1
|
Staršíchová A. SR-B1-/-ApoE-R61h/h Mice Mimic Human Coronary Heart Disease. Cardiovasc Drugs Ther 2024; 38:1123-1137. [PMID: 37273155 PMCID: PMC10240136 DOI: 10.1007/s10557-023-07475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Cardiovascular diseases are the leading cause of death in the modern world. Atherosclerosis underlies the majority of these pathologies and may result in sudden life-threatening events such as myocardial infarction or stroke. Current concepts consider a rupture (resp. erosion) of "unstable/vulnerable" atherosclerotic plaques as a primary cause leading to thrombus formation and subsequent occlusion of the artery lumen finally triggering an acute clinical event. We and others described SR-B1-/-ApoE-R61h/h mice mimicking clinical coronary heart disease in all major aspects: from coronary atherosclerosis through vulnerable plaque ruptures leading to thrombus formation/coronary artery occlusion, finally resulting in myocardial infarction/ischemia. SR-B1-/-ApoE-R61h/h mouse provides a valuable model to study vulnerable/occlusive plaques, to evaluate bioactive compounds as well as new anti-inflammatory and "anti-rupture" drugs, and to test new technologies in experimental cardiovascular medicine. This review summarizes and discuss our knowledge about SR-B1-/-ApoE-R61h/h mouse model based on recent publications and experimental observations from the lab.
Collapse
Affiliation(s)
- Andrea Staršíchová
- Graduate School Cell Dynamics and Disease, University of Muenster, Muenster, Germany.
- European Institute for Molecular Imaging, University of Muenster, Muenster, Germany.
- Novogenia Covid GmbH, Eugendorf, Austria.
| |
Collapse
|
2
|
Shi H, Song J, Gao L, Shan X, Panicker SR, Yao L, McDaniel M, Zhou M, McGee S, Zhong H, Griffin CT, Xia L, Shao B. Deletion of Talin1 in Myeloid Cells Facilitates Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1799-1812. [PMID: 38899470 DOI: 10.1161/atvbaha.123.319677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 04/23/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Integrin-regulated monocyte recruitment and cellular responses of monocyte-derived macrophages are critical for the pathogenesis of atherosclerosis. In the canonical model, talin1 controls ligand binding to integrins, a prerequisite for integrins to mediate leukocyte recruitment and induce immune responses. However, the role of talin1 in the development of atherosclerosis has not been studied. Our study investigated how talin1 in myeloid cells regulates the progression of atherosclerosis. METHODS On an Apoe-/- background, myeloid talin1-deficient mice and the control mice were fed with a high-fat diet for 8 or 12 weeks to induce atherosclerosis. The atherosclerosis development in the aorta and monocyte recruitment into atherosclerotic lesions were analyzed. RESULTS Myeloid talin1 deletion facilitated the formation of atherosclerotic lesions and macrophage deposition in lesions. Talin1 deletion abolished integrin β2-mediated adhesion of monocytes but did not impair integrin α4β1-dependent cell adhesion in a flow adhesion assay. Strikingly, talin1 deletion did not prevent Mn2+- or chemokine-induced activation of integrin α4β1 to the high-affinity state for ligands. In an in vivo competitive homing assay, monocyte infiltration into inflamed tissues was prohibited by antibodies to integrin α4β1 but was not affected by talin1 deletion or antibodies to integrin β2. Furthermore, quantitative polymerase chain reaction and ELISA (enzyme-linked immunosorbent assay) analysis showed that macrophages produced cytokines to promote inflammation and the proliferation of smooth muscle cells. Ligand binding to integrin β3 inhibited cytokine generation in macrophages, although talin1 deletion abolished the negative effects of integrin β3. CONCLUSIONS Integrin α4β1 controls monocyte recruitment during atherosclerosis. Talin1 is dispensable for integrin α4β1 activation to the high-affinity state and integrin α4β1-mediated monocyte recruitment. Yet, talin1 is required for integrin β3 to inhibit the production of inflammatory cytokines in macrophages. Thus, intact monocyte recruitment and elevated inflammatory responses cause enhanced atherosclerosis in talin1-deficient mice. Our study provides novel insights into the roles of myeloid talin1 and integrins in the progression of atherosclerosis.
Collapse
Affiliation(s)
- Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center (H.S., L.X.)
| | - Jianhua Song
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Liang Gao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Xindi Shan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Sumith R Panicker
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Longbiao Yao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Michael McDaniel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Meixiang Zhou
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Samuel McGee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Hui Zhong
- Lindsley F. Kimball Research Institute, New York Blood Center (H.Z., B.S.)
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center (H.S., L.X.)
| | - Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
- Lindsley F. Kimball Research Institute, New York Blood Center (H.Z., B.S.)
| |
Collapse
|
3
|
Ahn S, Yoon JY, Kim P. Intravital imaging of cardiac tissue utilizing tissue-stabilized heart window chamber in live animal model. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2024; 2:qyae062. [PMID: 39224098 PMCID: PMC11367956 DOI: 10.1093/ehjimp/qyae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/07/2024] [Indexed: 09/04/2024]
Abstract
Aims To develop and validate an optimized intravital heart microimaging protocol using a suction-based tissue motion-stabilizing cardiac imaging window to facilitate real-time observation of dynamic cellular behaviours within cardiac tissue in live mouse models. Methods and results Intravital heart imaging was conducted using dual-mode confocal and two-photon microscopy. Mice were anesthetized, intubated, and maintained at a stable body temperature during the procedure. LysM-eGFP transgenic mice were utilized to visualize immune cell dynamics with vascular labelling by intravenous injection of anti-CD31 antibody and DiD-labelled red blood cells (RBCs). A heart imaging window chamber with a vacuum-based tissue motion stabilizer with 890-920 mbar was applied following a chest incision to expose the cardiac tissue. The suction-based heart imaging window chamber system and artificial intelligence-based motion compensation function significantly reduced motion artefacts and facilitated real-time in vivo cell analysis of immune cell and RBC trafficking, revealing a mean neutrophil movement velocity of 1.66 mm/s, which was slower compared to the RBC flow velocity of 9.22 mm/s. Intravital two-photon microscopic heart imaging enabled label-free second harmonic generation imaging of cardiac muscle structures with 820-840 nm excitation wavelength, revealing detailed biodistributions and structural variations in sarcomeres and fibrillar organization in the heart. Conclusion The optimized intravital heart imaging protocol successfully demonstrates its capability to provide high-resolution, real-time visualization of dynamic cellular activities within live cardiac tissue.
Collapse
Affiliation(s)
- Soyeon Ahn
- R&D Center, IVIM Technology, 17 Techno 4-ro, Yuseong-gu, Daejeon, 34013, Republic of Korea
| | - Jung-yeon Yoon
- R&D Center, IVIM Technology, 17 Techno 4-ro, Yuseong-gu, Daejeon, 34013, Republic of Korea
| | - Pilhan Kim
- R&D Center, IVIM Technology, 17 Techno 4-ro, Yuseong-gu, Daejeon, 34013, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
4
|
Boswell-Patterson CA, Hétu MF, Pang SC, Herr JE, Zhou J, Jain S, Bambokian A, Johri AM. Novel theranostic approaches to neovascularized atherosclerotic plaques. Atherosclerosis 2023; 374:1-10. [PMID: 37149970 DOI: 10.1016/j.atherosclerosis.2023.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023]
Abstract
As the global burden of atherosclerotic cardiovascular disease continues to rise, there is an increased demand for improved imaging techniques for earlier detection of atherosclerotic plaques and new therapeutic targets. Plaque lesions, vulnerable to rupture and thrombosis, are thought to be responsible for the majority of cardiovascular events, and are characterized by a large lipid core, a thin fibrous cap, and neovascularization. In addition to supplying the plaque core with increased inflammatory factors, these pathological neovessels are tortuous and leaky, further increasing the risk of intraplaque hemorrhage. Clinically, plaque neovascularization has been shown to be a significant and independent predictor of adverse cardiovascular outcomes. Microvessels can be detected through contrast-enhanced ultrasound (CEUS) imaging, however, clinical assessment in vivo is generally limited to qualitative measures of plaque neovascularization. There is no validated standard for quantitative assessment of the microvessel networks found in plaques. Advances in our understanding of the pathological mechanisms underlying plaque neovascularization and its significant role in the morbidity and mortality associated with atherosclerosis have made it an attractive area of research in translational medicine. Current areas of research include the development of novel therapeutic and diagnostic agents to target plaque neovascularization stabilization. With recent progress in nanotechnology, nanoparticles have been investigated for their ability to specifically target neovascularization. Contrast microbubbles have been similarly engineered to carry loads of therapeutic agents and can be visualized using CEUS. This review summarizes the pathogenesis, diagnosis, clinical significance of neovascularization, and importantly the emerging areas of theranostic tool development.
