1
|
Huang L, Ding R, Yan K, Duan J, Sun Z. The Role of Endoplasmic Reticulum Stress in Fine Particulate Matter-Induced Phenotype Switching of Vascular Smooth Muscle Cells. Chem Res Toxicol 2025. [PMID: 40369400 DOI: 10.1021/acs.chemrestox.5c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
As a major component of air pollution, fine particulate matter (PM2.5) was the second global leading cause of death in 2021. Evidence from humans suggested that PM2.5 was associated with an enhanced coronary calcium score (CAC), and animal studies indicated that PM2.5 induced vascular calcification, while mechanisms remained largely unknown. In this study, PM2.5 enhanced the proliferative potential and migration capacity of human aortic vascular smooth muscle cells (VSMCs), as well as disturbing intracellular Ca2+ homeostasis. Subsequent transcriptomic analysis implicated that PM2.5 could influence genes involved in the IRE1α-mediated unfolded protein responses and reduce the expression of DNAJB9, a co-chaperone that formed a complex with BiP/IRE1α to inhibit the activation of endoplasmic reticulum (ER) stress. Further mechanistic investigations indicated that PM2.5 activated the IRE1α/XBP1 signaling pathway and enhanced the expression of osteogenic phenotype-related hallmarks. In contrast, pretreatment with an ER stress antagonist (4-PBA) could suppress PM2.5-associated calcium dysregulation and osteogenic transformation via alleviation of ER stress. Taken together, this study revealed the role of ER stress in the phenotype switching of VSMCs induced by PM2.5, highlighted the regulation of DNAJB9, provided insights into the mechanisms of air pollution-related vascular calcification, and pointed out molecules for future investigations.
Collapse
Affiliation(s)
- Linyuan Huang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Kanglin Yan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
2
|
Goossen CJ, Kufner A, Dustin CM, Al Ghouleh I, Yuan S, Straub AC, Sembrat J, Baust JJ, Gomez D, Kračun D, Pagano PJ. Redox regulation of lung endothelial PERK, unfolded protein response (UPR) and proliferation via NOX1: Targeted inhibition as a potential therapy for PAH. Redox Biol 2025; 82:103554. [PMID: 40154102 PMCID: PMC11986987 DOI: 10.1016/j.redox.2025.103554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 04/01/2025] Open
Abstract
AIMS Reactive oxygen species (ROS) play an important role in the pathogenesis of pulmonary arterial hypertension (PAH) and NADPH oxidases (NOXs) as sources of ROS are implicated in the development of the disease. We previously showed that NOX isozyme 1 (NOX1)-derived ROS contributes to pulmonary vascular endothelial cell (EC) proliferation in response to PAH triggers in vitro. However, whether and how NOX1 is involved in PAH in vivo have not been explored nor has NOX1 been examined as a viable and effective therapeutic disease target. METHODS AND RESULTS Herein, infusion of mice exposed to Sugen/hypoxia (10 % O2) with a specific NOX1 inhibitor, NOXA1ds, delivered via osmotic minipumps (i.p.), significantly suppressed pathological changes in hemodynamic parameters characteristic of PAH. Furthermore, lungs of human patients with idiopathic PAH (iPAH) and exploratory RNA-seq analysis of hypoxic human pulmonary ECs, in which NOX1 was suppressed, were probed. The findings showed a clear indication of NOX1 in the promotion of both protein disulfide isomerase (PDI) and the unfolded protein response (UPR; in particular, the PERK arm of the pathway including eIF2α and ATF4) leading to proliferation. In aggregate, these results are consistent with a causal role for NOX1 in the development of mouse and human PAH and reveal a novel and mechanistic pathway by which NOX1 activates the UPR response during EC proliferation. CONCLUSION NOX1 promotes phenotypic changes in ECs that are pivotal to proliferation and PAH through activation of the UPR. Taken together, our results are consistent with selective inhibition of NOX1 as a novel modality for attenuating PAH.
