1
|
Inazumi H, Kuwahara K. NRSF/REST-Mediated Epigenomic Regulation in the Heart: Transcriptional Control of Natriuretic Peptides and Beyond. BIOLOGY 2022; 11:1197. [PMID: 36009824 PMCID: PMC9405064 DOI: 10.3390/biology11081197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
Reactivation of fetal cardiac genes, including those encoding atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), is a key feature of pathological cardiac remodeling and heart failure. Intensive studies on the regulation of ANP and BNP have revealed the involvement of numerous transcriptional factors in the regulation of the fetal cardiac gene program. Among these, we identified that a transcriptional repressor, neuron-restrictive silencer factor (NRSF), also named repressor element-1-silencing transcription factor (REST), which was initially detected as a transcriptional repressor of neuron-specific genes in non-neuronal cells, plays a pivotal role in the transcriptional regulation of ANP, BNP and other fetal cardiac genes. Here we review the transcriptional regulation of ANP and BNP gene expression and the role of the NRSF repressor complex in the regulation of cardiac gene expression and the maintenance of cardiac homeostasis.
Collapse
Affiliation(s)
- Hideaki Inazumi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, School of Medicine, Shinshu University, 3-1-1 Asahi, Nagano 390-8621, Japan
| |
Collapse
|
2
|
Marksteiner J, Ebner J, Salzer I, Lilliu E, Hackl B, Todt H, Kubista H, Hallström S, Koenig X, Hilber K. Evidence for a Physiological Role of T-Type Ca Channels in Ventricular Cardiomyocytes of Adult Mice. MEMBRANES 2022; 12:566. [PMID: 35736273 PMCID: PMC9230067 DOI: 10.3390/membranes12060566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
T-type Ca channels are strongly expressed and important in the developing heart. In the adult heart, these channels play a significant role in pacemaker tissues, but there is uncertainty about their presence and physiological relevance in the working myocardium. Here, we show that the T-type Ca channel isoforms Cav3.1 and Cav3.2 are expressed at a protein level in ventricular cardiomyocytes from healthy adult C57/BL6 mice. Myocytes isolated from adult wild-type and Cav3.2 KO mice showed considerable whole cell T-type Ca currents under beta-adrenergic stimulation with isoprenaline. We further show that the detectability of basal T-type Ca currents in murine wild-type cardiomyocytes depends on the applied experimental conditions. Together, these findings reveal the presence of functional T-type Ca channels in the membrane of ventricular myocytes. In addition, electrically evoked Ca release from the sarcoplasmic reticulum was significantly impaired in Cav3.2 KO compared to wild-type cardiomyocytes. Our work implies a physiological role of T-type Ca channels in the healthy adult murine ventricular working myocardium.
Collapse
Affiliation(s)
- Jessica Marksteiner
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Janine Ebner
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Isabella Salzer
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Elena Lilliu
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Benjamin Hackl
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Hannes Todt
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Helmut Kubista
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Seth Hallström
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, 8036 Graz, Austria;
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Karlheinz Hilber
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| |
Collapse
|
3
|
In heart failure reactivation of RNA-binding proteins is associated with the expression of 1,523 fetal-specific isoforms. PLoS Comput Biol 2022; 18:e1009918. [PMID: 35226669 PMCID: PMC8912908 DOI: 10.1371/journal.pcbi.1009918] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/10/2022] [Accepted: 02/10/2022] [Indexed: 01/03/2023] Open
Abstract
Reactivation of fetal-specific genes and isoforms occurs during heart failure. However, the underlying molecular mechanisms and the extent to which the fetal program switch occurs remains unclear. Limitations hindering transcriptome-wide analyses of alternative splicing differences (i.e. isoform switching) in cardiovascular system (CVS) tissues between fetal, healthy adult and heart failure have included both cellular heterogeneity across bulk RNA-seq samples and limited availability of fetal tissue for research. To overcome these limitations, we have deconvoluted the cellular compositions of 996 RNA-seq samples representing heart failure, healthy adult (heart and arteria), and fetal-like (iPSC-derived cardiovascular progenitor cells) CVS tissues. Comparison of the expression profiles revealed that reactivation of fetal-specific RNA-binding proteins (RBPs), and the accompanied re-expression of 1,523 fetal-specific isoforms, contribute to the transcriptome differences between heart failure and healthy adult heart. Of note, isoforms for 20 different RBPs were among those that reverted in heart failure to the fetal-like expression pattern. We determined that, compared with adult-specific isoforms, fetal-specific isoforms encode proteins that tend to have more functions, are more likely to harbor RBP binding sites, have canonical sequences at their splice sites, and contain typical upstream polypyrimidine tracts. Our study suggests that compared with healthy adult, fetal cardiac tissue requires stricter transcriptional regulation, and that during heart failure reversion to this stricter transcriptional regulation occurs. Furthermore, we provide a resource of cardiac developmental stage-specific and heart failure-associated genes and isoforms, which are largely unexplored and can be exploited to investigate novel therapeutics for heart failure. Heart failure is a chronic condition in which the heart does not pump enough blood. It has been shown that in heart failure, the adult heart reverts to a fetal-like metabolic state and oxygen consumption. Additionally, genes and isoforms that are expressed in the heart only during fetal development (i.e. not in the healthy adult heart) are turned on in heart failure. However, the underlying molecular mechanisms and the extent to which the switch to a fetal gene program occurs remains unclear. In this study, we initially characterized the differences between the fetal and adult heart transcriptomes (entire set of expressed genes and isoforms). We found that RNA binding proteins (RBPs), a family of genes that regulate multiple aspects of a transcript’s maturation, including transcription, splicing and post-transcriptional modifications, play a central role in the differences between fetal and adult heart tissues. We observed that many RBPs that are only expressed in the heart during fetal development become reactivated in heart failure, resulting in the expression of 1,523 fetal-specific isoforms. These findings suggest that reactivation of fetal-specific RBPs in heart failure drives a transcriptome-wide switch to expression of fetal-specific isoforms; and hence that RBPs could potentially serve as novel therapeutic targets.
Collapse
|
4
|
Peng DW, Lai YY, Luo XS, Li X, Deng CY, Guo HM, Zhao JF, Yang H, Liu Y, Wang ZY, Xu YW, Kuang SJ, Wu SL, Xue YM, Rao F. Connexin 43 participates in atrial electrical remodelling through colocalization with calcium channels in atrial myocytes. Clin Exp Pharmacol Physiol 2021; 49:25-34. [PMID: 34438468 DOI: 10.1111/1440-1681.13580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
Atrial fibrillation (AF) is associated with atrial conduction disturbances caused by electrical and/or structural remodelling. In the present study, we hypothesized that connexin might interact with the calcium channel through forming a protein complex and, then, participates in the pathogenesis of AF. Western blot and whole-cell patch clamp showed that protein levels of Cav1.2 and connexin 43 (Cx43) and basal ICa , L were decreased in AF subjects compared to sinus rhythm (SR) controls. In cultured atrium-derived myocytes (HL-1 cells), knocking-down of Cx43 or incubation with 30 mmol/L glycyrrhetinic acid significantly inhibited protein levels of Cav1.2 and Cav3.1 and the current density of ICa , L and ICa , T . Incubation with nifedipine or mibefradil decreased the protein level of Cx43 in HL-1 cells. Moreover, Cx43 was colocalized with Cav1.2 and Cav3.1 in atrial myocytes. Therefore, Cx43 might regulate the ICa , L and ICa , T through colocalization with calcium channel subunits in atrial myocytes, representing a potential pathogenic mechanism in AF.
Collapse
Affiliation(s)
- De-Wei Peng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Ying-Yu Lai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xue-Shan Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xin Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Chun-Yu Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Hui-Ming Guo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jun-Fei Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hui Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yang Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Zhao-Yu Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yu-Wen Xu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Su-Juan Kuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Shu-Lin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yu-Mei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Fang Rao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| |
Collapse
|
5
|
Mibefradil Alleviates High-Glucose-induced Cardiac Hypertrophy by Inhibiting PI3K/Akt/mTOR-mediated Autophagy. J Cardiovasc Pharmacol 2021; 76:246-254. [PMID: 32433360 DOI: 10.1097/fjc.0000000000000844] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cardiac hypertrophy causes heart failure and is associated with hyperglycemia in patients with diabetes mellitus. Mibefradil, which acts as a T-type calcium channel blocker, exerts beneficial effects in patients with heart failure. In this study, we explored the effects and mechanism of mibefradil on high-glucose-induced cardiac hypertrophy in H9c2 cells. H9c2 cells were incubated in a high-glucose medium and then treated with different concentrations of mibefradil in the presence or absence of the Akt inhibitor MK2206 or mTOR inhibitor rapamycin. Cell size was evaluated through immunofluorescence, and mRNA expression of cardiac hypertrophy markers (atrial natriuretic peptide, brain natriuretic peptide, and β-myosin heavy chain) was assessed by using quantitative real-time polymerase chain reaction. Changes in the expression of p-PI3K, p-Akt, and p-mTOR were evaluated using Western blotting, and autophagosome formation was detected using transmission electron microscopy. Our results indicate that mibefradil reduced the size of H9c2 cells, decreased mRNA expression of atrial natriuretic peptide, brain natriuretic peptide, and β-myosin heavy chain, and decreased the level of autophagic flux. However, MK2206 and rapamycin induced autophagy and reversed the effects of mibefradil on high-glucose-induced H9c2 cells. In conclusion, mibefradil ameliorated high-glucose-induced cardiac hypertrophy by activating the PI3K/Akt/mTOR pathway and inhibiting excessive autophagy. Our study shows that mibefradil can be used therapeutically to ameliorate cardiac hypertrophy in patients with diabetes mellitus.