Collapse
Affiliation(s)
| | - Marie-France Hétu
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Stephen C Pang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Julia E Herr
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Jianhua Zhou
- Department of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Shagun Jain
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Alexander Bambokian
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Amer M Johri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada; Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada.
| |
Collapse
|
5
|
van der Vorst EPC, Maas SL, Theodorou K, Peters LJF, Jin H, Rademakers T, Gijbels MJ, Rousch M, Jansen Y, Weber C, Lehrke M, Lebherz C, Yildiz D, Ludwig A, Bentzon JF, Biessen EAL, Donners MMPC. Endothelial ADAM10 controls cellular response to oxLDL and its deficiency exacerbates atherosclerosis with intraplaque hemorrhage and neovascularization in mice. Front Cardiovasc Med 2023; 10:974918. [PMID: 36776254 PMCID: PMC9911417 DOI: 10.3389/fcvm.2023.974918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction The transmembrane protease A Disintegrin And Metalloproteinase 10 (ADAM10) displays a "pattern regulatory function," by cleaving a range of membrane-bound proteins. In endothelium, it regulates barrier function, leukocyte recruitment and angiogenesis. Previously, we showed that ADAM10 is expressed in human atherosclerotic plaques and associated with neovascularization. In this study, we aimed to determine the causal relevance of endothelial ADAM10 in murine atherosclerosis development in vivo. Methods and results Endothelial Adam10 deficiency (Adam10 ecko ) in Western-type diet (WTD) fed mice rendered atherogenic by adeno-associated virus-mediated PCSK9 overexpression showed markedly increased atherosclerotic lesion formation. Additionally, Adam10 deficiency was associated with an increased necrotic core and concomitant reduction in plaque macrophage content. Strikingly, while intraplaque hemorrhage and neovascularization are rarely observed in aortic roots of atherosclerotic mice after 12 weeks of WTD feeding, a majority of plaques in both brachiocephalic artery and aortic root of Adam10ecko mice contained these features, suggestive of major plaque destabilization. In vitro, ADAM10 knockdown in human coronary artery endothelial cells (HCAECs) blunted the shedding of lectin-like oxidized LDL (oxLDL) receptor-1 (LOX-1) and increased endothelial inflammatory responses to oxLDL as witnessed by upregulated ICAM-1, VCAM-1, CCL5, and CXCL1 expression (which was diminished when LOX-1 was silenced) as well as activation of pro-inflammatory signaling pathways. LOX-1 shedding appeared also reduced in vivo, as soluble LOX-1 levels in plasma of Adam10ecko mice was significantly reduced compared to wildtypes. Discussion Collectively, these results demonstrate that endothelial ADAM10 is atheroprotective, most likely by limiting oxLDL-induced inflammation besides its known role in pathological neovascularization. Our findings create novel opportunities to develop therapeutics targeting atherosclerotic plaque progression and stability, but at the same time warrant caution when considering to use ADAM10 inhibitors for therapy in other diseases.
Collapse
Affiliation(s)
- Emiel P. C. van der Vorst
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, Aachen, Germany,Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University Hospital, Aachen, Germany,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Munich, Germany,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Sanne L. Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, Aachen, Germany,Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University Hospital, Aachen, Germany
| | - Kosta Theodorou
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
| | - Linsey J. F. Peters
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, Aachen, Germany,Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University Hospital, Aachen, Germany
| | - Han Jin
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
| | - Timo Rademakers
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
| | - Marion J. Gijbels
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands,Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands,Department of Medical Biochemistry, Amsterdam UMC, Locatie AMC, Amsterdam, Netherlands
| | - Mat Rousch
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
| | - Yvonne Jansen
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Munich, Germany,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
| | - Michael Lehrke
- Department of Internal Medicine I, RWTH Aachen University Hospital, Aachen, Germany
| | - Corinna Lebherz
- Department of Internal Medicine I, RWTH Aachen University Hospital, Aachen, Germany
| | - Daniela Yildiz
- Institute of Molecular Pharmacology, RWTH Aachen University Hospital, Aachen, Germany,Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, Homburg, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jacob F. Bentzon
- Experimental Pathology of Atherosclerosis Laboratory, Spanish National Center for Cardiovascular Research (CNIC), Madrid, Spain,Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Erik A. L. Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, Aachen, Germany
| | - Marjo M. P. C. Donners
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands,*Correspondence: Marjo M. P. C. Donners,
| |
Collapse
|
6
|
Chen J, Xiang X, Nie L, Guo X, Zhang F, Wen C, Xia Y, Mao L. The emerging role of Th1 cells in atherosclerosis and its implications for therapy. Front Immunol 2023; 13:1079668. [PMID: 36685487 PMCID: PMC9849744 DOI: 10.3389/fimmu.2022.1079668] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis is a chronic progressive inflammatory disease of the large and medium-sized artery walls. The molecular mechanisms regulating the onset and progression of atherosclerosis remain unclear. T cells, one of the most common immune cell types in atherosclerotic plaques, are increasingly recognized as a key mediator in the pathogenesis of atherosclerosis. Th1 cells are a subset of CD4+ T helper cells of the adaptive immune system, characterized by the expression of the transcription factor T-bet and secretion of cytokines such as IFN-γ. Converging evidence shows that Th1 cells play a key role in the onset and progression of atherosclerosis. Besides, Th1 is the central mediator to orchestrate the adaptive immune system. In this review, we aim to summarize the complex role of Th1 cells in atherosclerosis and propose novel preventative and therapeutic approaches targeting Th1 cell-associated specific cytokines and receptors to prevent atherogenesis.
Collapse
Affiliation(s)
| | | | - Lei Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | |
Collapse
|
7
|
Wang X, Chan V, Corridon PR. Decellularized blood vessel development: Current state-of-the-art and future directions. Front Bioeng Biotechnol 2022; 10:951644. [PMID: 36003539 PMCID: PMC9394443 DOI: 10.3389/fbioe.2022.951644] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 12/31/2022] Open
Abstract
Vascular diseases contribute to intensive and irreversible damage, and current treatments include medications, rehabilitation, and surgical interventions. Often, these diseases require some form of vascular replacement therapy (VRT) to help patients overcome life-threatening conditions and traumatic injuries annually. Current VRTs rely on harvesting blood vessels from various regions of the body like the arms, legs, chest, and abdomen. However, these procedures also produce further complications like donor site morbidity. Such common comorbidities may lead to substantial pain, infections, decreased function, and additional reconstructive or cosmetic surgeries. Vascular tissue engineering technology promises to reduce or eliminate these issues, and the existing state-of-the-art approach is based on synthetic or natural polymer tubes aiming to mimic various types of blood vessel. Burgeoning decellularization techniques are considered as the most viable tissue engineering strategy to fill these gaps. This review discusses various approaches and the mechanisms behind decellularization techniques and outlines a simplified model for a replacement vascular unit. The current state-of-the-art method used to create decellularized vessel segments is identified. Also, perspectives on future directions to engineer small- (inner diameter >1 mm and <6 mm) to large-caliber (inner diameter >6 mm) vessel substitutes are presented.
Collapse
Affiliation(s)
- Xinyu Wang
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter R Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Xiang P, Blanchard V, Francis GA. Smooth Muscle Cell—Macrophage Interactions Leading to Foam Cell Formation in Atherosclerosis: Location, Location, Location. Front Physiol 2022; 13:921597. [PMID: 35795646 PMCID: PMC9251363 DOI: 10.3389/fphys.2022.921597] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cholesterol-overloaded cells or “foam cells” in the artery wall are the biochemical hallmark of atherosclerosis, and are responsible for much of the growth, inflammation and susceptibility to rupture of atherosclerotic lesions. While it has previously been thought that macrophages are the main contributor to the foam cell population, recent evidence indicates arterial smooth muscle cells (SMCs) are the source of the majority of foam cells in both human and murine atherosclerosis. This review outlines the timeline, site of appearance and proximity of SMCs and macrophages with lipids in human and mouse atherosclerosis, and likely interactions between SMCs and macrophages that promote foam cell formation and removal by both cell types. An understanding of these SMC-macrophage interactions in foam cell formation and regression is expected to provide new therapeutic targets to reduce the burden of atherosclerosis for the prevention of coronary heart disease, stroke and peripheral vascular disease.
Collapse
|
9
|
Survey of Approaches for Investigation of Atherosclerosis In Vivo. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:57-72. [PMID: 35237958 DOI: 10.1007/978-1-0716-1924-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Although in vitro model systems are useful for investigation of atherosclerosis-associated processes, they represent simplification of complex events that occur in vivo, which involve interactions between many different cell types together with their environment. The use of animal model systems is important for more in-depth insights of the molecular mechanisms underlying atherosclerosis and for identifying potential targets for agents that can prevent plaque formation and even reverse existing disease. This chapter will provide a survey of such animal models and associated techniques that are routinely used for research of atherosclerosis in vivo.
Collapse
|
10
|
Kraus RF, Gruber MA. Neutrophils-From Bone Marrow to First-Line Defense of the Innate Immune System. Front Immunol 2022; 12:767175. [PMID: 35003081 PMCID: PMC8732951 DOI: 10.3389/fimmu.2021.767175] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils (polymorphonuclear cells; PMNs) form a first line of defense against pathogens and are therefore an important component of the innate immune response. As a result of poorly controlled activation, however, PMNs can also mediate tissue damage in numerous diseases, often by increasing tissue inflammation and injury. According to current knowledge, PMNs are not only part of the pathogenesis of infectious and autoimmune diseases but also of conditions with disturbed tissue homeostasis such as trauma and shock. Scientific advances in the past two decades have changed the role of neutrophils from that of solely immune defense cells to cells that are responsible for the general integrity of the body, even in the absence of pathogens. To better understand PMN function in the human organism, our review outlines the role of PMNs within the innate immune system. This review provides an overview of the migration of PMNs from the vascular compartment to the target tissue as well as their chemotactic processes and illuminates crucial neutrophil immune properties at the site of the lesion. The review is focused on the formation of chemotactic gradients in interaction with the extracellular matrix (ECM) and the influence of the ECM on PMN function. In addition, our review summarizes current knowledge about the phenomenon of bidirectional and reverse PMN migration, neutrophil microtubules, and the microtubule organizing center in PMN migration. As a conclusive feature, we review and discuss new findings about neutrophil behavior in cancer environment and tumor tissue.
Collapse
Affiliation(s)
- Richard Felix Kraus
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | | |
Collapse
|
11
|
Mauersberger C, Hinterdobler J, Schunkert H, Kessler T, Sager HB. Where the Action Is-Leukocyte Recruitment in Atherosclerosis. Front Cardiovasc Med 2022; 8:813984. [PMID: 35087886 PMCID: PMC8787128 DOI: 10.3389/fcvm.2021.813984] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is the leading cause of death worldwide and leukocyte recruitment is a key element of this phenomenon, thus allowing immune cells to enter the arterial wall. There, in concert with accumulating lipids, the invading leukocytes trigger a plethora of inflammatory responses which promote the influx of additional leukocytes and lead to the continued growth of atherosclerotic plaques. The recruitment process follows a precise scheme of tethering, rolling, firm arrest, crawling and transmigration and involves multiple cellular and subcellular players. This review aims to provide a comprehensive up-to-date insight into the process of leukocyte recruitment relevant to atherosclerosis, each from the perspective of endothelial cells, monocytes and macrophages, neutrophils, T lymphocytes and platelets. In addition, therapeutic options targeting leukocyte recruitment into atherosclerotic lesions-or potentially arising from the growing body of insights into its precise mechanisms-are highlighted.
