KLF5 activates iNOS gene transcription and is involved in vascular inflammatory injury and remodeling. However, mutual regulation between KLF5, iNOS and peroxynitrite in diabetic vascular inflammation, as well as the underlying mechanisms, remain largely unknown. In this study, we found a marked increase in KLF5 and iNOS expression in vascular smooth muscle cells (VSMC) of diabetic patients. High glucose-induced expression of KLF5 and iNOS was also observed in cultured mouse VSMCs. Further investigation showed that high glucose induced KLF5 nitration by iNOS-mediated peroxynitrite generation, and nitrated KLF5 increased its interaction with NF-κB p50 and thus cooperatively activated the expression of inflammatory cytokines TNF-α and IL-1β. Furthermore, we showed that the VSMC-specific knockout of KLF5 dramatically reduced inflammatory cytokine expression in the vascular tissues of diabetic mice. Moreover, 17β-estradiol (E2) inhibited high glucose-mediated effects in VSMCs, and in the response to E2, estrogen receptor (ER) α competed with KLF5 for binding to NF-κB p50, which in turn leads to the suppression of inflammatory gene expression in VSMCs. Together, the present findings were the first to show that KLF5 expression and nitration by iNOS-mediated peroxynitrite are necessary for the induction of TNF-α and IL-1β expression in VSMCs of diabetic vascular tissues.
Collapse
Affiliation(s)
- Man-Li Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Department of Emergency Medicine, The second hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Fei Tong
- Department of Emergency Medicine, The second hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zhan Yang
- Department of Science and Technology, The second hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zhi-Bo Wang
- Department of Vascular Surgery, The second hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Bao-Ming Yang
- Department of Hepatobiliary Surgery, The fourth hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Yan Sun
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xin-Hua Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yi-Lin Zhao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| |
Collapse
|
33
|
Sales-Campos H, de Souza PR, Basso PJ, Nardini V, Silva A, Banquieri F, Alves VBF, Chica JEL, Nomizo A, Cardoso CRB. Amelioration of experimental colitis after short-term therapy with glucocorticoid and its relationship to the induction of different regulatory markers. Immunology 2016; 150:115-126. [PMID: 27618667 DOI: 10.1111/imm.12672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022] Open
Abstract
The clinical benefits of short-term therapy with glucocorticoids (GC) in patients with inflammatory bowel disease (IBD) are widely known. However, the effects of this treatment towards the re-establishment of the regulatory network in IBD are not fully explored. We have evaluated the immunological effects of the abbreviated GC therapy in experimental colitis induced by 3% dextran sulphate sodium in C57BL/6 mice. Treatment with GC improved disease outcome, constrained circulating leucocytes and ameliorated intestinal inflammation. The control of the local inflammatory responses involved a reduction in the expression of interferon-γ and interleukin-1β, associated with augmented mRNA levels of peroxisome proliferator-activated receptors (α and γ) in intestine. Furthermore, there was a reduction of CD4+ T cells producing interferon-γ, together with an increased frequency of the putative regulatory population of T cells producing interleukin-10, in spleen. These systemic alterations were accompanied by a decrease in the proliferative potential of splenocytes of mice treated in vivo with GC. Notably, treatment with GC also led to an increase in the frequency of the regulatory markers GITR, CTLA-4, PD-1, CD73 and FoxP3, more prominently in spleen. Taken together, our results pointed to a role of GC in the control of leucocyte responsiveness and re-establishment of a regulatory system, which probably contributed to disease control and the restoration of immune balance. Finally, this is the first time that GC treatment was associated with the modulation of a broad number of regulatory markers in an experimental model of colitis.