Collapse
|
6
|
Zhang X, Li Y, Zhang X, Piacentino V, Harris DM, Berretta R, Margulies KB, Houser SR, Chen X. A low voltage activated Ca 2+ current found in a subset of human ventricular myocytes. Channels (Austin) 2020; 14:231-245. [PMID: 32684070 PMCID: PMC7515576 DOI: 10.1080/19336950.2020.1794420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Low voltage activated (ICa-LVA) calcium currents including Cav1.3 and T-type calcium current (ICa-T) have not been reported in adult human left ventricular myocytes (HLVMs). We tried to examine their existence and possible correlation with etiology and patient characteristics in a big number of human LVMs isolated from explanted terminally failing (F) hearts, failing hearts with left ventricular assist device (F-LVAD) and nonfailing (NF) human hearts. LVA (ICa-LVA) was determined by subtracting L-type Ca2+ current (ICa-L) recorded with the holding potential of −50 mV from total Ca2+ current recorded with the holding potential of −90 mV or −70 mV. ICa- LVA was further tested with its sensitivity to 100 µM CdCl2 and tetrodotoxin. Three HLVMs (3 of 137 FHLVMs) from 2 (N = 30 hearts) failing human hearts, of which one was idiopathic and the other was due to primary pulmonary hypertension, were found with ICa-LVA. ICa-LVA in one FHLVM was not sensitive to 100 µM CdCl2 while ICa-LVA in another two FHLVMs was not sensitive to tetrodotoxin. It peaked at the voltage of −40~-20 mV and had a time-dependent decay faster than ICa-L but slower than sodium current (INa). ICa-LVA was not found in any HLVMs from NF (75 HLVMs from 17 hearts) or F-LVAD hearts (82 HLVMs from 18 hearts) but a statistically significant correlation could not be established. In conclusion, ICa-LVA was detected in some HLVMs of a small portion of human hearts that happened to be nonischemic failing hearts.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Infection Diseases The First Affiliated Hospital of China Medical University , Shenyang China.,Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Yijia Li
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Xiaoying Zhang
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Valentino Piacentino
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA.,Department Grand Strand Surgical Care, Grand Strand Regional Medical Center , Myrtle Beach, SC
| | - David M Harris
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA.,College of Medicine, University of Central Florida , Orlando, Florida, USA
| | - Remus Berretta
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Kenneth B Margulies
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA.,Department of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| | - Steven R Houser
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Xiongwen Chen
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| |
Collapse
|
7
|
Yuan SM. Fetal Arrhythmias: Genetic Background and Clinical Implications. Pediatr Cardiol 2019; 40:247-256. [PMID: 30478614 DOI: 10.1007/s00246-018-2008-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
Abstract
Fetal arrhythmias are a common phenomenon of pregnancies. However, debates remain with regard to the etiologies and early treatment of choices for severe fetal arrhythmias. The gene regulatory networks govern cardiac conduction system development to produce distinct nodal and fast conduction phenotypes. The slow conduction properties of nodes that display automaticity are determined by the cardiac ion channel genes, whereas the fast conduction properties are regulated by the transcription factors. Mutations of genes specific for the developmental processes and/or functional status of cardiac conduction system including ion channel promoter (minK-lacZ), GATA family of zinc finger proteins (GATA4), the homeodomain transcription factor (Nkx2.5), the homeodomain-only protein (Hop) and the T-box transcription factors (Tbx2, Tbx3 and Tbx5), hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) and connexins, may cause fetal arrhythmias. It is expected that development of investigational antiarrhythmic agents based on genetic researches on cardiac conduction system, and clinical application of percutaneously implantable fetal pacemaker for the treatment of fetal arrhythmias would come to true.
Collapse
Affiliation(s)
- Shi-Min Yuan
- Department of Cardiothoracic Surgery, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, 389 Longdejing Street, Chengxiang District, Putian, 351100, Fujian Province, People's Republic of China.
| |
Collapse
|
8
|
Voltage-Dependent Sarcolemmal Ion Channel Abnormalities in the Dystrophin-Deficient Heart. Int J Mol Sci 2018; 19:ijms19113296. [PMID: 30360568 PMCID: PMC6274787 DOI: 10.3390/ijms19113296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/28/2022] Open
Abstract
Mutations in the gene encoding for the intracellular protein dystrophin cause severe forms of muscular dystrophy. These so-called dystrophinopathies are characterized by skeletal muscle weakness and degeneration. Dystrophin deficiency also gives rise to considerable complications in the heart, including cardiomyopathy development and arrhythmias. The current understanding of the pathomechanisms in the dystrophic heart is limited, but there is growing evidence that dysfunctional voltage-dependent ion channels in dystrophin-deficient cardiomyocytes play a significant role. Herein, we summarize the current knowledge about abnormalities in voltage-dependent sarcolemmal ion channel properties in the dystrophic heart, and discuss the potentially underlying mechanisms, as well as their pathophysiological relevance.
Collapse
|
9
|
Okada M, Imoto K, Sugiyama A, Yasuda J, Yamawaki H. New Insights into the Role of Basement Membrane-Derived Matricryptins in the Heart. Biol Pharm Bull 2018; 40:2050-2060. [PMID: 29199230 DOI: 10.1248/bpb.b17-00308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM), which contributes to structural homeostasis as well as to the regulation of cellular function, is enzymatically cleaved by proteases, such as matrix metalloproteinases and cathepsins, in the normal and diseased heart. During the past two decades, matricryptins have been defined as fragments of ECM with a biologically active cryptic site, namely the 'matricryptic site,' and their biological activities have been initially identified and clarified, including anti-angiogenic and anti-tumor effects. Thus, matricryptins are expected to be novel anti-tumor drugs, and thus widely investigated. Although there are a smaller number of studies on the expression and function of matricryptins in fields other than cancer research, some matricryptins have been recently clarified to have biological functions beyond an anti-angiogenic effect in heart. This review particularly focuses on the expression and function of basement membrane-derived matricryptins, including arresten, canstatin, tumstatin, endostatin and endorepellin, during cardiac diseases leading to heart failure such as cardiac hypertrophy and myocardial infarction.
Collapse
Affiliation(s)
- Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Keisuke Imoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Akira Sugiyama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Jumpei Yasuda
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| |
Collapse
|
10
|
Khamseekaew J, Kumfu S, Palee S, Wongjaikam S, Srichairatanakool S, Fucharoen S, Chattipakorn SC, Chattipakorn N. Effects of the iron chelator deferiprone and the T-type calcium channel blocker efonidipine on cardiac function and Ca 2+ regulation in iron-overloaded thalassemic mice. Cell Calcium 2018; 72:18-25. [DOI: 10.1016/j.ceca.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 01/07/2023]
|
11
|
Haverinen J, Hassinen M, Dash SN, Vornanen M. Expression of calcium channel transcripts in the zebrafish heart: dominance of T-type channels. ACTA ACUST UNITED AC 2018; 221:jeb.179226. [PMID: 29739832 DOI: 10.1242/jeb.179226] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022]
Abstract
Calcium channels are necessary for cardiac excitation-contraction (E-C) coupling, but Ca2+ channel composition of fish hearts is still largely unknown. To this end, we determined transcript expression of Ca2+ channels in the heart of zebrafish (Danio rerio), a popular model species. Altogether, 18 Ca2+ channel α-subunit genes were expressed in both atrium and ventricle. Transcripts for 7 L-type (Cav1.1a, Cav1.1b, Cav1.2, Cav1.3a, Cav1.3b, Cav1.4a, Cav1.4b), 5 T-type (Cav3.1, Cav3.2a, Cav3.2b, Cav3.3a, Cav3.3b) and 6 P/Q-, N- and R-type (Cav2.1a, Cav2.1b, Cav2.2a, Cav2.2b, Cav2.3a, Cav2.3b) Ca2+ channels were expressed. In the ventricle, T-type channels formed 54.9%, L-type channels 41.1% and P/Q-, N- and R-type channels 4.0% of the Ca2+ channel transcripts. In the atrium, the relative expression of T-type and L-type Ca2+ channel transcripts was 64.1% and 33.8%, respectively (others accounted for 2.1%). Thus, at the transcript level, T-type Ca2+ channels are prevalent in zebrafish atrium and ventricle. At the functional level, peak densities of ventricular T-type (ICaT) and L-type (ICaL) Ca2+ current were 6.3±0.8 and 7.7±0.8 pA pF-1, respectively. ICaT mediated a sizeable sarcolemmal Ca2+ influx into ventricular myocytes: the increment in total cellular Ca2+ content via ICaT was 41.2±7.3 µmol l-1, which was 31.7% of the combined Ca2+ influx (129 µmol l-1) via ICaT and ICaL (88.5±20.5 µmol l-1). The diversity of expressed Ca2+ channel genes in zebrafish heart is high, but dominated by the members of the T-type subfamily. The large ventricular ICaT is likely to play a significant role in E-C coupling.
Collapse
Affiliation(s)
- Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Minna Hassinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Surjya Narayan Dash
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland.,Neuroscience Center and Department of Anatomy, Faculty of Medicine, University of Helsinki, PO Box 63, 00014 Helsinki, Finland
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
12
|
Abstract
Although the mechanism of sudden cardiac death (SCD) in heart failure is not completely known, genetic variations are known to play key roles in this process. Increasing numbers of mutations and variants are being discovered through genome-wide association studies. The genetic variations involved in the mechanisms of SCD have aroused widespread concern. Comprehensive understanding of the genetic variations involved in SCD may help prevent it. To this end, we briefly reviewed the genetic variations involved in SCD and their associations and interactions, and observed that cardiac ion channels are the core molecules involved in this process. Genetic variations involved in cardiac structure, cardiogenesis and development, cell division and differentiation, and DNA replication and transcription are all speculated to be loci involved in SCD. Additionally, the systems involved in neurohumoral regulation as well as substance and energy metabolism are also potentially responsible for susceptibility to SCD. They form an elaborate network and mutually interact with each other to govern the fate of SCD-susceptible individuals.
Collapse
|
13
|
Yan S, Huang P, Wang Y, Zeng X, Zhang Y. The Venom of Ornithoctonus huwena affect the electrophysiological stability of neonatal rat ventricular myocytes by inhibiting sodium, potassium and calcium current. Channels (Austin) 2018. [PMID: 29532737 PMCID: PMC5972801 DOI: 10.1080/19336950.2018.1449497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Spider venoms are known to contain various toxins that are used as an effective means to capture their prey or to defend themselves against predators. An investigation of the properties of Ornithoctonus huwena (O.huwena) crude venom found that the venom can block neuromuscular transmission of isolated mouse phrenic nerve-diaphragm and sciatic nerve-sartorius preparations. However, little is known about its electrophysiological effects on cardiac myocytes. In this study, electrophysiological activities of ventricular myocytes were detected by 100 μg/mL venom of O.huwena, and whole cell patch-clamp technique was used to study the acute effects of the venom on action potential (AP), sodium current (INa), potassium currents (IKr, IKs, Ito1 and IK1) and L-type calcium current (ICaL). The results indicated that the venom prolongs APD90 in a frequency-dependent manner in isolated neonatal rat ventricular myocytes. 100 μg/mL venom inhibited 72.3 ± 3.6% INa current, 58.3 ± 4.2% summit current and 54 ± 6.1% the end current of IKr, and 65 ± 3.3% ICaL current, yet, didn't have obvious effect on IKs, Ito1 and IK1 currents. In conclusion, the O.huwena venom represented a multifaceted pharmacological profile. It contains abundant of cardiac channel antagonists and might be valuable tools for investigation of both channels and anti- arrhythmic therapy development.