Collapse
Affiliation(s)
- Carina Mauersberger
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Julia Hinterdobler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
12
|
Tomas L, Prica F, Schulz C. Trafficking of Mononuclear Phagocytes in Healthy Arteries and Atherosclerosis. Front Immunol 2021; 12:718432. [PMID: 34759917 PMCID: PMC8573388 DOI: 10.3389/fimmu.2021.718432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Monocytes and macrophages play essential roles in all stages of atherosclerosis – from early precursor lesions to advanced stages of the disease. Intima-resident macrophages are among the first cells to be confronted with the influx and retention of apolipoprotein B-containing lipoproteins at the onset of hypercholesterolemia and atherosclerosis development. In this review, we outline the trafficking of monocytes and macrophages in and out of the healthy aorta, as well as the adaptation of their migratory behaviour during hypercholesterolemia. Furthermore, we discuss the functional and ontogenetic composition of the aortic pool of mononuclear phagocytes and its link to the atherosclerotic disease process. The development of mouse models of atherosclerosis regression in recent years, has enabled scientists to investigate the behaviour of monocytes and macrophages during the resolution of atherosclerosis. Herein, we describe the dynamics of these mononuclear phagocytes upon cessation of hypercholesterolemia and how they contribute to the restoration of tissue homeostasis. The aim of this review is to provide an insight into the trafficking, fate and disease-relevant dynamics of monocytes and macrophages during atherosclerosis, and to highlight remaining questions. We focus on the results of rodent studies, as analysis of cellular fates requires experimental manipulations that cannot be performed in humans but point out findings that could be replicated in human tissues. Understanding of the biology of macrophages in atherosclerosis provides an important basis for the development of therapeutic strategies to limit lesion formation and promote plaque regression.
Collapse
Affiliation(s)
- Lukas Tomas
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Filip Prica
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Schulz
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
13
|
Romanenko AV, Amelina IP, Solovyeva EY. [Vascular inflammation underlies the development of atherothrombotic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:22-29. [PMID: 34553577 DOI: 10.17116/jnevro202112108222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Atherothrombotic stroke is the one of the most common subtypes of ischemic cerebral circulatory disorders, the cause of which is atherosclerosis of the major arteries of the brain or their branches. The results of recent studies have shown that the atherosclerotic process is based on an inflammatory process in the vascular wall that leads to the initiation of atherosclerosis, endothelial dysfunction, oxidative stress, and the redistribution of various protein components in the blood-brain barrier. As a result, the progression of the described conditions leads to the manifestation of clinical symptoms and the formation of an acute vascular event. Understanding of the molecular components underlying functional disorders and damages of the cerebral vessels gives the key to modern therapy strategies. It is forming the foundation for the adequate, pathogenetically reasonable drug correction. For such patients, it should be aimed at the normalization of cerebral and central hemodynamics and incorporate the mechanisms of neuroplasticity. The drug 2-ethyl-6-methyl-3-oxypyridine-succinate (mexidol) can be considered as one of the pathogenetically justified agents in complex drug therapy of brain ischemia.
Collapse
Affiliation(s)
- A V Romanenko
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - I P Amelina
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E Yu Solovyeva
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
14
|
Sreejit G, Johnson J, Jaggers RM, Dahdah A, Murphy AJ, Hanssen NMJ, Nagareddy PR. Neutrophils in cardiovascular disease: warmongers, peacemakers, or both? Cardiovasc Res 2021; 118:2596-2609. [PMID: 34534269 PMCID: PMC9890471 DOI: 10.1093/cvr/cvab302] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
Neutrophils, the most abundant of all leucocytes and the first cells to arrive at the sites of sterile inflammation/injury act as a double-edged sword. On one hand, they inflict a significant collateral damage to the tissues and on the other hand, they help facilitate wound healing by a number of mechanisms. Recent studies have drastically changed the perception of neutrophils from being simple one-dimensional cells with an unrestrained mode of action to a cell type that display maturity and complex behaviour. It is now recognized that neutrophils are transcriptionally active and respond to plethora of signals by deploying a wide variety of cargo to influence the activity of other cells in the vicinity. Neutrophils can regulate macrophage behaviour, display innate immune memory, and play a major role in the resolution of inflammation in a context-dependent manner. In this review, we provide an update on the factors that regulate neutrophil production and the emerging dichotomous role of neutrophils in the context of cardiovascular diseases, particularly in atherosclerosis and the ensuing complications, myocardial infarction, and heart failure. Deciphering the complex behaviour of neutrophils during inflammation and resolution may provide novel insights and in turn facilitate the development of potential therapeutic strategies to manage cardiovascular disease.
Collapse
Affiliation(s)
- Gopalkrishna Sreejit
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Jillian Johnson
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Robert M Jaggers
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Albert Dahdah
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Nordin M J Hanssen
- Amsterdam Diabetes Centrum, Amsterdam University Medical Centre, Location Academic Medical Centre Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
15
|
Abstract
Live imaging is critical to determining the dynamics and spatial interactions of cells within the tissue environment. In the lung, this has proven to be difficult due to the motion brought about by ventilation and cardiac contractions. A previous version of this Current Protocols in Cytometry article reported protocols for imaging ex vivo live lung slices and the intact mouse lung. Here, we update those protocols by adding new methodologies, new approaches for quantitative image analysis, and new areas of potential application. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Live imaging of lung slices Support Protocol 1: Staining lung sections with fluorescent antibodies Basic Protocol 2: Live imaging in the mouse lung Support Protocol 2: Intratracheal instillations Support Protocol 3: Intravascular instillations Support Protocol 4: Monitoring vital signs of the mouse during live lung imaging Support Protocol 5: Antibodies Support Protocol 6: Fluorescent reporter mice Basic Protocol 3: Quantification of neutrophil-platelet aggregation in pulmonary vasculature Basic Protocol 4: Quantification of platelet-dependent pulmonary thrombosis Basic Protocol 5: Quantification of pulmonary vascular permeability.
Collapse
Affiliation(s)
- Tomasz Brzoska
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tomasz W Kaminski
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Margaret F Bennewitz
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia
| | - Prithu Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Sluiter TJ, van Buul JD, Huveneers S, Quax PHA, de Vries MR. Endothelial Barrier Function and Leukocyte Transmigration in Atherosclerosis. Biomedicines 2021; 9:328. [PMID: 33804952 PMCID: PMC8063931 DOI: 10.3390/biomedicines9040328] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
The vascular endothelium is a highly specialized barrier that controls passage of fluids and migration of cells from the lumen into the vessel wall. Endothelial cells assist leukocytes to extravasate and despite the variety in the specific mechanisms utilized by different leukocytes to cross different vascular beds, there is a general principle of capture, rolling, slow rolling, arrest, crawling, and ultimately diapedesis via a paracellular or transcellular route. In atherosclerosis, the barrier function of the endothelium is impaired leading to uncontrolled leukocyte extravasation and vascular leakage. This is also observed in the neovessels that grow into the atherosclerotic plaque leading to intraplaque hemorrhage and plaque destabilization. This review focuses on the vascular endothelial barrier function and the interaction between endothelial cells and leukocytes during transmigration. We will discuss the role of endothelial dysfunction, transendothelial migration of leukocytes and plaque angiogenesis in atherosclerosis.
Collapse
Affiliation(s)
- Thijs J. Sluiter
- Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.J.S.); (P.H.A.Q.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jaap D. van Buul
- Sanquin Research and Landsteiner Laboratory, Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Paul H. A. Quax
- Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.J.S.); (P.H.A.Q.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Margreet R. de Vries
- Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.J.S.); (P.H.A.Q.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
17
|
Micro-endoscopy for Live Small Animal Fluorescent Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:153-186. [PMID: 33834437 DOI: 10.1007/978-981-33-6064-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intravital microscopy has emerged as a powerful technique for the fluorescent visualization of cellular- and subcellular-level biological processes in vivo. However, the size of objective lenses used in standard microscopes currently makes it difficult to access internal organs with minimal invasiveness in small animal models, such as mice. Here we describe front- and side-view designs for small-diameter endoscopes based on gradient-index lenses, their construction, their integration into laser scanning confocal microscopy platforms, and their applications for in vivo imaging of fluorescent cells and microvasculature in various organs, including the kidney, bladder, heart, brain, and gastrointestinal tracts, with a focus on the new techniques developed for each imaging application. The combination of novel fluorescence techniques with these powerful imaging methods promises to continue providing novel insights into a variety of diseases.
Collapse
|
18
|
Assessment of Microvessel Permeability in Murine Atherosclerotic Vein Grafts Using Two-Photon Intravital Microscopy. Int J Mol Sci 2020; 21:ijms21239244. [PMID: 33287463 PMCID: PMC7730593 DOI: 10.3390/ijms21239244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 01/25/2023] Open
Abstract
Plaque angiogenesis and plaque hemorrhage are major players in the destabilization and rupture of atherosclerotic lesions. As these are dynamic processes, imaging of plaque angiogenesis, especially the integrity or leakiness of angiogenic vessels, can be an extremely useful tool in the studies on atherosclerosis pathophysiology. Visualizing plaque microvessels in 3D would enable us to study the architecture and permeability of adventitial and intimal plaque microvessels in advanced atherosclerotic lesions. We hypothesized that a comparison of the vascular permeability between healthy continuous and fenestrated as well as diseased leaky microvessels, would allow us to evaluate plaque microvessel leakiness. We developed and validated a two photon intravital microscopy (2P-IVM) method to assess the leakiness of plaque microvessels in murine atherosclerosis-prone ApoE3*Leiden vein grafts based on the quantification of fluorescent-dextrans extravasation in real-time. We describe a novel 2P-IVM set up to study vessels in the neck region of living mice. We show that microvessels in vein graft lesions are in their pathological state more permeable in comparison with healthy continuous and fenestrated microvessels. This 2P-IVM method is a promising approach to assess plaque angiogenesis and leakiness. Moreover, this method is an important advancement to validate therapeutic angiogenic interventions in preclinical atherosclerosis models.