Collapse
Affiliation(s)
- Helioswilton Sales-Campos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia R de Souza
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Paulo J Basso
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Viviani Nardini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Angelica Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Banquieri
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanessa B F Alves
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Javier E L Chica
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Auro Nomizo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cristina R B Cardoso
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
34
|
Wang P, Xu J, Hou Z, Wang F, Song Y, Wang J, Zhu H, Jin H. miRNA-34a promotes proliferation of human pulmonary artery smooth muscle cells by targeting PDGFRA. Cell Prolif 2016; 49:484-93. [PMID: 27302634 DOI: 10.1111/cpr.12265] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/07/2016] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Pulmonary arterial hypertension (PAH) is a fast progressing vascular disease characterized by uncontrolled cell proliferation of pulmonary artery smooth muscle cells (PASMCs). Some studies have suggested that PAH and cancers share an apoptosis-resistant state, featuring excessive cell proliferation. The miR-34 family consists of tumour-suppressive miRNAs, and its reduced expression has been reported in numerous cancers; however, its role in hypoxia-induced PAH has not been previously studied. MATERIALS AND METHODS miR-34 family expression was evaluated in a rat model with hypoxia and in cultured hypoxic PASMCs, using real-time quantitative PCR (RT-qPCR). Function of miR-34 family was assessed by transfecting miR-34 mimics and inhibitors. Dual luciferase reporter gene assays, RT-qPCR and Western blotting were performed to validate target genes of miR-34. RESULTS Significant down-regulation of miR-34a in hypoxic lung tissue, pulmonary artery and PASMCs was identified and then effects of miR-34a in modulating cell proliferation in human pulmonary artery smooth muscle cells (hPASMCs) was investigated in vitro. Reduction of miR-34a levels in hPASMCs caused increased proliferation and these effects were reversed by overexpression of miR-34a. miR-34a overexpression down-regulated platelet-derived growth factor receptor alpha (PDGFRA) expression, which is a key factor in PAH development. These results suggest that miR-34a is a potential regulator of proliferation in PASMCs, and that it could be used as a novel treatment strategy in PAH.
Collapse
Affiliation(s)
- Peng Wang
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China.,Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Jie Xu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Zhiling Hou
- Department of Emergency Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Fangfang Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Jiamusi University, Jiamusi, China
| | - Yingli Song
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Jiao Wang
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hui Zhu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hongbo Jin
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
35
|
Klimczak D, Jazdzewski K, Kuch M. Regulatory mechanisms in arterial hypertension: role of microRNA in pathophysiology and therapy. Blood Press 2016; 26:2-8. [PMID: 27177042 DOI: 10.3109/08037051.2016.1167355] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multiple factors underlie the pathophysiology of hypertension, involving endothelial dysregulation, vascular smooth muscle dysfunction, increased oxidative stress, sympathetic nervous system activation and altered renin -angiotensin -aldosterone regulatory activity. A class of non-coding RNA called microRNA, consisting of 17-25 nucleotides, exert regulatory function over these processes. This paper summarizes the currently available data from preclinical and clinical studies on miRNA in the development of hypertension as well as the impact of anti-hypertensive treatment on their plasma expression. We present microRNAs' characteristics, their biogenesis and role in the regulation of blood pressure together with their potential diagnostic and therapeutic application in clinical practice.
Collapse
Affiliation(s)
- Dominika Klimczak
- a Division of Heart Failure and Cardiac Rehabilitation, Department of Cardiology, Hypertension and Internal Medicine, Second Faculty of Medicine , Medical University of Warsaw , Warsaw , Poland.,b Department of Immunology, Transplantology and Internal Diseases , Medical University of Warsaw , Warsaw , Poland
| | - Krystian Jazdzewski
- c Genomic Medicine , Medical University of Warsaw , Warsaw , Poland.,d Laboratory of Human Cancer Genetics, Centre of New Technologies, CENT , University of Warsaw , Warsaw , Poland
| | - Marek Kuch
- e Department of Cardiology, Hypertension and Internal Medicine, Second Faculty of Medicine , Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
36
|
Frismantiene A, Dasen B, Pfaff D, Erne P, Resink TJ, Philippova M. T-cadherin promotes vascular smooth muscle cell dedifferentiation via a GSK3β-inactivation dependent mechanism. Cell Signal 2016; 28:516-530. [DOI: 10.1016/j.cellsig.2016.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 11/24/2022]
|
37
|
Prough RA, Clark BJ, Klinge CM. Novel mechanisms for DHEA action. J Mol Endocrinol 2016; 56:R139-55. [PMID: 26908835 DOI: 10.1530/jme-16-0013] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/02/2023]
Abstract
Dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA), secreted by the adrenal cortex, gastrointestinal tract, gonads, and brain, and its sulfated metabolite DHEA-S are the most abundant endogeneous circulating steroid hormones. DHEA actions are classically associated with age-related changes in cardiovascular tissues, female fertility, metabolism, and neuronal/CNS functions. Early work on DHEA action focused on the metabolism to more potent sex hormones, testosterone and estradiol, and the subsequent effect on the activation of the androgen and estrogen steroid receptors. However, it is now clear that DHEA and DHEA-S act directly as ligands for many hepatic nuclear receptors and G-protein-coupled receptors. In addition, it can function to mediate acute cell signaling pathways. This review summarizes the molecular mechanisms by which DHEA acts in cells and animal models with a focus on the 'novel' and physiological modes of DHEA action.
