1
|
Liu J, Yuan B, Wang Y, Yan J. Bi-directional effects between inflammatory molecules and intracranial aneurysm. Neurosurg Rev 2024; 47:865. [PMID: 39570436 DOI: 10.1007/s10143-024-03070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/23/2024] [Accepted: 10/19/2024] [Indexed: 11/22/2024]
Abstract
INTRODUCTION Although inflammation is closely associated with the pathogenesis of intracranial aneurysm (IA), detailed causal associations remain unclear. This study aimed to investigate the causality between circulating inflammatory molecules (IMs) and IA. MATERIALS AND METHODS The bi-directional Mendelian randomization (MR) analysis was conducted using two genome-wide association studies (GWAS) for inflammatory molecules (IMs) from Finnish and Icelandic populations, as well as GWAS datasets of IA cases and controls of European descent. Colocalization analysis was performed to validate MR associations. Subsequently, Venn analysis was conducted to identify the overlapped causalities. RESULTS Integrating the findings from two MR models, RANTES was suggestively associated with IA (Finnish model: inverse variance-weighted odds ratio [ORIVW] (95% confidence interval [95% CI]), 0.86 (0.74-0.99); Icelandic model: 0.80 (0.68-0.94)) and aneurysmal subarachnoid hemorrhage (aSAH) (ORIVW (95% CI): 0.81 (0.68-0.95) and 0.80 (0.66-0.97) in Finnish and Icelandic models). IA and its subtypes were not associated with any of candidate IMs. However, colocalization analysis failed to identify significant evidence of shared genetic instruments between the exposures and outcomes, except for the MCP3-aSAH pair in the Icelandic model. CONCLUSIONS No significant causality was identified between IMs and IA or their subtypes. RANTES is potentially associated with IA and aSAH. Further investigation is warranted to explore the role of IMs in IA development.
Collapse
Affiliation(s)
- Junyu Liu
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, 410008, China
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Binfeng Yuan
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, 518055, China
- Department of New Networks, PengCheng Laboratory, Shenzhen, 518000, China
| | - Yuge Wang
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, 410013, China
| | - Junxia Yan
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, 410013, China.
- Hunan Provincial Key Laboratory of Clinical Epidemiology, XiangYa School of Public Health, Central South University, Changsha, 410013, China.
| |
Collapse
|
2
|
Tenhoeve SA, Owens MR, Rezk R, Hanna AG, Lucke-Wold B. Emerging and Current Biologics for the Treatment of Intracranial Aneurysms. BIOLOGICS 2024; 4:364-375. [DOI: 10.3390/biologics4040022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2025]
Abstract
The integration of biologics in endovascularly treated intracranial aneurysms is a significant area of focus in an evolving field. By presenting the clinical relevance, pathogenesis, management (historical and current), and emerging biologics themselves, this work provides a broad overview of the current landscape of the biologics under current investigation. Growth factors, cytokines, and biologic-coated coils are compared and described as modalities to increase healing, aneurysm occlusion, and long-term recovery. These emerging biologics may increase the efficacy and durability of less invasive endovascular methods and potentially change standard practice with continued exploration.
Collapse
Affiliation(s)
| | - Monica-Rae Owens
- School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Rogina Rezk
- School of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Abanob G. Hanna
- School of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| |
Collapse
|
3
|
He Q, Wang W, Xiong Y, Tao C, Ma L, You C. Causal association between circulating inflammatory cytokines and intracranial aneurysm and subarachnoid hemorrhage. Eur J Neurol 2024; 31:e16326. [PMID: 38709145 PMCID: PMC11235611 DOI: 10.1111/ene.16326] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND AND PURPOSE The causal association between inflammatory cytokines and the development of intracranial aneurysm (IA), unruptured IA (uIA) and subarachnoid hemorrhage (SAH) lacks clarity. METHODS The summary-level datasets for inflammatory cytokines were extracted from a genome-wide association study of the Finnish Cardiovascular Risk in Young Adults Study and the FINRISK survey. The summary statistics datasets related to IA, uIA and SAH were obtained from the genome-wide association study meta-analysis of the International Stroke Genetics Consortium and FinnGen Consortium. The primary method employed for analysis was inverse variance weighting (false discovery rate), supplemented by sensitivity analyses to address pleiotropy and enhance robustness. RESULTS In the International Stroke Genetics Consortium, 10, six and eight inflammatory cytokines exhibited a causal association with IA, uIA and SAH, respectively (false discovery rate, p < 0.05). In FinnGen datasets, macrophage Inflammatory Protein-1 Alpha (MIP_1A), MIP_1A and interferon γ-induced protein 10 (IP_10) were verified for IA, uIA and SAH, respectively. In the reverse Mendelian randomization analysis, the common cytokines altered by uIA and SAH were vascular endothelial growth factor (VEGF), MIP_1A, IL_9, IL_10 and IL_17, respectively. The meta-analysis results show that MIP_1A and IP_10 could be associated with the decreased risk of IA, and MIP_1A and IP_10 were associated with the decreased risk of uIA and SAH, respectively. Notably, the levels of VEGF, MIP_1A, IL_9, IL_10 and TNF_A were increased with uIA. Comprehensive heterogeneity and pleiotropy analyses confirmed the robustness of these results. CONCLUSION Our study unveils a bidirectional association between inflammatory cytokines and IA, uIA and SAH. Further investigations are essential to validate their relationship and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Qiang He
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Wenjing Wang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yang Xiong
- Department of Urology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Chuanyuan Tao
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Lu Ma
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Chao You
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Lauzier DC, Srienc AI, Vellimana AK, Dacey Jr RG, Zipfel GJ. Peripheral macrophages in the development and progression of structural cerebrovascular pathologies. J Cereb Blood Flow Metab 2024; 44:169-191. [PMID: 38000039 PMCID: PMC10993883 DOI: 10.1177/0271678x231217001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 11/26/2023]
Abstract
The human cerebrovascular system is responsible for maintaining neural function through oxygenation, nutrient supply, filtration of toxins, and additional specialized tasks. While the cerebrovascular system has resilience imparted by elaborate redundant collateral circulation from supportive tertiary structures, it is not infallible, and is susceptible to developing structural vascular abnormalities. The causes of this class of structural cerebrovascular diseases can be broadly categorized as 1) intrinsic developmental diseases resulting from genetic or other underlying aberrations (arteriovenous malformations and cavernous malformations) or 2) extrinsic acquired diseases that cause compensatory mechanisms to drive vascular remodeling (aneurysms and arteriovenous fistulae). Cerebrovascular diseases of both types pose significant risks to patients, in some cases leading to death or disability. The drivers of such diseases are extensive, yet inflammation is intimately tied to all of their progressions. Central to this inflammatory hypothesis is the role of peripheral macrophages; targeting this critical cell type may lead to diagnostic and therapeutic advancement in this area. Here, we comprehensively review the role that peripheral macrophages play in cerebrovascular pathogenesis, provide a schema through which macrophage behavior can be understood in cerebrovascular pathologies, and describe emerging diagnostic and therapeutic avenues in this area.
Collapse
Affiliation(s)
- David C Lauzier
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anja I Srienc
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ananth K Vellimana
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ralph G Dacey Jr
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Nowicki KW, Mittal AM, Abou-Al-Shaar H, Rochlin EK, Lang MJ, Gross BA, Friedlander RM. A Future Blood Test to Detect Cerebral Aneurysms. Cell Mol Neurobiol 2023; 43:2697-2711. [PMID: 37046105 PMCID: PMC11410155 DOI: 10.1007/s10571-023-01346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Intracranial aneurysms are reported to affect 2-5% of the population. Despite advances in the surgical management of this disease, diagnostic technologies have marginally improved and still rely on expensive or invasive imaging procedures. Currently, there is no blood-based test to detect cerebral aneurysm formation or quantify the risk of rupture. The aim of this review is to summarize current literature on the mechanism of aneurysm formation, specifically studies relating to inflammation, and provide a rationale and commentary on a hypothetical future blood-based test. Efforts should be focused on clinical-translational approaches to create an assay to screen for cerebral aneurysm presence and risk-stratify patients to allow for superior treatment timing and management. Cerebral Aneurysm Blood Test Considerations: There are multiple caveats to development of a putative blood test to detect cerebral aneurysm presence.
Collapse
Affiliation(s)
- Kamil W Nowicki
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Aditya M Mittal
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hussam Abou-Al-Shaar
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Emma K Rochlin
- Loyola University Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Michael J Lang
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Bradley A Gross
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert M Friedlander
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Laurent D, Lucke-Wold B, Dodd WS, Martinez M, Chowdhury MAB, Hosaka K, Motwani K, Hoh B. Combination release of chemokines from coated coils to target aneurysm healing. J Neurointerv Surg 2023; 15:689-694. [PMID: 35609975 PMCID: PMC10116990 DOI: 10.1136/neurintsurg-2022-018710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/13/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Monocyte chemoattractant protein 1 (MCP-1) and osteopontin (OPN) have been identified separately as key mediators of the aneurysm healing process following coil embolization in the rodent model. The ability of protein coated coils to accelerate this process is currently unknown. OBJECTIVE To create coils coated with both MCP-1 and OPN to target aneurysm healing. METHODS We used a polymer (poly(glycolide-co-caprolactone)) (Rao pharmaceuticals) (CG910) to test whether coils could be dual coated with active proteins with sequential reliable release. Coils were coated with poly-DL-lactic glycolic acid (PLGA), CG910, and subsequently dipped with protein OPN (inner layer for delayed release) and MCP-1 (outer layer for initial release). Release assays were used to measure protein elution from coils over time. To test in vivo feasibility, coated coils were implanted into carotid aneurysms to determine the effect on aneurysm healing. RESULTS The in vitro protein release assay demonstrated a significant amount of OPN and MCP-1 release within 2 days. Using a 200 µg/µL solution of MCP-1 in phosphate-buffered saline, we showed that CG910 coated coils provide effective release of MCP over time. In the carotid aneurysm model, MCP-1 and OPN coated coils significantly increased tissue ingrowth (74% and 80%) compared with PLGA and CG910 coated coils alone (58% and 53%). To determine synergistic impact of dual coating, we measured ingrowth for MCP-1/OPN coils (63%) as well as overlap coefficients for NOX4 and NFκB with CD31. CONCLUSIONS This study demonstrates that MCP-1 and OPN coated coils are viable and may promote early aneurysm healing. Dual coated coils may have synergistic benefit given different location of protein interaction measured in vivo. Further work is warranted.
Collapse
Affiliation(s)
- Dimitri Laurent
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Brandon Lucke-Wold
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - William S Dodd
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Melanie Martinez
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | | | - Koji Hosaka
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Kartik Motwani
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Brian Hoh
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Kim JE, Lee DS, Kang TC. Epigallocatechin-3-Gallate Attenuates Leukocyte Infiltration in 67-kDa Laminin Receptor-Dependent and -Independent Pathways in the Rat Frontoparietal Cortex following Status Epilepticus. Antioxidants (Basel) 2023; 12:antiox12040969. [PMID: 37107345 PMCID: PMC10136333 DOI: 10.3390/antiox12040969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Status epilepticus (SE) evokes leukocyte infiltration in the frontoparietal cortex (FPC) without the blood-brain barrier disruption. Monocyte chemotactic protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2) regulate leukocyte recruitments into the brain parenchyma. Epigallocatechin-3-gallate (EGCG) is an antioxidant and a ligand for non-integrin 67-kDa laminin receptor (67LR). However, it is unknown whether EGCG and/or 67LR affect SE-induced leukocyte infiltrations in the FPC. In the present study, SE infiltrated myeloperoxidase (MPO)-positive neutrophils, as well as cluster of differentiation 68 (CD68)-positive monocytes in the FPC are investigated. Following SE, MCP-1 was upregulated in microglia, which was abrogated by EGCG treatment. The C-C motif chemokine receptor 2 (CCR2, MCP-1 receptor) and MIP-2 expressions were increased in astrocytes, which were attenuated by MCP-1 neutralization and EGCG treatment. SE reduced 67LR expression in astrocytes, but not endothelial cells. Under physiological conditions, 67LR neutralization did not lead to MCP-1 induction in microglia. However, it induced MIP-2 expression and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in astrocytes and leukocyte infiltration in the FPC. Co-treatment of EGCG or U0126 (an ERK1/2 inhibitor) attenuated these events induced by 67LR neutralization. These findings indicate that the EGCG may ameliorate leukocyte infiltration in the FPC by inhibiting microglial MCP-1 induction independent of 67LR, as well as 67LR-ERK1/2-MIP-2 signaling pathway in astrocytes.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
8
|
The mechanism and therapy of aortic aneurysms. Signal Transduct Target Ther 2023; 8:55. [PMID: 36737432 PMCID: PMC9898314 DOI: 10.1038/s41392-023-01325-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/15/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Aortic aneurysm is a chronic aortic disease affected by many factors. Although it is generally asymptomatic, it poses a significant threat to human life due to a high risk of rupture. Because of its strong concealment, it is difficult to diagnose the disease in the early stage. At present, there are no effective drugs for the treatment of aneurysms. Surgical intervention and endovascular treatment are the only therapies. Although current studies have discovered that inflammatory responses as well as the production and activation of various proteases promote aortic aneurysm, the specific mechanisms remain unclear. Researchers are further exploring the pathogenesis of aneurysms to find new targets for diagnosis and treatment. To better understand aortic aneurysm, this review elaborates on the discovery history of aortic aneurysm, main classification and clinical manifestations, related molecular mechanisms, clinical cohort studies and animal models, with the ultimate goal of providing insights into the treatment of this devastating disease. The underlying problem with aneurysm disease is weakening of the aortic wall, leading to progressive dilation. If not treated in time, the aortic aneurysm eventually ruptures. An aortic aneurysm is a local enlargement of an artery caused by a weakening of the aortic wall. The disease is usually asymptomatic but leads to high mortality due to the risk of artery rupture.