Collapse
|
19
|
MacRitchie N, Grassia G, Noonan J, Cole JE, Hughes CE, Schroeder J, Benson RA, Cochain C, Zernecke A, Guzik TJ, Garside P, Monaco C, Maffia P. The aorta can act as a site of naïve CD4+ T-cell priming. Cardiovasc Res 2020; 116:306-316. [PMID: 30980670 DOI: 10.1093/cvr/cvz102] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/20/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
AIMS Aortic adaptive immunity plays a role in atherosclerosis; however, the precise mechanisms leading to T-cell activation in the arterial wall remain poorly understood. METHODS AND RESULTS Here, we have identified naïve T cells in the aorta of wild-type and T-cell receptor transgenic mice and we demonstrate that naïve T cells can be primed directly in the vessel wall with both kinetics and frequency of T-cell activation found to be similar to splenic and lymphoid T cells. Aortic homing of naïve T cells is regulated at least in part by the P-selectin glycosylated ligand-1 receptor. In experimental atherosclerosis the aorta supports CD4+ T-cell activation selectively driving Th1 polarization. By contrast, secondary lymphoid organs display Treg expansion. CONCLUSION Our results demonstrate that the aorta can support T-cell priming and that naïve T cells traffic between the circulation and vessel wall. These data underpin the paradigm that local priming of T cells specific for plaque antigens contributes to atherosclerosis progression.
Collapse
Affiliation(s)
- Neil MacRitchie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Gianluca Grassia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Jonathan Noonan
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Jennifer E Cole
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Catherine E Hughes
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Juliane Schroeder
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Robert A Benson
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Clement Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.,Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Paul Garside
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Claudia Monaco
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.,Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
20
|
Talepoor AG, Fouladseresht H, Khosropanah S, Doroudchi M. Immune-Inflammation in Atherosclerosis: A New Twist in an Old Tale. Endocr Metab Immune Disord Drug Targets 2020; 20:525-545. [DOI: 10.2174/1871530319666191016095725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/26/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022]
Abstract
Background and Objective:Atherosclerosis, a chronic and progressive inflammatory disease, is triggered by the activation of endothelial cells followed by infiltration of innate and adaptive immune cells including monocytes and T cells in arterial walls. Major populations of T cells found in human atherosclerotic lesions are antigen-specific activated CD4+ effectors and/or memory T cells from Th1, Th17, Th2 and Treg subsets. In this review, we will discuss the significance of T cell orchestrated immune inflammation in the development and progression of atherosclerosis.Discussion:Pathogen/oxidative stress/lipid induced primary endothelial wound cannot develop to a full-blown atherosclerotic lesion in the absence of chronically induced inflammation. While the primary inflammatory response might be viewed as a lone innate response, the persistence of such a profound response over time must be (and is) associated with diverse local and systemic T cell responses. The interplay between T cells and innate cells contributes to a phenomenon called immuneinflammation and has an impact on the progression and outcome of the lesion. In recent years immuneinflammation, an old term, has had a comeback in connecting the puzzle pieces of chronic inflammatory diseases.Conclusion:Taking one-step back and looking from afar at the players of immune-inflammation may help us provide a broader perspective of these complicated interactions. This may lead to the identification of new drug targets and the development of new therapies as well as preventative measures.
Collapse
Affiliation(s)
- Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahdad Khosropanah
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Abstract
The past several decades have brought significant advances in the application of clinical and preclinical nanoparticulate drugs in the field of cancer, but nanodrug development in cardiovascular disease has lagged in comparison. Improved understanding of the spatiotemporal kinetics of nanoparticle delivery to atherosclerotic plaques is required to optimize preclinical nanodrug delivery and to drive their clinical translation. Mechanistic studies using super-resolution and correlative light microscopy/electron microscopy permit a broad, ultra-high-resolution picture of how endothelial barrier integrity impacts the enhanced permeation and retention (EPR) effect for nanoparticles as a function of both atherosclerosis progression and metabolic therapy. Studies by Beldman et al. in the December issue of ACS Nano suggest atherosclerotic plaque progression supports endothelial junction stabilization, which can reduce nanoparticle entry into plaques, and metabolic therapy may induce similar effects. Herein, we examine the potential for advanced dynamic intravital microscopy-based mechanistic studies of nanoparticle entry into atherosclerotic plaques to shed light on the advantages of free extravasation versus immune-mediated nanoparticle uptake for effective clinical translation. We further explore the potential combination of metabolic therapy with another emerging cardiovascular disease treatment paradigm-efferocytosis stimulation-to enhance atherosclerotic plaque regression.
Collapse
Affiliation(s)
- Yogendra Kanthi
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center , University of Michigan , Ann Arbor , Michigan 48109 , United States
- Section of Cardiology , Ann Arbor Veterans Health System , Ann Arbor , Michigan 48109 , United States
| | - Adam de la Zerda
- Department of Structural Biology , Stanford University , Stanford , California 94305 , United States
- Department of Electrical Engineering , Stanford University , Stanford , California 94305 , United States
- Molecular Imaging Program at Stanford and the Bio-X Program , Stanford , California 94305 , United States
- Biophysics Program at Stanford , Stanford , California 94305 , United States
- The Chan Zuckerberg Biohub , San Francisco , California 94158 , United States
| | - Bryan Ronain Smith
- Department of Biomedical Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
- Institute for Quantitative Health Science and Engineering , East Lansing , Michigan 48824 , United States
| |
Collapse
|
22
|
Abstract
Neutrophils have traditionally been viewed as bystanders or biomarkers of cardiovascular disease. However, studies in the past decade have demonstrated the important functions of neutrophils during cardiovascular inflammation and repair. In this Review, we discuss the influence of traditional and novel cardiovascular risk factors on neutrophil production and function. We then appraise the current knowledge of the contribution of neutrophils to the different stages of atherosclerosis, including atherogenesis, plaque destabilization and plaque erosion. In the context of cardiovascular complications of atherosclerosis, we highlight the dichotomous role of neutrophils in pathogenic and repair processes in stroke, heart failure, myocardial infarction and neointima formation. Finally, we emphasize how detailed knowledge of neutrophil functions in cardiovascular homeostasis and disease can be used to generate therapeutic strategies to target neutrophil numbers, functional status and effector mechanisms.
Collapse
|
23
|
Beldman T, Malinova TS, Desclos E, Grootemaat AE, Misiak ALS, van der Velden S, van Roomen CPAA, Beckers L, van Veen HA, Krawczyk PM, Hoebe RA, Sluimer JC, Neele AE, de Winther MPJ, van der Wel NN, Lutgens E, Mulder WJM, Huveneers S, Kluza E. Nanoparticle-Aided Characterization of Arterial Endothelial Architecture during Atherosclerosis Progression and Metabolic Therapy. ACS NANO 2019; 13:13759-13774. [PMID: 31268670 PMCID: PMC6933811 DOI: 10.1021/acsnano.8b08875] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/03/2019] [Indexed: 05/08/2023]
Abstract
Atherosclerosis is associated with a compromised endothelial barrier, facilitating the accumulation of immune cells and macromolecules in atherosclerotic lesions. In this study, we investigate endothelial barrier integrity and the enhanced permeability and retention (EPR) effect during atherosclerosis progression and therapy in Apoe-/- mice using hyaluronan nanoparticles (HA-NPs). Utilizing ultrastructural and en face plaque imaging, we uncover a significantly decreased junction continuity in the atherosclerotic plaque-covering endothelium compared to the normal vessel wall, indicative of disrupted endothelial barrier. Intriguingly, the plaque advancement had a positive effect on junction stabilization, which correlated with a 3-fold lower accumulation of in vivo administrated HA-NPs in advanced plaques compared to early counterparts. Furthermore, by using super-resolution and correlative light and electron microscopy, we trace nanoparticles in the plaque microenvironment. We find nanoparticle-enriched endothelial junctions, containing 75% of detected HA-NPs, and a high HA-NP accumulation in the endothelium-underlying extracellular matrix, which suggest an endothelial junctional traffic of HA-NPs to the plague. Finally, we probe the EPR effect by HA-NPs in the context of metabolic therapy with a glycolysis inhibitor, 3PO, proposed as a vascular normalizing strategy. The observed trend of attenuated HA-NP uptake in aortas of 3PO-treated mice coincides with the endothelial silencing activity of 3PO, demonstrated in vitro. Interestingly, the therapy also reduced the plaque inflammatory burden, while activating macrophage metabolism. Our findings shed light on natural limitations of nanoparticle accumulation in atherosclerotic plaques and provide mechanistic insight into nanoparticle trafficking across the atherosclerotic endothelium. Furthermore, our data contribute to the rising field of endothelial barrier modulation in atherosclerosis.
