1
|
Hua Q, Meng X, Gong J, Qiu X, Shang J, Xue T, Zhu T. Ozone exposure and cardiovascular disease: A narrative review of epidemiology evidence and underlying mechanisms. FUNDAMENTAL RESEARCH 2025; 5:249-263. [PMID: 40166088 PMCID: PMC11955045 DOI: 10.1016/j.fmre.2024.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2025] Open
Abstract
Ozone (O3) poses a significant global public health concern as it exerts adverse effects on human cardiovascular health. Nevertheless, there remains a lack of comprehensive understanding regarding the relationships between O3 exposure and the risk of cardiovascular diseases (CVD), as well as the underlying biological mechanisms. To address this knowledge gap, this narrative review meticulously summarizes the existing epidemiological evidence, susceptibility, and potential underlying biological mechanisms linking O3 exposure with CVD. An increasing body of epidemiological studies has demonstrated that O3 exposure heightens the incidence and mortality of CVD, including specific subtypes such as ischemic heart disease, hypertension, and heart failure. Certain populations display heightened vulnerability to these effects, particularly children, the elderly, obese individuals, and those with pre-existing conditions. Proposed biological mechanisms suggest that O3 exposure engenders respiratory and systemic inflammation, oxidative stress, disruption of autonomic nervous and neuroendocrine systems, as well as impairment of coagulation function, glucose, and lipid metabolism. Ultimately, these processes contribute to vascular dysfunction and the development of CVD. However, some studies have reported the absence of associations between O3 and CVD, or even potentially protective effects of O3. Inconsistencies among the literature may be attributed to inaccurate assessment of personal O3 exposure levels in epidemiologic studies, as well as confounding effects stemming from co-pollutants and temperature. Consequently, our findings underscore the imperative for further research, including the development of reliable methodologies for assessing personal O3 exposure, exploration of O3 exposure's impact on cardiovascular health, and elucidation of its biological mechanisms. These endeavors will consolidate the causal relationship between O3 and cardiovascular diseases, subsequently aiding efforts to mitigate the risks associated with O3 exposure.
Collapse
Affiliation(s)
- Qiaoyi Hua
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xin Meng
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jing Shang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Tao Xue
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100871, China
| | - Tong Zhu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Guo F, Habre R, Xu Y, Chen X, Howland S, Lurmann F, Pavlovic N, Gauderman WJ, McConnell R, Bastain TM, Breton CV, Farzan SF. Impact of childhood exposure to traffic related air pollution on adult cardiometabolic health: Exploring the role of perceived stress. ENVIRONMENTAL RESEARCH 2024; 263:120130. [PMID: 39419260 PMCID: PMC11608997 DOI: 10.1016/j.envres.2024.120130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Little is known about how childhood exposure to traffic-related air pollution (TRAP) and stress interact to affect adults' cardiometabolic health. We examined this interaction and assessed the impact of over 10 years of childhood TRAP exposure on cardiometabolic health. METHODS From 2018 to 2023, 313 young adults from the Southern California Children's Health Study were enrolled in a follow-up assessment. Using CALINE4 line source dispersion model, average childhood TRAP exposures (from pregnancy to age 13) were estimated for nitrogen oxides (NOx) from all roads. Traffic density was calculated within a 300-m residential buffer. Cardiometabolic health was assessed in adulthood (mean age 24 ± 1.7) based on blood lipids (total cholesterol, high- and low-density lipoprotein [HDL, LDL], triglycerides), glucose metabolism (fasting glucose, fasting insulin, HbA1c), body composition (BMI, android/gynoid ratio [AG ratio], percent body fat), and blood pressure. A PDAY (Pathobiologic Determinants of Atherosclerosis in Youth) score was generated to evaluate overall cardiometabolic health. Participants' perceived stress was assessed in childhood and adulthood (ages 13 and 24 years, respectively). RESULTS Results of mixed effects linear models, adjusted for demographics and smoking status, suggested that each standard deviation increase in childhood exposure to traffic-related total NOx was associated with 0.62 increase in PDAY score (95% Confidence Interval [CI]:0.10,1.14), 0.09% increase in HbA1c (95%CI: 0.04, 0.15), 1.19% increase in percent body fat (95%CI: 0.18, 2.20), and 0.96 kg/m2 increase in BMI (0.11, 1.80) in adulthood. Among participants with higher childhood stress levels, we observed significant associations of traffic-related total NOx with total cholesterol, HDL, LDL, HbA1c, insulin, and BMI. None of these associations were significant among people with lower stress levels. We observed similar statistically significant associations of traffic density. CONCLUSION Long-term childhood exposure to TRAP in childhood may have lasting adverse impacts on cardiometabolic health, especially for children with higher stress levels.
Collapse
Affiliation(s)
- Fangqi Guo
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA; Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | - Yan Xu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Xinci Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Stephen Howland
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | | | | | - W James Gauderman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Theresa M Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Carrie V Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA.
| |
Collapse
|
3
|
Seeburun S, Wu S, Hemani D, Pham L, Ju D, Xie Y, Kata P, Li L. Insights into elastic fiber fragmentation: Mechanisms and treatment of aortic aneurysm in Marfan syndrome. Vascul Pharmacol 2023; 153:107215. [PMID: 37640090 PMCID: PMC10872825 DOI: 10.1016/j.vph.2023.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by mutations in fibrillin 1 (FBN1) gene. These mutations result in defects in the skeletal, ocular, and cardiovascular systems. Aortic aneurysm is the leading cause of premature mortality in untreated MFS patients. Elastic fiber fragmentation in the aortic vessel wall is a hallmark of MFS-associated aortic aneurysms. FBN1 mutations result in FBN1 fragments that also contribute to elastic fiber fragmentation. Although recent research has advanced our understanding of MFS, the contribution of elastic fiber fragmentation to the pathogenesis of aneurysm formation remains poorly understood. This review provides a comprehensive overview of the molecular mechanisms of elastic fiber fragmentation and its role in the pathogenesis of aortic aneurysm progression. Increased comprehension of elastic fragmentation has significant clinical implications for developing targeted interventions to block aneurysm progression, which would benefit not only individuals with Marfan syndrome but also other patients with aneurysms. Moreover, this review highlights an overlooked connection between inhibiting aneurysm and the restoration of elastic fibers in the vessel wall with various aneurysm inhibitors, including drugs and chemicals. Investigating the underlying molecular mechanisms could uncover innovative therapeutic strategies to inhibit elastin fragmentation and prevent the progression of aneurysms.
Collapse
Affiliation(s)
- Sheilabi Seeburun
- Department of Internal Medicine, Wayne State University, Detroit MI, USA
| | - Shichao Wu
- Department of Internal Medicine, Wayne State University, Detroit MI, USA
| | - Darshi Hemani
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit MI, USA
| | - Lucynda Pham
- Department of Internal Medicine, Wayne State University, Detroit MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit MI, USA
| | - Donghong Ju
- Department of Internal Medicine, Wayne State University, Detroit MI, USA
- Department of Oncology, Wayne State University, Detroit MI, USA
| | - Youming Xie
- Department of Oncology, Wayne State University, Detroit MI, USA
| | - Priyaranjan Kata
- Department of Internal Medicine, Wayne State University, Detroit MI, USA
| | - Li Li
- Department of Internal Medicine, Wayne State University, Detroit MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit MI, USA
| |
Collapse
|
4
|
Macchi C, Sirtori CR, Corsini A, Mannuccio Mannucci P, Ruscica M. Pollution from fine particulate matter and atherosclerosis: A narrative review. ENVIRONMENT INTERNATIONAL 2023; 175:107923. [PMID: 37119653 DOI: 10.1016/j.envint.2023.107923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/22/2023]
Abstract
According to the WHO, the entire global population is exposed to air pollution levels higher than recommended for health preservation. Air pollution is a complex mixture of nano- to micro-sized particles and gaseous components that poses a major global threat to public health. Among the most important air pollutants, causal associations have been established between particulate matter (PM), mainly < 2.5 μm, and cardiovascular diseases (CVD), i.e., hypertension, coronary artery disease, ischemic stroke, congestive heart failure, arrhythmias as well as total cardiovascular mortality. Aim of this narrative review is to describe and critically discuss the proatherogenic effects of PM2.5 that have been attributed to many direct or indirect effects comprising endothelial dysfunction, a chronic low-grade inflammatory state, increased production of reactive oxygen species, mitochondrial dysfunction and activation of metalloproteases, all leading to unstable arterial plaques. Higher concentrations of air pollutants are associated with the presence of vulnerable plaques and plaque ruptures witnessing coronary artery instability. Air pollution is often disregarded as a CVD risk factor, in spite of the fact that it is one of the main modifiable factors relevant for prevention and management of CVD. Thus, not only structural actions should be taken in order to mitigate emissions, but health professionals should also take care to counsel patients on the risks of air pollution.
Collapse
Affiliation(s)
- Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Pier Mannuccio Mannucci
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Italy.
| |
Collapse
|
5
|
Chaulin AM, Sergeev AK. Modern Concepts of the Role of Fine Particles (PM 2.5) in the Genesis of Atherosclerosis and Myocardial Damage: Clinical and Epidemiological Data, the Main Pathophysiological Mechanisms. Curr Cardiol Rev 2023; 19:e170822207573. [PMID: 35980071 PMCID: PMC10201893 DOI: 10.2174/1573403x18666220817103105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022] Open
Abstract
Due to the fact that atherosclerotic cardiovascular diseases (CVDs) dominate in the structure of morbidity, disability and mortality of the population, the study of the risk factors for the development of atherosclerotic CVDs, as well as the study of the underlying pathogenetic mechanisms thereof, is the most important area of scientific research in modern medicine. Understanding these aspects will allow improving the set of treatment and preventive measures and activities. One of the important risk factors for the development of atherosclerosis, which has been actively studied recently, is air pollution with fine particulate matter (PM 2.5). According to clinical and epidemiological data, the level of air pollution with PM 2.5 exceeds the normative indicators in most regions of the world and is associated with subclinical markers of atherosclerosis and mortality from atherosclerotic CVDs. The aim of this article is to systematize and discuss in detail the role of PM 2.5 in the development of atherosclerosis and myocardial damage with the consideration of epidemiological and pathogenetic aspects. Materials and Methods: This narrative review is based on the analysis of publications in the Medline, PubMed, and Embase databases. The terms "fine particles" and "PM 2.5" in combination with "pathophysiological mechanisms," "cardiovascular diseases", "atherosclerosis", "cardiac troponins", "myocardial damage" and "myocardial injury" were used to search publications. Conclusion: According to the conducted narrative review, PM 2.5 should be regarded as the significant risk factor for the development of atherosclerotic CVDs. The pro-atherogenic effect of fine particulate matter is based on several fundamental and closely interrelated pathophysiological mechanisms: endothelial dysfunction, impaired lipid metabolism, increased oxidative stress and inflammatory reactions, impaired functioning of the vegetative nervous system and increased activity of the hemostatic system. In addition, PM 2.5 causes subclinical damage to cardiac muscle cells by several mechanisms: apoptosis, oxidative stress, decreased oxygen delivery due to coronary atherosclerosis and ischemic damage of cardiomyocytes. Highly sensitive cardiac troponins are promising markers for detecting subclinical myocardial damage in people living in polluted regions.