Collapse
Affiliation(s)
- Sha Yan
- a Department of Dermatology, Xiangya Hospital , Central South University , Changsha , China.,b Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province , Central South University , Changsha , Hunan , China
| | - Pengfei Huang
- c The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences , Hunan Normal University , Changsha , P. R. China.,d The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development , College of Life Sciences, Hunan Normal University , Changsha , China
| | - Ying Wang
- c The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences , Hunan Normal University , Changsha , P. R. China.,d The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development , College of Life Sciences, Hunan Normal University , Changsha , China
| | - Xiongzhi Zeng
- c The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences , Hunan Normal University , Changsha , P. R. China.,d The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development , College of Life Sciences, Hunan Normal University , Changsha , China
| | - Yiya Zhang
- a Department of Dermatology, Xiangya Hospital , Central South University , Changsha , China.,b Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province , Central South University , Changsha , Hunan , China.,c The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences , Hunan Normal University , Changsha , P. R. China.,d The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development , College of Life Sciences, Hunan Normal University , Changsha , China
| |
Collapse
|
14
|
Rubi L, Todt H, Kubista H, Koenig X, Hilber K. Calcium current properties in dystrophin-deficient ventricular cardiomyocytes from aged mdx mice. Physiol Rep 2018; 6:e13567. [PMID: 29333726 PMCID: PMC5789658 DOI: 10.14814/phy2.13567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), caused by mutations in the gene encoding for the cytoskeletal protein dystrophin, is linked with severe cardiac complications including cardiomyopathy development and cardiac arrhythmias. We and others recently reported that currents through L-type calcium (Ca) channels were significantly increased, and channel inactivation was reduced in dystrophin-deficient ventricular cardiomyocytes derived from the mdx mouse, the most commonly used animal model for human DMD. These gain-of-function Ca channel abnormalities may enhance the risk of Ca-dependent arrhythmias and cellular Ca overload in the dystrophic heart. All studies, which have so far investigated L-type Ca channel properties in dystrophic cardiomyocytes, have used hearts from either neonatal or young adult mdx mice as cell source. In consequence, the dimension of the Ca channel abnormalities present in the severely-diseased aged dystrophic heart has remained unknown. Here, we have studied potential abnormalities in Ca currents and intracellular Ca transients in ventricular cardiomyocytes derived from aged dystrophic mdx mice. We found that both the L-type and T-type Ca current properties of mdx cardiomyocytes were similar to those of myocytes derived from aged wild-type mice. Accordingly, Ca release from the sarcoplasmic reticulum was normal in cardiomyocytes from aged mdx mice. This suggests that, irrespective of the presence of a pronounced cardiomyopathy in aged mdx mice, Ca currents and Ca release in dystrophic cardiomyocytes are normal. Finally, our data imply that dystrophin- regulation of L-type Ca channel function in the heart is lost during aging.
Collapse
MESH Headings
- Action Potentials
- Aging/metabolism
- Animals
- Calcium/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Channels, T-Type/metabolism
- Calcium Signaling
- Cells, Cultured
- Heart Ventricles/cytology
- Heart Ventricles/growth & development
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
Collapse
Affiliation(s)
- Lena Rubi
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Hannes Todt
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Helmut Kubista
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Xaver Koenig
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Karlheinz Hilber
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
15
|
Ionic mechanisms of the action of anaesthetics on sinoatrial node automaticity. Eur J Pharmacol 2017; 814:63-72. [DOI: 10.1016/j.ejphar.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/06/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022]
|
16
|
Bodi I, Nakayama H, Schwartz A. Tetrodotoxin-sensitive Ca2+ Currents, but No T-type Currents in Normal, Hypertrophied, and Failing Mouse Cardiomyocytes. J Cardiovasc Pharmacol 2016; 68:452-464. [PMID: 27617699 PMCID: PMC5145783 DOI: 10.1097/fjc.0000000000000432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS To obtain functional evidence that ICa,T is involved in the pathogenesis of cardiac hypertrophy and heart failure. We unexpectedly identified ICa(TTX) rather than ICa,T, therefore, we adjusted our aim to encompass these findings. METHODS AND RESULTS We investigated (1) Cav3.1 (α1G) transgenic (Tg) mice compared with nontransgenic (tTA-Ntg); (2) Cav3.1-deficient mice (Cav3.1) compared with wild type (Wt) after chemically and surgically induced cardiac remodeling; and (3) spontaneous hypertensive rats and thoracic aortic constriction (TAC) rats. Whole-cell patch-clamp technique was used to measure ICa in ventricular myocytes. Cav3.1-Tg expressed ICa,T (-18.35 ± 1.02 pA/pF at -40 mV) without signs of compromised cardiac function. While we failed to detect ICa,T after hypertrophic stimuli, instead we demonstrated that both Wt and Cav3.1 mouse exhibit ICa(TTX). Using TAC rats, only 2 of 24 VMs showed ICa,T under our experimental conditions. Without TTX, ICa(TTX) occurred in VMs from Wt, spontaneous hypertensive rats, and TAC rats also. CONCLUSIONS These findings demonstrate for the first time that mouse VMs express ICa(TTX). We suggest that future studies should take into consideration the measuring conditions when interpreting ICa,T reappearance in ventricular myocytes in response to hypertrophic stress. Contamination with ICa(TTX) could possibly confuse the relevance of the data.
Collapse
Affiliation(s)
- Ilona Bodi
- Department of Pediatrics, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hiroyuki Nakayama
- Department of Pediatrics, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | |
Collapse
|
17
|
Endostatin is protective against monocrotaline-induced right heart disease through the inhibition of T-type Ca(2+) channel. Pflugers Arch 2016; 468:1259-1270. [PMID: 27023352 DOI: 10.1007/s00424-016-1810-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/03/2016] [Accepted: 03/15/2016] [Indexed: 12/27/2022]
Abstract
Endostatin (ES), a C-terminal fragment of collagen XVIIIα1, has a potent anti-angiogenic effect. ES prevents tumor proliferation through inhibiting T-type Ca(2+) channel. T-type Ca(2+) channel is re-expressed during heart diseases including monocrotaline (MCT)-induced right heart failure. The present study aimed to clarify the effects of ES on T-type Ca(2+) channel and pathogenesis of MCT-induced right ventricular disease. MCT or saline was injected intraperitoneally to rats. After cardiomyocytes were isolated from right ventricles (RVs), T-type Ca(2+) channel current (I CaT) was measured by a patch-clamp method. After ES small interfering RNA (siRNA) or control siRNA (20 μg) was administrated for 1 week via the right jugular vein 1 week after MCT injection, echocardiography and histological analysis were done. I CaT was significantly increased in RV from MCT-injected rats, and ES significantly inhibited it. The survival rate of ES siRNA-administrated MCT rats (MCT ES si group) was decreased. In echocardiography, although ES siRNA did not affect pulmonary arterial pressure, RV systolic function was impaired in MCT ES si group compared with control siRNA-administrated MCT rats (MCT cont si group). In the histological analysis of RV, ES expression was increased in MCT cont si group, and ES siRNA inhibited it. Furthermore, although MCT cont si group showed only cardiomyocyte hypertrophy, MCT ES si group showed notable enlargement of intercellular spaces. The present study for the first time revealed that ES inhibits T-type Ca(2+) channel activity in RV from MCT-injected rats. ES gene knockdown deteriorates MCT-induced right heart disease. ES is thus cardioprotective possibly through inhibiting T-type Ca(2+) channel activity.
Collapse
|
18
|
Kumfu S, Chattipakorn SC, Fucharoen S, Chattipakorn N. Dual T-type and L-type calcium channel blocker exerts beneficial effects in attenuating cardiovascular dysfunction in iron-overloaded thalassaemic mice. Exp Physiol 2016; 101:521-39. [DOI: 10.1113/ep085517] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences; Mahidol University; Nakhon Pathom Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
19
|
Zhang W, Qu X, Chen B, Snyder M, Wang M, Li B, Tang Y, Chen H, Zhu W, Zhan L, Yin N, Li D, Xie L, Liu Y, Zhang JJ, Fu XY, Rubart M, Song LS, Huang XY, Shou W. Critical Roles of STAT3 in β-Adrenergic Functions in the Heart. Circulation 2016; 133:48-61. [PMID: 26628621 PMCID: PMC4698100 DOI: 10.1161/circulationaha.115.017472] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/02/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND β-Adrenergic receptors (βARs) play paradoxical roles in the heart. On one hand, βARs augment cardiac performance to fulfill the physiological demands, but on the other hand, prolonged activations of βARs exert deleterious effects that result in heart failure. The signal transducer and activator of transcription 3 (STAT3) plays a dynamic role in integrating multiple cytokine signaling pathways in a number of tissues. Altered activation of STAT3 has been observed in failing hearts in both human patients and animal models. Our objective is to determine the potential regulatory roles of STAT3 in cardiac βAR-mediated signaling and function. METHODS AND RESULTS We observed that STAT3 can be directly activated in cardiomyocytes by β-adrenergic agonists. To follow up this finding, we analyzed βAR function in cardiomyocyte-restricted STAT3 knockouts and discovered that the conditional loss of STAT3 in cardiomyocytes markedly reduced the cardiac contractile response to acute βAR stimulation, and caused disengagement of calcium coupling and muscle contraction. Under chronic β-adrenergic stimulation, Stat3cKO hearts exhibited pronounced cardiomyocyte hypertrophy, cell death, and subsequent cardiac fibrosis. Biochemical and genetic data supported that Gαs and Src kinases are required for βAR-mediated activation of STAT3. Finally, we demonstrated that STAT3 transcriptionally regulates several key components of βAR pathway, including β1AR, protein kinase A, and T-type Ca(2+) channels. CONCLUSIONS Our data demonstrate for the first time that STAT3 has a fundamental role in βAR signaling and functions in the heart. STAT3 serves as a critical transcriptional regulator for βAR-mediated cardiac stress adaption, pathological remodeling, and heart failure.