Collapse
|
9
|
Contuzzi N, Casalino G, Boccaccio A, Ballini A, Charitos IA, Bottalico L, Santacroce L. Metals Biotribology and Oral Microbiota Biocorrosion Mechanisms. J Funct Biomater 2022; 14:14. [PMID: 36662061 PMCID: PMC9863779 DOI: 10.3390/jfb14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
During the last decades, metal-based biomaterials have been extensively explored to be used as biocompatible metals for biomedical applications, owing to their superior mechanical properties and corrosion resistance. Consequently, for long-term implanted medical devices, to assure the biomaterials' reliability, functionality, and biocompatibility, studying the various bio-tribological damage mechanisms to obtain the optimum properties is one of the most important goals. In this review, we consider the most important metal-based biomaterials such as stainless steel, alloys of titanium (Ti), cobalt-chromium (Co-Cr), and Nichel-Titatium (Ni-Ti), as well Magnesium (Mg) alloys and with Tantalum (Ta), emphasizing their characteristics, clinical applications, and deterioration over time. The influence of metal elements on biological safety, including significant effects of metal-based biomaterials in dentistry were discussed, considering the perspectives of surface, mechanical properties, corrosion behaviors, including interactions, bio-mechanisms with tissues, and oral environments. In addition, the role of the oral microbiota was explored due to its role in this erosion condition, in order to further understand the mechanism of metal-based biomaterials implanted on the microflora balance of aerobic and anaerobic bacteria in an oral environment.
Collapse
Affiliation(s)
- Nicola Contuzzi
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Giuseppe Casalino
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Antonio Boccaccio
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Andrea Ballini
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Ioannis Alexandros Charitos
- Emergency/Urgent Department, National Poisoning Center, Riuniti University Hospital of Foggia, 71122 Foggia, Italy
| | - Lucrezia Bottalico
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (CEDICLO), University of Bari, 70121 Bari, Italy
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, Microbiology and Virology Unit, University of Bari “Aldo Moro”, 70126 Bari, Italy
| |
Collapse
|
10
|
Bioabsorbable, elastomer-coated magnesium alloy coils for treating saccular cerebrovascular aneurysms. Biomaterials 2022; 290:121857. [DOI: 10.1016/j.biomaterials.2022.121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/19/2022]
|
11
|
Laurent D, Lucke-Wold B, Leary O, Randall MH, Porche K, Koch M, Chalouhi N, Polifka A, Hoh BL. The Evolution of Endovascular Therapy for Intracranial Aneurysms: Historical Perspective and Next Frontiers. Neurosci Insights 2022; 17:26331055221117560. [PMID: 35924091 PMCID: PMC9340900 DOI: 10.1177/26331055221117560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
The history of cerebral aneurysm treatment has a rich and storied past with multiple notable luminaries contributing insights. The modern era has transitioned from primarily clip ligation to increasing use of endovascular therapy. Even more recently, the use of intrasaccular flow diverters has been introduced for the treatment of wide necked aneurysms. The field is continuing to transform, and bioactive coils and stents have resurfaced as promising adjuvants to promote aneurysm healing. Advanced imaging modalities are being developed that could further advance the endovascular arsenal and allow for porous memory polymer devices to enter the field. This focused review highlights notable historic contributions and advances to the point of futuristic technology that is actively being developed.
Collapse
Affiliation(s)
- Dimitri Laurent
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | | | - Owen Leary
- Department of Neurosurgery, Brown University, Providence, RI, USA
| | - Morgan H Randall
- Department of Cardiology, University of Florida, Gainesville, FL, USA
| | - Ken Porche
- School of Medicine, University of Arkansas for Medical Sciences, Little Rock AR, USA
| | - Matthew Koch
- School of Medicine, University of Arkansas for Medical Sciences, Little Rock AR, USA
| | - Nohra Chalouhi
- School of Medicine, University of Arkansas for Medical Sciences, Little Rock AR, USA
| | - Adam Polifka
- School of Medicine, University of Arkansas for Medical Sciences, Little Rock AR, USA
| | - Brian L Hoh
- School of Medicine, University of Arkansas for Medical Sciences, Little Rock AR, USA
| |
Collapse
|
12
|
Chau SM, Herting SM, Noltensmeyer DA, Ahmed H, Maitland DJ, Raghavan S. Macrophage activation in response to shape memory polymer foam-coated aneurysm occlusion devices. J Biomed Mater Res B Appl Biomater 2022; 110:1535-1544. [PMID: 35090200 DOI: 10.1002/jbm.b.35015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 01/30/2023]
Abstract
Brain aneurysms can be treated with embolic coils using minimally invasive approaches. It is advantageous to modulate the biologic response of platinum embolic coils. Our previous studies demonstrated that shape memory polymer (SMP) foam coated embolization coils (FCC) devices demonstrate enhanced healing responses in animal models compared with standard bare platinum coil (BPC) devices. Macrophages are the most prevalent immune cell type that coordinate the greater immune response to implanted materials. Hence, we hypothesized that the highly porous SMP foam coatings on embolic coils activate a pro-regenerative healing phenotype. To test this hypothesis, we analyzed the number and type of infiltrating macrophages in FCC or BPC devices implanted in a rabbit elastase aneurysm model. FCC devices elicited a great number of infiltration macrophages, skewed significantly to a pro-regenerative M2-like phenotype 90 days following implantation. We devised an in vitro assay, where monocyte-derived macrophages were placed in close association with FCC or BPC devices for 6-72 h. Macrophages encountering SMP FCC-devices demonstrated highly mixed activation phenotypes at 6 h, heavily skewing toward an M2-like phenotype by 72 h, compared with macrophages encountering BPC devices. Macrophage activation was evaluated using gene expression analysis, and secreted cytokine evaluation. Together, our results demonstrate that FCC devices promoted a pro-regenerative macrophage activation phenotype, compared with BPC devices. Our in vitro findings corroborate with in vivo observations that SMP-based modification of embolic coils can promote better healing of the aneurysm site, by sustaining a pro-healing macrophage phenotype.
Collapse
Affiliation(s)
- Sarah M Chau
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- TAMU Master of Biotechnology Program, Texas A&M University, College Station, Texas, USA
| | - Scott M Herting
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Dillon A Noltensmeyer
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Hamzah Ahmed
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Duncan J Maitland
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
13
|
Kim S, Nowicki KW, Gross BA, Wagner WR. Injectable hydrogels for vascular embolization and cell delivery: The potential for advances in cerebral aneurysm treatment. Biomaterials 2021; 277:121109. [PMID: 34530233 DOI: 10.1016/j.biomaterials.2021.121109] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Cerebral aneurysms are vascular lesions caused by the biomechanical failure of the vessel wall due to hemodynamic stress and inflammation. Aneurysmal rupture results in subarachnoid hemorrhage often leading to death or disability. Current treatment options include open surgery and minimally invasive endovascular options aimed at secluding the aneurysm from the circulation. Cerebral aneurysm embolization with appropriate materials is a therapeutic approach to prevent rupture and the resultant clinical sequelae. Metallic platinum coils are a typical, practical option to embolize cerebral aneurysms. However, the development of an alternative treatment modality is of interest because of poor occlusion permanence, coil migration, and coil compaction. Moreover, minimizing the implanted foreign materials during therapy is of importance not just to patients, but also to clinicians in the event an open surgical approach has to be pursued in the future. Polymeric injectable hydrogels have been investigated for transcatheter embolization and cell therapy with the potential for permanent aneurysm repair. This review focuses on how the combination of injectable embolic biomaterials and cell therapy may achieve minimally invasive remodeling of a degenerated cerebral artery with promise for superior outcomes in treatment of this devastating disease.
Collapse
Affiliation(s)
- Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kamil W Nowicki
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bradley A Gross
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Du H, Liang L, Li J, Xiong Q, Yu X, Yu H. Lipocalin-2 Alleviates LPS-Induced Inflammation Through Alteration of Macrophage Properties. J Inflamm Res 2021; 14:4189-4203. [PMID: 34471375 PMCID: PMC8405166 DOI: 10.2147/jir.s328916] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/13/2021] [Indexed: 01/02/2023] Open
Abstract
Purpose Lipocalin-2 (Lcn2) is an acute-phase protein and elevated in several inflammatory diseases. This study aimed to determine whether Lcn2 alleviates inflammation and explore the underlying cellular mechanisms. Methods C57BL/6 Lcn2-deficient (Lcn2−/-) male mice were intraperitoneally injected with lipopolysaccharide (LPS) to build systemic inflammation model. The inflammatory processes were investigated. The morphology of villi was measured by scanning electron microscopy (SEM). The levels of inflammatory factors were detected by ELISA and qPCR analysis. The production of Lcn2 was determined with immunofluorescence staining by confocal microscope. The molecular mechanism of Lcn2 in bone marrow-derived macrophages (BMDMs) was analyzed by mass spectrometry (MS)-based quantitative proteomic analysis. Results Compared to wild-type (WT) mice injected with LPS, Lcn2−/- mice injected with LPS showed increased inflammatory damage in jejunum and ileum, and significantly elevated the levels of multiple pro-inflammatory cytokines. After determining that Lcn2 was mainly located in the cytoplasm of macrophages, we isolated BMDMs from Lcn2−/- mice to evaluate their function. During LPS challenge, transcripts of pro-inflammatory cytokines were all significantly increased in BMDMs from Lcn2−/- mice, while those of anti-inflammatory cytokines were significantly decreased when compared with the cytokines in BMDMs from WT mice. A label-free relative quantitation proteomics analysis showed that LPS-treated BMDMs from Lcn2−/- mice had elevated levels of pro-inflammatory pathways, but reduced phagocytosis and autophagy when compared with LPS-treated BMDMs from WT mice. Conclusion These findings demonstrated that Lcn2 was a potent protective factor in response to systemic inflammation and might be an indispensable factor for macrophage functions.
Collapse
Affiliation(s)
- Huahua Du
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Zhejiang, 310058, People's Republic of China
| | - Li Liang
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Zhejiang, 310058, People's Republic of China
| | - Jiahui Li
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Zhejiang, 310058, People's Republic of China
| | - Qingqing Xiong
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Zhejiang, 310058, People's Republic of China
| | - Xin Yu
- Department of Anesthesia, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, People's Republic of China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, People's Republic of China
| |
Collapse
|
15
|
Wong SC, Medrano LC, Hoftman AD, Jones OY, McCurdy DK. Uncharted waters: mesenchymal stem cell treatment for pediatric refractory rheumatic diseases; a single center case series. Pediatr Rheumatol Online J 2021; 19:87. [PMID: 34112214 PMCID: PMC8194100 DOI: 10.1186/s12969-021-00575-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/20/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND With the advent of innovative therapies including biologics and Janus kinase inhibitors, children with rheumatic diseases are more likely to have improved outcomes. Despite these advances, some children do not respond, or they, or their parents fear adverse events and seek other alternatives. Increasingly, private companies are offering mesenchymal stem cells (MSC) as an alternative, which are described as natural therapies for rheumatic diseases, often insinuating them as a cure. MSC have immunomodulatory properties, and transplantation of these stem cells have been used to successfully treat immunologic conditions like graft-versus-host disease. Lately, MSC research in adult lupus has been encouraging, but the clinical trials are still underway and in most, MSC therapy is not a standalone treatment. This retrospective case series will highlight three cases of pediatric refractory autoimmune disease whose parents sought out and received MSC therapy as a self-decision without first seeking medical advice from our specialty. The three families felt that their children were improved and in two believed that their child was cured. MSC have the potential of beneficial immunomodulation and may be a powerful tool in the therapy of rheumatic disease, but well controlled clinical trials are necessary and should be designed and monitored by experts in childhood rheumatic disease. CASE PRESENTATION Three children with three different rheumatic diseases; systemic lupus erythematosus, mixed connective tissue disease and juvenile idiopathic arthritis were under the care of pediatric rheumatology at a large, tertiary-care, teaching institution. Multiple non-biologic and biologic disease-modifying anti-rheumatic drugs failed to significantly decrease disease activity, and as a result, the families chose to undergo MSC therapy. After transplantation, all children improved per patient and parent report and tapered off conventional immunosuppressive drugs. No serious adverse events occurred in these three patients. CONCLUSION The three cases presented in this report reflect comparable beneficial outcomes and minimal risks published in adult studies. These were not controlled studies, however, and benefit was reported rather than documented. These cases suggest that MSC transplantation may prove a promising adjunctive treatment option; however, further research, development of standardized infusion therapy protocols, and well-designed monitored clinical trials are essential.