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical University, Samara, 443099, Russia
- Department of Histology and Embryology, Samara State Medical University, Samara, 443099, Russia
| | | |
Collapse
|
6
|
Chaulin AM, Sergeev AK. The Role of Fine Particles (PM 2.5) in the Genesis of Atherosclerosis and Myocardial Damage: Emphasis on Clinical and Epidemiological Data, and Pathophysiological Mechanisms. Cardiol Res 2022; 13:268-282. [PMID: 36405225 PMCID: PMC9635774 DOI: 10.14740/cr1366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/05/2022] [Indexed: 09/26/2023] Open
Abstract
Due to the fact that atherosclerotic cardiovascular diseases (CVDs) dominate in the structure of morbidity, disability and mortality of the population, the study of the risk factors for the development of atherosclerotic CVDs, as well as the study of the underlying pathogenetic mechanisms thereof, is the most important area of scientific research in modern medicine. Understanding these aspects will allow to improve the set of treatment and preventive measures and activities. One of the important risk factors for the development of atherosclerosis, which has been actively studied recently, is air pollution with fine particulate matter (PM 2.5). According to clinical and epidemiological data, the level of air pollution with PM 2.5 exceeds the normative indicators in most regions of the world and is associated with subclinical markers of atherosclerosis and mortality from atherosclerotic CVDs. The aim of this article is to systematize and discuss in detail the role of PM 2.5 in the development of atherosclerosis and myocardial damage.
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical University, Samara 443099, Russia
- Department of Histology and Embryology, Samara State Medical University, Samara 443099, Russia
| | | |
Collapse
|
7
|
Chen SY, Hwang JS, Chan CC, Wu CF, Wu C, Su TC. Urban Air Pollution and Subclinical Atherosclerosis in Adolescents and Young Adults. J Adolesc Health 2022; 71:233-238. [PMID: 35537887 DOI: 10.1016/j.jadohealth.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE The contribution of air pollution to subclinical atherosclerosis in a young population remains limited. This study aimed to assess whether long-term exposure to urban air pollutants increases carotid intima-media thickness (CIMT) in adolescents and young adults. METHODS This study included 789 subjects between the ages of 12 and 30 years who lived in the Taipei metropolis from a cohort of young Taiwanese individuals. Residential addresses were geocoded, and annual average concentrations of particulate matter (PM) of different diameters, e.g., PM10, PM2.5-10, PM2.5, and nitrogen oxides (NOX), were assessed using land use regression models. The generalized least squares strategy with error term to consider the cluster effect of living addresses between individuals was used to examine the associations between urban air pollution and CIMTs. RESULTS After adjusting for potential confounders, we found that interquartile range increases in PM2.5 (8.2 μg/m3) and NOX (17.5 μg/m3) were associated with 0.46% (95% CI: 0.02-0.90) and 1.00% (95% CI: 0.10-1.91) higher CIMTs, respectively. Stratified analyses showed that the relationships between CIMT and PM2.5 and NOX were more evident in subjects who were 18 years or older, female, nonsmoking, nonhypertensive, and nonhyperglycemic than in their respective counterparts. DISCUSSION Long-term exposure to PM2.5 and NOX is associated with subclinical atherosclerosis in a young population. Age, sex, and health status may influence the vulnerability of air pollution-associated subclinical atherosclerosis.
Collapse
Affiliation(s)
- Szu-Ying Chen
- Division of Occupational Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; Division of Surgical Intensive Care, Department of Critical Care Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Nursing, Fooyin University, Kaohsiung, Taiwan
| | | | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chang-Fu Wu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Charlene Wu
- Global Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ta-Chen Su
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; The Experimental Forest, National Taiwan University, Nantou, Taiwan.
| |
Collapse
|
8
|
Liu S, Zhang Y, Ma R, Liu X, Liang J, Lin H, Shen P, Zhang J, Lu P, Tang X, Li T, Gao P. Long-term exposure to ozone and cardiovascular mortality in a large Chinese cohort. ENVIRONMENT INTERNATIONAL 2022; 165:107280. [PMID: 35605364 DOI: 10.1016/j.envint.2022.107280] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/09/2022] [Accepted: 05/02/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Evidence for the association between long-term exposure to ozone (O3) and cause-specific cardiovascular disease (CVD) mortality is inconclusive, and this association has rarely been evaluated at high O3 concentrations. OBJECTIVES We aim to evaluate the associations between long-term O3 exposure and cause-specific CVD mortality in a Chinese population. METHODS From 2009 to 2018, 744,882 subjects (median follow-up of 7.72 years) were included in the CHinese Electronic health Records Research in Yinzhou (CHERRY) study. The annual average concentrations of O3 and fine particulate matter (PM2.5), which were estimated using grids with a resolution up to 1 × 1 km, were assigned to the community address for each subject. The outcomes were deaths from CVD, ischemic heart disease (IHD), myocardial infarction (MI), stroke, and hemorrhagic/ischemic stroke. Time-varying Cox model adjusted for PM2.5 and individual-level covariates was used. RESULTS The mean of annual average O3 concentrations was 68.05 μg/m3. The adjusted hazard ratio per 10 μg/m3 O3 increase was 1.22 (95% confidence interval [CI]: 1.13-1.33) for overall CVD mortality, 1.08 (0.91-1.29) for IHD, 1.21 (0.90-1.63) for MI, 1.28 (1.15-1.43) for overall stroke, 1.39 (1.16-1.67) for hemorrhagic stroke and 1.22 (1.00-1.49) for ischemic stroke, respectively. The study showed that subjects without hypertension had a higher risk for CVD mortality associated with long-term O3 exposure (1.66 vs. 1.15, p = 0.01). CONCLUSIONS We observed the association between long-term exposure to high O3 concentrations and cause-specific CVD mortality in China, independent of PM2.5 and other CVD risk factors. This suggested an urgent need to control O3 pollution, especially in developing countries.
Collapse
Affiliation(s)
- Shudan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuannanli Road, Chaoyang District, Beijing 100021, China
| | - Runmei Ma
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuannanli Road, Chaoyang District, Beijing 100021, China
| | - Xiaofei Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jingyuan Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hongbo Lin
- Yinzhou District Centre for Disease Control and Prevention, 1221 Xueshi Road, Ningbo, Zhejiang 315100, China
| | - Peng Shen
- Yinzhou District Centre for Disease Control and Prevention, 1221 Xueshi Road, Ningbo, Zhejiang 315100, China
| | - Jingyi Zhang
- Wonders Information Co., Ltd, 1518 Lianhang Road, Shanghai, China
| | - Ping Lu
- Wonders Information Co., Ltd, 1518 Lianhang Road, Shanghai, China
| | - Xun Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuannanli Road, Chaoyang District, Beijing 100021, China.
| | - Pei Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China; Center for Real-World Evidence Evaluation, Peking University Clinical Research Institute, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular (Peking University), Ministry of Education, Beijing, China.
| |
Collapse
|
9
|
Chen SY, Wu CF, Wu C, Chan CC, Hwang JS, Su TC. Urban Fine Particulate Matter and Elements Associated with Subclinical Atherosclerosis in Adolescents and Young Adults. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7266-7274. [PMID: 35138845 DOI: 10.1021/acs.est.1c06347] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The relationships between the elemental constituents of PM2.5 and atherosclerosis remain limited, especially in young populations. This study included 755 subjects aged 12-30 years in the Taipei metropolis. A land use regression model was used to estimate residential annual mean concentrations of PM2.5 and eight elemental constituents. We evaluated the percent differences in carotid intima-media thickness (CIMT) with PM2.5 and elemental constituent exposures by linear regressions. Interquartile range increments for PM2.5 (4.5 μg/m3), sulfur (108.6 ng/m3), manganese (2.0 ng/m3), iron (34.5 ng/m3), copper (3.6 ng/m3), and zinc (20.7 ng/m3) were found to associate with 0.92% (95% confidence interval (CI): 0.17-1.66), 0.51% (0.02-1.00), 0.36% (0.05-0.67), 0.98% (0.15-1.82), 0.74% (0.01-1.48), and 1.20% (0.33-2.08) higher CIMTs, respectively. Factor analysis identified four air pollution source-related factors, and the factors interpreted as traffic and industry sources were associated with higher CIMTs. Stratified analyses showed the estimates were more evident in subjects who were ≥18 years old, females, or who had lower household income. Our study results provide new insight into the impacts of source-specific air pollution, and future research on source-specific air pollution effects in young populations, especially in vulnerable subpopulations, is warranted.