Collapse
Affiliation(s)
- Russell A Prough
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Barbara J Clark
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
38
|
Ding X, Wang D, Li L, Ma H. Dehydroepiandrosterone ameliorates H2O2-induced Leydig cells oxidation damage and apoptosis through inhibition of ROS production and activation of PI3K/Akt pathways. Int J Biochem Cell Biol 2015; 70:126-39. [PMID: 26643608 DOI: 10.1016/j.biocel.2015.11.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/13/2015] [Accepted: 11/26/2015] [Indexed: 02/07/2023]
Abstract
Dehydroepiandrosterone (DHEA) is widely used as a nutritional supplement, and administration of DHEA produces a number of beneficial effects in the elderly. Many researchers have suggested that DHEA exerts it function after conversion into more biologically active hormones in peripheral target cells. The actions of DHEA in Leydig cells, a major target cell of DHEA biotransformation in males, are not clear. The present study found that DHEA increased cell viability and decreased reactive oxygen species (ROS) and malondialdehyde contents in H2O2-induced Leydig cells. DHEA significantly increased the activities of superoxide dismutase, catalase and peroxidase, and decreased the DNA damage in H2O2-induced Leydig cells. Apoptosis was significant decreased in H2O2-induced Leydig cells after DHEA treatment. DHEA inhibited the loss of mitochondrial membrane potential (ΔΨm) and the upregulation of the caspase-3 protein level induced by H2O2 in Leydig cells. DHEA also reversed the decrease in PI3K and p-Akt protein levels induced by H2O2. These data showed that DHEA could ameliorate H2O2-induced oxidative damage by increasing anti-oxidative enzyme activities, which resulted in reduced ROS content, and decreased apoptosis, mainly by preventing the loss of ΔΨm and inhibiting caspase-3 protein levels via activation of PI3K/Akt signaling pathways. These results increase our understanding of the molecular mechanism of the anti-ageing effect of DHEA.
Collapse
Affiliation(s)
- Xiao Ding
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Dian Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
39
|
Abeyrathna P, Su Y. The critical role of Akt in cardiovascular function. Vascul Pharmacol 2015; 74:38-48. [PMID: 26025205 PMCID: PMC4659756 DOI: 10.1016/j.vph.2015.05.008] [Citation(s) in RCA: 322] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/07/2015] [Accepted: 05/16/2015] [Indexed: 12/30/2022]
Abstract
Akt kinase, a member of AGC kinases, is important in many cellular functions including proliferation, migration, cell growth and metabolism. There are three known Akt isoforms which play critical and diverse roles in the cardiovascular system. Akt activity is regulated by its upstream regulatory pathways at transcriptional and post-translational levels. Beta-catenin/Tcf-4, GLI1 and Stat-3 are some of few known transcriptional regulators of AKT gene. Threonine 308 and serine 473 are the two critical phosphorylation sites of Akt1. Translocation of Akt to the cell membrane facilitates PDK1 phosphorylation of the threonine site. The serine site is phosphorylated by mTORC2. Ack1, Src, PTK6, TBK1, IKBKE and IKKε are some of the non-canonical pathways which affect the Akt activity. Protein-protein interactions of Akt to actin and Hsp90 increase the Akt activity while Akt binding to other proteins such as CTMP and TRB3 reduces the Akt activity. The action of Akt on its downstream targets determines its function in cardiovascular processes such as cell survival, growth, proliferation, angiogenesis, vasorelaxation, and cell metabolism. Akt promotes cell survival via caspase-9, YAP, Bcl-2, and Bcl-x activities. Inhibition of FoxO proteins by Akt also increases cell survival by transcriptional mechanisms. Akt stimulates cell growth and proliferation through mTORC1. Akt also increases VEGF secretion and mediates eNOS phosphorylation, vasorelaxation and angiogenesis. Akt can increase cellular metabolism through its downstream targets GSK3 and GLUT4. The alterations of Akt signaling play an important role in many cardiovascular pathological processes such as atherosclerosis, cardiac hypertrophy, and vascular remodeling. Several Akt inhibitors have been developed and tested as anti-tumor agents. They could be potential novel therapeutics for the cardiovascular diseases.