Collapse
Affiliation(s)
- Thijs
J. Beldman
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Tsveta S. Malinova
- Vascular
Microenvironment and Integrity, Department of Medical Biochemistry,
Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, Amsterdam 1105 AZ, The
Netherlands
| | - Emilie Desclos
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Anita E. Grootemaat
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Aresh L. S. Misiak
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Saskia van der Velden
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Cindy P. A. A. van Roomen
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Linda Beckers
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Henk A. van Veen
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Przemyslaw M. Krawczyk
- Department
of Medical Biology, Amsterdam University
Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Ron A. Hoebe
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Judith C. Sluimer
- Department
of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht 6229 ER, The Netherlands
| | - Annette E. Neele
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Menno P. J. de Winther
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
- Institute
for Cardiovascular Prevention, Ludwig Maximilians
University, Munich 80336, Germany
| | - Nicole N. van der Wel
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Esther Lutgens
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
- Institute
for Cardiovascular Prevention, Ludwig Maximilians
University, Munich 80336, Germany
| | - Willem J. M. Mulder
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
- Translational
and Molecular Imaging Institute, Icahn School
of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Stephan Huveneers
- Vascular
Microenvironment and Integrity, Department of Medical Biochemistry,
Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, Amsterdam 1105 AZ, The
Netherlands
| | - Ewelina Kluza
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
24
|
Si-Miao-Yong-An on promoting the maturation of Vasa Vasorum and stabilizing atherosclerotic plaque in ApoE-/- mice: An experimental study. Biomed Pharmacother 2019; 114:108785. [DOI: 10.1016/j.biopha.2019.108785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/23/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
|
25
|
Ivetic A, Hoskins Green HL, Hart SJ. L-selectin: A Major Regulator of Leukocyte Adhesion, Migration and Signaling. Front Immunol 2019; 10:1068. [PMID: 31139190 PMCID: PMC6527602 DOI: 10.3389/fimmu.2019.01068] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
L-selectin (CD62L) is a type-I transmembrane glycoprotein and cell adhesion molecule that is expressed on most circulating leukocytes. Since its identification in 1983, L-selectin has been extensively characterized as a tethering/rolling receptor. There is now mounting evidence in the literature to suggest that L-selectin plays a role in regulating monocyte protrusion during transendothelial migration (TEM). The N-terminal calcium-dependent (C-type) lectin domain of L-selectin interacts with numerous glycans, including sialyl Lewis X (sLex) for tethering/rolling and proteoglycans for TEM. Although the signals downstream of L-selectin-dependent adhesion are poorly understood, they will invariably involve the short 17 amino acid cytoplasmic tail. In this review we will detail the expression of L-selectin in different immune cell subsets, and its influence on cell behavior. We will list some of the diverse glycans known to support L-selectin-dependent adhesion, within luminal and abluminal regions of the vessel wall. We will describe how each domain within L-selectin contributes to adhesion, migration and signal transduction. A significant focus on the L-selectin cytoplasmic tail and its proposed contribution to signaling via the ezrin-radixin-moesin (ERM) family of proteins will be outlined. Finally, we will discuss how ectodomain shedding of L-selectin during monocyte TEM is essential for the establishment of front-back cell polarity, bestowing emigrated cells the capacity to chemotax toward sites of damage.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| | - Hannah Louise Hoskins Green
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| | - Samuel James Hart
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| |
Collapse
|
26
|
Maas SL, Soehnlein O, Viola JR. Organ-Specific Mechanisms of Transendothelial Neutrophil Migration in the Lung, Liver, Kidney, and Aorta. Front Immunol 2018; 9:2739. [PMID: 30538702 PMCID: PMC6277681 DOI: 10.3389/fimmu.2018.02739] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
Immune responses are dependent on the recruitment of leukocytes to the site of inflammation. The classical leukocyte recruitment cascade, consisting of capture, rolling, arrest, adhesion, crawling, and transendothelial migration, is thoroughly studied but mostly in model systems, such as the cremasteric microcirculation. This cascade paradigm, which is widely accepted, might be applicable to many tissues, however recruitment mechanisms might substantially vary in different organs. Over the last decade, several studies shed light on organ-specific mechanisms of leukocyte recruitment. An improved awareness of this matter opens new therapeutic windows and allows targeting inflammation in a tissue-specific manner. The aim of this review is to summarize the current understanding of the leukocyte recruitment in general and how this varies in different organs. In particular we focus on neutrophils, as these are the first circulating leukocytes to reach the site of inflammation. Specifically, the recruitment mechanism in large arteries, as well as vessels in the lungs, liver, and kidney will be addressed.
Collapse
Affiliation(s)
- Sanne L Maas
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Physiology and Pharmacology (FyFa) and Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joana R Viola
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
27
|
Dworacka M, Iskakova S, Wesołowska A, Zharmakhanova G, Stelmaszyk A, Frycz BA, Jagodziński PP, Dworacki G. Simvastatin attenuates the aberrant expression of angiogenic factors induced by glucose variability. Diabetes Res Clin Pract 2018; 143:245-253. [PMID: 30056191 DOI: 10.1016/j.diabres.2018.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/28/2018] [Accepted: 07/23/2018] [Indexed: 11/25/2022]
Abstract
AIM Over the last few years, studies have indicated that fluctuant hyperglycemia is very likely to increase the risk of cardiovascular complications of diabetes. Statins are widely used in diabetes for the prevention of cardiovascular complications, but it is still not clear whether simvastatin could also prevent glycaemic variability - induced aberrant angiogenesis which plays a significant role in the development of atherosclerosis. METHODS Wistar rats were divided into four groups: (1) simvastatin-treated (20 mg/kg for 8 consecutive weeks) type 2 diabetes rat model with daily glucose excursions, (2) placebo-treated type 2 diabetes rat model with daily glucose excursions, (3) placebo-treated stable well-controlled type 2 diabetes rat model and (4) placebo-treated non-diabetic rats. Daily glucose fluctuations and several angiogenic factors: cVEGF, mRNA VEGF, VEGF-R1, VEGF-R2, TGF-beta expression, circulating endothelial and progenitor endothelial cells were measured in all groups. RESULTS Simvastatin decreased several factors enhanced by glucose excursions: circulating VEGF, mRNA TGF-beta expression in the myocardium and mRNA VEGFR-2 expression in the aorta. Simvastatin increased some factors attenuated by glucose fluctuations: mRNA VEGF expression and mRNA VEGFR-1 expression in the myocardium and in the aorta. In the simvastatin-treated group with glycaemic variability, the percentage of circulating endothelial cells was lower and the percentage of progenitor endothelial cells in peripheral blood was higher than in the placebo-treated rats with glucose-fluctuations. CONCLUSIONS Simvastatin used in the rat model of type 2 diabetes with glucose variability reduces glucose variability and limits glucose fluctuations-induced changes in the expression of angiogenic factors in the cardiovascular system.
Collapse
Affiliation(s)
- Marzena Dworacka
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 5d, 60-805 Poznań, Poland.
| | - Saule Iskakova
- Department of Pharmacology West, Kazakhstan Marat Ospanov State Medical University, Mareshev Str. 68, Aktobe 030019, Kazakhstan.
| | - Anna Wesołowska
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 5d, 60-805 Poznań, Poland.
| | - Gulmira Zharmakhanova
- Department of Pharmacology West, Kazakhstan Marat Ospanov State Medical University, Mareshev Str. 68, Aktobe 030019, Kazakhstan.
| | - Agnieszka Stelmaszyk
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 5d, 60-805 Poznań, Poland.
| | - Bartosz A Frycz
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6, 60-781 Poznań, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6, 60-781 Poznań, Poland.
| | - Grzegorz Dworacki
- Department of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5d, 60-805 Poznań, Poland.
| |
Collapse
|
28
|
Caporali A, Bäck M, Daemen MJ, Hoefer IE, Jones EA, Lutgens E, Matter CM, Bochaton-Piallat ML, Siekmann AF, Sluimer JC, Steffens S, Tuñón J, Vindis C, Wentzel JJ, Ylä-Herttuala S, Evans PC. Future directions for therapeutic strategies in post-ischaemic vascularization: a position paper from European Society of Cardiology Working Group on Atherosclerosis and Vascular Biology. Cardiovasc Res 2018; 114:1411-1421. [PMID: 30016405 PMCID: PMC6106103 DOI: 10.1093/cvr/cvy184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/16/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Modulation of vessel growth holds great promise for treatment of cardiovascular disease. Strategies to promote vascularization can potentially restore function in ischaemic tissues. On the other hand, plaque neovascularization has been shown to associate with vulnerable plaque phenotypes and adverse events. The current lack of clinical success in regulating vascularization illustrates the complexity of the vascularization process, which involves a delicate balance between pro- and anti-angiogenic regulators and effectors. This is compounded by limitations in the models used to study vascularization that do not reflect the eventual clinical target population. Nevertheless, there is a large body of evidence that validate the importance of angiogenesis as a therapeutic concept. The overall aim of this Position Paper of the ESC Working Group of Atherosclerosis and Vascular biology is to provide guidance for the next steps to be taken from pre-clinical studies on vascularization towards clinical application. To this end, the current state of knowledge in terms of therapeutic strategies for targeting vascularization in post-ischaemic disease is reviewed and discussed. A consensus statement is provided on how to optimize vascularization studies for the identification of suitable targets, the use of animal models of disease, and the analysis of novel delivery methods.
Collapse
Affiliation(s)
- Andrea Caporali
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Magnus Bäck
- Division of Valvular and Coronary Disease, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and University Hospital Stockholm, Stockholm, Sweden
- INSERM U1116, University of Lorraine, Nancy University Hospital, Nancy, France
| | - Mat J Daemen
- Department of Pathology, Academic Medical Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Imo E Hoefer
- Laboratory of Experimental Cardiology and Laboratory of Clinical Chemistry and Hematology, UMC Utrecht, Utrecht, Netherlands
| | | | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Christian M Matter
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | | | - Arndt F Siekmann
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003–CiM), University of Muenster, Muenster, Germany
| | - Judith C Sluimer
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Department of Pathology, CARIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sabine Steffens
- Ludwig-Maximilians-University, German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - José Tuñón
- IIS-Fundación Jiménez Díaz, Madrid, Spain
- Autónoma University, Madrid, Spain
| | - Cecile Vindis
- INSERM U1048/Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Jolanda J Wentzel
- Department of Cardiology, Biomechanics Laboratory, Erasmus MC, Rotterdam, The Netherlands
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, the INSIGNEO Institute for In Silico Medicine and the Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
29
|
Song Y, Feng J, Dang Y, Zhao C, Zheng J, Ruan L. Relationship between Plaque Echo, Thickness and Neovascularization Assessed by Quantitative and Semi-quantitative Contrast-Enhanced Ultrasonography in Different Stenosis Groups. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2947-2953. [PMID: 28965720 DOI: 10.1016/j.ultrasmedbio.2017.08.1882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to determine the relationship between plaque echo, thickness and neovascularization in different stenosis groups using quantitative and semi-quantitative contrast-enhanced ultrasound (CEUS) in patients with carotid atherosclerosis plaque. A total of 224 plaques were divided into mild stenosis (<50%; 135 plaques, 60.27%), moderate stenosis (50%-69%; 39 plaques, 17.41%) and severe stenosis (70%-99%; 50 plaques, 22.32%) groups. Quantitative and semi-quantitative methods were used to assess plaque neovascularization and determine the relationship between plaque echo, thickness and neovascularization. Correlation analysis revealed no relationship of neovascularization with plaque echo in the groups using either quantitative or semi-quantitative methods. Furthermore, there was no correlation of neovascularization with plaque thickness using the semi-quantitative method. The ratio of areas under the curve (RAUC) was negatively correlated with plaque thickness (r = -0.317, p = 0.001) in the mild stenosis group. With the quartile method, plaque thickness of the mild stenosis group was divided into four groups, with significant differences between the 1.5-2.2 mm and ≥3.5 mm groups (p = 0.002), 2.3-2.8 mm and ≥3.5 mm groups (p <0.001) and 2.9-3.4 mm and ≥3.5 mm groups (p <0.001). Both semi-quantitative and quantitative CEUS methods characterizing neovascularization of plaque are equivalent with respect to assessing relationships between neovascularization, echogenicity and thickness. However, the quantitative method could fail for plaque <3.5 mm because of motion artifacts.