Collapse
Affiliation(s)
- Szu-Ying Chen
- Division of Occupational Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
- Division of Surgical Intensive Care, Department of Critical Care Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
- Department of Nursing, Fooyin University. Kaohsiung 831301, Taiwan
| | - Chang-Fu Wu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Charlene Wu
- Global Health Program, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Jing-Shiang Hwang
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
- The Experimental Forest, National Taiwan University, Nantou 557, Taiwan
| |
Collapse
|
10
|
Peralta AA, Schwartz J, Gold DR, Vonk JM, Vermeulen R, Gehring U. Quantile regression to examine the association of air pollution with subclinical atherosclerosis in an adolescent population. ENVIRONMENT INTERNATIONAL 2022; 164:107285. [PMID: 35576730 PMCID: PMC9890274 DOI: 10.1016/j.envint.2022.107285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Accepted: 05/05/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND Air pollution has been associated with carotid intima-media thickness test (CIMT), a marker of subclinical atherosclerosis. To our knowledge, this is the first study to report an association between ambient air pollution and CIMT in a younger adolescent population. OBJECTIVE To investigate the associations beyond standard mean regression by using quantile regression to explore if associations occur at different percentiles of the CIMT distribution. METHODS We measured CIMT cross-sectionally at the age of 16 years in 363 adolescents participating in the Dutch PIAMA birth cohort. We fit separate quantile regressions to examine whether the associations of annual averages of nitrogen dioxide (NO2), fine particulate matter (PM2.5), PM2.5 absorbance (a marker for black carbon), PMcoarse and ultrafine particles up to age 14 assigned at residential addresses with CIMT varied across deciles of CIMT. False discovery rate corrections (FDR, p < 0.05 for statistical significance) were applied for multiple comparisons. We report quantile regression coefficients that correspond to an average change in CIMT (µm) associated with an interquartile range increase in the exposure. RESULTS PM2.5 absorbance exposure at birth was statistically significantly (FDR < 0.05) associated with a 6.23 µm (95% CI: 0.15, 12.3) higher CIMT per IQR increment in PM2.5 absorbance in the 10th quantile of CIMT but was not significantly related to other deciles within the CIMT distribution. For NO2 exposure we found similar effect sizes to PM2.5 absorbance, but with much wider confidence intervals. PM2.5 exposure was weakly positively associated with CIMT while PMcoarse and ultrafine did not display any consistent patterns. CONCLUSIONS Early childhood exposure to ambient air pollution was suggestively associated with the CIMT distribution during adolescence. Since CIMT increases with age, mitigation strategies to reduce traffic-related air pollution early in life could possibly delay atherosclerosis and subsequently CVD development later in life.
Collapse
Affiliation(s)
- Adjani A Peralta
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, United States; Institute for Risk Assessment Sciences, Utrecht University, The Netherlands.
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, United States.
| | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, United States.
| | - Judith M Vonk
- Department of Epidemiology and Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, The Netherlands.
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, The Netherlands.
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, The Netherlands.
| |
Collapse
|
11
|
Farzan SF, Habre R, Danza P, Lurmann F, Gauderman WJ, Avol E, Bastain T, Hodis HN, Breton C. Childhood traffic-related air pollution and adverse changes in subclinical atherosclerosis measures from childhood to adulthood. Environ Health 2021; 20:44. [PMID: 33853624 PMCID: PMC8048028 DOI: 10.1186/s12940-021-00726-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/08/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Chronic exposure to air pollutants is associated with increased risk of cardiovascular disease (CVD) among adults. However, little is known about how air pollution may affect the development of subclinical atherosclerosis in younger populations. Carotid artery intima-media thickness (CIMT) is a measure of subclinical atherosclerosis that provides insight into early CVD pathogenesis. METHODS In a pilot study of 70 participants from the Southern California Children's Health Study, we investigated CIMT progression from childhood to adulthood. Using carotid artery ultrasound images obtained at age 10 and follow-up images at age 21-22, we examined associations between childhood ambient and traffic-related air pollutants with changes in CIMT over time and attained adult CIMT using linear mixed-effects models adjusted for potential confounders. Average residential childhood exposures (i.e., birth to time of measurement at 10-11 years) were assigned for regional, ambient pollutants (ozone, nitrogen dioxide, particulate matter, interpolated from regulatory air monitoring data) and traffic-related nitrogen oxides (NOx) by road class (modeled using the CALINE4 line source dispersion model). Traffic density was calculated within a 300-m residential buffer. RESULTS For each 1 standard deviation (SD) increase in childhood traffic-related total NOx exposure, we observed greater yearly rate of change in CIMT from childhood to adulthood (β: 2.17 μm/yr, 95% CI: 0.78-3.56). Increases in annual rate of CIMT change from childhood to adulthood also were observed with freeway NOx exposure (β: 2.24 μm/yr, 95% CI: 0.84-3.63) and traffic density (β: 2.11 μm/yr, 95% CI: 0.79-3.43). Traffic exposures were also related to increases in attained CIMT in early adulthood. No associations of CIMT change or attained level were observed with ambient pollutants. CONCLUSIONS Overall, we observed adverse changes in CIMT over time in relation to childhood traffic-related NOx exposure and traffic density in our study population. While these results must be cautiously interpreted given the limited sample size, the observed associations of traffic measures with CIMT suggest a need for future studies to more fully explore this relationship.
Collapse
Affiliation(s)
- Shohreh F. Farzan
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| | - Rima Habre
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| | - Phoebe Danza
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| | | | - W. James Gauderman
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| | - Edward Avol
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| | - Theresa Bastain
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| | - Howard N. Hodis
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90089 USA
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, CA 90089 USA
| | - Carrie Breton
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089 USA
| |
Collapse
|
12
|
Lin C, Du Z, Tao N, Wang D. Gradient-Based Colorimetric Array Sensor for Continuous Monitoring of Multiple Gas Analytes. ACS Sens 2021; 6:439-442. [PMID: 33332961 DOI: 10.1021/acssensors.0c01971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Colorimetry is widely used in chemical sensing due to its high sensitivity and high selectivity. However, most colorimetric sensors are one-time use because the color-producing reactions or bindings are usually irreversible. In addition, traditional colorimetric sensors like the detection tubes are bulky and packed individually, making parallel sensing of multiple analytes difficult. Here, we demonstrate a gradient-based colorimetric array sensor (GCAS) to overcome these limitations. Different colorimetric sensing elements are inkjet-printed as parallel straight lines on a porous substrate. Lateral transport of analytes across the substrate creates color gradients on the sensing elements. The color gradients shift along the transport direction over time, and GCAS tracks the gradient shifts and converts them into analyte concentrations in real time. Using a low-cost complementary metal-oxide semiconductor imager, we show detection of three air pollutants using a single GCAS chip and 24 h continuous monitoring of ambient ozone.
Collapse
Affiliation(s)
- Chenwen Lin
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Zijian Du
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Nongjian Tao
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Di Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 311100, China
| |
Collapse
|
13
|
Liang S, Zhang J, Ning R, Du Z, Liu J, Batibawa JW, Duan J, Sun Z. The critical role of endothelial function in fine particulate matter-induced atherosclerosis. Part Fibre Toxicol 2020; 17:61. [PMID: 33276797 PMCID: PMC7716453 DOI: 10.1186/s12989-020-00391-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Ambient and indoor air pollution contributes annually to approximately seven million premature deaths. Air pollution is a complex mixture of gaseous and particulate materials. In particular, fine particulate matter (PM2.5) plays a major mortality risk factor particularly on cardiovascular diseases through mechanisms of atherosclerosis, thrombosis and inflammation. A review on the PM2.5-induced atherosclerosis is needed to better understand the involved mechanisms. In this review, we summarized epidemiology and animal studies of PM2.5-induced atherosclerosis. Vascular endothelial injury is a critical early predictor of atherosclerosis. The evidence of mechanisms of PM2.5-induced atherosclerosis supports effects on vascular function. Thus, we summarized the main mechanisms of PM2.5-triggered vascular endothelial injury, which mainly involved three aspects, including vascular endothelial permeability, vasomotor function and vascular reparative capacity. Then we reviewed the relationship between PM2.5-induced endothelial injury and atherosclerosis. PM2.5-induced endothelial injury associated with inflammation, pro-coagulation and lipid deposition. Although the evidence of PM2.5-induced atherosclerosis is undergoing continual refinement, the mechanisms of PM2.5-triggered atherosclerosis are still limited, especially indoor PM2.5. Subsequent efforts of researchers are needed to improve the understanding of PM2.5 and atherosclerosis. Preventing or avoiding PM2.5-induced endothelial damage may greatly reduce the occurrence and development of atherosclerosis.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Jingyi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Ruihong Ning
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Jiangyan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Joe Werelagi Batibawa
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| |
Collapse
|
14
|
Kim SY, Kim E, Kim WJ. Health Effects of Ozone on Respiratory Diseases. Tuberc Respir Dis (Seoul) 2020; 83:S6-S11. [PMID: 33261243 PMCID: PMC7837374 DOI: 10.4046/trd.2020.0154] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/15/2023] Open
Abstract
Ozone is known to cause bronchial inflammation and airway hyper-responsiveness via oxidative injury and inflammation. While other ambient air pollutants such as particulate matter (PM) and nitrogen dioxide showed decreasing trends in mean annual concentrations, ozone concentrations have not declined recently in most countries across the world. Short-term exposure to high concentrations of ozone has been associated with increased mortality and cardiovascular and respiratory morbidity in many regions of the world. However, the long-term effects of ozone have been less investigated than the short-term exposure due to the difficulty in modeling ozone exposure and linking between individual exposures and health outcome data. A recently developed model of ozone exposure enabled the investigation of long-term ozone effects on health outcomes. Recent findings suggested that long-term exposure to ozone was associated with an increased risk of cardiovascular and respiratory mortality. Longitudinal studies using large cohorts also revealed that long-term exposure to ozone was associated with a greater decline in lung function and the progression of emphysema. The development of long-term standards for ozone as well as PM should be considered to protect the respiratory health of the general population and people with chronic respiratory diseases.
Collapse
Affiliation(s)
- Sun-Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Esther Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
15
|
Tian M, Zhao J, Mi X, Wang K, Kong D, Mao H, Wang T. Progress in research on effect of PM
2.5
on occurrence and development of atherosclerosis. J Appl Toxicol 2020; 41:668-682. [DOI: 10.1002/jat.4110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Mengya Tian
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering Nankai University Tianjin China
| | - Jingbo Zhao
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering Nankai University Tianjin China
| | - Xingyan Mi
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University Tianjin China
| | - Kai Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University Tianjin China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University Tianjin China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering Nankai University Tianjin China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering Nankai University Tianjin China
| |
Collapse
|
16
|
Hasslöf H, Molnár P, Andersson EM, Spanne M, Gustafsson S, Stroh E, Engström G, Stockfelt L. Long-term exposure to air pollution and atherosclerosis in the carotid arteries in the Malmö diet and cancer cohort. ENVIRONMENTAL RESEARCH 2020; 191:110095. [PMID: 32846176 DOI: 10.1016/j.envres.2020.110095] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Long-term exposure to air pollution increases the risk of cardiovascular morbidity and mortality, but the mechanisms are not fully known. Current evidence suggests that air pollution exposure contributes to the development of atherosclerosis. There are few studies investigating associations between air pollution and carotid plaques, a well-known precursor of cardiovascular disease. METHODS A Swedish population-based cohort (aged 45-64 years at recruitment) was randomly selected from the Malmö Diet and Cancer study between 1991 and 1994, of which 6103 participants underwent ultrasound examination of the right carotid artery to determine carotid plaque presence and carotid intima media thickness (CIMT). Participants were assigned individual residential air pollution exposure (source-specific PM2.5, PM10, NOx, BC) at recruitment from Gaussian dispersion models. Logistic and linear regression models, adjusted for potential confounders and cardiovascular risk factors, were used to investigate associations between air pollutants and prevalence of carotid plaques, and CIMT, respectively. RESULTS The prevalence of carotid plaques was 35%. The mean levels of PM2.5 and PM10 at recruitment were 11 and 14 μg/m3, most of which was due to long range transport. The exposure contrast within the cohort was relatively low. PM2.5 exposure was associated with carotid plaques in a model including age and sex only (OR 1.10 (95% CI 1.01-1.20) per 1 μg/m3), but after adjustment for cardiovascular risk factors and socioeconomic status (SES) the association was weak and not significant (OR 1.05 (95% CI 0.96-1.16) per 1 μg/m3). The pattern was similar for PM10 and NOx exposure. Associations between air pollutants and plaques were slightly stronger for long-term residents and in younger participants with hypertension. There was no clear linear trend between air pollution exposure and plaque prevalence. Non-significant slightly positive associations were seen between air pollution exposures and CIMT. CONCLUSIONS In this large, well-controlled cross-sectional study at low exposure levels we found no significant associations between air pollution exposures and subclinical atherosclerosis in the carotid arteries, after adjusting for cardiovascular risk factors and SES. Further epidemiological studies of air pollution and intermediate outcomes are needed to explain the link between air pollution and cardiovascular events.