Collapse
Affiliation(s)
- Stephen C. Wong
- grid.19006.3e0000 0000 9632 6718Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095 USA ,grid.34477.330000000122986657Division of Rheumatology, Department of Pediatrics, University of Washington/Seattle Children’s Hospital, Seattle, 98105 USA
| | - Leah C. Medrano
- grid.19006.3e0000 0000 9632 6718Department of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Alice D. Hoftman
- grid.19006.3e0000 0000 9632 6718Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Olcay Y. Jones
- grid.414467.40000 0001 0560 6544Division Pediatric Rheumatology, Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, MD 20889 USA
| | - Deborah K. McCurdy
- grid.19006.3e0000 0000 9632 6718Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
16
|
Rikhtegar R, Mosimann PJ, Rothaupt J, Mirza-Aghazadeh-Attari M, Hallaj S, Yousefi M, Amiri A, Farashi E, Kheyrollahiyan A, Dolati S. Non-coding RNAs role in intracranial aneurysm: General principles with focus on inflammation. Life Sci 2021; 278:119617. [PMID: 34004250 DOI: 10.1016/j.lfs.2021.119617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/30/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
Intracranial aneurysm (IA) is one of the most challenging vascular lesions in the brain for clinicians. It was reported that 1%-6% of the world's population is affected by IAs. Owing to serious complications arising from these lesions, much attention has been paid to better understand their pathophysiology. Non-coding RNAs including short non-coding RNAs and long non-coding RNAs, have critical roles in modulating physiologic and pathological processes. These RNAs are emerging as new fundamental regulators of gene expression, are related with the progression of IA. Non-coding RNAs act via multiple mechanisms and be involved in vascular development, growth and remodeling. Furthermore, these molecules are involved in the regulation of inflammation, a key process in the formation and rupture of IA. Studying non-coding RNAs can yield a hypothetical mechanism for better understanding IA. The present study aims to focus on the role of these non-coding RNAs in the pathogenesis of IA.
Collapse
Affiliation(s)
- Reza Rikhtegar
- Department of Intracranial Endovascular Therapy, Alfried Krupp Krankenhaus Essen, Essen, Germany
| | - Pascal J Mosimann
- Department of Intracranial Endovascular Therapy, Alfried Krupp Krankenhaus Essen, Essen, Germany
| | - Jan Rothaupt
- Department of Intracranial Endovascular Therapy, Alfried Krupp Krankenhaus Essen, Essen, Germany
| | | | - Shahin Hallaj
- Burn and Regenerative Medicine Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Amiri
- Department of Cardiology, Marien Marl Hospital, Marl, Germany
| | - Ebrahim Farashi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Shrivastava A, Mishra R, Salazar LRM, Chouksey P, Raj S, Agrawal A. Enigma of what is Known about Intracranial Aneurysm Occlusion with Endovascular Devices. J Stroke Cerebrovasc Dis 2021; 30:105737. [PMID: 33774553 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022] Open
Abstract
Aneurysmal subarachnoid Hemorrhage is a major cause of neurological morbidity and mortality. Over the years vascular neurosurgery has witnessed technological advances aimed to reduce the morbidity and mortality. Several endovascular devices have been used in clinical practice to achieve this goal in the management of ruptured and unruptured cerebral aneurysms. Recurrence due to recanalization is encountered in all of these endovascular devices as well as illustrated by Barrow Ruptured Aneurysm Trial. Histological and molecular characterization of the aneurysms treated with endovascular devices is an area of active animal and human research studies. Yet, the pathobiology illustrating the mechanisms of aneurysmal occlusion and healing lacks evidence. The enigma of aneurysmal healing following treatment with endovascular devices needs to be de-mystified to understand the biological interaction of endovascular device and aneurysm and thereby guide the future development of endovascular devices aimed at better aneurysm occlusion. We performed a comprehensive and detailed literature review to bring all the known facts of the pathobiology of intracranial aneurysm healing, the knowledge of which is of paramount importance to neurosurgeons, an interventional neuroradiologist, molecular biologist, geneticists, and experts in animal studies. This review serves as a benchmark of what is known and platform for future studies basic science research related to intracranial aneurysms.
Collapse
Affiliation(s)
- Adesh Shrivastava
- Department of Neurosurgery, All India Institute of Medical Sciences, Saket Nagar, Bhopal 462020, Madhya Pradesh, India.
| | - Rakesh Mishra
- Department of Neurosurgery, All India Institute of Medical Sciences, Bhopal, India
| | | | - Pradeep Chouksey
- Department of Neurosurgery, All India Institute of Medical Sciences, Saket Nagar, Bhopal 462020, Madhya Pradesh, India
| | - Sumit Raj
- Department of Neurosurgery, All India Institute of Medical Sciences, Saket Nagar, Bhopal 462020, Madhya Pradesh, India
| | - Amit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Saket Nagar, Bhopal 462020, Madhya Pradesh, India
| |
Collapse
|
18
|
Serum Cytokine Profiles of Melanoma Patients and Their Association with Tumor Progression and Metastasis. JOURNAL OF ONCOLOGY 2021; 2021:6610769. [PMID: 33574842 PMCID: PMC7861916 DOI: 10.1155/2021/6610769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 11/17/2022]
Abstract
Purpose Previous studies have shown that melanoma cells produce excessive levels of cytokines, which have various biological roles during melanoma development. The aim of this study was to expand the profile of serum cytokines, chemokines, growth factors, and angiogenic factors that are associated with melanoma, to find more cytokines with abnormal concentrations in melanoma patients, to identify whether the level of cytokines correlated with prognostic variants, such as Breslow thickness and BRAF mutation, and, finally, to find out the cytokines that play important roles during melanoma development. Materials and Methods Multiplex immunobead assay technology and 45-plex immunoassays ProcartaPlex™ kits were used to simultaneously compare the levels of cytokines, growth factors, angiogenic factors, and chemokines between the serum of healthy patients (n = 30) and those with melanoma (n = 72). Data were analyzed according to the clinical characteristics of the designated patient subgroups. Results Compared to the control group, melanoma patients had higher levels of VEGF-A, PDGF-BB, IL-1RA, PIGF-1, IFN-γ, TNF-α, MIP-1α, and SCF, but lower levels of BDNF, SDF-1α, MCP-1, Eotaxin, EGF, and IL-7. Furthermore, the levels of TNF-α (P=0.320, r = 0.019), IFN-γ (P=0.311, r = 0.023), VEGF-A (P=0.014, r = 0.337), and BDNF (0.004, r = -0.391) showed a significant correlation with Breslow thickness. IL-7 was of lower levels in patients harboring BRAF mutants. Melanoma patients with high levels of MIP-1α and MCP-1 showed the poorest overall survival. Conclusions We found that the levels of VEGF-A and PDGF-BB in the serum of both primary and metastatic melanoma patients are elevated. TNF-α, IFN-γ, and VEGF-A presented a positive correlation with Breslow thickness, whereas BDNF showed a negative association. MIP-1α and MCP-1 correlated negatively with survival. In addition, lower levels of IL-7 were found in patients harboring BRAF mutants. These findings indicate that these cytokines may play critical roles in the progression of melanoma.
Collapse
|
19
|
Ishida Y, Kuninaka Y, Nosaka M, Kimura A, Taruya A, Furuta M, Mukaida N, Kondo T. Prevention of CaCl 2-induced aortic inflammation and subsequent aneurysm formation by the CCL3-CCR5 axis. Nat Commun 2020; 11:5994. [PMID: 33239616 PMCID: PMC7688638 DOI: 10.1038/s41467-020-19763-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 10/29/2020] [Indexed: 11/27/2022] Open
Abstract
Inflammatory mediators such as cytokines and chemokines are crucially involved in the development of abdominal aortic aneurysm (AAA). Here we report that CaCl2 application into abdominal aorta induces AAA with intra-aortic infiltration of macrophages as well as enhanced expression of chemokine (C-C motif) ligand 3 (CCL3) and MMP-9. Moreover, infiltrating macrophages express C-C chemokine receptor 5 (CCR5, a specific receptor for CCL3) and MMP-9. Both Ccl3-/- mice and Ccr5-/- but not Ccr1-/- mice exhibit exaggerated CaCl2-inducced AAA with augmented macrophage infiltration and MMP-9 expression. Similar observations are also obtained on an angiotensin II-induced AAA model. Immunoneutralization of CCL3 mimics the phenotypes observed in CaCl2-treated Ccl3-/- mice. On the contrary, CCL3 treatment attenuates CaCl2-induced AAA in both wild-type and Ccl3-/- mice. Consistently, we find that the CCL3-CCR5 axis suppresses PMA-induced enhancement of MMP-9 expression in macrophages. Thus, CCL3 can be effective to prevent the development of CaCl2-induced AAA by suppressing MMP-9 expression.
Collapse
MESH Headings
- Angiotensin II/toxicity
- Animals
- Anti-Inflammatory Agents/metabolism
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/immunology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/pathology
- Calcium Chloride/toxicity
- Chemokine CCL3/genetics
- Chemokine CCL3/metabolism
- Disease Models, Animal
- Humans
- Inflammation Mediators/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Knockout
- Receptors, CCR1/genetics
- Receptors, CCR1/metabolism
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Specific Pathogen-Free Organisms
Collapse
Affiliation(s)
- Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akira Taruya
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Machi Furuta
- Department of Clinical Laboratory Medicine, Wakayama Medical University, Wakayama, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
20
|
Yan W, Li T, Yin T, Hou Z, Qu K, Wang N, Durkan C, Dong L, Qiu J, Gregersen H, Wang G. M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation. Theranostics 2020; 10:10712-10728. [PMID: 32929376 PMCID: PMC7482821 DOI: 10.7150/thno.46143] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: For intravascular stent implantation to be successful, the processes of vascular tissue repair and therapy are considered to be critical. However, the mechanisms underlying the eventual fate of vascular smooth muscle cells (VSMCs) during vascular tissue repair remains elusive. In this study, we hypothesized that M2 macrophage-derived exosomes to mediate cell-to-cell crosstalk and induce dedifferentiation phenotypes in VSMCs. Methods: In vivo, 316L bare metal stents (BMS) were implanted from the left iliac artery into the abdominal aorta of 12-week-old male Sprague-Dawley (SD) rats for 7 and 28 days. Hematoxylin and eosin (HE) were used to stain the neointimal lesions. En-face immunofluorescence staining of smooth muscle 22 alpha (SM22α) and CD68 showed the rat aorta smooth muscle cells (RASMCs) and macrophages. Immunohistochemical staining of total galactose-specific lectin 3 (MAC-2) and total chitinase 3-like 3 (YM-1) showed the total macrophages and M2 macrophages. In vitro, exosomes derived from IL-4+IL-13-treated macrophages (M2Es) were isolated by ultracentrifugation and characterized based on their specific morphology. Ki-67 staining was conducted to assess the effects of the M2Es on the proliferation of RASMCs. An atomic force microscope (AFM) was used to detect the stiffness of the VSMCs. GW4869 was used to inhibit exosome release. RNA-seq was performed to determine the mRNA profiles of the RASMCs and M2Es-treated RASMCs. Quantitative real-time PCR (qRT-PCR) analysis was conducted to detect the expression levels of the mRNAs. Western blotting was used to detect the candidate protein expression levels. T-5224 was used to inhibit the DNA binding activity of AP-1 in RASMCs. Results: M2Es promote c-KIT expression and softening of nearby VSMCs, hence accelerating the vascular tissue repair process. VSMCs co-cultured in vitro with M2 macrophages presented an increased capacity for de-differentiation and softening, which was exosome dependent. In addition, the isolated M2Es helped to promote VSMC dedifferentiation and softening. Furthermore, the M2Es enhanced vascular tissue repair potency by upregulation of VSMCs c-KIT expression via activation of the c-Jun/activator protein 1 (AP-1) signaling pathway. Conclusions: The findings of this study emphasize the prominent role of M2Es during VSMC dedifferentiation and vascular tissue repair via activation of the c-Jun/AP-1 signaling pathway, which has a profound impact on the therapeutic strategies of coronary stenting techniques.