Collapse
Affiliation(s)
- Prasanna Abeyrathna
- Department of Pharmacology & Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
40
|
Meloche J, Le Guen M, Potus F, Vinck J, Ranchoux B, Johnson I, Antigny F, Tremblay E, Breuils-Bonnet S, Perros F, Provencher S, Bonnet S. miR-223 reverses experimental pulmonary arterial hypertension. Am J Physiol Cell Physiol 2015; 309:C363-72. [DOI: 10.1152/ajpcell.00149.2015] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 06/15/2015] [Indexed: 12/16/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease affecting lung vasculature. The pulmonary arteries become occluded due to increased proliferation and suppressed apoptosis of the pulmonary artery smooth muscle cells (PASMCs) within the vascular wall. It was recently shown that DNA damage could trigger this phenotype by upregulating poly(ADP-ribose)polymerase 1 (PARP-1) expression, although the exact mechanism remains unclear. In silico analyses and studies in cancer demonstrated that microRNA miR-223 targets PARP-1. We thus hypothesized that miR-223 downregulation triggers PARP-1 overexpression, as well as the proliferation/apoptosis imbalance observed in PAH. We provide evidence that miR-223 is downregulated in human PAH lungs, distal PAs, and isolated PASMCs. Furthermore, using a gain and loss of function approach, we showed that increased hypoxia-inducible factor 1α, which is observed in PAH, triggers this decrease in miR-223 expression and subsequent overexpression of PARP-1 allowing PAH-PASMC proliferation and resistance to apoptosis. Finally, we demonstrated that restoring the expression of miR-223 in lungs of rats with monocrotaline-induced PAH reversed established PAH and provided beneficial effects on vascular remodeling, pulmonary resistance, right ventricle hypertrophy, and survival. We provide evidence that miR-223 downregulation in PAH plays an important role in numerous pathways implicated in the disease and restoring its expression is able to reverse PAH.
Collapse
Affiliation(s)
- Jolyane Meloche
- Pulmonary Hypertension and Vascular Biology Research Group from the Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - Marie Le Guen
- Pulmonary Hypertension and Vascular Biology Research Group from the Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - François Potus
- Pulmonary Hypertension and Vascular Biology Research Group from the Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - Jérôme Vinck
- Pulmonary Hypertension and Vascular Biology Research Group from the Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - Benoit Ranchoux
- University Paris-Sud, Faculté de médecine, Kremlin-Bicêtre, France; AP-HP, DHU TORINO, Centre de Référence de l'Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMR-S 999, Labex LERMIT, Hypertension Artérielle Pulmonaire: Physiopathologie et Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Ian Johnson
- Pulmonary Hypertension and Vascular Biology Research Group from the Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - Fabrice Antigny
- University Paris-Sud, Faculté de médecine, Kremlin-Bicêtre, France; AP-HP, DHU TORINO, Centre de Référence de l'Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMR-S 999, Labex LERMIT, Hypertension Artérielle Pulmonaire: Physiopathologie et Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Eve Tremblay
- Pulmonary Hypertension and Vascular Biology Research Group from the Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension and Vascular Biology Research Group from the Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - Frederic Perros
- University Paris-Sud, Faculté de médecine, Kremlin-Bicêtre, France; AP-HP, DHU TORINO, Centre de Référence de l'Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMR-S 999, Labex LERMIT, Hypertension Artérielle Pulmonaire: Physiopathologie et Innovation Thérapeutique, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Steeve Provencher
- Pulmonary Hypertension and Vascular Biology Research Group from the Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - Sébastien Bonnet
- Pulmonary Hypertension and Vascular Biology Research Group from the Quebec Heart and Lung Institute, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| |
Collapse
|
41
|
|
42
|
Chin-Smith EC, Willey FR, Slater DM, Taggart MJ, Tribe RM. Nuclear factor of activated T-cell isoform expression and regulation in human myometrium. Reprod Biol Endocrinol 2015; 13:83. [PMID: 26238508 PMCID: PMC4523953 DOI: 10.1186/s12958-015-0086-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/30/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND During pregnancy, myometrial gene and protein expression is tightly regulated to accommodate fetal growth, promote quiescence and ultimately prepare for the onset of labour. It is proposed that changes in calcium signalling, may contribute to regulating gene expression and that nuclear factor of activated T-cell (NFAT) transcription factors (isoforms c1-c4) may be involved. Currently, there is little information regarding NFAT expression and regulation in myometrium. METHODS This study examined NFAT isoform mRNA expression in human myometrial tissue and cells from pregnant women using quantitative PCR. The effects of the Ca(2+) ionophore A23187 and in vitro stretch (25 % elongation, static strain; Flexercell FX-4000 Tension System) on NFAT expression were determined in cultured human myometrial cells. RESULTS Human myometrial tissue and cultured cells expressed NFATc1-c4 mRNA. NFATc2 gene expression in cultured cells was increased in response to 6 h stretch (11.5 fold, P < 0.001, n = 6) and calcium ionophore (A23187, 5 μM) treatment (20.6 fold, P < 0.001, n = 6). This response to stretch was significantly reduced (90 %, P < 0.001, n = 10) in the presence of an intracellular calcium chelator, BAPTA-AM (20 μM). CONCLUSIONS These data suggest that NFATc2 expression is regulated by intracellular calcium and in vitro stretch, and that the stretch response in human myometrial cells is dependent upon intracellular calcium signalling pathways. Our findings indicate a potentially unique role for NFATc2 in mediating stretch-induced gene expression per se and warrant further exploration in relation to the mechanisms promoting uterine smooth muscle growth in early pregnancy and/or labour.