Collapse
Affiliation(s)
- Helena Hasslöf
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Molnár
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva M Andersson
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mårten Spanne
- Environmental Department of the City of Malmö, Sweden
| | | | - Emilie Stroh
- Occupational and Environmental Medicine, Department for Laboratory Medicine, Lund University, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences in Malmö, CRC, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Leo Stockfelt
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
17
|
Barrett JR. Red Flag for Arterial Damage? Early Evidence of a Potential Connection with Ozone. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:124002. [PMID: 31845826 PMCID: PMC6957288 DOI: 10.1289/ehp6323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
|
18
|
Duan C, Talbott EO, Broadwin R, Brooks M, Matthews K, Barinas-Mitchell E. Residential Exposure to PM 2.5 and Ozone and Progression of Subclinical Atherosclerosis Among Women Transitioning Through Menopause: The Study of Women's Health Across the Nation. J Womens Health (Larchmt) 2019; 28:802-811. [PMID: 30730252 PMCID: PMC6590715 DOI: 10.1089/jwh.2018.7182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: This article aims to examine the association between long-term ambient air pollution and progression of subclinical atherosclerosis with 2-year follow-up among midlife women from the Study of Women's Health Across the Nation (SWAN). Materials and Methods: Carotid duplex ultrasonography was performed in participants from a SWAN ancillary study carried out at the Pittsburgh and Chicago sites. Mean and maximum carotid intima-media thickness (CIMT) and plaque burden were assessed throughout the common, bulb, and internal carotid artery. The yearly mean exposure to PM2.5 (particulate matter) and ozone was generated based on monitors within 20 km of the participants' home. The effect of air pollutants during follow-up on progression of CIMT was estimated using linear mixed-effects models, and the effect on progression of plaque presence and plaque index, a measure of extent of plaque, was evaluated using logistic regression. Results: This study included 417 (257 White and 160 Black) women with a mean age of 51 years at baseline. A 1 μg/m3 higher yearly mean exposure to PM2.5 during follow-up was associated with a 4.28 (95% confidence interval [CI]: 0.02-8.54) μm/year increase in maximum CIMT, after adjusting for socioeconomic and traditional cardiovascular disease (CVD) risk factors. Exposure to PM2.5 contributed to a 30% (95% CI: 3%-65%) higher odds of plaque index progression adjusting for socioeconomic factors only. Conclusions: PM2.5 independently contributed to progression of subclinical atherosclerosis, among women transitioning through menopause, a time of increasing CVD risk. Yet no significant associations between ozone and subclinical atherosclerosis were observed.
Collapse
Affiliation(s)
- Chunzhe Duan
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Evelyn O. Talbott
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Rachel Broadwin
- California Office of Environmental Health Hazard Assessment, Oakland, California
| | - Maria Brooks
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Karen Matthews
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Emma Barinas-Mitchell
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Wang M, Sampson PD, Sheppard LE, Stein JH, Vedal S, Kaufman JD. Long-Term Exposure to Ambient Ozone and Progression of Subclinical Arterial Disease: The Multi-Ethnic Study of Atherosclerosis and Air Pollution. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:57001. [PMID: 31063398 PMCID: PMC6791411 DOI: 10.1289/ehp3325] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Long-term ozone ([Formula: see text]) exposure is associated with cardiovascular mortality, but little is known about the associations between [Formula: see text] and subclinical arterial disease. OBJECTIVES We studied the longitudinal association of exposure to [Formula: see text] and progression of key subclinical arterial markers in adults: intima-media thickness of common carotid artery ([Formula: see text]), carotid plaque (CP) burden, and coronary artery calcification (CAC). METHODS CAC was measured one to four times at baseline and at follow-up exams (1999–2012) by computed tomography (CT) in 6,619 healthy adults, recruited at age 45-84 y without cardiovascular disease (CVD), over a mean of 6.5 y (standard deviation: 3.5 y). [Formula: see text] and CP burden were quantified in 3,392 participants using carotid artery ultrasound imaging acquired over a mean of 9 y (1.7 y). Over 91% and 89% participants had at least one follow-up [Formula: see text] and CAC measurement, respectively. Residence-specific [Formula: see text] concentrations were estimated by a validated spatiotemporal model spanning from 1999 to 2012. This model relied on comprehensive monitoring data and geographical variables to predict individualized long-term average concentrations since baseline. Linear mixed models and logistic regression model were used to evaluate relationships of long-term average exposure to [Formula: see text] with longitudinal change in [Formula: see text], CAC, and CP formation, respectively. RESULTS Mean progression rates of [Formula: see text] and CAC were [Formula: see text] and [Formula: see text]. CP formation was identified in 55% of the subjects. A [Formula: see text] increase in long-term average [Formula: see text] exposure was associated with a [Formula: see text] [95% confidence interval (CI): 1.4, 9.7] greater increase in [Formula: see text] over 10 y. A [Formula: see text] increase in [Formula: see text] was also associated with new CP formation [odds ratio (OR): 1.2 (95% CI: 1.1, 1.4)] but not CAC progression [[Formula: see text] (95% CI: [Formula: see text], 2)]. Associations were robust in the analysis with extended covariate adjustment, including copollutants, i.e., nitrogen oxides ([Formula: see text]) and particulate matter with diameter [Formula: see text] ([Formula: see text]). CONCLUSION Over almost a decade of follow-up, outdoor [Formula: see text] concentrations were associated with increased rate of carotid wall thickness progression and risk of new plaque formation, suggesting arterial injury in this cohort. https://doi.org/10.1289/EHP3325.
Collapse
Affiliation(s)
- Meng Wang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, USA
- RENEW Institute, University at Buffalo, Buffalo, New York, USA
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Paul D. Sampson
- Department of Statistics, University of Washington, Seattle, Washington, USA
| | - Lianne E. Sheppard
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - James H. Stein
- University of Wisconsin School of Medicine and Public Health, Department of Medicine, Madison, Wisconsin, USA
| | - Sverre Vedal
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Duan C, Talbott E, Brooks M, Park SK, Broadwin R, Matthews K, Barinas-Mitchell E. Five-year exposure to PM 2.5 and ozone and subclinical atherosclerosis in late midlife women: The Study of Women's Health Across the Nation. Int J Hyg Environ Health 2018; 222:168-176. [PMID: 30236459 DOI: 10.1016/j.ijheh.2018.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Effects of more than one-year exposure to air pollution on atherosclerosis is seldom studied. This paper aims to examine the association between five-year exposure to particulate matter ≤2.5 μm (PM2.5), ozone (O3) and atherosclerosis observed about seven years later in late midlife women. MATERIAL AND METHODS This study was conducted among 1188 women of the Study of Women's Health Across the Nation (SWAN) from five sites, Detroit, MI; Oakland, CA; Pittsburgh, PA; Chicago, IL; and Newark, NJ, with available data on both air pollutant exposure and carotid ultrasound scans. Five-year mean annualized exposure levels of two air pollutants, PM2.5 and ozone (O3), were collected during 5 SWAN visits (1999-2005) from monitors 20 km within the participant's residential address. Linear regression models were used to estimate the association of prior five-year mean annualized exposure to PM2.5 and O3 with common carotid intima-media thickness (cIMT) and inter-adventitial diameter (IAD) examined approximately seven years later (2009-2013). Logistic and multinomial logistic regressions were applied to assess the associations of air pollutants with plaque presence and plaque index, respectively. RESULTS At time of carotid ultrasound scan, women were on average 59.6 (±2.7) years old and a majority was postmenopausal (88.4%). The women were White (48.4%), Black (31.2%), Chinese (13.3%) and Hispanic (7.1%). A 1 μg/m3 higher 5-year mean annualized exposure to PM2.5 was associated with an 8.0 μm (95% CI: 1.0-15.1) greater maximum cIMT at a later mid-life, adjusting for cardiovascular disease risk factors; but was only related to IAD after adjusting for site. No association was found between either pollutant and plaque presence or plaque index. CONCLUSIONS Long-term exposure to PM2.5 may contribute to elevated risk of atherosclerosis in the post-menopausal period.