Collapse
Affiliation(s)
- Wenjun Zhang
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.).
| | - Xiuxia Qu
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Biyi Chen
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Marylynn Snyder
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Meijing Wang
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Baiyan Li
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Yue Tang
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Hanying Chen
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Wuqiang Zhu
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Li Zhan
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Ni Yin
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Deqiang Li
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Li Xie
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Ying Liu
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - J Jillian Zhang
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Xin-Yuan Fu
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Michael Rubart
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Long-Sheng Song
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Xin-Yun Huang
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.)
| | - Weinian Shou
- From State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (W. Zhang, X.Q., Y.T., W.S.); Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, IN (W. Zhang, B.L., H.C., W. Zhu, L.Z., N.Y., D.L., L.X., Y.L., M.R., W.S.); Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City (B.C., L.-S.S.); Department of Physiology and Biophysics, Cornell University Weill Medical College, New York, NY (M.S., J.J.Z., X.-Y.H.); Department of Surgery, Indiana University School of Medicine, Indianapolis (M.W.); Department of Pharmacology, Harbin Medical University, Harbin, China (B.L.); Department of Heart Surgery, Xiangya 2nd Hospital, Central South University, Changsha, China (N.Y., L.X.); and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis (X.-Y.F.).
| |
Collapse
|
20
|
Yamada C, Kuwahara K, Yamazaki M, Nakagawa Y, Nishikimi T, Kinoshita H, Kuwabara Y, Minami T, Yamada Y, Shibata J, Nakao K, Cho K, Arai Y, Honjo H, Kamiya K, Nakao K, Kimura T. The renin-angiotensin system promotes arrhythmogenic substrates and lethal arrhythmias in mice with non-ischaemic cardiomyopathy. Cardiovasc Res 2015; 109:162-73. [PMID: 26531129 DOI: 10.1093/cvr/cvv248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 10/29/2015] [Indexed: 11/13/2022] Open
Abstract
AIMS The progression of pathological left ventricular remodelling leads to cardiac dysfunction and contributes to the occurrence of malignant arrhythmias and sudden cardiac death. The underlying molecular mechanisms remain unclear, however. Our aim was to examine the role of the renin-angiotensin system (RAS) in the mechanism underlying arrhythmogenic cardiac remodelling using a transgenic mouse expressing a cardiac-specific dominant-negative form of neuron-restrictive silencer factor (dnNRSF-Tg). This mouse model exhibits progressive cardiac dysfunction leading to lethal arrhythmias. METHODS AND RESULTS Subcutaneous administration of aliskiren, a direct renin inhibitor, significantly suppressed the progression of pathological cardiac remodelling and improved survival among dnNRSF-Tg mice while reducing arrhythmogenicity. Genetic deletion of the angiotensin type 1a receptor (AT1aR) similarly suppressed cardiac remodelling and sudden death. In optical mapping analyses, spontaneous ventricular tachycardia (VT) and fibrillation (VF) initiated by breakthrough-type excitations originating from focal activation sites and maintained by functional re-entry were observed in dnNRSF-Tg hearts. Under constant pacing, dnNRSF-Tg hearts exhibited markedly slowed conduction velocity, which likely contributes to the arrhythmogenic substrate. Aliskiren treatment increased conduction velocity and reduced the incidence of sustained VT. These effects were associated with suppression of cardiac fibrosis and restoration of connexin 43 expression in dnNRSF-Tg ventricles. CONCLUSION Renin inhibition or genetic deletion of AT1aR suppresses pathological cardiac remodelling that leads to the generation of substrates maintaining VT/VF and reduces the occurrence of sudden death in dnNRSF-Tg mice. These findings demonstrate the significant contribution of RAS activation to the progression of arrhythmogenic substrates.
Collapse
Affiliation(s)
- Chinatsu Yamada
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masatoshi Yamazaki
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yasuaki Nakagawa
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toshio Nishikimi
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hideyuki Kinoshita
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshihiro Kuwabara
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takeya Minami
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuko Yamada
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan Department of Peptide Research, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junko Shibata
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazuhiro Nakao
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan Department of Peptide Research, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kosai Cho
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuji Arai
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Haruo Honjo
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kaichiro Kamiya
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
21
|
Pushparaj C, Das A, Purroy R, Nàger M, Herreros J, Pamplona R, Cantí C. Voltage-gated calcium channel blockers deregulate macroautophagy in cardiomyocytes. Int J Biochem Cell Biol 2015; 68:166-75. [PMID: 26429067 DOI: 10.1016/j.biocel.2015.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 09/04/2015] [Accepted: 09/26/2015] [Indexed: 10/23/2022]
Abstract
Voltage-gated calcium channel blockers are widely used for the management of cardiovascular diseases, however little is known about their effects on cardiac cells in vitro. We challenged neonatal ventricular cardiomyocytes (CMs) with therapeutic L-type and T-type Ca(2+) channel blockers (nifedipine and mibefradil, respectively), and measured their effects on cell stress and survival, using fluorescent microscopy, Q-PCR and Western blot. Both nifedipine and mibefradil induced a low-level and partially transient up-regulation of three key mediators of the Unfolded Protein Response (UPR), indicative of endoplasmic (ER) reticulum stress. Furthermore, nifedipine triggered the activation of macroautophagy, as evidenced by increased lipidation of microtubule-associated protein 1 light chain 3 (LC3), decreased levels of polyubiquitin-binding protein p62/SQSTM1 and ubiquitinated protein aggregates, that was followed by cell death. In contrast, mibefradil inhibited CMs constitutive macroautophagy and did not promote cell death. The siRNA-mediated gene silencing approach confirmed the pharmacological findings for T-type channels. We conclude that L-type and T-type Ca(2+) channel blockers induce ER stress, which is divergently transduced into macroautophagy induction and inhibition, respectively, with relevance for cell viability. Our work identifies VGCCs as novel regulators of autophagy in the heart muscle and provides new insights into the effects of VGCC blockers on CMs homeostasis, that may underlie both noxious and cardioprotective effects.
Collapse
Affiliation(s)
- Charumathi Pushparaj
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Arindam Das
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Rosa Purroy
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Mireia Nàger
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Judit Herreros
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Reinald Pamplona
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Carles Cantí
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain.
| |
Collapse
|
22
|
Markandeya YS, Phelan LJ, Woon MT, Keefe AM, Reynolds CR, August BK, Hacker TA, Roth DM, Patel HH, Balijepalli RC. Caveolin-3 Overexpression Attenuates Cardiac Hypertrophy via Inhibition of T-type Ca2+ Current Modulated by Protein Kinase Cα in Cardiomyocytes. J Biol Chem 2015; 290:22085-100. [PMID: 26170457 DOI: 10.1074/jbc.m115.674945] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 12/24/2022] Open
Abstract
Pathological cardiac hypertrophy is characterized by subcellular remodeling of the ventricular myocyte with a reduction in the scaffolding protein caveolin-3 (Cav-3), altered Ca(2+) cycling, increased protein kinase C expression, and hyperactivation of calcineurin/nuclear factor of activated T cell (NFAT) signaling. However, the precise role of Cav-3 in the regulation of local Ca(2+) signaling in pathological cardiac hypertrophy is unclear. We used cardiac-specific Cav-3-overexpressing mice and in vivo and in vitro cardiac hypertrophy models to determine the essential requirement for Cav-3 expression in protection against pharmacologically and pressure overload-induced cardiac hypertrophy. Transverse aortic constriction and angiotensin-II (Ang-II) infusion in wild type (WT) mice resulted in cardiac hypertrophy characterized by significant reduction in fractional shortening, ejection fraction, and a reduced expression of Cav-3. In addition, association of PKCα and angiotensin-II receptor, type 1, with Cav-3 was disrupted in the hypertrophic ventricular myocytes. Whole cell patch clamp analysis demonstrated increased expression of T-type Ca(2+) current (ICa, T) in hypertrophic ventricular myocytes. In contrast, the Cav-3-overexpressing mice demonstrated protection from transverse aortic constriction or Ang-II-induced pathological hypertrophy with inhibition of ICa, T and intact Cav-3-associated macromolecular signaling complexes. siRNA-mediated knockdown of Cav-3 in the neonatal cardiomyocytes resulted in enhanced Ang-II stimulation of ICa, T mediated by PKCα, which caused nuclear translocation of NFAT. Overexpression of Cav-3 in neonatal myocytes prevented a PKCα-mediated increase in ICa, T and nuclear translocation of NFAT. In conclusion, we show that stable Cav-3 expression is essential for protecting the signaling mechanisms in pharmacologically and pressure overload-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Yogananda S Markandeya
- From the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Laura J Phelan
- From the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Marites T Woon
- From the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Alexis M Keefe
- From the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Courtney R Reynolds
- From the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Benjamin K August
- From the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Timothy A Hacker
- From the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - David M Roth
- the Veterans Affairs San Diego Healthcare Systems, San Diego, California 92161, and the Department of Anesthesiology, University of California at San Diego, La Jolla, California 92161
| | - Hemal H Patel
- the Veterans Affairs San Diego Healthcare Systems, San Diego, California 92161, and the Department of Anesthesiology, University of California at San Diego, La Jolla, California 92161
| | - Ravi C Balijepalli
- From the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison, Wisconsin 53706,
| |
Collapse
|
23
|
Curran J, Musa H, Kline CF, Makara MA, Little SC, Higgins JD, Hund TJ, Band H, Mohler PJ. Eps15 Homology Domain-containing Protein 3 Regulates Cardiac T-type Ca2+ Channel Targeting and Function in the Atria. J Biol Chem 2015; 290:12210-21. [PMID: 25825486 DOI: 10.1074/jbc.m115.646893] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 11/06/2022] Open
Abstract
Proper trafficking of membrane-bound ion channels and transporters is requisite for normal cardiac function. Endosome-based protein trafficking of membrane-bound ion channels and transporters in the heart is poorly understood, particularly in vivo. In fact, for select cardiac cell types such as atrial myocytes, virtually nothing is known regarding endosomal transport. We previously linked the C-terminal Eps15 homology domain-containing protein 3 (EHD3) with endosome-based protein trafficking in ventricular cardiomyocytes. Here we sought to define the roles and membrane protein targets for EHD3 in atria. We identify the voltage-gated T-type Ca(2+) channels (CaV3.1, CaV3.2) as substrates for EHD3-dependent trafficking in atria. Mice selectively lacking EHD3 in heart display reduced expression and targeting of both Cav3.1 and CaV3.2 in the atria. Furthermore, functional experiments identify a significant loss of T-type-mediated Ca(2+) current in EHD3-deficient atrial myocytes. Moreover, EHD3 associates with both CaV3.1 and CaV3.2 in co-immunoprecipitation experiments. T-type Ca(2+) channel function is critical for proper electrical conduction through the atria. Consistent with these roles, EHD3-deficient mice demonstrate heart rate variability, sinus pause, and atrioventricular conduction block. In summary, our findings identify CaV3.1 and CaV3.2 as substrates for EHD3-dependent protein trafficking in heart, provide in vivo data on endosome-based trafficking pathways in atria, and implicate EHD3 as a key player in the regulation of atrial myocyte excitability and cardiac conduction.