Collapse
Affiliation(s)
- Evonne C Chin-Smith
- Division of Women's Health, King's College London, Women's Health Academic Centre KHP, St Thomas' Hospital, 10th Floor, North Wing, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Frances R Willey
- Division of Women's Health, King's College London, Women's Health Academic Centre KHP, St Thomas' Hospital, 10th Floor, North Wing, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Donna M Slater
- Physiology and Pharmacology, Cumming School of Medicine, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Alberta, T2N 4 N1, Canada.
| | - Michael J Taggart
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK.
| | - Rachel M Tribe
- Division of Women's Health, King's College London, Women's Health Academic Centre KHP, St Thomas' Hospital, 10th Floor, North Wing, Westminster Bridge Road, London, SE1 7EH, UK.
| |
Collapse
|
43
|
Abstract
Dehydroepiandrosterone (DHEA) and its sulfated form dehydroepiandrosterone sulfate (DHEAS) are the most abundant circulating steroid hormones in humans. In animal studies, their low levels have been associated with age-related involuntary changes, including reduced lifespan. Extrapolation of animal data to humans turned DHEA into a 'superhormone' and an 'anti-aging' panacea. It has been aggressively marketed and sold in large quantities as a dietary supplement. Recent double-blind, placebo-controlled human studies provided evidence to support some of these claims. In the elderly, DHEA exerts an immunomodulatory action, increasing the number of monocytes, T cells expressing T-cell receptor gamma/delta (TCRγδ) and natural killer (NK) cells. It improves physical and psychological well-being, muscle strength and bone density, and reduces body fat and age-related skin atrophy stimulating procollagen/sebum production. In adrenal insufficiency, DHEA restores DHEA/DHEAS and androstenedione levels, reduces total cholesterol, improves well-being, sexual satisfaction and insulin sensitivity, and prevents loss of bone mineral density. Normal levels of CD4+CD25(hi) and FoxP3 (forkhead box P3) are restored. In systemic lupus erythematosus, DHEA is steroid-sparing. In an unblinded study, it induced remission in the majority of patients with inflammatory bowel disease. DHEA modulates cardiovascular signalling pathways and exerts an anti-inflammatory, vasorelaxant and anti-remodelling effect. Its low levels correlate with increased cardiovascular disease and all-cause mortality. DHEA/DHEAS appear protective in asthma and allergy. It attenuates T helper 2 allergic inflammation, and reduces eosinophilia and airway hyperreactivity. Low levels of DHEAS accompany adrenal suppression. It could be used to screen for the side effects of steroids. In women, DHEA improves sexual satisfaction, fertility and age-related vaginal atrophy. Many factors are responsible for the inconsistent/negative results of some studies. Overreliance on animal models (DHEA is essentially a human molecule), different dosing protocols with non-pharmacological doses often unachievable in humans, rapid metabolism of DHEA, co-morbidities and organ-specific differences render data interpretation difficult. Nevertheless, a growing body of evidence supports the notion that DHEA is not just an overrated dietary supplement but a useful drug for some, but not all, human diseases. Large-scale randomised controlled trials are needed to fine-tune the indications and optimal dosing protocols before DHEA enters routine clinical practice.
Collapse
|
44
|
Increased expression of activated pSTAT3 and PIM-1 in the pulmonary vasculature of experimental congenital diaphragmatic hernia. J Pediatr Surg 2015; 50:908-11. [PMID: 25812446 DOI: 10.1016/j.jpedsurg.2015.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/10/2015] [Indexed: 11/21/2022]
Abstract
PURPOSE Signal transducer and activator of transcription (STAT) protein family (STAT1-6) regulates diverse cellular processes. Recently, the isoform STAT3 has been implicated to play a central role in the pathogenesis of pulmonary hypertension (PH). In human PH activated STAT3 (pSTAT3) was shown to directly trigger expression of the provirus integration site for Moloney murine leukemia virus (Pim-1), which promotes proliferation and resistance to apoptosis in SMCs. We designed this study to investigate the hypothesis that pSTAT3 and Pim-1 pulmonary vascular expression is increased in nitrofen-induced CDH. METHODS Pregnant rats were exposed to nitrofen or vehicle on D9.5. Fetuses were sacrificed on D21 and divided into nitrofen (n=16) and control group (n=16). QRT-PCR, western blotting, and confocal-immunofluorescence were performed to determine pulmonary gene and protein expression levels of pSTAT3 and Pim-1. RESULTS Pulmonary Pim-1 gene expression was significantly increased in the CDH group compared to controls. Western blotting and confocal-microscopy confirmed increased pulmonary protein expression of Pim-1 and increased activation of pSTAT3 in CDH lungs compared to controls. CONCLUSION Markedly increased gene and protein expression of Pim-1 and activated pSTAT3 in the pulmonary vasculature of nitrofen-induced CDH lungs suggest that pSTAT3 and Pim-1 are important mediators of PH in nitrofen-induced CDH.