Collapse
|
21
|
Khashim Z, Daying D, Hong DY, Ringler JA, Herting S, Jakaitis D, Maitland D, Kallmes DF, Kadirvel R. The Distribution and Role of M1 and M2 Macrophages in Aneurysm Healing after Platinum Coil Embolization. AJNR Am J Neuroradiol 2020; 41:1657-1662. [PMID: 32816763 DOI: 10.3174/ajnr.a6719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/04/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Impairment of macrophage polarization from a proinflammatory macrophage type 1 (M1) population to an anti-inflammatory macrophage type 2 (M2) population is a hallmark of poor wound healing. In this study, we aimed to evaluate the distribution of M1 and M2 macrophages and to analyze their association with healing in aneurysms embolized by endovascular coiling. MATERIALS AND METHODS Elastase-induced aneurysms were created in female rabbits and subsequently embolized with platinum coils. Aneurysm occlusions were evaluated with angiographic imaging at 1 (n = 6), 3 (n = 5), or 6 (n = 6) months. Aneurysm tissues were harvested for histologic analysis, quantification of M1 and M2 macrophages by immunofluorescence, and collagen deposition determined by Masson trichrome staining. Histologic grading of aneurysm healing was also performed. Untreated aneurysms were used as controls (n = 6). RESULTS The M1 macrophage population was highest at 1 month posttreatment, progressively decreasing at 3 and 6 months. The M2 macrophage population progressively increased at 3 and 6 months posttreatment. The highest collagen deposition was at 6 months posttreatment. We found a moderate-to-weak direct correlation between the percentage of M2 macrophages and collagen deposition, as well as total histologic scores overall, and a strongly positive direct correlation between the percentage of M2 macrophages and total histologic scores at 6 months posttreatment. CONCLUSIONS Our data support the direct correlation between M2 macrophage polarization and healing in aneurysm tissues. Our results show a positive relationship between M2 macrophage populations and total histologic scores at later stages of healing after endovascular coiling. We conclude that interventions aimed at stimulating M2 macrophage expression locally may improve aneurysm healing after coil embolization.
Collapse
Affiliation(s)
- Z Khashim
- From the Department of Radiology (Z.K., D.D., D.Y.H., J.A.R., D.J., D.F.K., R.K.), Mayo Clinic, Rochester, Minnesota
| | - D Daying
- From the Department of Radiology (Z.K., D.D., D.Y.H., J.A.R., D.J., D.F.K., R.K.), Mayo Clinic, Rochester, Minnesota
| | - D Y Hong
- From the Department of Radiology (Z.K., D.D., D.Y.H., J.A.R., D.J., D.F.K., R.K.), Mayo Clinic, Rochester, Minnesota
| | - J A Ringler
- From the Department of Radiology (Z.K., D.D., D.Y.H., J.A.R., D.J., D.F.K., R.K.), Mayo Clinic, Rochester, Minnesota
| | - S Herting
- Department of Biomedical Engineering (S.H., D.M.), Texas A&M University, College Station, Texas
| | - D Jakaitis
- From the Department of Radiology (Z.K., D.D., D.Y.H., J.A.R., D.J., D.F.K., R.K.), Mayo Clinic, Rochester, Minnesota
| | - D Maitland
- Department of Biomedical Engineering (S.H., D.M.), Texas A&M University, College Station, Texas
| | - D F Kallmes
- From the Department of Radiology (Z.K., D.D., D.Y.H., J.A.R., D.J., D.F.K., R.K.), Mayo Clinic, Rochester, Minnesota
| | - R Kadirvel
- From the Department of Radiology (Z.K., D.D., D.Y.H., J.A.R., D.J., D.F.K., R.K.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
22
|
Characterization and Significance of Monocytes in Acute Stanford Type B Aortic Dissection. J Immunol Res 2020; 2020:9670360. [PMID: 32509885 PMCID: PMC7245667 DOI: 10.1155/2020/9670360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/05/2020] [Indexed: 01/16/2023] Open
Abstract
Acute aortic dissection (AAD) is one of the most common fatal diseases noted in vascular surgery. Human monocytes circulate in dynamic equilibrium and display a considerable heterogeneity. However, the role of monocytes in AAD remains elusive. In our recent study, we firstly obtained blood samples from 22 patients with Stanford type B AAD and 44 age-, sex-, and comorbidity-matched control subjects. And the monocyte proportions were evaluated by flow cytometry. Results showed that the percentage of total CD14+ monocytes in the blood samples of Stanford AAD patients was increased significantly compared with that of normal volunteers (P < 0.0005), and the absolute numbers of CD14brightCD16+ and CD14brightCD16− monocytes both increased significantly regardless of the percentage of PBMC or CD14+ cells, while CD14dimCD16+ monocytes displayed the opposite tendency. However, the percentage of CD14+ cells and its three subsets demonstrated no correlation with D-dimer (DD) and C-reactive protein (CRP). Then, blood mononuclear cell (PBMC) samples were collected by Ficoll density gradient centrifugation, followed with CD14+ magnetic bead sorting. After the purity of CD14+ cells was validated over 90%, AAD-related genes were concentrated in CD14+ monocytes. There were no significant differences observed with regard to the mRNA expression levels of MMP1 (P = 0.0946), MMP2 (P = 0.3941), MMP9 (P = 0.2919), IL-6 (P = 0.4223), and IL-10 (P = 0.3375) of the CD14+ monocytes in Stanford type B AAD patients compared with those of normal volunteers. The expression levels of IL-17 (P < 0.05) was higher in Stanford type B AAD patients, while the expression levels of TIMP1(P<0.05), TIMP2(P<0.01), TGF-β1 (P < 0.01), SMAD3 (P < 0.01), ACTA2 (P < 0.001), and ADAMTS-1 (P < 0.001) decreased. The data suggested that monocytes might play an important role in the development of Stanford type B AAD. Understanding of the production, differentiation, and function of monocyte subsets might dictate future therapeutic avenues for Stanford type B AAD treatment and can aid the identification of novel biomarkers or potential therapeutic targets for decreasing inflammation in AAD.
Collapse
|
23
|
Temporal dynamics of immune response following prolonged myocardial ischemia/reperfusion with and without cyclosporine A. Acta Pharmacol Sin 2019; 40:1168-1183. [PMID: 30858476 PMCID: PMC6786364 DOI: 10.1038/s41401-018-0197-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Understanding the dynamics of the immune response following late myocardial reperfusion is critical for the development of immunomodulatory therapy for myocardial infarction (MI). Cyclosporine A (CSA) possesses multiple therapeutic applications for MI, but its effects on the inflammation caused by acute MI are not clear. This study aimed to determine the dynamics of the immune response following myocardial ischemia/reperfusion (I/R) and the effects of CSA in a mouse model of prolonged myocardial ischemia designated to represent the human condition of late reperfusion. Adult C57BL/6 mice were subjected to 90 min of closed-chest myocardial I/R, which induced severe myocardial injury and excessive inflammation in the heart. Multicomponent analysis of the immune response caused by prolonged I/R revealed that the peak of cytokines/chemokines in the systemic circulation was synchronized with the maximal influx of neutrophils and T-cells in the heart 1 day after MI. The peak of cytokine/chemokine secretion in the infarcted heart coincided with the maximal macrophage and natural killer cell infiltration on day 3 after MI. The cellular composition of the mediastinal lymph nodes changed similarly to that of the infarcted hearts. CSA (10 mg/kg/day) given after prolonged I/R impaired heart function, enlarged the resulting scar, and reduced heart vascularization. It did not change the content of immune cells in hearts exposed to prolonged I/R, but the levels of MCP-1 and MIP-1α (hearts) and IL-12 (hearts and serum) were significantly reduced in the CSA-treated group in comparison to the untreated group, indicating alterations in immune cell function. Our findings provide new knowledge necessary for the development of immunomodulatory therapy targeting the immune response after prolonged myocardial ischemia/reperfusion.
Collapse
|
24
|
Sequential drug delivery to modulate macrophage behavior and enhance implant integration. Adv Drug Deliv Rev 2019; 149-150:85-94. [PMID: 31103451 DOI: 10.1016/j.addr.2019.05.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/03/2019] [Accepted: 05/15/2019] [Indexed: 12/30/2022]
Abstract
Macrophages are major upstream regulators of the inflammatory response to implanted biomaterials. Sequential functions of distinct macrophage phenotypes are essential to the normal tissue repair process, which ideally results in vascularization and integration of implants. Improper timing of M1 or M2 macrophage activation results in dysfunctional healing in the form of chronic inflammation or fibrous encapsulation of the implant. Thus, biphasic drug delivery systems that modulate macrophage behavior are an appealing approach to promoting implant integration. In this review, we describe the timing and roles of macrophage phenotypes in healing, then highlight current drug delivery systems designed to sequentially modulate macrophage behavior.
Collapse
|
25
|
Hu J, Albadawi H, Oklu R, Chong BW, Deipolyi AR, Sheth RA, Khademhosseini A. Advances in Biomaterials and Technologies for Vascular Embolization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901071. [PMID: 31168915 PMCID: PMC7014563 DOI: 10.1002/adma.201901071] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/24/2019] [Indexed: 05/03/2023]
Abstract
Minimally invasive transcatheter embolization is a common nonsurgical procedure in interventional radiology used for the deliberate occlusion of blood vessels for the treatment of diseased or injured vasculature. A wide variety of embolic agents including metallic coils, calibrated microspheres, and liquids are available for clinical practice. Additionally, advances in biomaterials, such as shape-memory foams, biodegradable polymers, and in situ gelling solutions have led to the development of novel preclinical embolic agents. The aim here is to provide a comprehensive overview of current and emerging technologies in endovascular embolization with respect to devices, materials, mechanisms, and design guidelines. Limitations and challenges in embolic materials are also discussed to promote advancement in the field.
Collapse
Affiliation(s)
- Jingjie Hu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Hassan Albadawi
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Brian W Chong
- Departments of Radiology and Neurological Surgery, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Amy R. Deipolyi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical Center, 1275 York Avenue, New York, New York 10065, USA
| | - Rahul A. Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Radiological Sciences, Department of Chemical and Biomolecular Engineering, Center for Minimally Invasive Therapeutics, California Nanosystems Institute, University of California, 410 Westwood Plaza, Los Angeles, California 90095, USA
| |
Collapse
|
26
|
Mesenchymal Stem Cells Exhibit Both a Proinflammatory and Anti-Inflammatory Effect on Saccular Aneurysm Formation in a Rabbit Model. Stem Cells Int 2019; 2019:3618217. [PMID: 31428158 PMCID: PMC6679866 DOI: 10.1155/2019/3618217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/14/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022] Open
Abstract
Several studies have demonstrated a potential interaction between mesenchymal stem cells (MSCs) and saccular aneurysms. In this study, we sought to determine whether allogenic bone marrow-derived MSCs had the ability to prevent aneurysm formation in a known rabbit elastase aneurysm model. MSCs were injected intravenously in experimental rabbits at the time of surgical creation and two weeks postcreation and compared with control rabbits receiving vehicle injection. Angiography was used to compare aneurysm measurements four weeks postcreation, and aneurysms were harvested for histological properties. Serum was collected longitudinally to evaluate cytokine alterations. Serum from control animals was also utilized to perform in vitro tests with MSCs to compare the effect of the serologic environment in animals with and without aneurysms on MSC proliferation and cytokine production. While aneurysm morphometric comparisons revealed no differences, significant cytokine alterations were observed in vitro and in vivo, suggesting both anti-inflammatory and proinflammatory processes were occurring in the presence of MSCs. Histological analyses suggested that tunica intima hyperplasia was inhibited in the presence of MSCs.
Collapse
|
27
|
Ayers-Ringler JR, Khashim Z, Ding YH, Kallmes DF, Kadirvel R. Histologic and Biomolecular Similarities in Healing between Aneurysms and Cutaneous Skin Wounds. AJNR Am J Neuroradiol 2019; 40:1018-1021. [PMID: 31023661 DOI: 10.3174/ajnr.a6046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 11/07/2022]
Abstract
The poorly understood mechanisms of aneurysm healing contribute substantially to the pressing medical problem of coiled aneurysm recanalization. Using an established saccular aneurysm model, we developed an animal model system in rabbits to study aneurysm and skin wound healing concurrently in the same animal. We found treated aneurysm healing to be similar to skin wound healing both histologically and in biomarker gene and protein expression, but in a delayed fashion.