Collapse
Affiliation(s)
- Yan Song
- Department of Ultrasound, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jun Feng
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Dang
- Department of Ultrasound, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chao Zhao
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Zheng
- Clinical Research Center (CRC), First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Litao Ruan
- Department of Ultrasound, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
30
|
Li N. CD4+ T cells in atherosclerosis: Regulation by platelets. Thromb Haemost 2017; 109:980-90. [DOI: 10.1160/th12-11-0819] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/28/2013] [Indexed: 02/06/2023]
Abstract
SummaryAtherosclerosis is an inflammatory and thrombotic disease, in which both CD4+ T cells and platelets play important roles throughout all stages of atherogenesis. CD4+ T cells are the most abundant T cells present in atherosclerotic lesions. They are primarily seen as type 1 T helper (Th1) cells, while the other CD4+ T cell subsets Th2, Th17, and regulatory T (Treg) cells are also found in the lesions with lower frequencies. CD4+ T effector cells release various cytokines, which exert paracrine or autocrine effects among different CD4+ T cell subsets and other lesional cells and subsequently modulate inflammatory processes in the lesions. Platelets are instrumental in thrombosis and haemostasis, but also play important regulatory roles in immune response, inflammation, and angiogenesis. The present review summarises the current knowledge and/or understanding on how platelets regulate recruitment, activation, differentiation, and cytokine production of different CD4+ T cell subsets, as well as impacts of the platelet-CD4+ T cell interactions on atherogenesis. The research perspectives of platelet-CD4+ T cell interaction in atherosclerosis are also discussed.
Collapse
|
31
|
Boyle EC, Sedding DG, Haverich A. Targeting vasa vasorum dysfunction to prevent atherosclerosis. Vascul Pharmacol 2017; 96-98:5-10. [DOI: 10.1016/j.vph.2017.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/15/2017] [Indexed: 01/19/2023]
|
32
|
Parma L, Baganha F, Quax PHA, de Vries MR. Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur J Pharmacol 2017; 816:107-115. [PMID: 28435093 DOI: 10.1016/j.ejphar.2017.04.028] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/31/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022]
Abstract
Acute cardiovascular events, due to rupture or erosion of an atherosclerotic plaque, represent the major cause of morbidity and mortality in patients. Growing evidence suggests that plaque neovascularization is an important contributor to plaque growth and instability. The vessels' immaturity, with profound structural and functional abnormalities, leads to recurrent intraplaque hemorrhage. This review discusses new insights of atherosclerotic neovascularization, including the effects of leaky neovessels on intraplaque hemorrhage, both in experimental models and humans. Furthermore, modalities for in vivo imaging and therapeutic interventions to target plaque angiogenesis will be discussed.
Collapse
Affiliation(s)
- Laura Parma
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Fabiana Baganha
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Paul H A Quax
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Margreet R de Vries
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
33
|
Rademakers T, van der Vorst EPC, Daissormont ITMN, Otten JJT, Theodorou K, Theelen TL, Gijbels M, Anisimov A, Nurmi H, Lindeman JHN, Schober A, Heeneman S, Alitalo K, Biessen EAL. Adventitial lymphatic capillary expansion impacts on plaque T cell accumulation in atherosclerosis. Sci Rep 2017; 7:45263. [PMID: 28349940 PMCID: PMC5368662 DOI: 10.1038/srep45263] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
During plaque progression, inflammatory cells progressively accumulate in the adventitia, paralleled by an increased presence of leaky vasa vasorum. We here show that next to vasa vasorum, also the adventitial lymphatic capillary bed is expanding during plaque development in humans and mouse models of atherosclerosis. Furthermore, we investigated the role of lymphatics in atherosclerosis progression. Dissection of plaque draining lymph node and lymphatic vessel in atherosclerotic ApoE-/- mice aggravated plaque formation, which was accompanied by increased intimal and adventitial CD3+ T cell numbers. Likewise, inhibition of VEGF-C/D dependent lymphangiogenesis by AAV aided gene transfer of hVEGFR3-Ig fusion protein resulted in CD3+ T cell enrichment in plaque intima and adventitia. hVEGFR3-Ig gene transfer did not compromise adventitial lymphatic density, pointing to VEGF-C/D independent lymphangiogenesis. We were able to identify the CXCL12/CXCR4 axis, which has previously been shown to indirectly activate VEGFR3, as a likely pathway, in that its focal silencing attenuated lymphangiogenesis and augmented T cell presence. Taken together, our study not only shows profound, partly CXCL12/CXCR4 mediated, expansion of lymph capillaries in the adventitia of atherosclerotic plaque in humans and mice, but also is the first to attribute an important role of lymphatics in plaque T cell accumulation and development.
Collapse
Affiliation(s)
- Timo Rademakers
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - Emiel P C van der Vorst
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands.,Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Isabelle T M N Daissormont
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - Jeroen J T Otten
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - Kosta Theodorou
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - Thomas L Theelen
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - Marion Gijbels
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands.,Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands.,Department of Medical Biochemistry, Academic Medical Center, Amsterdam, the Netherlands
| | - Andrey Anisimov
- Wihuri Research Institute, University of Helsinki, Helsinki, Finland
| | - Harri Nurmi
- Wihuri Research Institute, University of Helsinki, Helsinki, Finland
| | - Jan H N Lindeman
- Departments of Vascular Surgery and Transplantation Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Schober
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sylvia Heeneman
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - Kari Alitalo
- Wihuri Research Institute, University of Helsinki, Helsinki, Finland
| | - Erik A L Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands.,Institute for Molecular Cardiovascular Research, RWTH Aachen, Germany
| |
Collapse
|
34
|
Soehnlein O, Steffens S, Hidalgo A, Weber C. Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol 2017; 17:248-261. [PMID: 28287106 DOI: 10.1038/nri.2017.10] [Citation(s) in RCA: 424] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditionally, neutrophils have been acknowledged to be the first immune cells that are recruited to an inflamed tissue and have mainly been considered in the context of acute inflammation. By contrast, their importance during chronic inflammation has been studied in less depth. This Review aims to summarize our current understanding of the roles of neutrophils in chronic inflammation, with a focus on how they communicate with other immune and non-immune cells within tissues. We also scrutinize the roles of neutrophils in wound healing and the resolution of inflammation, and finally, we outline emerging therapeutic strategies that target neutrophils.
Collapse
Affiliation(s)
- Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany.,Department of Physiology and Pharmacology, Karolinksa Institutet, von Eulers Väg 8, 17177 Stockholm, Sweden
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany
| | - Andrés Hidalgo
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,Fundación Centro Nacional de Investigaciones Cardiovasculares, Calle de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany.,Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
35
|
Cattaneo M, Staub D, Porretta AP, Gallino JM, Santini P, Limoni C, Wyttenbach R, Gallino A. Contrast-enhanced ultrasound imaging of intraplaque neovascularization and its correlation to plaque echogenicity in human carotid arteries atherosclerosis. Int J Cardiol 2016; 223:917-922. [PMID: 27597156 DOI: 10.1016/j.ijcard.2016.08.261] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/13/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Currently the most widely accepted predictor of stroke risk in patients with carotid atherosclerosis is the degree of stenoses. Plaque echogenicity on ultrasound imaging (US) and intraplaque neovascularization (IPNV) are becoming recognized as factors of plaque vulnerability. Aim of the study was to investigate the correlation between the echogenicity of the carotid atherosclerosis by standard US and the degree of IPNV by contrast enhanced US (CEUS). METHODS We recruited 45 consecutive subjects with an asymptomatic ≥50% carotid artery stenoses. Carotid plaque echogenicity at standard US was visually graded according to Gray-Weale classification (GW) and measured by the grayscale median (GSM), a semi-automated measurement performed by Adobe Photoshop©. On CEUS imaging IPNV was graded by different point scales according to the visual appearance of contrast within the plaque as follows: CEUS_A (1=absent; 2=present); CEUS_B (increasing IPNV from 1 to 3); and CEUS_C (increasing IPNV from 0 to 3). RESULTS The correlation between echogenicity by GW and IPNV grading was as follows: CEUS_B (-0.130 p .423), CEUS_C (-0.108, p .509), CEUS_A (0.021, p .897). The correlation between echogenicity by GSM measurement and IPNV was as follows: using a CEUS_A (-0.125, p .444), CEUS_C (-0.021, p .897) (0.005, p .977). No correlation was found statistically significant. CONCLUSION Our results display that there is no significant correlation between plaque echogenicity and IPNV. The small sample number and the multifaceted pathophysiology of the atherosclerotic plaque may explain the absence of statistically significantly correlation. Curtailing vulnerability explanation to either IPNV or echolucency may be misleading.
Collapse
Affiliation(s)
- Mattia Cattaneo
- Hospital of San Giovanni, Department of Cardiology, Bellinzona, Switzerland.
| | - Daniel Staub
- University Hospital Basel, Department of Angiology, Basel, Switzerland
| | | | | | - Paolo Santini
- Hospital of San Giovanni, Department of Radiology, Bellinzona, Switzerland
| | - Costanzo Limoni
- University of Applied Sciences and Arts of Southern Switzerland, Switzerland
| | - Rolf Wyttenbach
- Hospital of San Giovanni, Department of Radiology, Bellinzona, Switzerland
| | - Augusto Gallino
- Hospital of San Giovanni, Department of Cardiology, Bellinzona, Switzerland
| |
Collapse
|
36
|
Whiteford JR, De Rossi G, Woodfin A. Mutually Supportive Mechanisms of Inflammation and Vascular Remodeling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:201-78. [PMID: 27572130 DOI: 10.1016/bs.ircmb.2016.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is often accompanied by angiogenesis, the development of new blood vessels from existing ones. This vascular response is a response to chronic hypoxia and/or ischemia, but is also contributory to the progression of disorders including atherosclerosis, arthritis, and tumor growth. Proinflammatory and proangiogenic mediators and signaling pathways form a complex and interrelated network in these conditions, and many factors exert multiple effects. Inflammation drives angiogenesis by direct and indirect mechanisms, promoting endothelial proliferation, migration, and vessel sprouting, but also by mediating extracellular matrix remodeling and release of sequestered growth factors, and recruitment of proangiogenic leukocyte subsets. The role of inflammation in promoting angiogenesis is well documented, but by facilitating greater infiltration of leukocytes and plasma proteins into inflamed tissues, angiogenesis can also propagate chronic inflammation. This review examines the mutually supportive relationship between angiogenesis and inflammation, and considers how these interactions might be exploited to promote resolution of chronic inflammatory or angiogenic disorders.