Collapse
|
45
|
Marinko M, Novakovic A, Nenezic D, Stojanovic I, Milojevic P, Jovic M, Ugresic N, Kanjuh V, Yang Q, He GW. Nicorandil directly and cyclic GMP-dependently opens K+ channels in human bypass grafts. J Pharmacol Sci 2015; 128:59-64. [PMID: 25850381 DOI: 10.1016/j.jphs.2015.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/08/2015] [Accepted: 03/10/2015] [Indexed: 02/07/2023] Open
Abstract
As we previously demonstrated the role of different K(+) channels in the action of nicorandil on human saphenous vein (HSV) and human internal mammary artery (HIMA), this study aimed to analyse the contribution of the cGMP pathway in nicorandil-induced vasorelaxation and to determine the involvement of cGMP in the K(+) channel-activating effect of nicorandil. An inhibitor of soluble guanylate cyclase (GC), ODQ, significantly inhibited nicorandil-induced relaxation, while ODQ plus glibenclamide, a selective ATP-sensitive K(+) (KATP) channel inhibitor, produced a further inhibition of both vessels. In HSV, ODQ in combination with 4-aminopyridine, a blocker of voltage-gated K(+) (KV) channels, did not modify the concentration-response to nicorandil compared with ODQ, whereas in HIMA, ODQ plus iberiotoxin, a selective blocker of large-conductance Ca(2+)-activated K(+) (BKCa) channels, produced greater inhibition than ODQ alone. We showed that the cGMP pathway plays a significant role in the vasorelaxant effect of nicorandil on HSV and HIMA. It seems that nicorandil directly opens KATP channels in both vessels and BKCa channels in HIMA, although it is possible that stimulation of GC contributes to KATP channels activation in HIMA. Contrary, the activation of KV channels in HSV is probably due to GC activation and increased levels of cGMP.
Collapse
Affiliation(s)
- Marija Marinko
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Novakovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| | - Dragoslav Nenezic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Ivan Stojanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Predrag Milojevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Miomir Jovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Nenad Ugresic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | - Qin Yang
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong; TEDA International Cardiovascular Hospital, Medical College, Nankai University, Tianjin, China
| | - Guo-Wei He
- TEDA International Cardiovascular Hospital, Medical College, Nankai University, Tianjin, China; Providence Heart & Vascular Institute, Albert Starr Academic Center, Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
46
|
Mannic T, Viguie J, Rossier MF. In vivo and in vitro evidences of dehydroepiandrosterone protective role on the cardiovascular system. Int J Endocrinol Metab 2015; 13:e24660. [PMID: 25926854 PMCID: PMC4389253 DOI: 10.5812/ijem.24660] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/05/2014] [Accepted: 02/14/2015] [Indexed: 02/06/2023] Open
Abstract
CONTEXT Dehydroepiandrosterone (DHEA) and its sulfate ester, Dehydroepiandrosterone Sulfate (DHEA-S) have been considered as putative anti-aging hormones for many years. Indeed, while DHEAS is the most abundant circulating hormone, its concentration is markedly decreased upon aging and early epidemiologic trials have revealed a strong inverse correlation between the hormone concentrations and the occurrence of several dysfunctions frequently encountered in the elderly. Naturally, hormonal supplementation has been rapidly suggested to prevent DHEA (S) deficiency and therefore, age-related development of these pathologies, using the same strategy as estrogen replacement therapy proposed in postmenopausal women. EVIDENCE ACQUISITION All references were searched using PubMed and the following strategy: our initial selection included all articles in English and we sorted them with the following keywords: "DHEA or DHEA-S" and "heart or vascular or endothelium or cardiovascular disease". The search was limited to neither the publication date nor specific journals. The final selection was made according to the relevance of the article content with the aims of the review. According to these criteria, fewer than 10% of the articles retrieved at the first step were discarded. RESULTS In this short review, we have focused on the cardiovascular action of DHEA. We started by analyzing evidences in favor of a strong inverse association between DHEA (S) levels and the cardiovascular risk as demonstrated in multiple observational epidemiologic studies for several decades. Then we discussed the different trials aimed at supplementing DHEA (S), both in animals and human, for preventing cardiovascular diseases and we analyzed the possible reasons for the discrepancy observed among the results of some studies. Finally, we presented putative molecular mechanisms of action for DHEA (S), demonstrated in vitro in different models of vascular and cardiac cells, highlighting the complexity of the involved signaling pathways. CONCLUSIONS The identification of the beneficial cardiovascular effects of DHEA (S) and a better understanding of the involved mechanisms should be helpful to develop new strategies or pharmacologic approaches for many lethal diseases in Western countries.