Collapse
Affiliation(s)
- J R Ayers-Ringler
- From the Department of Radiology, Mayo Clinic, Saint Mary's Hospital, Rochester, Minnesota
| | - Z Khashim
- From the Department of Radiology, Mayo Clinic, Saint Mary's Hospital, Rochester, Minnesota
| | - Y-H Ding
- From the Department of Radiology, Mayo Clinic, Saint Mary's Hospital, Rochester, Minnesota
| | - D F Kallmes
- From the Department of Radiology, Mayo Clinic, Saint Mary's Hospital, Rochester, Minnesota
| | - R Kadirvel
- From the Department of Radiology, Mayo Clinic, Saint Mary's Hospital, Rochester, Minnesota.
| |
Collapse
|
28
|
An R, Schmid R, Klausing A, Robering JW, Weber M, Bäuerle T, Detsch R, Boccaccini AR, Horch RE, Boos AM, Weigand A. Proangiogenic effects of tumor cells on endothelial progenitor cells vary with tumor type in an in vitro and in vivo rat model. FASEB J 2018; 32:5587-5601. [PMID: 29746168 DOI: 10.1096/fj.201800135rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endothelial progenitor cells (EPCs) contribute to neovascularization in tumors. However, the relationship of EPCs and tumor-induced angiogenesis still remains to be clarified. The present study aimed at investigating the influence of 4 different tumor types on angiogenic properties of EPCs in an in vitro and in vivo rat model. It could be demonstrated that in vitro proliferation, migration, and angiogenic abilities and genetic modifications of EPCs are controlled in a tumor-type-dependent manner. The proangiogenic effect of mammary carcinoma, osteosarcoma, and rhabdomyosarcoma cells was more pronounced compared to colon carcinoma cells. Coinjection of encapsulated tumor cells, especially mammary carcinoma cells, and EPCs in a rat model confirmed a contributing effect of EPCs in tumor vascularization. Cytokines secreted by tumors such as monocyte chemoattractant protein 1, macrophage inflammatory protein 2, and TNF-related apoptosis-inducing ligand play a pivotal role in the tumor cell-EPC interaction, leading to enhanced migration and angiogenesis. With the present study, we were able to decipher possible underlying mechanisms by which EPCs are stimulated by tumor cells and contribute to tumor vascularization. The present study will contribute to a better understanding of tumor-induced vascularization, thus facilitating the development of therapeutic strategies targeting tumor-EPC interactions.-An, R., Schmid, R., Klausing, A., Robering, J. W., Weber, M., Bäuerle, T., Detsch, R., Boccaccini, A. R., Horch, R. E., Boos, A. M., Weigand, A. Proangiogenic effects of tumor cells on endothelial progenitor cells vary with tumor type in an in vitro and in vivo rat model.
Collapse
Affiliation(s)
- Ran An
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Union Plastic and Aesthetic Hospital, Huazhong University of Science and Technology, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Rafael Schmid
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anne Klausing
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jan W Robering
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Weber
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Bäuerle
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany; and
| | - Rainer Detsch
- Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anja M Boos
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Annika Weigand
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
29
|
Hourani S, Motwani K, Wajima D, Fazal H, Jones CH, Doré S, Hosaka K, Hoh BL. Local Delivery Is Critical for Monocyte Chemotactic Protein-1 Mediated Site-Specific Murine Aneurysm Healing. Front Neurol 2018; 9:158. [PMID: 29615957 PMCID: PMC5868072 DOI: 10.3389/fneur.2018.00158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/02/2018] [Indexed: 11/13/2022] Open
Abstract
Background Local delivery of monocyte chemotactic protein-1 (MCP-1/CCL2) via our drug-eluting coil has been shown to promote intrasaccular aneurysm healing via an inflammatory pathway. Objective In this study, we validate the importance of local MCP-1 in murine aneurysm healing. Whether systemic, rather than local, delivery of MCP-1 can direct site-specific aneurysm healing has significant translational implications. If systemic MCP-1 is effective, then MCP-1 could be administered as a pill rather than by endovascular procedure. Furthermore, we confirm that MCP-1 is the primary effector in our MCP-1 eluting coil-mediated murine aneurysm healing model. Methods We compare aneurysm healing with repeated intraperitoneal MCP-1 versus vehicle injection, in animals with control poly(lactic-co-glycolic) acid (PLGA)-coated coils. We demonstrate elimination of the MCP-1-associated tissue-healing response by knockout of MCP-1 or CCR2 (MCP-1 receptor) and by selectively inhibiting MCP-1 or CCR2. Using immunofluorescent probing, we explore the cell populations found in healed aneurysm tissue following each intervention. Results Systemically administered MCP-1 with PLGA coil control does not produce comparable aneurysm healing, as seen with MCP-1 eluting coils. MCP-1-directed aneurysm healing is eliminated by selective inhibition of MCP-1 or CCR2 and in MCP-1-deficient or CCR2-deficient mice. No difference was detected in M2 macrophage and myofibroblast/smooth muscle cell staining with systemic MCP-1 versus vehicle in aneurysm wall, but a significant increase in these cell types was observed with MCP-1 eluting coil implant and attenuated by MCP-1/CCR2 blockade or deficiency. Conclusion We show that systemic MCP-1 concurrent with PLGA-coated platinum coil implant is not sufficient to produce site-specific aneurysm healing. MCP-1 is a critical, not merely complementary, actor in the aneurysm healing pathway.
Collapse
Affiliation(s)
- Siham Hourani
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Kartik Motwani
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Daisuke Wajima
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Hanain Fazal
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Chad H Jones
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Koji Hosaka
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Brian L Hoh
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
30
|
Bryant AJ, Shenoy V, Fu C, Marek G, Lorentsen KJ, Herzog EL, Brantly ML, Avram D, Scott EW. Myeloid-derived Suppressor Cells Are Necessary for Development of Pulmonary Hypertension. Am J Respir Cell Mol Biol 2018; 58:170-180. [PMID: 28862882 DOI: 10.1165/rcmb.2017-0214oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pulmonary hypertension (PH) complicates the care of patients with chronic lung disease, such as idiopathic pulmonary fibrosis (IPF), resulting in a significant increase in morbidity and mortality. Disease pathogenesis is orchestrated by unidentified myeloid-derived cells. We used murine models of PH and pulmonary fibrosis to study the role of circulating myeloid cells in disease pathogenesis and prevention. We administered clodronate liposomes to bleomycin-treated wild-type mice to induce pulmonary fibrosis and PH with a resulting increase in circulating bone marrow-derived cells. We discovered that a population of C-X-C motif chemokine receptor (CXCR) 2+ myeloid-derived suppressor cells (MDSCs), granulocytic subset (G-MDSC), is associated with severe PH in mice. Pulmonary pressures worsened despite improvement in bleomycin-induced pulmonary fibrosis. PH was attenuated by CXCR2 inhibition, with antagonist SB 225002, through decreasing G-MDSC recruitment to the lung. Molecular and cellular analysis of clinical patient samples confirmed a role for elevated MDSCs in IPF and IPF with PH. These data show that MDSCs play a key role in PH pathogenesis and that G-MDSC trafficking to the lung, through chemokine receptor CXCR2, increases development of PH in multiple murine models. Furthermore, we demonstrate pathology similar to the preclinical models in IPF with lung and blood samples from patients with PH, suggesting a potential role for CXCR2 inhibitor use in this patient population. These findings are significant, as there are currently no approved disease-specific therapies for patients with PH complicating IPF.
Collapse
Affiliation(s)
- Andrew J Bryant
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Vinayak Shenoy
- 2 Department of Pharmaceutical and Biomedical Sciences, California Health Sciences University, Clovis, California
| | - Chunhua Fu
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - George Marek
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Kyle J Lorentsen
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Erica L Herzog
- 3 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut; and
| | - Mark L Brantly
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Dorina Avram
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Edward W Scott
- 4 Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida
| |
Collapse
|
31
|
Cysteinyl leukotriene receptor 1 antagonism prevents experimental abdominal aortic aneurysm. Proc Natl Acad Sci U S A 2018; 115:1907-1912. [PMID: 29432192 PMCID: PMC5828611 DOI: 10.1073/pnas.1717906115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cysteinyl-leukotrienes (cys-LTs) are lipid mediators involved in human inflammatory diseases, in particular asthma. We have previously identified cys-LTs in tissue specimens of human abdominal aortic aneurysm (AAA) and linked these mediators to increased metalloproteinase activity. Here we show in vivo that antagonism of the CysLT1 receptor by montelukast, an established antiasthma drug, protects against aneurysm in three mouse models of AAA at doses comparable to human medical practice. Together, these data support the role of cys-LTs in AAA and indicate a new potential therapeutic approach for treatment of this clinically silent and highly lethal disease. Cysteinyl-leukotrienes (cys-LTs) are 5-lipoxygenase-derived lipid mediators involved in the pathogenesis and progression of inflammatory disorders, in particular asthma. We have previously found evidence linking these mediators to increased levels of proteolytic enzymes in tissue specimens of human abdominal aortic aneurysm (AAA). Here we show that antagonism of the CysLT1 receptor by montelukast, an established antiasthma drug, protects against a strong aorta dilatation (>50% increase = aneurysm) in a mouse model of CaCl2-induced AAA at a dose comparable to human medical practice. Analysis of tissue extracts revealed that montelukast reduces the levels of matrix metalloproteinase-9 (MMP-9) and macrophage inflammatory protein-1α (MIP-1α) in the aortic wall. Furthermore, aneurysm progression was specifically mediated through CysLT1 signaling since a selective CysLT2 antagonist was without effect. A significantly reduced vessel dilatation is also observed when treatment with montelukast is started days after aneurysm induction, suggesting that the drug not only prevents but also stops and possibly reverts an already ongoing degenerative process. Moreover, montelukast reduced the incidence of aortic rupture and attenuated the AAA development in two additional independent models, i.e., angiotensin II- and porcine pancreatic elastase-induced AAA, respectively. Our results indicate that cys-LTs are involved in the pathogenesis of AAA and that antagonism of the CysLT1 receptor is a promising strategy for preventive and therapeutic treatment of this clinically silent and highly lethal disease.
Collapse
|
32
|
Duan LF, Xu XF, Zhu LJ, Liu F, Zhang XQ, Wu N, Fan JW, Xin JQ, Zhang H. Dachaihu decoction ameliorates pancreatic fibrosis by inhibiting macrophage infiltration in chronic pancreatitis. World J Gastroenterol 2017; 23:7242-7252. [PMID: 29142471 PMCID: PMC5677205 DOI: 10.3748/wjg.v23.i40.7242] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the role of macrophages in chronic pancreatitis (CP) and the effect of Dachaihu decoction (DCHD) on pancreatic fibrosis in mice. METHODS KunMing mice were randomly divided into a control group, CP group, and DCHD group. In the CP and DCHD groups, mice were intraperitoneally injected with 20% L-arginine (3 g/kg twice 1 d/wk for 6 wk). Mice in the DCHD group were administered DCHD intragastrically at a dose of 14 g/kg/d 1 wk after CP induction. At 2 wk, 4 wk and 6 wk post-modeling, the morphology of the pancreas was observed using hematoxylin and eosin, and Masson staining. Interleukin-6 (IL-6) serum levels were assayed using an enzyme-linked immunosorbent assay. Double immunofluorescence staining was performed to observe the co-expression of F4/80 and IL-6 in the pancreas. Inflammatory factors including monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α) and IL-6 were determined using real time-polymerase chain reaction. Western blot analysis was used to detect fibronectin levels in the pancreas. RESULTS Compared with the control group, mice with 20% L-arginine-induced CP had obvious macrophage infiltration and a higher level of fibrosis. IL-6 serum concentrations were significantly increased. Double immunofluorescence staining showed that IL-6 and F4/80 were co-expressed in the pancreas. With the administration of DCHD, the infiltration of macrophages and degree of fibrosis in the pancreas were significantly attenuated; IL-6, MCP-1 and MIP-1α mRNA, and fibronectin levels were reduced. CONCLUSION The dominant role of macrophages in the development of CP was mainly related to IL-6 production. DCHD was effective in ameliorating pancreatic fibrosis by inhibiting macrophage infiltration and inflammatory factor secretion in the pancreas.