Collapse
Affiliation(s)
- Jerry Curran
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology,
| | - Hassan Musa
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - Crystal F Kline
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - Michael A Makara
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - Sean C Little
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - John D Higgins
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - Thomas J Hund
- From the Dorothy M. Davis Heart and Lung Research Institute, Biomedical Engineering,The Ohio State University Wexner Medical Center, Columbus, Ohio 43210 and
| | - Hamid Band
- The Eppley Institute and UNMC-Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Peter J Mohler
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology, Medicine, and
| |
Collapse
|
24
|
Louch WE, Koivumäki JT, Tavi P. Calcium signalling in developing cardiomyocytes: implications for model systems and disease. J Physiol 2015; 593:1047-63. [PMID: 25641733 PMCID: PMC4358669 DOI: 10.1113/jphysiol.2014.274712] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 12/28/2014] [Indexed: 12/15/2022] Open
Abstract
Adult cardiomyocytes exhibit complex Ca(2+) homeostasis, enabling tight control of contraction and relaxation. This intricate regulatory system develops gradually, with progressive maturation of specialized structures and increasing capacity of Ca(2+) sources and sinks. In this review, we outline current understanding of these developmental processes, and draw parallels to pathophysiological conditions where cardiomyocytes exhibit a striking regression to an immature state of Ca(2+) homeostasis. We further highlight the importance of understanding developmental physiology when employing immature cardiomyocyte models such as cultured neonatal cells and stem cells.
Collapse
Affiliation(s)
- William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo0424, Oslo, Norway
- K. G. Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo0316, Oslo, Norway
| | - Jussi T Koivumäki
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical ComputingOslo, Norway
| | - Pasi Tavi
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| |
Collapse
|
25
|
Ectopic automaticity induced in ventricular myocytes by transgenic overexpression of HCN2. J Mol Cell Cardiol 2015; 80:81-9. [DOI: 10.1016/j.yjmcc.2014.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/05/2014] [Accepted: 12/22/2014] [Indexed: 11/22/2022]
|
26
|
Balycheva M, Faggian G, Glukhov AV, Gorelik J. Microdomain-specific localization of functional ion channels in cardiomyocytes: an emerging concept of local regulation and remodelling. Biophys Rev 2015; 7:43-62. [PMID: 28509981 PMCID: PMC5425752 DOI: 10.1007/s12551-014-0159-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/18/2014] [Indexed: 12/26/2022] Open
Abstract
Cardiac excitation involves the generation of action potential by individual cells and the subsequent conduction of the action potential from cell to cell through intercellular gap junctions. Excitation of the cellular membrane results in opening of the voltage-gated L-type calcium ion (Ca2+) channels, thereby allowing a small amount of Ca2+ to enter the cell, which in turn triggers the release of a much greater amount of Ca2+ from the sarcoplasmic reticulum, the intracellular Ca2+ store, and gives rise to the systolic Ca2+ transient and contraction. These processes are highly regulated by the autonomic nervous system, which ensures the acute and reliable contractile function of the heart and the short-term modulation of this function upon changes in heart rate or workload. It has recently become evident that discrete clusters of different ion channels and regulatory receptors are present in the sarcolemma, where they form an interacting network and work together as a part of a macro-molecular signalling complex which in turn allows the specificity, reliability and accuracy of the autonomic modulation of the excitation-contraction processes by a variety of neurohormonal pathways. Disruption in subcellular targeting of ion channels and associated signalling proteins may contribute to the pathophysiology of a variety of cardiac diseases, including heart failure and certain arrhythmias. Recent methodological advances have made it possible to routinely image the topography of live cardiomyocytes, allowing the study of clustering functional ion channels and receptors as well as their coupling within a specific microdomain. In this review we highlight the emerging understanding of the functionality of distinct subcellular microdomains in cardiac myocytes (e.g. T-tubules, lipid rafts/caveolae, costameres and intercalated discs) and their functional role in the accumulation and regulation of different subcellular populations of sodium, Ca2+ and potassium ion channels and their contributions to cellular signalling and cardiac pathology.
Collapse
Affiliation(s)
- Marina Balycheva
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
- Cardiosurgery Department, University of Verona School of Medicine, Verona, Italy
| | - Giuseppe Faggian
- Cardiosurgery Department, University of Verona School of Medicine, Verona, Italy
| | - Alexey V Glukhov
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
27
|
Kuwahara K, Kimura T. The organ-protective effect of N-type Ca(2+) channel blockade. Pharmacol Ther 2015; 151:1-7. [PMID: 25659931 DOI: 10.1016/j.pharmthera.2015.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/20/2015] [Indexed: 01/13/2023]
Abstract
The six subtypes of voltage-dependent Ca(2+) channels (VDCCs) mediate a wide range of physiological responses. N-type VDCCs (NCCs) were originally identified as a high voltage-activated Ca(2+) channel selectively blocked by omega-conotoxin (ω-CTX)-GVIA. Predominantly localized in the nervous system, NCCs are key regulators of neurotransmitter release. Both pharmacological blockade with ω-CTX-GVIA and, more recently, mice lacking CNCNA1B, encoding the α1B subunit of NCC, have been used to assess the physiological and pathophysiological functions of NCCs, revealing in part their significant roles in sympathetic nerve activation and nociceptive transmission. The evidence now available indicates that NCCs are a potentially useful therapeutic target for the treatment of several pathological conditions. Efforts are therefore being made to develop effective NCC blockers, including both synthetic ω-CTX-GVIA derivatives and small-molecule inhibitors. Cilnidipine, for example, is a dihydropyridine L-type VDCC blocking agent that also possesses significant NCC blocking ability. As over-activation of the sympathetic nervous system appears to contribute to the pathological processes underlying cardiovascular, renal and metabolic diseases, NCC blockade could be a useful approach to treating these ailments. In this review article, we provide an overview of what is currently known about the physiological and pathophysiological activities of NCCs and the potentially beneficial effects of NCC blockade in several disease conditions, in particular cardiovascular diseases.
Collapse
Affiliation(s)
- Koichiro Kuwahara
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
28
|
Ito J. [Steroid hormones' genomic and non-genomic actions on cardiac voltage-gated calcium channels]. Nihon Yakurigaku Zasshi 2014; 144:206-210. [PMID: 25381888 DOI: 10.1254/fpj.144.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
29
|
Du CK, Zhan DY, Morimoto S, Akiyama T, Schwenke DO, Hosoda H, Kangawa K, Shirai M. Survival benefit of ghrelin in the heart failure due to dilated cardiomyopathy. Pharmacol Res Perspect 2014; 2:e00064. [PMID: 25505608 PMCID: PMC4186424 DOI: 10.1002/prp2.64] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 11/07/2022] Open
Abstract
Although ghrelin has been demonstrated to improve cardiac function in heart failure, its therapeutic efficacy on the life expectancy remains unknown. We aim to examine whether ghrelin can improve the life survival in heart failure using a mouse model of inherited dilated cardiomyopathy (DCM) caused by a deletion mutation ΔK210 in cardiac troponin T (cTnT). From 30 days of age, ghrelin (150 μg/kg) was administered subcutaneously to DCM mice once daily, control mice received saline only. The survival rates were compared between the two groups for 30 days. After 30-day treatment, functional and morphological measurements were conducted. Ghrelin-treated DCM mice had significantly prolonged life spans compared with saline-treated control DCM mice. Echocardiography showed that ghrelin reduced left ventricular (LV) end-diastolic dimensions and increased LV ejection fraction. Moreover, histoanatomical data revealed that ghrelin decreased the heart-to-body weight ratio, prevented cardiac remodeling and fibrosis, and markedly decreased the expression of brain natriuretic peptide. Telemetry recording and heart rate variability analysis showed that ghrelin suppressed the excessive cardiac sympathetic nerve activity (CSNA) and recovered the cardiac parasympathetic nerve activity. These results suggest that ghrelin has therapeutic benefits for survival as well as for the cardiac function and remodeling in heart failure probably through suppression of CSNA and recovery of cardiac parasympathetic nerve activity.