Collapse
Affiliation(s)
- Tiphaine Mannic
- Department of Human Protein Science, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Genetics and laboratory Medicine, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
- Corresponding author: Tiphaine Mannic, Department of Genetics and laboratory Medicine, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland. Tel: +41-223795775, Fax: +41-223795502, E-mail:
| | - Joanna Viguie
- Department of Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michel Florian Rossier
- Department of Human Protein Science, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Service of Clinical Chemistry and Toxicology, Central Institute of the Hospital of Valais, Sion, Switzerland
| |
Collapse
|
47
|
Shojaie M, Rajpout MY, Abtahian A, Pour AE, Ghobadifar MA, Akbarzadeh A. Dehydroepiandrosterone sulfate as a risk factor for premature myocardial infarction: a comparative study. Korean J Fam Med 2015; 36:1-9. [PMID: 25780511 PMCID: PMC4360486 DOI: 10.4082/kjfm.2015.36.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/10/2014] [Indexed: 01/06/2023] Open
Abstract
Background This study aimed to evaluate some of the major risk factors of myocardial infarction including dehydroepiandrosterone sulfate in patients with premature myocardial infarction (age <50 years old) and myocardial infarction (age ≥50 years). Methods This is a parallel case-control study on 50 premature myocardial infarction patients and 50 myocardial infarction patients. We also recruited 50 matched participants for each of the two groups. Patients and their control groups were assessed for dehydroepiandrosterone sulfate serum level, diabetes mellitus, hyperlipidemia, hypertriglyceridemia, and hypertension. In addition, family history of cardiovascular disease and current smoking was recorded. Univariate and multivariate logistic regression analyses were performed to evaluate predictors of premature myocardial infarction and myocardial infarction. Results No significant differences were observed between the demographic data of patients and their controls. The dehydroepiandrosterone sulfate serum level was significantly higher in patients with premature myocardial infarction compared with controls. Multivariate logistic regression analysis revealed only serum dehydroepiandrosterone sulfate dehydroepiandrosterone sulfate level to be significantly associated with premature myocardial infarction (odds ratio, 2.65; 95% confidence interval, 1.44 to 4.877; P = 0.002). Additionally, hypertension was found to be associated with myocardial infarction. Conclusion Higher levels of serum dehydroepiandrosterone sulfate level are associated with premature myocardial infarction but not with myocardial infarction, and this association is independent of the effects of other risk factors.
Collapse
Affiliation(s)
- Mohammad Shojaie
- Research Center for Social Determinants of Health, Jahrom University of Medical Sciences, Jahrom, Iran
| | | | - Armin Abtahian
- Department of Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Azadeh Esmail Pour
- Cardiac Care Unit Nurse, Peymanieh Hospital, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohamed Amin Ghobadifar
- Department of Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Armin Akbarzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
48
|
Ohlsson C, Vandenput L, Tivesten A. DHEA and mortality: what is the nature of the association? J Steroid Biochem Mol Biol 2015; 145:248-53. [PMID: 24704256 DOI: 10.1016/j.jsbmb.2014.03.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/04/2014] [Accepted: 03/16/2014] [Indexed: 12/19/2022]
Abstract
Although very little is known about the importance of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEA-S) in human physiology and pathophysiology, emerging observations imply pivotal roles of DHEA/-S. One such observation is the association between serum DHEA/-S levels and mortality risk. In this review, we focus on the literature addressing DHEA/-S and mortality with the aim to describe and discuss patterns and potential underlying mechanisms. Although the literature reports somewhat inconsistent results, we conclude that several larger population-based studies support an association between low DHEA/-S and risk of death, at least in elderly men. In women, the association may not be present; alternatively, there may be a U-shaped association. In men, most available evidence suggests an association with cardiovascular (CV) mortality rather than cancer mortality. Further, there are biologically plausible mechanisms for an effect of DHEA/-S on the development of CV disease. On the other hand, there is also strong evidence supporting that any disease may lower DHEA/-S. Thus, the cause-effect relation of this association is less clear. Future studies may employ a mendelian randomization approach using genetic determinants of DHEA-S levels as predictors of clinical outcomes, to delineate the true nature of the association between DHEA/-S and mortality.