Collapse
Affiliation(s)
- Li-Fang Duan
- Department of Pathophysiology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Xiao-Fan Xu
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Lin-Jia Zhu
- Department of Pathophysiology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fang Liu
- Department of Pathophysiology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Xiao-Qin Zhang
- Department of Pathophysiology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Nan Wu
- Department of Pathophysiology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Jian-Wei Fan
- Department of Pathophysiology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Jia-Qi Xin
- Department of Pathophysiology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Hong Zhang
- Department of Pathophysiology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| |
Collapse
|
33
|
Mukherjee S, Mukherjee S, Bhattacharya S, Sinha Babu SP. Surface proteins of Setaria cervi induce inflammation in macrophage through Toll-like receptor 4 (TLR4)-mediated signalling pathway. Parasite Immunol 2017; 39. [PMID: 27659561 DOI: 10.1111/pim.12389] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/19/2016] [Indexed: 12/25/2022]
Abstract
Lymphatic filariasis is a vectorborne parasitic disease that results in morbidities, disabilities and socio-economic loss each year globally. Inflammatory consequences associated with any form of filariasis have drawn special attention. However, the molecular insight behind the inflammation of host macrophage (MФ) is considered as one of the shaded areas in filarial research. Herein, major emphasis was given to study the signalling pathway of MФ inflammation induced by surface proteins (SPs) of filarial parasite through in vitro and in vivo approaches. Twenty-four hours of in vitro stimulation of Raw MФs with endotoxin-free SPs of Setaria cervi resulted in the secretion of pro-inflammatory cytokines (TNF-α and IL-1β) that revealed induction of inflammation, which was found to be elicited from classical NF-кB activation. Moreover, this NF-кB activation was found to be signalled from TLR4 and mediated by the downstream signalling intermediates, viz. MyD88, pTAK1 and NEMO. In vivo studies in adult Wistar rats, experimentally injected with SPs, clearly supported the outcomes of in vitro experiments by showing higher degree of inflammation rather classical activation of the peritoneal MФs. Therefore, SPs from S. cervi cuticle could be responsible for the induction of pro-inflammatory response in MФ, which appears to be propagated through TLR4-NF-кB route.
Collapse
Affiliation(s)
- Su Mukherjee
- Department of Zoology, Centre for Advanced Studies, Visva-Bharati University, Santiniketan, West Bengal, India
| | - Sa Mukherjee
- Department of Zoology, Centre for Advanced Studies, Visva-Bharati University, Santiniketan, West Bengal, India
| | - S Bhattacharya
- Department of Zoology, Centre for Advanced Studies, Visva-Bharati University, Santiniketan, West Bengal, India
| | - S P Sinha Babu
- Department of Zoology, Centre for Advanced Studies, Visva-Bharati University, Santiniketan, West Bengal, India
| |
Collapse
|
34
|
Recurrence of endovascularly and microsurgically treated intracranial aneurysms—review of the putative role of aneurysm wall biology. Neurosurg Rev 2017; 42:49-58. [DOI: 10.1007/s10143-017-0892-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/10/2017] [Accepted: 08/04/2017] [Indexed: 10/19/2022]
|
35
|
Hoh BL, Fazal HZ, Hourani S, Li M, Lin L, Hosaka K. Temporal cascade of inflammatory cytokines and cell-type populations in monocyte chemotactic protein-1 (MCP-1)-mediated aneurysm healing. J Neurointerv Surg 2017; 10:301-305. [PMID: 28450456 DOI: 10.1136/neurintsurg-2017-013063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/17/2017] [Accepted: 03/25/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND We have previously shown that monocyte chemotactic protein-1 (MCP-1) promotes aneurysm healing. OBJECTIVE To determine the temporal cascade and durability of aneurysm healing. METHODS Murine carotid aneurysms were treated with MCP-1-releasing or poly(lactic-co-glycolic) acid (PLGA)-only coils. Aneurysm healing was assessed by quantitative measurements of intraluminal tissue ingrowth on 5 μm sections by blinded observers. RESULTS Aneurysm healing occurred in stages characteristic of normal wound healing. The 1st stage (day 3) was characterized by a spike in neutrophils and T cells. The 2nd stage (week 1) was characterized by an influx of macrophages and CD45+ cells significantly greater with MCP-1 than with PLGA (p<0.05). The third stage (week 2-3) was characterized by proliferation of smooth muscle cells and fibroblasts (greater with MCP-1 than with PLGA, p<0.05). The fourth stage (3-6 months) was characterized by leveling off of smooth muscle cells and fibroblasts. M1 macrophages were greater at week 1, whereas M2 macrophages were greater at weeks 2 and 3 with MCP-1 than with PLGA. Interleukin 6 was present early and increased through week 2 (p<0.05 compared with PLGA) then decreased and leveled off through 6 months. Tumour necrosis factor α was present early and remained constant through 6 months. MCP-1 and PLGA treatment had similar rates of tissue ingrowth at early time points, but MCP-1 had a significantly greater tissue ingrowth at week 3 (p<0.05), which persisted for 6 months. CONCLUSIONS The sequential cascade is consistent with an inflammatory model of injury, repair, and remodeling.
Collapse
Affiliation(s)
- Brian L Hoh
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Hanain Z Fazal
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Siham Hourani
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Mengchen Li
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Li Lin
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Koji Hosaka
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
36
|
Nandi A, Bishayi B. CCR-2 neutralization augments murine fresh BMC activation by Staphylococcus aureus via two distinct mechanisms: at the level of ROS production and cytokine response. Innate Immun 2017; 23:345-372. [PMID: 28409543 DOI: 10.1177/1753425917697806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CCR-2 signaling regulates recruitment of monocytes from the bone marrow into the bloodstream and then to sites of infection. We sought to determine whether CCL-2/CCR-2 signaling is involved in the killing of Staphylococcus aureus by murine bone marrow cells (BMCs). The intermittent link of reactive oxygen species (ROS)-NF-κB/p38-MAPK-mediated CCL-2 production in CCR-2 signaling prompted us to determine whether neutralization of CCR-2 augments the response of murine fresh BMCs (FBMCs) after S. aureus infection. It was observed that anti-CCR-2 Ab-treated FBMCs released fewer ROS on encountering S. aureus infection than CCR-2 non-neutralized FBMCs, also correlating with reduced killing of S. aureus in CCR-2 neutralized FBMCs. Staphylococcal catalase and SOD were also found to play a role in protecting S. aureus from the ROS-mediated killing of FBMC. S. aureus infection of CCR-2 intact FBMCs pre-treated with either NF-κB or p-38-MAPK blocker induced less CCL-2, suggesting that NF-κB or p-38-MAPK is required for CCL-2 production by FBMCs. Moreover, blocking of CCR-2 along with NF-κB or p-38-MAPK resulted in elevated CCL-2 production and reduced CCR-2 expression. Inhibition of CCR-2 impairs the response of murine BMCs to S. aureus infection by attenuation ROS production and modulating the cytokine response.
Collapse
Affiliation(s)
- Ajeya Nandi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, West Bengal, India
| |
Collapse
|
37
|
Hosaka K, Rojas K, Fazal HZ, Schneider MB, Shores J, Federico V, McCord M, Lin L, Hoh B. Monocyte Chemotactic Protein-1-Interleukin-6-Osteopontin Pathway of Intra-Aneurysmal Tissue Healing. Stroke 2017; 48:1052-1060. [PMID: 28292871 DOI: 10.1161/strokeaha.116.015590] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND PURPOSE We have previously demonstrated that the local delivery of monocyte chemotactic protein-1 (MCP-1) via an MCP-1-releasing poly(lactic-co-glycolic acid)-coated coil promotes intra-aneurysmal tissue healing. In this study, we demonstrate that interleukin-6 (IL-6) and osteopontin are downstream mediators in the MCP-1-mediated aneurysm-healing pathway. METHODS Murine carotid aneurysms were created in C57BL/6 mice. Drug-releasing coils (MCP-1, IL-6, and osteopontin) and control poly(lactic-co-glycolic acid) coils were created and then implanted into the aneurysms to evaluate their intra-aneurismal-healing capacity. To investigate the downstream mediators for aneurysm healing, blocking antibodies for IL-6 receptor and osteopontin were given to the mice implanted with the MCP-1-releasing coils. A histological analysis of both murine and human aneurysms was utilized to cross-validate the data. RESULTS We observed increased expression of IL-6 in MCP-1-coil-treated aneurysms and not in control-poly(lactic-co-glycolic acid)-only-treated aneurysms. MCP-1-mediated intra-aneurysmal healing is inhibited in mice given blocking antibody to IL-6 receptor. MCP-1-mediated intra-aneurysmal healing is also inhibited by blocking antibody to osteopontin. The role of IL-6 in intra-aneurysmal healing is in recruiting of endothelial cells and fibroblasts. Local delivery of osteopontin to murine carotid aneurysms via osteopontin-releasing coil significantly promotes intra-aneurysmal healing, but IL-6-releasing coil does not, suggesting that IL-6 cannot promote aneurysm healing independent of MCP-1. In the MCP-1-mediated aneurysm healing, osteopontin expression is dependent on IL-6; inhibition of IL-6 receptor significantly inhibits osteopontin expression in MCP-1-mediated aneurysm healing. CONCLUSIONS Our findings suggest that IL-6 and osteopontin are key downstream mediators of MCP-1-mediated intra-aneurysmal healing.
Collapse
Affiliation(s)
- Koji Hosaka
- From the Department of Neurosurgery, University of Florida, Gainesville.
| | - Kelley Rojas
- From the Department of Neurosurgery, University of Florida, Gainesville
| | - Hanain Z Fazal
- From the Department of Neurosurgery, University of Florida, Gainesville
| | | | - Jorma Shores
- From the Department of Neurosurgery, University of Florida, Gainesville
| | - Vincent Federico
- From the Department of Neurosurgery, University of Florida, Gainesville
| | - Matthew McCord
- From the Department of Neurosurgery, University of Florida, Gainesville
| | - Li Lin
- From the Department of Neurosurgery, University of Florida, Gainesville
| | - Brian Hoh
- From the Department of Neurosurgery, University of Florida, Gainesville
| |
Collapse
|
38
|
Signal Factors Secreted by 2D and Spheroid Mesenchymal Stem Cells and by Cocultures of Mesenchymal Stem Cells Derived Microvesicles and Retinal Photoreceptor Neurons. Stem Cells Int 2017; 2017:2730472. [PMID: 28194184 PMCID: PMC5286488 DOI: 10.1155/2017/2730472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/08/2016] [Accepted: 12/26/2016] [Indexed: 02/07/2023] Open
Abstract
We aim to identify levels of signal factors secreted by MSCs cultured in 2D monolayers (2D-MSCs), spheroids (spheroids MSCs), and cocultures of microvesicles (MVs) derived from 2D-MSCs or spheroid MSCs and retinal photoreceptor neurons. We seeded 2D-MSCs, spheroid MSCs, and cells derived from spheroids MSCs at equal numbers. MVs isolated from all 3 culture conditions were incubated with 661W cells. Levels of 51 signal factors in conditioned medium from those cultured conditions were quantified with bead-based assay. We found that IL-8, IL-6, and GROα were the top three most abundant signal factors. Moreover, compared to 2D-MSCs, levels of 11 cytokines and IL-2Rα were significantly increased in conditioned medium from spheroid MSCs. Finally, to test if enhanced expression of these factors reflects altered immunomodulating activities, we assessed the effect of 2D-MSC-MVs and 3D-MSC-MVs on CD14+ cell chemoattraction. Compared to 2D-MSC-MVs, 3D-MSC-MVs significantly decreased the chemotactic index of CD14+ cells. Our results suggest that spheroid culture conditions improve the ability of MSCs to selectively secrete signal factors. Moreover, 3D-MSC-MVs also possessed an enhanced capability to promote signal factors secretion compared to 2D-MSC-MVs and may possess enhanced immunomodulating activities and might be a better regenerative therapy for retinal degenerative diseases.
Collapse
|
39
|
Cai Q, Li Y, Mao J, Pei G. Neurogenesis-Promoting Natural Product α-Asarone Modulates Morphological Dynamics of Activated Microglia. Front Cell Neurosci 2016; 10:280. [PMID: 28018174 PMCID: PMC5145874 DOI: 10.3389/fncel.2016.00280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/21/2016] [Indexed: 11/13/2022] Open
Abstract
α-Asarone is an active constituent of Acori Tatarinowii, one of the widely used traditional Chinese Medicine to treat cognitive defect, and recently is shown to promote neurogenesis. Here, we demonstrated that low level (3 μM) of α-asarone attenuated LPS-induced BV2 cell bipolar elongated morphological change, with no significant effect on the LPS-induced pro-inflammatory cytokine expressions. In addition, time-lapse analysis also revealed that α-asarone modulated LPS-induced BV2 morphological dynamics. Consistently a significant reduction in the LPS-induced Monocyte Chemoattractant Protein (MCP-1) mRNA and protein levels was also detected along with the morphological change. Mechanistic study showed that the attenuation effect to the LPS-resulted morphological modulation was also detected in the presence of MCP-1 antibodies or a CCR2 antagonist. This result has also been confirmed in primary cultured microglia. The in vivo investigation provided further evidence that α-asarone reduced the proportion of activated microglia, and reduced microglial tip number and maintained the velocity. Our study thus reveals α-asarone effectively modulates microglial morphological dynamics, and implies this effect of α-asarone may functionally relate to its influence on neurogenesis.