Collapse
Affiliation(s)
- Cheng-Kun Du
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute Osaka, Japan
| | - Dong-Yun Zhan
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute Osaka, Japan
| | - Sachio Morimoto
- Department of Clinical Pharmacology, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan
| | - Tsuyoshi Akiyama
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute Osaka, Japan
| | - Daryl O Schwenke
- Department of Physiology, University of Otago Otago, New Zealand
| | - Hiroshi Hosoda
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute Osaka, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute Osaka, Japan
| | - Mikiyasu Shirai
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute Osaka, Japan
| |
Collapse
|
30
|
Yamada Y, Kinoshita H, Kuwahara K, Nakagawa Y, Kuwabara Y, Minami T, Yamada C, Shibata J, Nakao K, Cho K, Arai Y, Yasuno S, Nishikimi T, Ueshima K, Kamakura S, Nishida M, Kiyonaka S, Mori Y, Kimura T, Kangawa K, Nakao K. Inhibition of N-type Ca2+ channels ameliorates an imbalance in cardiac autonomic nerve activity and prevents lethal arrhythmias in mice with heart failure. Cardiovasc Res 2014; 104:183-93. [DOI: 10.1093/cvr/cvu185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Hu CW, Li Q, Zhang Y, Li YH, Jiang HC, Liu MY, Li SL, Han W, Dong DL. Bone morphogenetic protein-4 induces upregulation of Cav3.1 Ca²⁺ channels in HL-1 atrial myocytes. Pflugers Arch 2014; 466:2049-57. [PMID: 24510064 DOI: 10.1007/s00424-014-1459-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/02/2013] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
Cardiac T-type Ca(2+) channels are reexpressed in atrial and ventricular myocytes under various pathological conditions such as post-myocardial infarction, hypertrophy, and heart failure, but relatively little is known about the mechanisms. Our previous study found that bone morphogenetic protein-4 (BMP4) was reexpressed in pathological cardiac hypertrophy models and BMP4-mediated cardiomyocyte hypertrophy. We hypothesized that BMP4 could upregulate cardiac T-type Ca(2+) channels in HL-1 atrial myocytes. The T-type Ca(2+) currents were recorded by using the patch-clamp technique, and the expressions of Cav3.1 and Cav3.2 were measured by real-time PCR method in HL-1 cells. BMP4 and Cav3.1 mRNA expressions increased in the left atrium from the pressure overload-induced hypertrophy of mice hearts. BMP4 treatment for 48 h induced increase of Cav3.1 but not Cav3.2 mRNA expression in HL-1 cells, and the increase was inhibited by BMP4 inhibitor noggin. Acute treatment with BMP4 did not affect T-type Ca(2+) currents, but chronic treatment (48 h) significantly increased the amplitude of T-type Ca(2+) currents in HL-1 cells. Chronic treatment with BMP4 induced upregulation of NADPH oxidase-4 (NOX4), increase of reactive oxygen species (ROS) level, and activation of mitogen-activated protein kinase (MAPK)-activated protein kinases c-jun N-terminal kinases (JNK) and p38. BMP4-induced upregulation of Cav3.1 mRNA was inhibited by NADPH oxidase inhibitor apocynin, the radical scavenger tempol, JNK inhibitor SP600125, and p38 inhibitor SB203580. In conclusion, BMP4 induces upregulation of Cav3.1 Ca(2+) channels and T-type Ca(2+) currents in HL-1 atrial myocytes through ROS/MAPK pathways.
Collapse
Affiliation(s)
- Chao-Wei Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Baojian Road 157, Harbin, 150086, Heilongjiang Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mao Y, Tokudome T, Kishimoto I, Otani K, Hosoda H, Nagai C, Minamino N, Miyazato M, Kangawa K. Hexarelin treatment in male ghrelin knockout mice after myocardial infarction. Endocrinology 2013; 154:3847-54. [PMID: 23861368 DOI: 10.1210/en.2013-1291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both ghrelin and the synthetic analog hexarelin are reported to possess cardioprotective actions that are mainly exerted through different receptors. However, their effects on acute myocardial infarction have not been compared in vivo. This study aimed to clarify whether hexarelin treatment can compensate for ghrelin deficiency in ghrelin-knockout mice and to compare the effects of hexarelin (400 nmol/kg/d, sc) and equimolar ghrelin treatment after myocardial infarction. Myocardial infarction was produced by left coronary artery ligation in male ghrelin-knockout mice, which then received ghrelin, hexarelin, or vehicle treatment for 2 weeks. The mortality within 2 weeks was significantly lower in the hexarelin group (6.7%) and ghrelin group (14.3%) than in the vehicle group (50%) (P < .05). A comparison of cardiac function 2 weeks after infarction showed that in the ghrelin and hexarelin treatment groups, cardiac output was greater, whereas systolic function, represented by ejection fraction, and diastolic function, represented by dP/dt min (peak rate of pressure decline), were significantly superior compared with the vehicle group (P < .05). Hexarelin treatment was more effective than ghrelin treatment, as indicated by the ejection fraction, dP/dt max (peak rate of pressure rise), and dP/dt min. Telemetry recording and heart rate variability analysis demonstrated that sympathetic nervous activity was clearly suppressed in the hexarelin and ghrelin groups relative to the vehicle group. Our data demonstrated that hexarelin treatment can result in better heart function than ghrelin treatment 2 weeks after myocardial infarction in ghrelin-knockout mice, although both hormones have similar effects on heart rate variability and mortality.
Collapse
Affiliation(s)
- Yuanjie Mao
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Early growth response 1 is an early signal inducing Cav3.2 T-type calcium channels during cardiac hypertrophy. Cardiovasc Res 2013; 100:222-30. [DOI: 10.1093/cvr/cvt190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
34
|
Zhou Y, Liang Y, Wei J, Chen J, Tang Q. Lentiviral-mediated p38 MAPK RNAi attenuates aldosterone-induced myocyte apoptosis. Mol Med Rep 2013; 8:493-8. [PMID: 23799545 DOI: 10.3892/mmr.2013.1539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 04/08/2013] [Indexed: 11/06/2022] Open
Abstract
Aldosterone-induced myocyte apoptosis is an important component of cardiovascular disease. While the p38 mitogen-activated protein kinase (p38 MAPK) pathway has been shown to be crucial in myocyte apoptosis, whether aldosterone induces myocyte apoptosis through this pathway remains unclear. In the present study, three individual strands of p38 MAPK short hairpin RNA (ShRNA), delivered by lentiviral vectors (PGLV), were constructed and used to explore the role of p38 MAPK pathway activation in aldosterone-mediated myocyte apoptosis in cultured myocytes and normotensive rats. Aldosterone stimulation increased myocyte apoptosis, caspase-3 expression levels and p38 MAPK mRNA and protein expression levels in vitro and in vivo. PGLV-ShRNA3 transduction decreased aldosterone-mediated myocyte apoptosis and p38 MAPK mRNA and protein expression levels in vitro (all P<0.01). PGLV-ShRNA3 transduction significantly decreased aldosterone-mediated myocyte apoptosis, p38 MAPK mRNA and protein expression levels in normotensive rats (P<0.01, P<0.01 and P<0.05, respectively). Results from the present study suggest that aldosterone directly induces myocyte apoptosis through the p38 MAPK pathway and the gene silencing of p38 MAPK may protect cardiac myocytes from aldosterone-mediated apoptosis.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | | | | | | | | |
Collapse
|
35
|
Kuwabara Y, Kuwahara K, Takano M, Kinoshita H, Arai Y, Yasuno S, Nakagawa Y, Igata S, Usami S, Minami T, Yamada Y, Nakao K, Yamada C, Shibata J, Nishikimi T, Ueshima K, Nakao K. Increased expression of HCN channels in the ventricular myocardium contributes to enhanced arrhythmicity in mouse failing hearts. J Am Heart Assoc 2013; 2:e000150. [PMID: 23709563 PMCID: PMC3698776 DOI: 10.1161/jaha.113.000150] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/30/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND The efficacy of pharmacological interventions to prevent sudden arrhythmic death in patients with chronic heart failure remains limited. Evidence now suggests increased ventricular expression of hyperpolarization-activated cation (HCN) channels in hypertrophied and failing hearts contributes to their arrythmicity. Still, the role of induced HCN channel expression in the enhanced arrhythmicity associated with heart failure and the capacity of HCN channel blockade to prevent lethal arrhythmias remains undetermined. METHODS AND RESULTS We examined the effects of ivabradine, a specific HCN channel blocker, on survival and arrhythmicity in transgenic mice (dnNRSF-Tg) expressing a cardiac-specific dominant-negative form of neuron-restrictive silencer factor, a useful mouse model of dilated cardiomyopathy leading to sudden death. Ivabradine (7 mg/kg per day orally) significantly reduced ventricular tachyarrhythmias and improved survival among dnNRSF-Tg mice while having no significant effect on heart rate or cardiac structure or function. Ivabradine most likely prevented the increase in automaticity otherwise seen in dnNRSF-Tg ventricular myocytes. Moreover, cardiac-specific overexpression of HCN2 in mice (HCN2-Tg) made hearts highly susceptible to arrhythmias induced by chronic β-adrenergic stimulation. Indeed, ventricular myocytes isolated from HCN2-Tg mice were highly susceptible to β-adrenergic stimulation-induced abnormal automaticity, which was inhibited by ivabradine. CONCLUSIONS HCN channel blockade by ivabradine reduces lethal arrhythmias associated with dilated cardiomyopathy in mice. Conversely, cardiac-specific overexpression of HCN2 channels increases arrhythmogenicity of β-adrenergic stimulation. Our findings demonstrate the contribution of HCN channels to the increased arrhythmicity seen in failing hearts and suggest HCN channel blockade is a potentially useful approach to preventing sudden death in patients with heart failure.
Collapse
Affiliation(s)
- Yoshihiro Kuwabara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Koichiro Kuwahara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Makoto Takano
- Department of Physiology, Kurume University School of Medicine, Japan (M.T., S.I.)
| | - Hideyuki Kinoshita
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Yuji Arai
- Department of Bioscience, National Cerebral and Cardiovascular Center Research Institute, Japan (Y.A.)
| | - Shinji Yasuno
- EBM Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan (S.Y., K.U.)
| | - Yasuaki Nakagawa
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Sachiyo Igata
- Department of Physiology, Kurume University School of Medicine, Japan (M.T., S.I.)
| | - Satoru Usami
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Takeya Minami
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Yuko Yamada
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Kazuhiro Nakao
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Chinatsu Yamada
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Junko Shibata
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Toshio Nishikimi
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Kenji Ueshima
- EBM Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan (S.Y., K.U.)
| | - Kazuwa Nakao
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| |
Collapse
|
36
|
Mao Y, Tokudome T, Otani K, Kishimoto I, Miyazato M, Kangawa K. Excessive sympathoactivation and deteriorated heart function after myocardial infarction in male ghrelin knockout mice. Endocrinology 2013; 154:1854-63. [PMID: 23515286 DOI: 10.1210/en.2012-2132] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously demonstrated the protective role of endogenous ghrelin against malignant arrhythmias in the very acute phase of myocardial infarction (MI). However, the role of endogenous ghrelin in the chronic phase is unknown. Therefore, the aim of the current study was to focus on the effects of endogenous ghrelin on cardiac function and sympathetic activation after acute MI. In 46 ghrelin-knockout (KO) and 41 wild-type (WT) male mice, MI was produced by left coronary artery ligation. The mortality due to heart failure within 2 weeks was 0% in WT and 10.9% in KO (P < 0.05). At the end of this period, lung weight/tibial length, atrial natriuretic peptide and brain natriuretic peptide transcripts, end-systolic and end-diastolic volumes were all significantly greater in KO mice, whereas systolic function, represented by ejection fraction (16.4 ± 4.7% vs 25.3 ± 5.1%), end-systolic elastance, and preload-recruitable stroke work, was significantly inferior to that in WT mice (P < 0.05). Telemetry recording and heart rate variability analysis showed that KO mice had stronger sympathetic activation after MI than did WT mice. Metoprolol treatment and ghrelin treatment in KO mice prevented excessive sympathetic activation, decreased plasma epinephrine and norepinephrine levels, and improved heart function and survival rate after MI. Our data demonstrate that endogenous ghrelin plays a crucial role in protecting heart function and reducing mortality after myocardial infarction, and that these effects seem to be partly the result of sympathetic inhibition.