Collapse
Affiliation(s)
- Chunzhe Duan
- Department of Epidemiology, University of Pittsburgh, Graduate School of Public Health, USA
| | - Evelyn Talbott
- Department of Epidemiology, University of Pittsburgh, Graduate School of Public Health, USA
| | - Maria Brooks
- Department of Epidemiology, University of Pittsburgh, Graduate School of Public Health, USA
| | - Sung Kyun Park
- Department of Epidemiology, University of Michigan, School of Public Health, USA; Department of Environmental Health Science, University of Michigan, School of Public Health, USA
| | - Rachel Broadwin
- California Office of Environmental Health Hazard Assessment, USA
| | - Karen Matthews
- Department of Epidemiology, University of Pittsburgh, Graduate School of Public Health, USA; Department of Psychiatry, University of Pittsburgh, School of Medicine, USA
| | - Emma Barinas-Mitchell
- Department of Epidemiology, University of Pittsburgh, Graduate School of Public Health, USA.
| |
Collapse
|
21
|
Babadjouni RM, Hodis DM, Radwanski R, Durazo R, Patel A, Liu Q, Mack WJ. Clinical effects of air pollution on the central nervous system; a review. J Clin Neurosci 2017; 43:16-24. [PMID: 28528896 PMCID: PMC5544553 DOI: 10.1016/j.jocn.2017.04.028] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/22/2017] [Indexed: 12/20/2022]
Abstract
The purpose of this review is to describe recent clinical and epidemiological studies examining the adverse effects of urban air pollution on the central nervous system (CNS). Air pollution and particulate matter (PM) are associated with neuroinflammation and reactive oxygen species (ROS). These processes affect multiple CNS pathways. The conceptual framework of this review focuses on adverse effects of air pollution with respect to neurocognition, white matter disease, stroke, and carotid artery disease. Both children and older individuals exposed to air pollution exhibit signs of cognitive dysfunction. However, evidence on middle-aged cohorts is lacking. White matter injury secondary to air pollution exposure is a putative mechanism for neurocognitive decline. Air pollution is associated with exacerbations of neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. Increases in stroke incidences and mortalities are seen in the setting of air pollution exposure and CNS pathology is robust. Large populations living in highly polluted environments are at risk. This review aims to outline current knowledge of air pollution exposure effects on neurological health.
Collapse
Affiliation(s)
- Robin M Babadjouni
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Drew M Hodis
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ryan Radwanski
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ramon Durazo
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Arati Patel
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Qinghai Liu
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - William J Mack
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
22
|
Tonne C, Salmon M, Sanchez M, Sreekanth V, Bhogadi S, Sambandam S, Balakrishnan K, Kinra S, Marshall JD. Integrated assessment of exposure to PM 2.5 in South India and its relation with cardiovascular risk: Design of the CHAI observational cohort study. Int J Hyg Environ Health 2017; 220:1081-1088. [PMID: 28606699 DOI: 10.1016/j.ijheh.2017.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/28/2023]
Abstract
While there is convincing evidence that fine particulate matter causes cardiovascular mortality and morbidity, little of the evidence is based on populations outside of high income countries, leaving large uncertainties at high exposures. India is an attractive setting for investigating the cardiovascular risk of particles across a wide concentration range, including concentrations for which there is the largest uncertainty in the exposure-response relationship. CHAI is a European Research Council funded project that investigates the relationship between particulate air pollution from outdoor and household sources with markers of atherosclerosis, an important cardiovascular pathology. The project aims to (1) characterize the exposure of a cohort of adults to particulate air pollution from household and outdoor sources (2) integrate information from GPS, wearable cameras, and continuous measurements of personal exposure to particles to understand where and through which activities people are most exposed and (3) quantify the association between particles and markers of atherosclerosis. CHAI has the potential to make important methodological contributions to modeling air pollution exposure integrating outdoor and household sources as well as in the application of wearable camera data in environmental exposure assessment.
Collapse
Affiliation(s)
- Cathryn Tonne
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| | - Maëlle Salmon
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Margaux Sanchez
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - V Sreekanth
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | | | - Sankar Sambandam
- Department of Environmental Health Engineering, Sri Ramachandra University, Chennai, India
| | - Kalpana Balakrishnan
- Department of Environmental Health Engineering, Sri Ramachandra University, Chennai, India
| | - Sanjay Kinra
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Julian D Marshall
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
23
|
Jung CR, Chen WT, Lin YT, Hwang BF. Ambient Air Pollutant Exposures and Hospitalization for Kawasaki Disease in Taiwan: A Case-Crossover Study (2000-2010). ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:670-676. [PMID: 27458717 PMCID: PMC5381970 DOI: 10.1289/ehp137] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/25/2016] [Accepted: 06/21/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Kawasaki disease (KD) is an acute and multi-systemic vasculitis that occurs predominantly in infants and young children. Although the etiological agent of KD remains unclear, limited studies have reported that windborne environmental factors may trigger KD. OBJECTIVES We conducted a time-stratified case-crossover study to assess the associations between air pollutants and KD in Taiwan. METHODS We identified children < 5 years old with a diagnosis of KD from the Longitudinal Health Insurance Database 2000 (LHID2000) between 2000 and 2010. We obtained data regarding carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), particulate matter with aerodynamic diameter < 10 μm (PM10), and sulfate dioxide (SO2) from 70 monitoring stations and used inverse distance weighting to calculate average daily exposures for the residential postal code of each case. We performed conditional logistic regression to estimate associations between KD and each air pollutant according to interquartile range (IQR) increases and quartiles of exposure on the day of hospitalization versus 3-4 reference days during the same month for each case. Additionally, we estimated associations with single-day exposures lagged 1-2 days. RESULTS We identified 695 KD hospital admissions during the study period. An IQR increase (28.73 ppb) of O3 was positively associated with KD after adjusting for temperature, humidity, northward wind, and eastward wind [adjusted odds ratio = 1.21; 95% confidence interval (CI): 1.01, 1.44]. There were no significant associations between KD and CO, NO2, PM10, or SO2. The association with O3 was limited to exposure on the day of hospitalization and to exposure during the summer months (June-August). CONCLUSIONS Our results provide new evidence that exposure to O3 may increase the risk of KD in children. However, further investigation is needed to confirm the association and identify a potential biological mechanism.
Collapse
Affiliation(s)
- Chau-Ren Jung
- Department of Occupational Safety and Health, and
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Wei-Ting Chen
- Department of Atmospheric Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Lin
- Department of Occupational Safety and Health, and
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Bing-Fang Hwang
- Department of Occupational Safety and Health, and
- Address correspondence to B.-F. Hwang, Department of Occupational Safety and Health, College of Public Health, China Medical University, No. 91 Hsueh-Shih Rd., Taichung, Taiwan, 40402 R.O.C. Telephone: 886-4-22053366, ext. 6208.
| |
Collapse
|
24
|
Burroughs Peña MS, Rollins A. Environmental Exposures and Cardiovascular Disease: A Challenge for Health and Development in Low- and Middle-Income Countries. Cardiol Clin 2017; 35:71-86. [PMID: 27886791 DOI: 10.1016/j.ccl.2016.09.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Environmental exposures in low- and middle-income countries lie at the intersection of increased economic development and the rising public health burden of cardiovascular disease. Increasing evidence suggests an association of exposure to ambient air pollution, household air pollution from biomass fuel, lead, arsenic, and cadmium with multiple cardiovascular disease outcomes, including hypertension, coronary heart disease, stroke, and cardiovascular mortality. Although populations in low- and middle-income countries are disproportionately exposed to environmental pollution, evidence linking these exposures to cardiovascular disease is derived from populations in high-income countries. More research is needed to further characterize the extent of environmental exposures.
Collapse
Affiliation(s)
- Melissa S Burroughs Peña
- Division of Cardiology, Department of Medicine, University of California, San Francisco, 505 Parnassus Avenue, 11th Floor, Room 1180D, San Francisco, CA 94143, USA.
| | - Allman Rollins
- Department of Medicine, University of California, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
25
|
Di Q, Rowland S, Koutrakis P, Schwartz J. A hybrid model for spatially and temporally resolved ozone exposures in the continental United States. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2017; 67:39-52. [PMID: 27332675 PMCID: PMC5741295 DOI: 10.1080/10962247.2016.1200159] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/28/2016] [Indexed: 05/21/2023]
Abstract
UNLABELLED Ground-level ozone is an important atmospheric oxidant, which exhibits considerable spatial and temporal variability in its concentration level. Existing modeling approaches for ground-level ozone include chemical transport models, land-use regression, Kriging, and data fusion of chemical transport models with monitoring data. Each of these methods has both strengths and weaknesses. Combining those complementary approaches could improve model performance. Meanwhile, satellite-based total column ozone, combined with ozone vertical profile, is another potential input. The authors propose a hybrid model that integrates the above variables to achieve spatially and temporally resolved exposure assessments for ground-level ozone. The authors used a neural network for its capacity to model interactions and nonlinearity. Convolutional layers, which use convolution kernels to aggregate nearby information, were added to the neural network to account for spatial and temporal autocorrelation. The authors trained the model with the Air Quality System (AQS) 8-hr daily maximum ozone in the continental United States from 2000 to 2012 and tested it with left out monitoring sites. Cross-validated R2 on the left out monitoring sites ranged from 0.74 to 0.80 (mean 0.76) for predictions on 1 km × 1 km grid cells, which indicates good model performance. Model performance remains good even at low ozone concentrations. The prediction results facilitate epidemiological studies to assess the health effect of ozone in the long term and the short term. IMPLICATIONS Ozone monitors do not provide full data coverage over the United States, which is an obstacle to assess the health effect of ozone when monitoring data are not available. This paper used a hybrid approach to combine satellite-based ozone measurements, chemical transport model simulations, land-use terms, and other auxiliary variables to obtain spatially and temporally resolved ground-level ozone estimation.
Collapse
Affiliation(s)
- Qian Di
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Sebastian Rowland
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Petros Koutrakis
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Joel Schwartz
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Boston , MA , USA
| |
Collapse
|
26
|
Breton CV, Yao J, Millstein J, Gao L, Siegmund KD, Mack W, Whitfield-Maxwell L, Lurmann F, Hodis H, Avol E, Gilliland FD. Prenatal Air Pollution Exposures, DNA Methyl Transferase Genotypes, and Associations with Newborn LINE1 and Alu Methylation and Childhood Blood Pressure and Carotid Intima-Media Thickness in the Children's Health Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1905-1912. [PMID: 27219456 PMCID: PMC5132634 DOI: 10.1289/ehp181] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/05/2015] [Accepted: 05/03/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Although exposure to ambient air pollutants increases cardiovascular disease risk in adults little is known about the effects of prenatal exposure. Genetic variation and epigenetic alterations are two mechanisms that may influence the effects of early-life exposures on cardiovascular phenotypes. OBJECTIVES We investigated whether genetic and epigenetic variation modify associations between prenatal air pollution on markers of cardiovascular risk in childhood. METHODS We used linear regression analysis to investigate the associations between prenatal pollutants (PM2.5, PM10, NO2, O3), long interspersed nuclear elements (LINE1) and AluYb8 DNA methylation levels measured in newborn blood spot tests, and carotid intima-media thickness (CIMT) and blood pressure (BP) in 459 participants as part of the Children's Health Study. Interaction terms were also included to test for effect modification of these associations by genetic variation in methylation reprogramming genes. RESULTS Prenatal exposure to NO2 in the third trimester of pregnancy was associated with higher systolic BP in 11-year-old children. Prenatal exposure to multiple air pollutants in the first trimester was associated with lower DNA methylation in LINE1, whereas later exposure to O3 was associated with higher LINE1 methylation levels in newborn blood spots. The magnitude of associations with prenatal air pollution varied according to genotype for 11 SNPs within DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3 Beta (DNMT3B), Tet methylcytosine dioxygenase 2 (TET2), and Thymine DNA glycosylase (TDG) genes. Although first-trimester O3 exposure was not associated with CIMT and systolic BP overall, associations within strata of DNMT1 or DNMT3B were observed, and the magnitude and the direction of these associations depended on DNMT1 genotypes. CONCLUSIONS Genetic and epigenetic variation in DNA methylation reprogramming genes and in LINE1 retrotransposons may play important roles in downstream cardiovascular consequences of prenatal air pollution exposure. Citation: Breton CV, Yao J, Millstein J, Gao L, Siegmund KD, Mack W, Whitfield-Maxwell L, Lurmann F, Hodis H, Avol E, Gilliland FD. 2016. Prenatal air pollution exposures, DNA methyl transferase genotypes, and associations with newborn LINE1 and Alu methylation and childhood blood pressure and carotid intima-media thickness in the Children's Health Study. Environ Health Perspect 124:1905-1912; http://dx.doi.org/10.1289/EHP181.