Collapse
Affiliation(s)
- Qing Cai
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghai, China
| | - Yuanyuan Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghai, China
| | - Jianxin Mao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghai, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China; School of Life Science and Technology, and the Collaborative Innovation Center for Brain Science, Tongji UniversityShanghai, China
| |
Collapse
|
40
|
Li H, Li H, Yue H, Wang W, Yu L, Cao Y, Zhao J. Comparison between smaller ruptured intracranial aneurysm and larger un-ruptured intracranial aneurysm: gene expression profile analysis. Neurosurg Rev 2016; 40:419-425. [PMID: 27841008 DOI: 10.1007/s10143-016-0799-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/29/2016] [Accepted: 11/02/2016] [Indexed: 12/29/2022]
Abstract
As it grows in size, an intracranial aneurysm (IA) is prone to rupture. In this study, we compared two extreme groups of IAs, ruptured IAs (RIAs) smaller than 10 mm and un-ruptured IAs (UIAs) larger than 10 mm, to investigate the genes involved in the facilitation and prevention of IA rupture. The aneurismal walls of 6 smaller saccular RIAs (size smaller than 10 mm), 6 larger saccular UIAs (size larger than 10 mm) and 12 paired control arteries were obtained during surgery. The transcription profiles of these samples were studied by microarray analysis. RT-qPCR was used to confirm the expression of the genes of interest. In addition, functional group analysis of the differentially expressed genes was performed. Between smaller RIAs and larger UIAs, 101 genes and 179 genes were significantly over-expressed, respectively. In addition, functional group analysis demonstrated that the up-regulated genes in smaller RIAs mainly participated in the cellular response to metal ions and inorganic substances, while most of the up-regulated genes in larger UIAs were involved in inflammation and extracellular matrix (ECM) organization. Moreover, compared with control arteries, inflammation was up-regulated and muscle-related biological processes were down-regulated in both smaller RIAs and larger UIAs. The genes involved in the cellular response to metal ions and inorganic substances may facilitate the rupture of IAs. In addition, the healing process, involving inflammation and ECM organization, may protect IAs from rupture.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantanxili, Beijing, 100050, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
| | - Haowen Li
- Laborotary of Clinical Medicine Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Haiyan Yue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantanxili, Beijing, 100050, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Lanbing Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantanxili, Beijing, 100050, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantanxili, Beijing, 100050, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantanxili, Beijing, 100050, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China.
| |
Collapse
|
41
|
Li S, Lu J, Chen Y, Xiong N, Li L, Zhang J, Yang H, Wu C, Zeng H, Liu Y. MCP-1-induced ERK/GSK-3β/Snail signaling facilitates the epithelial-mesenchymal transition and promotes the migration of MCF-7 human breast carcinoma cells. Cell Mol Immunol 2016; 14:621-630. [PMID: 26996066 DOI: 10.1038/cmi.2015.106] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/28/2015] [Accepted: 11/29/2015] [Indexed: 01/08/2023] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1) is a chemotactic cytokine that can bind to its receptor cysteine-cysteine chemokine receptor 2 (CCR2) and plays an important role in breast cancer cell metastasis. However, the molecular mechanisms underlying MCP-1-induced alterations in cellular functions during tumor progression are poorly understood. Here, we showed that MCP-1 stimulated the epithelial-mesenchymal transition (EMT) and induced the tumorigenesis of breast cancer cells by downregulating E-cadherin, upregulating vimentin and fibronectin, activating matrix metallopeptidase-2 (MMP-2), and promoting migration and invasion. Moreover, MCP-1 treatment reduced glycogen synthase kinase-3β (GSK-3β) activity via the MEK/ERK-mediated phosphorylation of serine-9 in MCF-7 cells. The inhibition of MEK/ERK by U0126 attenuated the MCP-1-induced phosphorylation of GSK-3β and decreased the expression of Snail, an EMT-related transcription factor, leading to the inhibition of MCF-7 cell migration and invasion. Inactivation of GSK-3β by LiCl (lithium chloride) treatment notably increased MMP-2 activity, vascular endothelial growth factor expression and EMT of MCF-7 cells. These findings revealed that MCP-1-induced EMT and migration are mediated by the ERK/GSK-3β/Snail pathway, and identified a potential novel target for therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Juan Lu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yu Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Niya Xiong
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Li Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Jing Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.,Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.,Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Hongjuan Zeng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.,Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.,Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| |
Collapse
|
42
|
Concomitant coiling reduces metalloproteinase levels in flow diverter-treated aneurysms but anti-inflammatory treatment has no effect. J Neurointerv Surg 2016; 9:307-310. [DOI: 10.1136/neurintsurg-2015-012207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/10/2016] [Accepted: 02/22/2016] [Indexed: 11/03/2022]
Abstract
Background and purposeFlow diverters (FD) can cause rare but devastating delayed aneurysm ruptures in which matrix metalloproteinases (MMPs) have been potentially implicated. Concomitant coiling or anti-inflammatory medications have been proposed to prevent the risk of delayed ruptures. The aim of this study was to evaluate concomitant coiling and ciclosporin in regulating the expression of MMPs in FD-treated aneurysms.Materials and methodsElastase-induced aneurysms were created in 20 rabbits. Aneurysms were treated with (1) FD alone; (2) FD with concomitant coiling; (3) FD+ ciclosporin; or (4) left untreated as controls. At sacrifice, MMP levels were analyzed by zymography. Kruskal–Wallis one-way non-parametric ANOVA was performed for each enzyme. If significant results were observed for the Kruskal–Wallis test, pairwise group comparisons were performed using Dunn's test with Bonferroni multiple-testing correction.ResultsSignificant differences were observed among groups for pro-MMP9 (p=0.0337). Pairwise comparison demonstrated higher levels of pro-MMP9 with concomitant coiling compared with untreated aneurysms (p=0.012), with higher though not significantly different levels of pro-MMP9 in FD with concomitant coiling versus FD alone. While not statistically significant, trends were noted regarding differences in active-MMP9 across groups, with a lower level of active-MMP9 with concomitant coiling compared with the other FD groups. No significant differences were observed for pro- or active-MMP2 across groups, or for FD + ciclosporin compared with FD alone.ConclusionsFD implantation increases the level of pro-MMP9 expression in aneurysms. Provocative trends regarding modulation of active-MMP9 expression with concomitant coiling suggest the need for larger confirmatory preclinical studies. Anti-inflammatory treatment with ciclosporin appears to have a minimal biological effect.Trial registration numberR01NS076491
Collapse
|
43
|
Reine TM, Vuong TT, Rutkovskiy A, Meen AJ, Vaage J, Jenssen TG, Kolset SO. Serglycin in Quiescent and Proliferating Primary Endothelial Cells. PLoS One 2015; 10:e0145584. [PMID: 26694746 PMCID: PMC4687888 DOI: 10.1371/journal.pone.0145584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/04/2015] [Indexed: 01/04/2023] Open
Abstract
Proteoglycans are fundamental components of the endothelial barrier, but the functions of the proteoglycan serglycin in endothelium are less described. Our aim was to describe the roles of serglycin in processes relevant for endothelial dysfunction. Primary human umbilical vein endothelial cells (HUVEC) were cultured in vitro and the expression of proteoglycans was investigated. Dense cell cultures representing the quiescent endothelium coating the vasculature was compared to sparse activated cell cultures, relevant for diabetes, cancer and cardiovascular disease. Secretion of 35S- proteoglycans increased in sparse cultures, and we showed that serglycin is a major component of the cell-density sensitive proteoglycan population. In contrast to the other proteoglycans, serglycin expression and secretion was higher in proliferating compared to quiescent HUVEC. RNAi silencing of serglycin inhibited proliferation and wound healing, and serglycin expression and secretion was augmented by hypoxia, mechanical strain and IL-1β induced inflammation. Notably, the secretion of the angiogenic chemokine CCL2 resulting from IL-1β activation, was increased in serglycin knockdown cells, while angiopoietin was not affected. Both serglycin and CCL2 were secreted predominantly to the apical side of polarized HUVEC, and serglycin and CCL2 co-localized both in perinuclear areas and in vesicles. These results suggest functions for serglycin in endothelial cells trough interactions with partner molecules, in biological processes with relevance for diabetic complications, cardiovascular disease and cancer development.
Collapse
Affiliation(s)
- Trine M Reine
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Box 1046, Blindern, 0316 Oslo, Norway.,Section of Renal Diseases, Department of Organ Transplantation, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Tram T Vuong
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Box 1046, Blindern, 0316 Oslo, Norway
| | - Arkady Rutkovskiy
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Emergency and Intensive Care, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Astri J Meen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Box 1046, Blindern, 0316 Oslo, Norway
| | - Jarle Vaage
- Department of Emergency and Intensive Care, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trond G Jenssen
- Section of Renal Diseases, Department of Organ Transplantation, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Svein O Kolset
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Box 1046, Blindern, 0316 Oslo, Norway
| |
Collapse
|
44
|
Chen J, Yang L, Chen Y, Zhang G, Fan Z. Controlled release of osteopontin and interleukin-10 from modified endovascular coil promote cerebral aneurysm healing. J Neurol Sci 2015; 360:13-7. [PMID: 26723964 DOI: 10.1016/j.jns.2015.11.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/15/2015] [Accepted: 11/19/2015] [Indexed: 01/30/2023]
Abstract
Cerebral aneurysm is a bulging of the artery inside the brain that results from a weakened or thin area of the artery wall. Ruptured cerebral aneurysm could lead to serious brain damage or even death, thus the proper treatment is essential. Compared with the conventional microsurgical clipping approach, the endovascular coiling treatment has many advantages, however, with a major disadvantage of high recurrence rate. One way to lower the recurrence rate, which has been tried since one decade ago, is to modify the coil to be bioactive and releasing biological molecules to stimulate tissue ingrowth and aneurysm healing. We have identified three candidates including osteopontin (OPN), IL-10 and matrix metallopeptidase 9 (MMP-9) from previous studies and generated platinum coils coated with these proteins in the carrier of poly-DL-lactic glycolic acid (PLGA). We were interested to know whether coils coated with OPN, IL-10 and MMP-9 were able to promote aneurysm healing and we have tested it in the rat carotid aneurysm model. We found that OPN and IL-10 coated coils had shown significant improvement in tissue ingrowth while MMP-9 coated coils failed to enhance tissue ingrowth compared with the control group. Our studies suggested the possible application of OPN and IL-10 coated coils in aneurysm treatment to overcome the recurrence.
Collapse
Affiliation(s)
- Jingyi Chen
- Department of Neurosurgery, The Hospital of Gaoyi County, Shijiazhuang 050000, China.
| | - Lijun Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yan Chen
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Gengshen Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Zheneng Fan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
45
|
Field SL, Dasgupta T, Cummings M, Savage RS, Adebayo J, McSara H, Gunawardena J, Orsi NM. Bayesian modeling suggests that IL-12 (p40), IL-13 and MCP-1 drive murine cytokine networks in vivo. BMC SYSTEMS BIOLOGY 2015; 9:76. [PMID: 26553024 PMCID: PMC4640223 DOI: 10.1186/s12918-015-0226-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 10/31/2015] [Indexed: 12/19/2022]
Abstract
Background Cytokine-hormone network deregulations underpin pathologies ranging from autoimmune disorders to cancer, but our understanding of these networks in physiological/pathophysiological states remains patchy. We employed Bayesian networks to analyze cytokine-hormone interactions in vivo using murine lactation as a dynamic, physiological model system. Results Circulatory levels of estrogen, progesterone, prolactin and twenty-three cytokines were profiled in post partum mice with/without pups. The resultant networks were very robust and assembled about structural hubs, with evidence that interleukin (IL)-12 (p40), IL-13 and monocyte chemoattractant protein (MCP)-1 were the primary drivers of network behavior. Network structural conservation across physiological scenarios coupled with the successful empirical validation of our approach suggested that in silico network perturbations can predict in vivo qualitative responses. In silico perturbation of network components also captured biological features of cytokine interactions (antagonism, synergy, redundancy). Conclusion These findings highlight the potential of network-based approaches in identifying novel cytokine pharmacological targets and in predicting the effects of their exogenous manipulation in inflammatory/immune disorders. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0226-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah L Field
- Women's Health Research Group, Section of Cancer & Pathology, Leeds Institute of Cancer & Pathology, St James's University Hospital, Leeds, LS9 7TF, UK.
| | - Tathagata Dasgupta
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts, 02115, USA.
| | - Michele Cummings
- Women's Health Research Group, Section of Cancer & Pathology, Leeds Institute of Cancer & Pathology, St James's University Hospital, Leeds, LS9 7TF, UK.
| | - Richard S Savage
- Systems Biology Centre, University of Warwick, Coventry, CV4 7AL, UK.
| | - Julius Adebayo
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts, 02115, USA. .,IDeA Labs, Department of Computer Science, TMCB 1124, Brigham Young University, Provo, UT, 84602, USA.
| | - Hema McSara
- Women's Health Research Group, Section of Cancer & Pathology, Leeds Institute of Cancer & Pathology, St James's University Hospital, Leeds, LS9 7TF, UK.