Collapse
Affiliation(s)
- Yuanjie Mao
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Electrical storm: recent pathophysiological insights and therapeutic consequences. Basic Res Cardiol 2013; 108:336. [DOI: 10.1007/s00395-013-0336-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 01/01/2023]
|
38
|
Affiliation(s)
- Koichiro Kuwahara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine
| |
Collapse
|
39
|
Kuwahara K. [Ca2+ channels as novel therapeutic targets in heart failure]. Nihon Yakurigaku Zasshi 2012; 140:255-258. [PMID: 23229630 DOI: 10.1254/fpj.140.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
40
|
Ogura C, Ono K, Miyamoto S, Ikai A, Mitani S, Sugimoto N, Tanaka S, Fujita M. L/T-type and L/N-type calcium-channel blockers attenuate cardiac sympathetic nerve activity in patients with hypertension. Blood Press 2012; 21:367-71. [PMID: 22747420 DOI: 10.3109/08037051.2012.694200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sympathetic nerve activity is augmented by calcium-channel blocker treatment as a result of decreased blood pressure. Dihydropyridine calcium-channel blockers are divided into three different types. The purpose of the present study was to investigate whether treatment effects on hemodynamics, cardiac autonomic nerve activity and plasma norepinephrine levels differ among amlodipine (L type), efonidipine (L + T type) and cilnidipine (L + N type). We enrolled 14 hypertensive patients (seven males, seven females, 70 ± 6 years old) undergoing a monotherapy of amlodipine, efonidipine or cilnidipine into this prospective, open-labeled, randomized, crossover study. At baseline and every 6 months of the treatment period, we repeated the evaluation of hemodynamics, spectral analysis of heart rate variability and plasma norepinephrine levels. Blood pressure and pulse rate were comparable among the three treatments. The low-frequency (LF)/high-frequency (HF) power ratio, an index of cardiac sympathovagal balance, was significantly lower with efonidipine and cilnidipine than with amlodipine, while the HF/total power ratio, an index of cardiac vagal activity, revealed the opposite results. There was no significant correlation between the LF/HF ratio and plasma norepinephrine levels. Antihypertensive monotherapy with efonidipine or cilnidipine attenuates cardiac sympathetic nerve activity more effectively than amlodipine monotherapy.
Collapse
Affiliation(s)
- Chika Ogura
- Human Health Sciences, Kyoto University Graduate School of Medicine, 53 Kawaharacho, Shogoin, Sakyo-ku, Kyoto606 - 8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Schrickel JW, Lickfett L, Lewalter T, Tiemann K, Nickenig G, Baba H, Heusch G, Schulz R, Levkau B. Cardiomyocyte-specific deletion of survivin causes global cardiac conduction defects. Basic Res Cardiol 2012; 107:299. [DOI: 10.1007/s00395-012-0299-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 08/22/2012] [Accepted: 09/04/2012] [Indexed: 11/28/2022]
|
42
|
Gao H, Wang F, Wang W, Makarewich CA, Zhang H, Kubo H, Berretta RM, Barr LA, Molkentin JD, Houser SR. Ca(2+) influx through L-type Ca(2+) channels and transient receptor potential channels activates pathological hypertrophy signaling. J Mol Cell Cardiol 2012; 53:657-67. [PMID: 22921230 DOI: 10.1016/j.yjmcc.2012.08.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/16/2012] [Accepted: 08/08/2012] [Indexed: 01/30/2023]
Abstract
Common cardiovascular diseases such as hypertension and myocardial infarction require that myocytes develop greater than normal force to maintain cardiac pump function. This requires increases in [Ca(2+)]. These diseases induce cardiac hypertrophy and increases in [Ca(2+)] are known to be an essential proximal signal for activation of hypertrophic genes. However, the source of "hypertrophic" [Ca(2+)] is not known and is the topic of this study. The role of Ca(2+) influx through L-type Ca(2+) channels (LTCC), T-type Ca(2+) channels (TTCC) and transient receptor potential (TRP) channels on the activation of calcineurin (Cn)-nuclear factor of activated T cells (NFAT) signaling and myocyte hypertrophy was studied. Neonatal rat ventricular myocytes (NRVMs) and adult feline ventricular myocytes (AFVMs) were infected with an adenovirus containing NFAT-GFP, to determine factors that could induce NFAT nuclear translocation. Four millimolar Ca(2+) or pacing induced NFAT nuclear translocation. This effect was blocked by Cn inhibitors. In NRVMs Nifedipine (Nif, LTCC antagonist) blocked high Ca(2+)-induced NFAT nuclear translocation while SKF-96365 (TRP channel antagonist) and Nickel (Ni, TTCC antagonist) were less effective. The relative potency of these antagonists against Ca(2+) induced NFAT nuclear translocation (Nif>SKF-96365>Ni) was similar to their effects on Ca(2+) transients and the LTCC current. Infection of NRVM with viruses containing TRP channels also activated NFAT-GFP nuclear translocation and caused myocyte hypertrophy. TRP effects were reduced by SKF-96365, but were more effectively antagonized by Nif. These experiments suggest that Ca(2+) influx through LTCCs is the primary source of Ca(2+) to activate Cn-NFAT signaling in NRVMs and AFVMs. While TRP channels cause hypertrophy, they appear to do so through a mechanism involving Ca(2+) entry via LTCCs.
Collapse
Affiliation(s)
- Hui Gao
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Role of specific T-type calcium channel blocker R(−) efonidipine in the regulation of renal medullary circulation. J Hypertens 2012; 30:1620-31. [DOI: 10.1097/hjh.0b013e3283550e9f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Mor M, Beharier O, Levy S, Kahn J, Dror S, Blumenthal D, Gheber LA, Peretz A, Katz A, Moran A, Etzion Y. ZnT-1 enhances the activity and surface expression of T-type calcium channels through activation of Ras-ERK signaling. Am J Physiol Cell Physiol 2012; 303:C192-203. [DOI: 10.1152/ajpcell.00427.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zinc transporter-1 (ZnT-1) is a putative zinc transporter that confers cellular resistance from zinc toxicity. In addition, ZnT-1 has important regulatory functions, including inhibition of L-type calcium channels and activation of Raf-1 kinase. Here we studied the effects of ZnT-1 on the expression and function of T-type calcium channels. In Xenopus oocytes expressing voltage-gated calcium channel (CaV) 3.1 or CaV3.2, ZnT-1 enhanced the low-threshold calcium currents ( IcaT) to 182 ± 15 and 167.95 ± 9.27% of control, respectively ( P < 0.005 for both channels). As expected, ZnT-1 also enhanced ERK phosphorylation. Coexpression of ZnT-1 and nonactive Raf-1 blocked the ZnT-1-mediated ERK phosphorylation and abolished the ZnT-1-induced augmentation of IcaT. In mammalian cells (Chinese hamster ovary), coexpression of CaV3.1 and ZnT-1 increased the IcaT to 166.37 ± 6.37% compared with cells expressing CaV3.1 alone ( P < 0.01). Interestingly, surface expression measurements using biotinylation or total internal reflection fluorescence microscopy indicated marked ZnT-1-induced enhancement of CaV3.1 surface expression. The MEK inhibitor PD-98059 abolished the ZnT-1-induced augmentation of surface expression of CaV3.1. In cultured murine cardiomyocytes (HL-1 cells), transient exposure to zinc, leading to enhanced ZnT-1 expression, also enhanced the surface expression of endogenous CaV3.1 channels. Consistently, in these cells, endothelin-1, a potent activator of Ras-ERK signaling, enhanced the surface expression of CaV3.1 channels in a PD-98059-sensitive manner. Our findings indicate that ZnT-1 enhances the activity of CaV3.1 and CaV3.2 through activation of Ras-ERK signaling. The augmentation of CaV3.1 currents by Ras-ERK activation is associated with enhanced trafficking of the channel to the plasma membrane.