Collapse
Affiliation(s)
- Carrie V. Breton
- Department of Preventive Medicine, and
- Address correspondence to C.V. Breton, Department of Preventive Medicine, USC Keck School of Medicine, 2001 N. Soto St., Los Angeles, CA 90089 USA. Telephone: (323) 442-7383. E-mail:
| | - Jin Yao
- Department of Preventive Medicine, and
| | | | - Lu Gao
- Department of Preventive Medicine, and
| | | | - Wendy Mack
- Department of Preventive Medicine, and
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, California, USA
| | - Lora Whitfield-Maxwell
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, California, USA
| | - Fred Lurmann
- Sonoma Technology, Inc., Petaluma, California, USA
| | - Howard Hodis
- Department of Preventive Medicine, and
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, California, USA
| | - Ed Avol
- Department of Preventive Medicine, and
| | | |
Collapse
|
27
|
Ramanathan G, Yin F, Speck M, Tseng CH, Brook JR, Silverman F, Urch B, Brook RD, Araujo JA. Effects of urban fine particulate matter and ozone on HDL functionality. Part Fibre Toxicol 2016; 13:26. [PMID: 27221567 PMCID: PMC4879751 DOI: 10.1186/s12989-016-0139-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 05/10/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Exposures to ambient particulate matter (PM) are associated with increased morbidity and mortality. PM2.5 (<2.5 μm) and ozone exposures have been shown to associate with carotid intima media thickness in humans. Animal studies support a causal relationship between air pollution and atherosclerosis and identified adverse PM effects on HDL functionality. We aimed to determine whether brief exposures to PM2.5 and/or ozone could induce effects on HDL anti-oxidant and anti-inflammatory capacity in humans. METHODS Subjects were exposed to fine concentrated ambient fine particles (CAP) with PM2.5 targeted at 150 μg/m(3), ozone targeted at 240 μg/m(3) (120 ppb), PM2.5 plus ozone targeted at similar concentrations, and filtered air (FA) for 2 h, on 4 different occasions, at least two weeks apart, in a randomized, crossover study. Blood was obtained before exposures (baseline), 1 h after and 20 h after exposures. Plasma HDL anti-oxidant/anti-inflammatory capacity and paraoxonase activity were determined. HDL anti-oxidant/anti-inflammatory capacity was assessed by a cell-free fluorescent assay and expressed in units of a HDL oxidant index (HOI). Changes in HOI (ΔHOI) were calculated as the difference in HOI from baseline to 1 h after or 20 h after exposures. RESULTS There was a trend towards bigger ΔHOI between PM2.5 and FA 1 h after exposures (p = 0.18) but not 20 h after. This trend became significant (p <0.05) when baseline HOI was lower (<1.5 or <2.0), indicating decreased HDL anti-oxidant/anti-inflammatory capacity shortly after the exposures. There were no significant effects of ozone alone or in combination with PM2.5 on the change in HOI at both time points. The change in HOI due to PM2.5 showed a positive trend with particle mass concentration (p = 0.078) and significantly associated with the slope of systolic blood pressure during exposures (p = 0.005). CONCLUSIONS Brief exposures to concentrated PM2.5 elicited swift effects on HDL anti-oxidant/anti-inflammatory functionality, which could indicate a potential mechanism for how particulate air pollution induces harmful cardiovascular effects.
Collapse
Affiliation(s)
- Gajalakshmi Ramanathan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA
| | - Fen Yin
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA
| | - Mary Speck
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Chi-Hong Tseng
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA
| | - Jeffrey R Brook
- Environment Canada, Toronto, ON, Canada
- Southern Ontario Centre for Atmospheric Aerosol Research (SOCAAR), Toronto, ON, Canada
| | - Frances Silverman
- Southern Ontario Centre for Atmospheric Aerosol Research (SOCAAR), Toronto, ON, Canada
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
| | - Bruce Urch
- Southern Ontario Centre for Atmospheric Aerosol Research (SOCAAR), Toronto, ON, Canada
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jesus A Araujo
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA.
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Xu Y, Serre ML, Reyes J, Vizuete W. Bayesian Maximum Entropy Integration of Ozone Observations and Model Predictions: A National Application. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4393-400. [PMID: 26998937 DOI: 10.1021/acs.est.6b00096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
To improve ozone exposure estimates for ambient concentrations at a national scale, we introduce our novel Regionalized Air Quality Model Performance (RAMP) approach to integrate chemical transport model (CTM) predictions with the available ozone observations using the Bayesian Maximum Entropy (BME) framework. The framework models the nonlinear and nonhomoscedastic relation between air pollution observations and CTM predictions and for the first time accounts for variability in CTM model performance. A validation analysis using only noncollocated data outside of a validation radius rv was performed and the R(2) between observations and re-estimated values for two daily metrics, the daily maximum 8-h average (DM8A) and the daily 24-h average (D24A) ozone concentrations, were obtained with the OBS scenario using ozone observations only in contrast with the RAMP and a Constant Air Quality Model Performance (CAMP) scenarios. We show that, by accounting for the spatial and temporal variability in model performance, our novel RAMP approach is able to extract more information in terms of R(2) increase percentage, with over 12 times for the DM8A and over 3.5 times for the D24A ozone concentrations, from CTM predictions than the CAMP approach assuming that model performance does not change across space and time.
Collapse
Affiliation(s)
- Yadong Xu
- University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Marc L Serre
- University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Jeanette Reyes
- University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - William Vizuete
- University of North Carolina , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
29
|
Breton CV, Mack WJ, Yao J, Berhane K, Amadeus M, Lurmann F, Gilliland F, McConnell R, Hodis HN, Künzli N, Avol E. Prenatal Air Pollution Exposure and Early Cardiovascular Phenotypes in Young Adults. PLoS One 2016; 11:e0150825. [PMID: 26950592 PMCID: PMC4780745 DOI: 10.1371/journal.pone.0150825] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/20/2016] [Indexed: 01/11/2023] Open
Abstract
Exposure to ambient air pollutants increases risk for adverse cardiovascular health outcomes in adults. We aimed to evaluate the contribution of prenatal air pollutant exposure to cardiovascular health, which has not been thoroughly evaluated. The Testing Responses on Youth (TROY) study consists of 768 college students recruited from the University of Southern California in 2007–2009. Participants attended one study visit during which blood pressure, heart rate and carotid artery arterial stiffness (CAS) and carotid artery intima-media thickness (CIMT) were assessed. Prenatal residential addresses were geocoded and used to assign prenatal and postnatal air pollutant exposure estimates using the U.S. Environmental Protection Agency’s Air Quality System (AQS) database. The associations between CAS, CIMT and air pollutants were assessed using linear regression analysis. Prenatal PM10 and PM2.5 exposures were associated with increased CAS. For example, a 2 SD increase in prenatal PM2.5 was associated with CAS indices, including a 5% increase (β = 1.05, 95% CI 1.00–1.10) in carotid stiffness index beta, a 5% increase (β = 1.05, 95% CI 1.01–1.10) in Young’s elastic modulus and a 5% decrease (β = 0.95, 95% CI 0.91–0.99) in distensibility. Mutually adjusted models of pre- and postnatal PM2.5 further suggested the prenatal exposure was most relevant exposure period for CAS. No associations were observed for CIMT. In conclusion, prenatal exposure to elevated air pollutants may increase carotid arterial stiffness in a young adult population of college students. Efforts aimed at limiting prenatal exposures are important public health goals.
Collapse
Affiliation(s)
- Carrie V Breton
- University of Southern California, Dept of Preventive Medicine, 2001 N Soto St., Los Angeles, California, 90089, United States of America
| | - Wendy J Mack
- University of Southern California, Dept of Preventive Medicine, 2001 N Soto St., Los Angeles, California, 90089, United States of America.,University of Southern California, Atherosclerosis Research Unit, 2250 Alcazar Street, CSC 132, Los Angeles, California, 90033, United States of America
| | - Jin Yao
- University of Southern California, Dept of Preventive Medicine, 2001 N Soto St., Los Angeles, California, 90089, United States of America
| | - Kiros Berhane
- University of Southern California, Dept of Preventive Medicine, 2001 N Soto St., Los Angeles, California, 90089, United States of America
| | - Milena Amadeus
- University of Southern California, Dept of Preventive Medicine, 2001 N Soto St., Los Angeles, California, 90089, United States of America
| | - Fred Lurmann
- Sonoma Technology Inc., 1455 N. McDowell Blvd., Suite D, Petaluma, California, 94954-6503, United States of America
| | - Frank Gilliland
- University of Southern California, Dept of Preventive Medicine, 2001 N Soto St., Los Angeles, California, 90089, United States of America
| | - Rob McConnell
- University of Southern California, Dept of Preventive Medicine, 2001 N Soto St., Los Angeles, California, 90089, United States of America
| | - Howard N Hodis
- University of Southern California, Dept of Preventive Medicine, 2001 N Soto St., Los Angeles, California, 90089, United States of America.,University of Southern California, Atherosclerosis Research Unit, 2250 Alcazar Street, CSC 132, Los Angeles, California, 90033, United States of America
| | - Nino Künzli
- Swiss Tropical and Public Health Institute, Socinstr. 57, P.O. Box, 4002 Basel, Switzerland.,University of Basel, Petersplatz 1 CH-4003 Basel, Switzerland
| | - Ed Avol
- University of Southern California, Dept of Preventive Medicine, 2001 N Soto St., Los Angeles, California, 90089, United States of America
| |
Collapse
|
30
|
Qu B, Qu T. Causes of changes in carotid intima-media thickness: a literature review. Cardiovasc Ultrasound 2015; 13:46. [PMID: 26666335 PMCID: PMC4678459 DOI: 10.1186/s12947-015-0041-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/09/2015] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis causes significant morbidity and mortality. Carotid intima-media thickness (CIMT) predicts future cardiovascular and ischaemic stroke incidence. CIMT, a measure of atherosclerotic disease, can be reliably determined in vivo by carotid ultrasound. In this review, we determined that CIMT is associated with traditional cardiovascular risk factors such as age, sex, race, smoking, alcohol consumption, habitual endurance exercise, blood pressure, dyslipidemia, dietary patterns, risk-lowering drug therapy, glycemia, hyperuricemia, obesity-related anthropometric parameters, obesity and obesity-related diseases. We also found that CIMT is associated with novel risk factors, including heredity, certain genotypic indices, anthropometric cardiovascular parameters, rheumatoid arthritis, immunological diseases, inflammatory cytokines, lipid peroxidation, anthropometric hemocyte parameters, infectious diseases, vitamin D, matrix metalloproteinases, and other novel factors and diseases. However, the conclusions are inconsonant; the underlying causes of these associations remain to be further explored.