Collapse
Affiliation(s)
- J R Whiteford
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - G De Rossi
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - A Woodfin
- Cardiovascular Division, King's College, University of London, London, United Kingdom.
| |
Collapse
|
37
|
Ruddy JM, Ikonomidis JS, Jones JA. Multidimensional Contribution of Matrix Metalloproteinases to Atherosclerotic Plaque Vulnerability: Multiple Mechanisms of Inhibition to Promote Stability. J Vasc Res 2016; 53:1-16. [PMID: 27327039 PMCID: PMC7196926 DOI: 10.1159/000446703] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/07/2016] [Indexed: 12/17/2022] Open
Abstract
The prevalence of atherosclerotic disease continues to increase, and despite significant reductions in major cardiovascular events with current medical interventions, an additional therapeutic window exists. Atherosclerotic plaque growth is a complex integration of cholesterol penetration, inflammatory cell infiltration, vascular smooth muscle cell (VSMC) migration, and neovascular invasion. A family of matrix-degrading proteases, the matrix metalloproteinases (MMPs), contributes to all phases of vascular remodeling. The contribution of specific MMPs to endothelial cell integrity and VSMC migration in atherosclerotic lesion initiation and progression has been confirmed by the increased expression of these proteases in plasma and plaque specimens. Endogenous blockade of MMPs by the tissue inhibitors of metalloproteinases (TIMPs) may attenuate proteolysis in some regions, but the progression of matrix degeneration suggests that MMPs predominate in atherosclerotic plaque, precipitating vulnerability. Plaque neovascularization also contributes to instability and, coupling the known role of MMPs in angiogenesis to that of atherosclerotic plaque growth, interest in targeting MMPs to facilitate plaque stabilization continues to accumulate. This article aims to review the contributions of MMPs and TIMPs to atherosclerotic plaque expansion, neovascularization, and rupture vulnerability with an interest in promoting targeted therapies to improve plaque stabilization and decrease the risk of major cardiovascular events.
Collapse
Affiliation(s)
- Jean Marie Ruddy
- Division of Vascular Surgery, Department of Surgery, Medical University of South Carolina, Charleston, S.C., USA
| | | | | |
Collapse
|
38
|
Pende A, Artom N, Bertolotto M, Montecucco F, Dallegri F. Role of neutrophils in atherogenesis: an update. Eur J Clin Invest 2016; 46:252-263. [PMID: 26573245 DOI: 10.1111/eci.12566] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/07/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND The role of neutrophils in the beginning and the progression of the atherosclerotic process did not receive much attention until the last years. On the contrary, recent data, in both the experimental animals and humans, suggest important effects of these cells with possible clinical consequences. MATERIALS AND METHODS This narrative review was based on the papers found on PubMed and MEDLINE up to July 2015. The search terms used were 'neutrophil, atherosclerosis' in combination with 'recruitment, chemokine, plaque destabilization and pathophysiology'. RESULTS Different models demonstrate the presence and the actions of neutrophils in the early steps of the atherogenesis confirming the fundamental role of these cells in the response of the innate immune system to different pathogens (in this context the modified lipoproteins). However, also the late phases of the atherosclerotic process, in particular the destabilization of a mature plaque, seem to be modulated by the neutrophils, possibly through the interaction with recently discovered biological systems such as the endocannabinoids. CONCLUSIONS The understanding of the mechanisms involved in the modulation exerted by neutrophils in atherosclerosis is pivotal in terms of the complete definition of the overall picture. This approach will certainly give us new targets and new pharmacological opportunities for the anti-inflammatory strategy of the cardiovascular prevention.
Collapse
Affiliation(s)
- Aldo Pende
- Clinic of Internal Medicine 1, Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino - IST, Genoa, Italy
| | - Nathan Artom
- Clinic of Internal Medicine 1, Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino - IST, Genoa, Italy
| | - Maria Bertolotto
- Clinic of Internal Medicine 1, Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino - IST, Genoa, Italy
| | - Fabrizio Montecucco
- Clinic of Internal Medicine 1, Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino - IST, Genoa, Italy
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- Division of Cardiology, Faculty of Medicine, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland
| | - Franco Dallegri
- Clinic of Internal Medicine 1, Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino - IST, Genoa, Italy
| |
Collapse
|
39
|
Rua R, McGavern DB. Elucidation of monocyte/macrophage dynamics and function by intravital imaging. J Leukoc Biol 2015; 98:319-32. [PMID: 26162402 PMCID: PMC4763596 DOI: 10.1189/jlb.4ri0115-006rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022] Open
Abstract
Monocytes and macrophages are a diverse population of innate immune cells that play a critical role in homeostasis and inflammation. These cells are surveillant by nature and closely monitor the vasculature and surrounding tissue during states of health and disease. Given their abundance and strategic positioning throughout the body, myeloid cells are among the first responders to any inflammatory challenge and are active participants in most immune-mediated diseases. Recent studies have shed new light on myeloid cell dynamics and function by use of an imaging technique referred to as intravital microscopy (IVM). This powerful approach allows researchers to gain real-time insights into monocytes and macrophages performing homeostatic and inflammatory tasks in living tissues. In this review, we will present a contemporary synopsis of how intravital microscopy has revolutionized our understanding of myeloid cell contributions to vascular maintenance, microbial defense, autoimmunity, tumorigenesis, and acute/chronic inflammatory diseases.
Collapse
Affiliation(s)
- Rejane Rua
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
40
|
Molina-Sánchez P, Chèvre R, Rius C, Fuster J, Andrés V. Loss of p27 phosphorylation at Ser10 accelerates early atherogenesis by promoting leukocyte recruitment via RhoA/ROCK. J Mol Cell Cardiol 2015; 84:84-94. [DOI: 10.1016/j.yjmcc.2015.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 03/23/2015] [Accepted: 04/14/2015] [Indexed: 01/17/2023]
|
41
|
Mulder WJM, Jaffer FA, Fayad ZA, Nahrendorf M. Imaging and nanomedicine in inflammatory atherosclerosis. Sci Transl Med 2015; 6:239sr1. [PMID: 24898749 DOI: 10.1126/scitranslmed.3005101] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioengineering provides unique opportunities to better understand and manage atherosclerotic disease. The field is entering a new era that merges the latest biological insights into inflammatory disease processes with targeted imaging and nanomedicine. Preclinical cardiovascular molecular imaging allows the in vivo study of targeted nanotherapeutics specifically directed toward immune system components that drive atherosclerotic plaque development and complication. The first multicenter trials highlight the potential contribution of multimodality imaging to more efficient drug development. This review describes how the integration of engineering, nanotechnology, and cardiovascular immunology may yield precision diagnostics and efficient therapeutics for atherosclerosis and its ischemic complications.
Collapse
Affiliation(s)
- Willem J M Mulder
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA. Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| | - Farouc A Jaffer
- Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
42
|
Abstract
Recruitment of leukocytes into arteries is a hallmark event throughout all stages of atherosclerosis and hence stands out as a primary therapeutic target. To understand the molecular mechanisms of arterial leukocyte subset infiltration, real-time visualization of recruitment processes of leukocyte subsets at high resolution is a prerequisite. In this review we provide a balanced overview of optical imaging modalities in the more commonly used experimental models for atherosclerosis (e.g., mouse models) allowing for in vivo display of recruitment processes in large arteries and further detail strategies to overcome hurdles inherent to arterial imaging. We further provide a synopsis of techniques allowing for non-toxic, photostable labeling of target structures. Finally, we deliver a short summary of ongoing developments including the emergence of novel labeling approaches, the use of superresolution microscopy, and the potentials of opto-acoustic microscopy and intravascular 2-dimensional near-infrared fluorescence microscopy.
Collapse
Affiliation(s)
- Remco T A Megens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstr. 9, 80336, Munich, Germany.
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstr. 9, 80336, Munich, Germany.
- Department of Pathology, Academic Medical Center, Amsterdam University, Amsterdam, The Netherlands.