Collapse
Affiliation(s)
- Merav Mor
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Cardiac Arrhythmia Research Laboratory, Soroka University Medical Center and Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ofer Beharier
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Cardiac Arrhythmia Research Laboratory, Soroka University Medical Center and Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shiri Levy
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Joy Kahn
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shani Dror
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Cardiac Arrhythmia Research Laboratory, Soroka University Medical Center and Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Blumenthal
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Levi A. Gheber
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Asher Peretz
- Department of Physiology and Pharmacology, Sackler Medical School, Tel Aviv University, Tel Aviv, Israel
| | - Amos Katz
- Department of Cardiology, Barzilai Medical Center, Ashkelon, Israel; and
- Cardiac Arrhythmia Research Laboratory, Soroka University Medical Center and Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Arie Moran
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yoram Etzion
- Cardiac Arrhythmia Research Laboratory, Soroka University Medical Center and Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
45
|
Li Y, Wang F, Zhang X, Qi Z, Tang M, Szeto C, Li Y, Zhang H, Chen X. β-Adrenergic stimulation increases Cav3.1 activity in cardiac myocytes through protein kinase A. PLoS One 2012; 7:e39965. [PMID: 22808078 PMCID: PMC3396630 DOI: 10.1371/journal.pone.0039965] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/05/2012] [Indexed: 11/18/2022] Open
Abstract
The T-type Ca2+ channel (TTCC) plays important roles in cellular excitability and Ca2+ regulation. In the heart, TTCC is found in the sinoatrial nodal (SAN) and conduction cells. Cav3.1 encodes one of the three types of TTCCs. To date, there is no report regarding the regulation of Cav3.1 by β-adrenergic agonists, which is the topic of this study. Ventricular myocytes (VMs) from Cav3.1 double transgenic (TG) mice and SAN cells from wild type, Cav3.1 knockout, or Cav3.2 knockout mice were used to study β-adrenergic regulation of overexpressed or native Cav3.1-mediated T-type Ca2+ current (ICa-T(3.1)). ICa-T(3.1) was not found in control VMs but was robust in all examined TG-VMs. A β-adrenergic agonist (isoproterenol, ISO) and a cyclic AMP analog (dibutyryl-cAMP) significantly increased ICa-T(3.1) as well as ICa-L in TG-VMs at both physiological and room temperatures. The ISO effect on ICa-L and ICa-T in TG myocytes was blocked by H89, a PKA inhibitor. ICa-T was detected in control wildtype SAN cells but not in Cav3.1 knockout SAN cells, indicating the identity of ICa-T in normal SAN cells is mediated by Cav3.1. Real-time PCR confirmed the presence of Cav3.1 mRNA but not mRNAs of Cav3.2 and Cav3.3 in the SAN. ICa-T in SAN cells from wild type or Cav3.2 knockout mice was significantly increased by ISO, suggesting native Cav3.1 channels can be upregulated by the β-adrenergic (β-AR) system. In conclusion, β-adrenergic stimulation increases ICa-T(3.1) in cardiomyocytes, which is mediated by the cAMP/PKA pathway. The upregulation of ICa-T(3.1) by the β-adrenergic system could play important roles in cellular functions involving Cav3.1.
Collapse
Affiliation(s)
- Yingxin Li
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Fang Wang
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Xiaoying Zhang
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Zhao Qi
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mingxin Tang
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Christopher Szeto
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ying Li
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Hongyu Zhang
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Xiongwen Chen
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
46
|
Komukai M, Tsutsumi T, Ebado M, Takeyama Y. Effect of an L- and T-type calcium channel blocker on 24-hour systolic blood pressure and heart rate in hypertensive patients. Korean Circ J 2012; 42:231-8. [PMID: 22563335 PMCID: PMC3341419 DOI: 10.4070/kcj.2012.42.4.231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/14/2011] [Accepted: 10/04/2011] [Indexed: 12/02/2022] Open
Abstract
Background and Objectives The aim of this study was to evaluate the effects of an L- and T-type calcium channel blocker (CCB) on 24-hour systolic blood pressure (24-hour SBP) and heart rate (24-hour HR) profiles in essential hypertensive patients. Subjects and Methods Thirty-seven consecutive patients were enrolled in this study. The 24-hour SBP and HR were recorded before and after treatment with efonidipine (L- and T-type CCB, 40 mg), after waking. Changes in 24-hour SBP and HR and the diurnal to nocturnal SBP ratio were measured. The best-fit curves of changes in SBP and HR were depicted using a periodic function. Results The mean 24-hour SBP and HR decreased significantly after treatment. The diurnal to nocturnal SBP ratio in dipper-type hypertension cases decreased from 16.7±6.1% to 8.3±9.8% (p<0.05), whereas in non-dipper hypertension cases, it increased from 2.3±2.9% to 7.7±5.1% (p<0.01). The antihypertensive effect was minimal at 5.0 hours after drug administration and it slowly recovered at a constant rate (2.1 mm Hg/h) over 12 hours in dipper cases. The median 24-hour changes in HR in the dipper and non-dipper cases were -2.3/min and -5.4/min, respectively. A continuous reduction in the change in HR was seen from 3.5 to 23 hours after drug administration. Conclusion The antihypertensive action of efonidipine was characterized by a slow recovery of the SBP decrease at a constant rate (2.1 mm Hg/h) and a non-administration time dependent reduction in 24-hour HR.
Collapse
Affiliation(s)
- Masae Komukai
- Division of Cardiology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | | | | | | |
Collapse
|
47
|
Chattipakorn N, Kumfu S, Fucharoen S, Chattipakorn S. Calcium channels and iron uptake into the heart. World J Cardiol 2011; 3:215-8. [PMID: 21860702 PMCID: PMC3158869 DOI: 10.4330/wjc.v3.i7.215] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/04/2011] [Accepted: 07/11/2011] [Indexed: 02/06/2023] Open
Abstract
Iron overload can lead to iron deposits in many tissues, particularly in the heart. It has also been shown to be associated with elevated oxidative stress in tissues. Elevated cardiac iron deposits can lead to iron overload cardiomyopathy, a condition which provokes mortality due to heart failure in iron-overloaded patients. Currently, the mechanism of iron uptake into cardiomyocytes is still not clearly understood. Growing evidence suggests L-type Ca(2+) channels (LTCCs) as a possible pathway for ferrous iron (Fe(2+)) uptake into cardiomyocytes under iron overload conditions. Nevertheless, controversy still exists since some findings on pharmacological interventions and those using different cell types do not support LTCC's role as a portal for iron uptake in cardiac cells. Recently, T-type Ca(2+) channels (TTCC) have been shown to play an important role in the diseased heart. Although TTCC and iron uptake in cardiomyocytes has not been investigated greatly, a recent finding indicated that TTCC could be an important portal in thalassemic hearts. In this review, comprehensive findings collected from previous studies as well as a discussion of the controversy regarding iron uptake mechanisms into cardiomyocytes via calcium channels are presented with the hope that understanding the cellular iron uptake mechanism in cardiomyocytes will lead to improved treatment and prevention strategies, particularly in iron-overloaded patients.
Collapse
Affiliation(s)
- Nipon Chattipakorn
- Nipon Chattipakorn, Sirinart Kumfu, Department of Physiology, Cardiac Electrophysiology Unit, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | | |
Collapse
|
48
|
Kuwahara K, Nakao K. New molecular mechanisms for cardiovascular disease:transcriptional pathways and novel therapeutic targets in heart failure. J Pharmacol Sci 2011; 116:337-42. [PMID: 21757847 DOI: 10.1254/jphs.10r28fm] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genetic remodeling contributes to the progression of heart failure by affecting myocardial cellular function and survival. In our investigation of the transcriptional regulation of cardiac gene expression, we found several transcriptional pathways involved in pathological cardiac remodeling. A transcriptional repressor, neuron-restrictive silencer factor (NRSF), regulates expression of multiple fetal cardiac genes through the activity of histone deacetylases (HDACs). Inhibition of NRSF in the heart results in cardiac dysfunction and sudden arrhythmic death accompanied by re-expression of a number of fetal genes, including those encoding fetal ion channels, such as the T-type Ca²⁺ channel. In the pathological calcineurin--nuclear factor of activated T-cells (NFAT) signaling pathway, transient receptor potential cation channel, subfamily C, member 6 (TRPC6) is a key component of a Ca²⁺-dependent regulatory loop. Indeed, inhibition of TRPC significantly ameliorates this pathological process in a mouse model of cardiac hypertrophy. Moreover, we recently showed that myocardin-related transcription factor-A (MRTF-A), a co-activator of serum response factor (SRF), mediates prohypertrophic signaling by linking the small GTPase Rho-actin dynamics signaling pathway to cardiac gene transcription. Collectively, our studies have revealed the transcriptional network involved in the development of cardiac dysfunction and potential therapeutic targets for the treatment of heart failure.
Collapse
Affiliation(s)
- Koichiro Kuwahara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Japan.
| | | |
Collapse
|
49
|
Fabritz L, Herzig S. Can T-type calcium channels make a change of heart after myocardial infarction? Fiction or fact, and for better or for worse? Cardiovasc Res 2011; 91:373-5. [DOI: 10.1093/cvr/cvr177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
50
|
Virag JAI, Lust RM. Coronary artery ligation and intramyocardial injection in a murine model of infarction. J Vis Exp 2011:2581. [PMID: 21673649 PMCID: PMC3197029 DOI: 10.3791/2581] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mouse models are a valuable tool for studying acute injury and chronic remodeling of the myocardium in vivo. With the advent of genetic modifications to the whole organism or the myocardium and an array of biological and/or synthetic materials, there is great potential for any combination of these to assuage the extent of acute ischemic injury and impede the onset of heart failure pursuant to myocardial remodeling. Here we present the methods and materials used to reliably perform this microsurgery and the modifications involved for temporary (with reperfusion) or permanent coronary artery occlusion studies as well as intramyocardial injections. The effects on the heart that can be seen during the procedure and at the termination of the experiment in addition to histological evaluation will verify efficacy. Briefly, surgical preparation involves anesthetizing the mice, removing the fur on the chest, and then disinfecting the surgical area. Intratracheal intubation is achieved by transesophageal illumination using a fiber optic light. The tubing is then connected to a ventilator. An incision made on the chest exposes the pectoral muscles which will be cut to view the ribs. For ischemia/reperfusion studies, a 1 cm piece of PE tubing placed over the heart is used to tie the ligature to so that occlusion/reperfusion can be customized. For intramyocardial injections, a Hamilton syringe with sterile 30gauge beveled needle is used. When the myocardial manipulations are complete, the rib cage, the pectoral muscles, and the skin are closed sequentially. Line block analgesia is effected by 0.25% marcaine in sterile saline which is applied to muscle layer prior to closure of the skin. The mice are given a subcutaneous injection of saline and placed in a warming chamber until they are sternally recumbent. They are then returned to the vivarium and housed under standard conditions until the time of tissue collection. At the time of sacrifice, the mice are anesthetized, the heart is arrested in diastole with KCl or BDM, rinsed with saline, and immersed in fixative. Subsequently, routine procedures for processing, embedding, sectioning, and histological staining are performed. Nonsurgical intubation of a mouse and the microsurgical manipulations described make this a technically challenging model to learn and achieve reproducibility. These procedures, combined with the difficulty in performing consistent manipulations of the ligature for timed occlusion(s) and reperfusion or intramyocardial injections, can also affect the survival rate so optimization and consistency are critical.
Collapse
Affiliation(s)
- Jitka A I Virag
- Department of Physiology, Brody School of Medicine, East Carolina University, USA.
| | | |
Collapse
|