Collapse
Affiliation(s)
- Baoge Qu
- Department of Gastroenterology, Taishan Hospital, Taian, Shandong, 271000, P. R. China.
| | - Tao Qu
- Zhuhai Campus of Zunyi Medical College, Zhuhai, Guangdong, 519041, P. R. China
| |
Collapse
|
31
|
Dye JA, Ledbetter AD, Schladweiler MC, Costa DL, Kodavanti UP. Whole body plethysmography reveals differential ventilatory responses to ozone in rat models of cardiovascular disease. Inhal Toxicol 2015; 27 Suppl 1:14-25. [DOI: 10.3109/08958378.2014.954167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Janice A. Dye
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA and
| | - Allen D. Ledbetter
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA and
| | - Mette C. Schladweiler
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA and
| | - Daniel L. Costa
- National Program for Air Climate & Energy Research, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Urmila P. Kodavanti
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA and
| |
Collapse
|
32
|
Wang M, Keller JP, Adar SD, Kim SY, Larson TV, Olives C, Sampson PD, Sheppard L, Szpiro AA, Vedal S, Kaufman JD. Development of Long-term Spatiotemporal Models for Ambient Ozone in Six Metropolitan regions of the United States: The MESA Air Study. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2015; 123:79-87. [PMID: 27642250 PMCID: PMC5021184 DOI: 10.1016/j.atmosenv.2015.10.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Current epidemiologic studies rely on simple ozone metrics which may not appropriately capture population ozone exposure. For understanding health effects of long-term ozone exposure in population studies, it is advantageous for exposure estimation to incorporate the complex spatiotemporal pattern of ozone concentrations at fine scales. OBJECTIVE To develop a geo-statistical exposure prediction model that predicts fine scale spatiotemporal variations of ambient ozone in six United States metropolitan regions. METHODS We developed a modeling framework that estimates temporal trends from regulatory agency and cohort-specific monitoring data from MESA Air measurement campaigns and incorporates land use regression with universal kriging using predictor variables from a large geographic database. The cohort-specific data were measured at home and community locations. The framework was applied in estimating two-week average ozone concentrations from 1999 to 2013 in models of each of the six MESA Air metropolitan regions. RESULTS Ozone models perform well in both spatial and temporal dimensions at the agency monitoring sites in terms of prediction accuracy. City-specific leave-one (site)-out cross-validation R2 accounting for temporal and spatial variability ranged from 0.65 to 0.88 in the six regions. For predictions at the home sites, the R2 is between 0.60 and 0.91 for cross-validation that left out 10% of home sites in turn. The predicted ozone concentrations vary substantially over space and time in all the metropolitan regions. CONCLUSION Using the available data, our spatiotemporal models are able to accurately predict long-term ozone concentrations at fine spatial scales in multiple regions. The model predictions will allow for investigation of the long-term health effects of ambient ozone concentrations in future epidemiological studies.
Collapse
Affiliation(s)
- Meng Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Joshua P. Keller
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Sara D. Adar
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sun-Young Kim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Timothy V. Larson
- Department of Civil and Environmental Engineering, College of Engineering, University of Washington, Seattle, Washington, USA
| | - Casey Olives
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Paul D. Sampson
- Department of Statistics, University of Washington, Seattle, Washington, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Adam A. Szpiro
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Sverre Vedal
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
33
|
Liu X, Lian H, Ruan Y, Liang R, Zhao X, Routledge M, Fan Z. Association of Exposure to particular matter and Carotid Intima-Media Thickness: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:12924-40. [PMID: 26501300 PMCID: PMC4627008 DOI: 10.3390/ijerph121012924] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/29/2015] [Accepted: 10/09/2015] [Indexed: 01/06/2023]
Abstract
Background: Long time exposure to particular matter has been linked to myocardial infarction, stroke and blood pressure, but its association with atherosclerosis is not clear. This meta-analysis was aimed at assessing whether PM2.5 and PM10 have an effect on subclinical atherosclerosis measured by carotid intima-media thickness (CIMT). Methods: Pubmed, Ovid Medline, Embase and NICK between 1948 and 31 March 2015 were searched by combining the keywords about exposure to the outcome related words. The random-effects model was applied in computing the change of CIMT and their corresponding 95% confidence interval (95% CI). The effect of potential confounding factors was assessed by stratified analysis and the impact of traffic proximity was also estimated. Results: Among 56 identified studies, 11 articles satisfied the inclusion criteria. In overall analysis increments of 10 μg/m3 in PM2.5 and PM10 were associated with an increase of CIMT (16.79 μm; 95% CI, 4.95–28.63 μm and 4.13 μm; 95% CI, −5.79–14.04 μm, respectively). Results shown in subgroup analysis had reference value for comparing with those of the overall analysis. The impact of traffic proximity on CIMT was uncertain. Conclusions: Exposure to PM2.5 had a significant association with CIMT and for women the effect may be more obvious.
Collapse
Affiliation(s)
- Xiaole Liu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Hui Lian
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Yanping Ruan
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Ruijuan Liang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Xiaoyi Zhao
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Michael Routledge
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK.
| | - Zhongjie Fan
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
34
|
Su TC, Hwang JJ, Shen YC, Chan CC. Carotid Intima-Media Thickness and Long-Term Exposure to Traffic-Related Air Pollution in Middle-Aged Residents of Taiwan: A Cross-Sectional Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:773-8. [PMID: 25793433 PMCID: PMC4529007 DOI: 10.1289/ehp.1408553] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 03/17/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Associations between long-term exposure to air pollution and carotid intima-media thickness (CIMT) have inconsistent findings. OBJECTIVES In this study we aimed to evaluate association between 1-year average exposure to traffic-related air pollution and CIMT in middle-aged adults in Asia. METHODS CIMT was measured in Taipei, Taiwan, between 2009 and 2011 in 689 volunteers 35-65 years of age who were recruited as the control subjects of an acute coronary heart disease cohort study. We applied land-use regression models developed by the European Study of Cohorts for Air Pollution Effects (ESCAPE) to estimate each subject's 1-year average exposure to traffic-related air pollutants with particulate matter diameters ≤ 10 μm (PM10) and ≤ 2.5 μm (PM2.5) and the absorbance levels of PM2.5 (PM2.5abs), nitrogen dioxide (NO2), and nitrogen oxides (NOx) in the urban environment. RESULTS One-year average air pollution exposures were 44.21 ± 4.19 μg/m3 for PM10, 27.34 ± 5.12 μg/m3 for PM2.5, and (1.97 ± 0.36) × 10-5/m for PM2.5abs. Multivariate regression analyses showed average percentage increases in maximum left CIMT of 4.23% (95% CI: 0.32, 8.13) per 1.0 × 10-5/m increase in PM2.5abs; 3.72% (95% CI: 0.32, 7.11) per 10-μg/m3 increase in PM10; 2.81% (95% CI: 0.32, 5.31) per 20-μg/m3 increase in NO2; and 0.74% (95% CI: 0.08, 1.41) per 10-μg/m3 increase in NOx. The associations were not evident for right CIMT, and PM2.5 mass concentration was not associated with the outcomes. CONCLUSIONS Long-term exposures to traffic-related air pollution of PM2.5abs, PM10, NO2, and NOx were positively associated with subclinical atherosclerosis in middle-aged adults.
Collapse
Affiliation(s)
- Ta-Chen Su
- Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
35
|
Prueitt RL, Lynch HN, Zu K, Sax SN, Venditti FJ, Goodman JE. Weight-of-evidence evaluation of long-term ozone exposure and cardiovascular effects. Crit Rev Toxicol 2015; 44:791-822. [PMID: 25257962 DOI: 10.3109/10408444.2014.937855] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We conducted a weight-of-evidence (WoE) analysis to assess whether the current body of research supports a causal relationship between long-term ozone exposure (defined by EPA as at least 30 days in duration) at ambient levels and cardiovascular (CV) effects. We used a novel WoE framework based on the United States Environmental Protection Agency's National Ambient Air Quality Standards causal framework for this analysis. Specifically, we critically evaluated and integrated the relevant epidemiology and experimental animal data and classified a causal determination based on categories proposed by the Institute of Medicine's 2008 report, Improving the Presumptive Disability Decision-making Process for Veterans. We found that the risks of CV effects are largely null across human and experimental animal studies. The few positive associations reported in studies of CV morbidity and mortality are very small in magnitude, mainly reported in single-pollutant models, and likely attributable to bias, chance, or confounding. The few positive effects in experimental animal studies were observed mainly in ex vivo studies at high exposures, and even the in vivo findings are not likely relevant to humans. The available data also do not support a biologically plausible mechanism for the effects of ozone on the CV system. Overall, the current WoE provides no convincing case for a causal relationship between long-term exposure to ambient ozone and adverse effects on the CV system in humans, but the limitations of the available studies preclude definitive conclusions regarding a lack of causation; thus, we categorize the strength of evidence for a causal relationship between long-term exposure to ozone and CV effects as "below equipoise."