Collapse
Affiliation(s)
- Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Liesbeth Vandenput
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Asa Tivesten
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska University Hospital, University of Gothenburg, Bruna Stråket 16, S-413 45 Gothenburg, Sweden.
| |
Collapse
|
49
|
Meyer MR, Fredette NC, Howard TA, Hu C, Ramesh C, Daniel C, Amann K, Arterburn JB, Barton M, Prossnitz ER. G protein-coupled estrogen receptor protects from atherosclerosis. Sci Rep 2014; 4:7564. [PMID: 25532911 PMCID: PMC4274506 DOI: 10.1038/srep07564] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 11/28/2014] [Indexed: 02/07/2023] Open
Abstract
Coronary atherosclerosis and myocardial infarction in postmenopausal women have been linked to inflammation and reduced nitric oxide (NO) formation. Natural estrogen exerts protective effects on both processes, yet also displays uterotrophic activity. Here, we used genetic and pharmacologic approaches to investigate the role of the G protein-coupled estrogen receptor (GPER) in atherosclerosis. In ovary-intact mice, deletion of gper increased atherosclerosis progression, total and LDL cholesterol levels and inflammation while reducing vascular NO bioactivity, effects that were in some cases aggravated by surgical menopause. In human endothelial cells, GPER was expressed on intracellular membranes and mediated eNOS activation and NO formation, partially accounting for estrogen-mediated effects. Chronic treatment with G-1, a synthetic, highly selective small molecule agonist of GPER, reduced postmenopausal atherosclerosis and inflammation without uterotrophic effects. In summary, this study reveals an atheroprotective function of GPER and introduces selective GPER activation as a novel therapeutic approach to inhibit postmenopausal atherosclerosis and inflammation in the absence of uterotrophic activity.
Collapse
Affiliation(s)
- Matthias R Meyer
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Natalie C Fredette
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Tamara A Howard
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Chelin Hu
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Chinnasamy Ramesh
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, USA
| | - Christoph Daniel
- Pathologisches Institut, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Pathologisches Institut, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jeffrey B Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, USA
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland
| | - Eric R Prossnitz
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
50
|
Wei L, Zhang B, Cao W, Xing H, Yu X, Zhu D. Inhibition of CXCL12/CXCR4 suppresses pulmonary arterial smooth muscle cell proliferation and cell cycle progression via PI3K/Akt pathway under hypoxia. J Recept Signal Transduct Res 2014; 35:329-39. [PMID: 25421526 DOI: 10.3109/10799893.2014.984308] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stromal cell-derived factor 1 (CXCL12) and its receptor CXC chemokine receptor 4 (CXCR4) are known to modulate hypoxia-induced pulmonary hypertension (PH) and vascular remodeling by mobilization and recruitment of progenitor cells to the pulmonary vasculature. However, little is known about CXCL12/CXCR4 regulating proliferation and cell cycle progression of pulmonary arterial smooth muscle cells (PASMCs). To determine whether CXCL12/CXCR4 regulates PASMC proliferation and the cell cycle, immunohistochemistry, Western blot, bromodeoxyuridine incorporation and cell cycle analysis were preformed in this study. Our results showed that CXCR4 was induced by hypoxia in pulmonary arteries and PASMCs of rats. Hypoxia-increased cell viability, DNA synthesis and proliferating cell nuclear antigen expression were blocked by administration of CXCR4 antagonist AMD3100, silencing CXCR4 or CXCL12. Furthermore, inhibition of CXCL12/CXCR4 suppressed cell cycle progression, decreased the number of cells in S+G2/M phase and attenuated the expression of proteins that regulate the cell cycle progression at these phases. In addition, PI3K/Akt signaling mediated CXCL12/CXCR4 regulating proliferation and cell cycle progression in PASMCs. Thus, these results indicate that blockade of CXCL12/CXCR4 inhibited PASMC proliferation and cell cycle progression in hypoxia-induced PH via PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Liuping Wei
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University-Daqing , Daqing , China and
| | - Bo Zhang
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University-Daqing , Daqing , China and
| | - Weiwei Cao
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University-Daqing , Daqing , China and
| | - Hao Xing
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University-Daqing , Daqing , China and
| | - Xiufeng Yu
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University-Daqing , Daqing , China and
| | - Daling Zhu
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University-Daqing , Daqing , China and.,b Biopharmaceutical Key Laboratory of Heilongjiang Province , Harbin , China
| |
Collapse
|