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts, 02115, USA.
| | - Nicolas M Orsi
- Women's Health Research Group, Section of Cancer & Pathology, Leeds Institute of Cancer & Pathology, St James's University Hospital, Leeds, LS9 7TF, UK.
| |
Collapse
|
46
|
Kwon Y, Kim Y, Eom S, Kim M, Park D, Kim H, Noh K, Lee H, Lee YS, Choe J, Kim YM, Jeoung D. MicroRNA-26a/-26b-COX-2-MIP-2 Loop Regulates Allergic Inflammation and Allergic Inflammation-promoted Enhanced Tumorigenic and Metastatic Potential of Cancer Cells. J Biol Chem 2015; 290:14245-66. [PMID: 25907560 DOI: 10.1074/jbc.m115.645580] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Indexed: 12/30/2022] Open
Abstract
Cyclooxgenase-2 (COX-2) knock-out mouse experiments showed that COX-2 was necessary for in vivo allergic inflammation, such as passive cutaneous anaphylaxis, passive systemic anaphylaxis, and triphasic cutaneous allergic reaction. TargetScan analysis predicted COX-2 as a target of miR-26a and miR-26b. miR-26a/-26b decreased luciferase activity associated with COX-2-3'-UTR. miR-26a/-26b exerted negative effects on the features of in vitro and in vivo allergic inflammation by targeting COX-2. ChIP assays showed the binding of HDAC3 and SNAIL, but not COX-2, to the promoter sequences of miR-26a and miR-26b. Cytokine array analysis showed that the induction of chemokines, such as MIP-2, in the mouse passive systemic anaphylaxis model occurred in a COX-2-dependent manner. ChIP assays showed the binding of HDAC3 and COX-2 to the promoter sequences of MIP-2. In vitro and in vivo allergic inflammation was accompanied by the increased expression of MIP-2. miR-26a/-26b negatively regulated the expression of MIP-2. Allergic inflammation enhanced the tumorigenic and metastatic potential of cancer cells and induced positive feedback involving cancer cells and stromal cells, such as mast cells, macrophages, and endothelial cells. miR-26a mimic and miR-26b mimic negatively regulated the positive feedback between cancer cells and stromal cells and the positive feedback among stromal cells. miR-26a/-26b negatively regulated the enhanced tumorigenic potential by allergic inflammation. COX-2 was necessary for the enhanced metastatic potential of cancer cells by allergic inflammation. Taken together, our results indicate that the miR26a/-26b-COX-2-MIP-2 loop regulates allergic inflammation and the feedback relationship between allergic inflammation and the enhanced tumorigenic and metastatic potential.
Collapse
Affiliation(s)
| | | | | | - Misun Kim
- From the Departments of Biochemistry and
| | | | - Hyuna Kim
- From the Departments of Biochemistry and
| | | | - Hansoo Lee
- Biological Sciences, College of Natural Sciences, and
| | - Yun Sil Lee
- the College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jongseon Choe
- the Graduate School of Medicine, Kangwon National University, Chunchon 200-701, Korea, and
| | - Young Myeong Kim
- the Graduate School of Medicine, Kangwon National University, Chunchon 200-701, Korea, and
| | | |
Collapse
|
47
|
Harris D, Liang Y, Chen C, Li S, Patel O, Qin Z. Bone marrow from blotchy mice is dispensable to regulate blood copper and aortic pathologies but required for inflammatory mediator production in LDLR-deficient mice during chronic angiotensin II infusion. Ann Vasc Surg 2014; 29:328-40. [PMID: 25449986 DOI: 10.1016/j.avsg.2014.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/07/2014] [Accepted: 10/02/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND The blotchy mouse caused by mutations of ATP7A develops low blood copper and aortic aneurysm and rupture. Although the aortic pathologies are believed primarily due to congenital copper deficiencies in connective tissue, perinatal copper supplementation does not produce significant therapeutic effects, hinting additional mechanisms in the symptom development, such as an independent effect of the ATP7A mutations during adulthood. METHODS We investigated if bone marrow from blotchy mice contributes to these symptoms. For these experiments, bone marrow from blotchy mice (blotchy marrow group) and healthy littermate controls (control marrow group) was used to reconstitute recipient mice (irradiated male low-density lipoprotein receptor -/- mice), which were then infused with angiotensin II (1,000 ng/kg/min) for 4 weeks. RESULTS By using Mann-Whitney U test, our results showed that there was no significant difference in the copper concentrations in plasma and hematopoietic cells between these 2 groups. And plasma level of triglycerides was significantly reduced in blotchy marrow group compared with that in control marrow group (P < 0.05), whereas there were no significant differences in cholesterol and phospholipids between these 2 groups. Furthermore, a bead-based multiplex immunoassay showed that macrophage inflammatory protein (MIP)-1β, monocyte chemotactic protein (MCP)-1, MCP-3, MCP-5, tissue inhibitor of metalloproteinases (TIMP)-1, and vascular endothelial growth factor (VEGF)-A production was significantly reduced in the plasma of blotchy marrow group compared with that in control marrow group (P < 0.05). More important, although angiotensin II infusion increased maximal external aortic diameters in thoracic and abdominal segments, there was no significant difference in the aortic diameters between these 2 groups. Furthermore, aortic ruptures, including transmural breaks of the elastic laminae in the abdominal segment and lethal rupture in the thoracic segment, were observed in blotchy marrow group but not in control marrow group; however, there was no significant difference in the incidence of aortic ruptures between these 2 groups (P = 0.10; Fisher's exact test). CONCLUSIONS Overall, our study indicated that the effect of bone marrow from blotchy mice during adulthood is dispensable in the regulation of blood copper, plasma cholesterol and phospholipids levels, and aortic pathologies, but contributes to a reduction of MIP-1β, MCP-1, MCP-3, MCP-5, TIMP-1, and VEGF-A production and triglycerides concentration in plasma. Our study also hints that bone marrow transplantation cannot serve as an independent treatment option.
Collapse
Affiliation(s)
- Devon Harris
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Yuanyuan Liang
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Cang Chen
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Senlin Li
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Om Patel
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Zhenyu Qin
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX.
| |
Collapse
|
48
|
Hypoxia preconditioned mesenchymal stem cells prevent cardiac fibroblast activation and collagen production via leptin. PLoS One 2014; 9:e103587. [PMID: 25116394 PMCID: PMC4130526 DOI: 10.1371/journal.pone.0103587] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/29/2014] [Indexed: 12/21/2022] Open
Abstract
AIMS Activation of cardiac fibroblasts into myofibroblasts constitutes a key step in cardiac remodeling after myocardial infarction (MI), due to interstitial fibrosis. Mesenchymal stem cells (MSCs) have been shown to improve post-MI remodeling an effect that is enhanced by hypoxia preconditioning (HPC). Leptin has been shown to promote cardiac fibrosis. The expression of leptin is significantly increased in MSCs after HPC but it is unknown whether leptin contributes to MSC therapy or the fibrosis process. The objective of this study was to determine whether leptin secreted from MSCs modulates cardiac fibrosis. METHODS Cardiac fibroblast (CF) activation was induced by hypoxia (0.5% O2). The effects of MSCs on fibroblast activation were analyzed by co-culturing MSCs with CFs, and detecting the expression of α-SMA, SM22α, and collagen IαI in CFs by western blot, immunofluorescence and Sirius red staining. In vivo MSCs antifibrotic effects on left ventricular remodeling were investigated using an acute MI model involving permanent ligation of the left anterior descending coronary artery. RESULTS Co-cultured MSCs decreased fibroblast activation and HPC enhanced the effects. Leptin deficit MSCs from Ob/Ob mice did not decrease fibroblast activation. Consistent with this, H-MSCs significantly inhibited cardiac fibrosis after MI and mediated decreased expression of TGF-β/Smad2 and MRTF-A in CFs. These effects were again absent in leptin-deficient MSCs. CONCLUSION Our data demonstrate that activation of cardiac fibroblast was inhibited by MSCs in a manner that was leptin-dependent. The mechanism may involve blocking TGF-β/Smad2 and MRTF-A signal pathways.
Collapse
|
49
|
Zabini D, Heinemann A, Foris V, Nagaraj C, Nierlich P, Bálint Z, Kwapiszewska G, Lang IM, Klepetko W, Olschewski H, Olschewski A. Comprehensive analysis of inflammatory markers in chronic thromboembolic pulmonary hypertension patients. Eur Respir J 2014; 44:951-62. [PMID: 25034560 DOI: 10.1183/09031936.00145013] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is associated with chronic inflammation but the pathological mechanisms are largely unknown. Our study aimed to simultaneously profile a broad range of cytokines in the supernatant of pulmonary endarterectomy (PEA) surgical material, as well as prospectively in patients with CTEPH to investigate whether circulating cytokines are associated with haemodynamic and physical characteristics of CTEPH patients. Herein, we show that PEA specimens revealed a significant upregulation of interleukin (IL)-6, monocyte chemoattractant protein-1, interferon-γ-induced protein-10 (IP)-10, macrophage inflammatory protein (MIP)1α and RANTES compared to lung tissue from healthy controls. In prospectively collected serum, levels of IL-6, IL-8, IP-10, monokine induced by interferon-γ (MIG) and MIP1α were significantly elevated in CTEPH patients compared to age- and sex-matched healthy controls. In serum of idiopathic pulmonary arterial hypertension (IPAH) patients, only IP-10 and MIG were significantly increased. In CTEPH but not in IPAH, IP-10 was negatively correlated with cardiac index, 6-min walking distance and carbon monoxide diffusion capacity. In vitro, IP-10 significantly increased migration of freshly isolated adventitial fibroblasts. Our study is the first to show that IP-10 secretion is associated with poor pulmonary haemodynamics and physical capacity in CTEPH and might be involved in the pathological mechanism of PEA tissue formation.
Collapse
Affiliation(s)
- Diana Zabini
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Vasile Foris
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Patrick Nierlich
- Dept of Surgery, Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Zoltán Bálint
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria Dept of Anaesthesia and Intensive Care Medicine, Experimental Anaesthesiology, Medical University of Graz, Graz, Austria
| | - Irene M Lang
- Dept of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Dept of Surgery, Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Horst Olschewski
- Dept of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria Dept of Anaesthesia and Intensive Care Medicine, Experimental Anaesthesiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
50
|
Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage. BIOMED RESEARCH INTERNATIONAL 2014; 2014:384342. [PMID: 25105123 PMCID: PMC4106062 DOI: 10.1155/2014/384342] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/14/2014] [Accepted: 05/26/2014] [Indexed: 12/15/2022]
Abstract
Subarachnoid hemorrhage (SAH) can lead to devastating neurological outcomes, and there are few pharmacologic treatments available for treating this condition. Both animal and human studies provide evidence of inflammation being a driving force behind the pathology of SAH, leading to both direct brain injury and vasospasm, which in turn leads to ischemic brain injury. Several inflammatory mediators that are elevated after SAH have been studied in detail. While there is promising data indicating that blocking these factors might benefit patients after SAH, there has been little success in clinical trials. One of the key factors that complicates clinical trials of SAH is the variability of the initial injury and subsequent inflammatory response. It is likely that both genetic and environmental factors contribute to the variability of patients' post-SAH inflammatory response and that this confounds trials of anti-inflammatory therapies. Additionally, systemic inflammation from other conditions that affect patients with SAH could contribute to brain injury and vasospasm after SAH. Continuing work on biomarkers of inflammation after SAH may lead to development of patient-specific anti-inflammatory therapies to improve outcome after SAH.
Collapse
|