Collapse
|
36
|
Perez L, Wolf K, Hennig F, Penell J, Basagaña X, Foraster M, Aguilera I, Agis D, Beelen R, Brunekreef B, Cyrys J, Fuks KB, Adam M, Baldassarre D, Cirach M, Elosua R, Dratva J, Hampel R, Koenig W, Marrugat J, de Faire U, Pershagen G, Probst-Hensch NM, de Nazelle A, Nieuwenhuijsen MJ, Rathmann W, Rivera M, Seissler J, Schindler C, Thiery J, Hoffmann B, Peters A, Künzli N. Air pollution and atherosclerosis: a cross-sectional analysis of four European cohort studies in the ESCAPE study. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:597-605. [PMID: 25625785 PMCID: PMC4455580 DOI: 10.1289/ehp.1307711] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 01/26/2015] [Indexed: 05/05/2023]
Abstract
BACKGROUND In four European cohorts, we investigated the cross-sectional association between long-term exposure to air pollution and intima-media thickness of the common carotid artery (CIMT), a preclinical marker of atherosclerosis. METHODS Individually assigned levels of nitrogen dioxide, nitrogen oxides, particulate matter ≤ 2.5 μm (PM2.5), absorbance of PM2.5 (PM2.5abs), PM10, PMcoarse, and two indicators of residential proximity to highly trafficked roads were obtained under a standard exposure protocol (European Study of Cohorts for Air Pollution Effects-ESCAPE study) in the Stockholm area (Sweden), the Ausburg and Ruhr area (Germany), and the Girona area (Spain). We used linear regression and meta-analyses to examine the association between long-term exposure to air pollution and CIMT. RESULTS The meta-analysis with 9,183 individuals resulted in an estimated increase in CIMT (geometric mean) of 0.72% (95% CI: -0.65%, 2.10%) per 5-μg/m3 increase in PM2.5 and 0.42% (95% CI: -0.46%, 1.30%) per 10-5/m increase in PM2.5abs. Living in proximity to high traffic was also positively but not significantly associated with CIMT. Meta-analytic estimates for other pollutants were inconsistent. Results were similar across different adjustment sets and sensitivity analyses. In an extended meta-analysis for PM2.5 with three other previously published studies, a 0.78% (95% CI: -0.18%, 1.75%) increase in CIMT was estimated for a 5-μg/m3 contrast in PM2.5. CONCLUSIONS Using a standardized exposure and analytical protocol in four European cohorts, we found that cross-sectional associations between CIMT and the eight ESCAPE markers of long-term residential air pollution exposure did not reach statistical significance. The additional meta-analysis of CIMT and PM2.5 across all published studies also was positive but not significant.
Collapse
Affiliation(s)
- Laura Perez
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Akintoye E, Shi L, Obaitan I, Olusunmade M, Wang Y, Newman JD, Dodson JA. Association between fine particulate matter exposure and subclinical atherosclerosis: A meta-analysis. Eur J Prev Cardiol 2015; 23:602-12. [PMID: 26025448 DOI: 10.1177/2047487315588758] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 05/06/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Epidemiological studies in humans that have evaluated the association between fine particulate matter (PM2.5) and atherosclerosis have yielded mixed results. DESIGN In order to further investigate this relationship, we conducted a comprehensive search for studies published through May 2014 and performed a meta-analysis of all available observational studies that investigated the association between PM2.5 and three noninvasive measures of clinical and subclinical atherosclerosis: carotid intima media thickness, arterial calcification, and ankle-brachial index. METHODS AND RESULTS Five reviewers selected studies based on predefined inclusion criteria. Pooled mean change estimates and 95% confidence intervals were calculated using random-effects models. Assessment of between-study heterogeneity was performed where the number of studies was adequate. Our pooled sample included 11,947 subjects for carotid intima media thickness estimates, 10,750 for arterial calcification estimates, and 6497 for ankle-brachial index estimates. Per 10 µg/m(3) increase in PM2.5 exposure, carotid intima media thickness increased by 22.52 µm but this did not reach statistical significance (p = 0.06). We did not find similar associations for arterial calcification (p = 0.44) or ankle-brachial index (p = 0.85). CONCLUSION Our meta-analysis supports a relationship between PM2.5 and subclinical atherosclerosis measured by carotid intima media thickness. We did not find a similar relationship between PM2.5 and arterial calcification or ankle-brachial index, although the number of studies was small.
Collapse
Affiliation(s)
- Emmanuel Akintoye
- Master of Public Health Program, School of Public Health, Harvard University, Boston, USA
| | - Liuhua Shi
- Department of Environmental Health - Exposure, Epidemiology and Risk Program, School of Public Health, Harvard University, Boston, USA
| | - Itegbemie Obaitan
- Master of Public Health Program, School of Public Health, Harvard University, Boston, USA
| | - Mayowa Olusunmade
- Master of Public Health Program, School of Public Health, Harvard University, Boston, USA
| | - Yan Wang
- Department of Environmental Health - Exposure, Epidemiology and Risk Program, School of Public Health, Harvard University, Boston, USA
| | - Jonathan D Newman
- Leon H Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, USA
| | - John A Dodson
- Leon H Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, USA
| |
Collapse
|
38
|
Campen MJ. To breathe or not to breathe: negative data on ozone and vascular function in an established research model. Toxicol Sci 2014; 135:263-4. [PMID: 24158039 DOI: 10.1093/toxsci/kft169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico, 1 University of New Mexico MSC09 5360, Albuquerque, New Mexico 87131-0001
| |
Collapse
|
39
|
Kingsley SL, Eliot M, Carlson L, Finn J, MacIntosh DL, Suh HH, Wellenius GA. Proximity of US schools to major roadways: a nationwide assessment. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2014; 24:253-9. [PMID: 24496217 PMCID: PMC4179205 DOI: 10.1038/jes.2014.5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/20/2013] [Indexed: 05/21/2023]
Abstract
Long-term exposure to traffic pollution has been associated with adverse health outcomes in children and adolescents. A significant number of schools may be located near major roadways, potentially exposing millions of children to high levels of traffic pollution, but this hypothesis has not been evaluated nationally. We obtained data on the location and characteristics of 114,644 US public and private schools, grades prekindergarten through 12, and calculated their distance to the nearest major roadway. In 2005-2006, 3.2 million students (6.2%) attended 8,424 schools (7.3%) located within 100 m of a major roadway, and an additional 3.2 million (6.3%) students attended 8,555 (7.5%) schools located 100-250 m from a major roadway. Schools serving predominantly Black students were 18% (95% CI, 13-23%) more likely to be located within 250 m of a major roadway. Public schools eligible for Title I programs and those with a majority of students eligible for free/reduced price meals were also more likely to be near major roadways. In conclusion, 6.4 million US children attended schools within 250 m of a major roadway and were likely exposed to high levels of traffic pollution. Minority and underprivileged children were disproportionately affected, although some results varied regionally.
Collapse
Affiliation(s)
| | - Melissa Eliot
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Lynn Carlson
- Department of Geological Sciences, Brown University, Providence, RI, USA
| | - Jennifer Finn
- Environmental Health and Engineering, Needham, MA, USA
| | | | - Helen H. Suh
- Department of Health Sciences, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
40
|
Gatto NM, Henderson VW, Hodis HN, St John JA, Lurmann F, Chen JC, Mack WJ. Components of air pollution and cognitive function in middle-aged and older adults in Los Angeles. Neurotoxicology 2013; 40:1-7. [PMID: 24148924 DOI: 10.1016/j.neuro.2013.09.004] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/09/2013] [Accepted: 09/19/2013] [Indexed: 12/17/2022]
Abstract
While experiments in animals demonstrate neurotoxic effects of particulate matter (PM) and ozone (O3), epidemiologic evidence is sparse regarding the relationship between different constituencies of air pollution mixtures and cognitive function in adults. We examined cross-sectional associations between various ambient air pollutants [O3, PM2.5 and nitrogen dioxide (NO2)] and six measures of cognitive function and global cognition among healthy, cognitively intact individuals (n=1496, mean age 60.5 years) residing in the Los Angeles Basin. Air pollution exposures were assigned to each residential address in 2000-06 using a geographic information system that included monitoring data. A neuropsychological battery was used to assess cognitive function; a principal components analysis defined six domain-specific functions and a measure of global cognitive function was created. Regression models estimated effects of air pollutants on cognitive function, adjusting for age, gender, race, education, income, study and mood. Increasing exposure to PM2.5 was associated with lower verbal learning (β=-0.32 per 10 μg/m(3) PM2.5, 95% CI=-0.63, 0.00; p=0.05). Ambient exposure to NO2 >20 ppb tended to be associated with lower logical memory. Compared to the lowest level of exposure to ambient O3, exposure above 49 ppb was associated with lower executive function. Including carotid artery intima-media thickness, a measure of subclinical atherosclerosis, in models as a possible mediator did not attenuate effect estimates. This study provides support for cross-sectional associations between increasing levels of ambient O3, PM2.5 and NO2 and measures of domain-specific cognitive abilities.
Collapse
Affiliation(s)
- Nicole M Gatto
- Department of Epidemiology, Biostatistics & Population Medicine, School of Public Health, Loma Linda University, Loma Linda, CA, USA.
| | - Victor W Henderson
- Department of Health Research & Policy (Epidemiology), Stanford University, Stanford, CA, USA; Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Howard N Hodis
- Department of Preventive Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA; Atherosclerosis Research Unit, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Jan A St John
- Department of Preventive Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA; Atherosclerosis Research Unit, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| | | | - Jiu-Chiuan Chen
- Department of Preventive Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA; Atherosclerosis Research Unit, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| |
Collapse
|
41
|
Association between levels of serum perfluorooctane sulfate and carotid artery intima–media thickness in adolescents and young adults. Int J Cardiol 2013; 168:3309-16. [DOI: 10.1016/j.ijcard.2013.04.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 03/28/2013] [Accepted: 04/06/2013] [Indexed: 01/09/2023]
|
42
|
Breton CV, Wang X, Mack WJ, Berhane K, Lopez M, Islam TS, Feng M, Lurmann F, McConnell R, Hodis HN, Künzli N, Avol E. Response to letter regarding article, “Childhood air pollutant exposure and carotid artery intima–media thickness in young adults”. Circulation 2013; 127:e659. [PMID: 23882698 PMCID: PMC4035034 DOI: 10.1161/circulationaha.113.001661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|