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
43
|
Xu X, Mao W, Chai Y, Dai J, Chen Q, Wang L, Zhuang Q, Pan Y, Chen M, Ni G, Huang Z. Angiogenesis Inhibitor, Endostar, Prevents Vasa Vasorum Neovascularization in a Swine Atherosclerosis Model. J Atheroscler Thromb 2015; 22:1100-12. [DOI: 10.5551/jat.26906] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xiaoming Xu
- Department of Cardiology, Zhejiang Traditional Chinese Medical Hospital
| | - Wei Mao
- Department of Cardiology, Zhejiang Traditional Chinese Medical Hospital
| | - Yueyang Chai
- First College of Clinical Medicine, Zhejiang Chinese Medical University
| | - Jin Dai
- Department of Cardiology, Zhejiang Traditional Chinese Medical Hospital
| | - Qian Chen
- First College of Clinical Medicine, Zhejiang Chinese Medical University
| | - Lihui Wang
- First College of Clinical Medicine, Zhejiang Chinese Medical University
| | - Qin Zhuang
- First College of Clinical Medicine, Zhejiang Chinese Medical University
| | - Yongming Pan
- Center of Experimental Animals, Zhejiang Chinese Medical University
| | - Minli Chen
- Center of Experimental Animals, Zhejiang Chinese Medical University
| | - Guibao Ni
- Department of Pathology, Zhejiang Traditional Chinese Medical Hospital
| | - Zhaoquan Huang
- Department of Cardiology, Zhejiang Traditional Chinese Medical Hospital
| |
Collapse
|
44
|
Qin J, Peng C, Zhao B, Ye K, Yuan F, Peng Z, Yang X, Huang L, Jiang M, Zhao Q, Tang G, Lu X. Noninvasive detection of macrophages in atherosclerotic lesions by computed tomography enhanced with PEGylated gold nanoparticles. Int J Nanomedicine 2014; 9:5575-90. [PMID: 25506213 PMCID: PMC4260660 DOI: 10.2147/ijn.s72819] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Macrophages are becoming increasingly significant in the progression of atherosclerosis (AS). Molecular imaging of macrophages may improve the detection and characterization of AS. In this study, dendrimer-entrapped gold nanoparticles (Au DENPs) with polyethylene glycol (PEG) and fluorescein isothiocyanate (FI) coatings were designed, tested, and applied as contrast agents for the enhanced computed tomography (CT) imaging of macrophages in atherosclerotic lesions. Cell counting kit-8 assay, fluorescence microscopy, silver staining, and transmission electron microscopy revealed that the FI-functionalized Au DENPs are noncytotoxic at high concentrations (3.0 μM) and can be efficiently taken up by murine macrophages in vitro. These nanoparticles were administered to apolipoprotein E knockout mice as AS models, which demonstrated that the macrophage burden in atherosclerotic areas can be tracked noninvasively and dynamically three-dimensionally in live animals using micro-CT. Our findings suggest that the designed PEGylated gold nanoparticles are promising biocompatible nanoprobes for the CT imaging of macrophages in atherosclerotic lesions and will provide new insights into the pathophysiology of AS and other concerned inflammatory diseases.
Collapse
Affiliation(s)
- Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai, People's Republic of China
| | - Chen Peng
- Department of Radiology, Shanghai Tenth People's Hospital Affiliated to Tongji University, School of Medicine, Shanghai, People's Republic of China
| | - Binghui Zhao
- Department of Radiology, Shanghai Tenth People's Hospital Affiliated to Tongji University, School of Medicine, Shanghai, People's Republic of China
| | - Kaichuang Ye
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai, People's Republic of China
| | - Fukang Yuan
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai, People's Republic of China
| | - Zhiyou Peng
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai, People's Republic of China
| | - Xinrui Yang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai, People's Republic of China
| | - Lijia Huang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai, People's Republic of China
| | - Mier Jiang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai, People's Republic of China
| | - Qinghua Zhao
- Department of Orthopaedics, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital Affiliated to Tongji University, School of Medicine, Shanghai, People's Republic of China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai, People's Republic of China ; Vascular Center of Shanghai JiaoTong University, Shanghai, People's Republic of China
| |
Collapse
|
45
|
Döring Y, Drechsler M, Soehnlein O, Weber C. Neutrophils in atherosclerosis: from mice to man. Arterioscler Thromb Vasc Biol 2014; 35:288-95. [PMID: 25147339 DOI: 10.1161/atvbaha.114.303564] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infiltration of leukocyte subsets is a driving force of atherosclerotic lesion growth, and during the past decade, neutrophils have received growing attention in chronic inflammatory processes, such as atherosclerosis. Equipped with various ready to be released mediators, evolved to fight invading pathogens, neutrophils may also hold key functions in affecting sterile inflammation, such as in atherosclerosis. Many of their secretion products might instruct or activate other immune cells (particularly monocytes) to, for example, enter atherosclerotic lesions or release proinflammatory mediators. Despite the emerging evidence for the mechanistic contribution of neutrophils to early atherosclerosis in mice, their role in human atherogenesis, atheroprogression, and atherosclerotic plaque destabilization is still poorly understood. This brief review will summarize latest findings on the role of neutrophils in atherosclerosis and will pay special attention to studies describing a translation approach by combining measurements in mouse and human.
Collapse
Affiliation(s)
- Yvonne Döring
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (Y.D., M.D., O.S., C.W.); Department of Pathology, Academic Medical Center, Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); and German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., C.W.)
| | - Maik Drechsler
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (Y.D., M.D., O.S., C.W.); Department of Pathology, Academic Medical Center, Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); and German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., C.W.)
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (Y.D., M.D., O.S., C.W.); Department of Pathology, Academic Medical Center, Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); and German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., C.W.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (Y.D., M.D., O.S., C.W.); Department of Pathology, Academic Medical Center, Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); and German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., C.W.).
| |
Collapse
|
46
|
Gjurich BN, Taghavie-Moghadam PL, Ley K, Galkina EV. L-selectin deficiency decreases aortic B1a and Breg subsets and promotes atherosclerosis. Thromb Haemost 2014; 112:803-11. [PMID: 24989887 DOI: 10.1160/th13-10-0865] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 04/29/2014] [Indexed: 12/18/2022]
Abstract
There is a significant recruitment of leucocytes into aortas during atherogenesis. L-selectin regulates leucocyte migration into secondary lymphoid and peripheral tissues and was proposed to play a role in leucocyte homing into aortas. Here, we determine the role of L-selectin in atherosclerosis. L-selectin-deficient Apoe-/- (Sell-/-Apoe-/-) mice had a 74% increase in plaque burden compared to Apoe-/- mice fed a chow diet for 50 weeks. Elevated atherosclerosis was accompanied by increased aortic leucocyte content, but a 50% reduction in aortic B cells despite elevated B cell counts in the blood. Follicular B cells represented 65%, whereas B1a and regulatory B cells (Breg) comprised 5% of aortic B cells. B1a and Breg cell subsets were reduced in Sell-/-Apoe-/- aortas with accompanied two-fold decrease in aortic T15 antibody and 1.2-fold decrease of interleukin-10 (IL-10) levels. L-selectin was required for B1 cell homing to the atherosclerotic aorta, as demonstrated by a 1.5-fold decrease in the migration of Sell-/-Apoe-/- vs Apoe-/- cells. Notably, we found a 1.6-fold increase in CD68hi macrophages in Sell-/-Apoe-/- compared to Apoe-/- aortas, despite comparable blood monocyte numbers and L-selectin-dependent aortic homing. L-selectin had no effect on neutrophil migration into aorta, but led to elevated blood neutrophil numbers, suggesting a potential involvement of neutrophils in atherogenesis of Sell-/-Apoe-/- mice. Thus, L-selectin deficiency increases peripheral blood neutrophil and lymphocyte numbers, decreases aortic B1a and Breg populations, T15 antibody and IL-10 levels, and increases aortic macrophage content of Sell-/-Apoe-/- mice. Altogether, these data provide evidence for an overall atheroprotective role of L-selectin.
Collapse
Affiliation(s)
| | | | | | - Elena V Galkina
- Elena V. Galkina, PhD, Associate Professor, Dept. Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23507-1696, USA, Tel.: +1 757 446 5019, Fax: +1 757 624 2255, E-mail:
| |
Collapse
|
47
|
Kortelainen ML, Porvari K. Adventitial macrophage and lymphocyte accumulation accompanying early stages of human coronary atherogenesis. Cardiovasc Pathol 2014; 23:193-7. [DOI: 10.1016/j.carpath.2014.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 12/29/2022] Open
|
48
|
Inhibitory effect of cryptotanshinone on angiogenesis and Wnt/β-catenin signaling pathway in human umbilical vein endothelial cells. Chin J Integr Med 2014; 20:743-50. [DOI: 10.1007/s11655-014-1810-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Indexed: 01/04/2023]
|
49
|
Vuorio T, Nurmi H, Moulton K, Kurkipuro J, Robciuc MR, Ohman M, Heinonen SE, Samaranayake H, Heikura T, Alitalo K, Ylä-Herttuala S. Lymphatic vessel insufficiency in hypercholesterolemic mice alters lipoprotein levels and promotes atherogenesis. Arterioscler Thromb Vasc Biol 2014; 34:1162-70. [PMID: 24723556 DOI: 10.1161/atvbaha.114.302528] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Lymphatic vessels collect extravasated fluid and proteins from tissues to blood circulation as well as play an essential role in lipid metabolism by taking up intestinal chylomicrons. Previous studies have shown that impairment of lymphatic vessel function causes lymphedema and fat accumulation, but clear connections between arterial pathologies and lymphatic vessels have not been described. APPROACH AND RESULTS Two transgenic mouse strains with lymphatic insufficiency (soluble vascular endothelial growth factor 3 [sVEGFR3] and Chy) were crossed with atherosclerotic mice deficient of low-density lipoprotein receptor and apolipoprotein B48 (LDLR(-/-)/ApoB(100/100)) to study the effects of insufficient lymphatic vessel transport on lipoprotein metabolism and atherosclerosis. Both sVEGFR3×LDLR(-/-)/ApoB(100/100) mice and Chy×LDLR(-/-)/ApoB(100/100) mice had higher plasma cholesterol levels compared with LDLR(-/-)/ApoB(100/100) control mice during both normal chow diet (16.3 and 13.7 versus 8.2 mmol/L, respectively) and Western-type high-fat diet (eg, after 2 weeks of fat diet, 45.9 and 42.6 versus 30.2 mmol/L, respectively). Cholesterol and triglyceride levels in very-low-density lipoprotein and low-density lipoprotein fractions were increased. Atherosclerotic lesions in young and intermediate cohorts of sVEGFR3×LDLR(-/-)/ApoB(100/100) mice progressed faster than in control mice (eg, intermediate cohort mice at 6 weeks, 18.3% versus 7.7% of the whole aorta, respectively). In addition, lesions in sVEGFR3×LDLR(-/-)/ApoB(100/100) mice and Chy×LDLR(-/-)/ApoB(100/100) mice had much less lymphatic vessels than lesions in control mice (0.33% and 1.07% versus 7.45% of podoplanin-positive vessels, respectively). CONCLUSIONS We show a novel finding linking impaired lymphatic vessels to lipoprotein metabolism, increased plasma cholesterol levels, and enhanced atherogenesis.
Collapse
Affiliation(s)
- Taina Vuorio
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Harri Nurmi
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Karen Moulton
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Jere Kurkipuro
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Marius R Robciuc
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Miina Ohman
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Suvi E Heinonen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Haritha Samaranayake
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Tommi Heikura
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Kari Alitalo
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
50
|
Affiliation(s)
- Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston
| | | |
Collapse
|