Collapse
Affiliation(s)
- Christian J Goossen
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alex Kufner
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Christopher M Dustin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Imad Al Ghouleh
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shuai Yuan
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Adam C Straub
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - John Sembrat
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jeffrey J Baust
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Delphine Gomez
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Damir Kračun
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| | - Patrick J Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
3
|
Wang S, Zhuo D, Lin J, Zhang C. Key Genes and Biological Pathways in Pulmonary Arterial Hypertension Related to Endoplasmic Reticulum Stress Identified by Bioinformatics. J Cardiovasc Pharmacol 2025; 85:108-119. [PMID: 39907642 DOI: 10.1097/fjc.0000000000001651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/30/2024] [Indexed: 02/06/2025]
Abstract
ABSTRACT Pulmonary arterial hypertension (PAH) is a cardiopulmonary vascular condition with an unclear pathogenesis. Targeting endoplasmic reticulum (ER) stress has been suggested as a novel treatment approach for PAH, but the mechanisms involving ER stress-related genes in PAH are not well understood. Microarray data for PAH and ER stress-related genes were analyzed. Differential and Venn analyses identified 17 differentially expressed ER stress-related genes in PAH. Candidate drugs targeting these genes were predicted using the CMap database. A protein-protein interaction (PPI) network was constructed, and hub genes (LCN2, IGF1, VCAM1, EDN1, HMOX1, TLR4) with complex interplays were identified using the STRING database and Cytoscape plugins. The clinical diagnostic performance of the hub genes was evaluated using ROC curves. The GeneMANIA Web site was utilized to predict enriched pathways associated with the hub genes and their functionally similar genes. MiRNAs and transcription factors targeting the hub genes were predicted using the Networkanalyst Web site. The immune levels in control samples and PAH samples were assessed using various algorithms. Nine drug candidates were found to potentially target the identified ER stress-related genes. The hub genes and their correlated genes were significantly enriched in immune-related pathways. The PAH group showed increased immune cell infiltration, indicating a heightened immune response. This study sheds light on the role of ER stress-associated hub genes in PAH and proposes potential drugs targeting these genes. These findings provide valuable insights into PAH mechanisms and support the exploration of ER stress as a therapeutic target.
Collapse
Affiliation(s)
| | - Debin Zhuo
- Respiratory and Critical Care Medicine, The Affiliated Hospital of Putian University, Putian City, China
| | - Juan Lin
- Respiratory and Critical Care Medicine, The Affiliated Hospital of Putian University, Putian City, China
| | - Chunxia Zhang
- Respiratory and Critical Care Medicine, The Affiliated Hospital of Putian University, Putian City, China
| |
Collapse
|
4
|
Song Y, Jia H, Ma Q, Zhang L, Lai X, Wang Y. The causes of pulmonary hypertension and the benefits of aerobic exercise for pulmonary hypertension from an integrated perspective. Front Physiol 2024; 15:1461519. [PMID: 39483752 PMCID: PMC11525220 DOI: 10.3389/fphys.2024.1461519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/26/2024] [Indexed: 11/03/2024] Open
Abstract
Pulmonary hypertension is a progressive disease of the pulmonary arteries that begins with increased pulmonary artery pressure, driven by progressive remodeling of the small pulmonary arteries, and ultimately leads to right heart failure and death. Vascular remodeling is the main pathological feature of pulmonary hypertension, but treatments for pulmonary hypertension are lacking. Determining the process of vascular proliferation and dysfunction may be a way to decipher the pathogenesis of pulmonary hypertension. In this review, we summarize the important pathways of pulmonary hypertension pathogenesis. We show how these processes are integrated and emphasize the benign role of aerobic exercise, which, as an adjunctive therapy, may be able to modify vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Yinping Song
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Hao Jia
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Qing Ma
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Lulu Zhang
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Xiangyi Lai
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Youhua Wang
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
5
|
Deliu N, Das R, May A, Newman J, Steele J, Duckworth M, Jones RJ, Wilkins MR, Toshner MR, Villar SS. StratosPHere 2: study protocol for a response-adaptive randomised placebo-controlled phase II trial to evaluate hydroxychloroquine and phenylbutyrate in pulmonary arterial hypertension caused by mutations in BMPR2. Trials 2024; 25:680. [PMID: 39407331 PMCID: PMC11475842 DOI: 10.1186/s13063-024-08485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension is a life-threatening progressive disorder characterised by high blood pressure (hypertension) in the arteries of the lungs (pulmonary artery). Although treatable, there is no known cure for this rare disorder, and its exact cause is unknown. Mutations in the bone morphogenetic protein receptor type-2 (BMPR2) are the most common genetic cause of familial pulmonary arterial hypertension. This study represents the first-ever trial of treatments aimed at directly rescuing the BMPR2 pathway, repurposing two drugs that have shown promise at restoring levels of BMPR2 signalling: hydroxychloroquine and phenylbutyrate. METHODS This three-armed phase II precision medicine study will investigate BMPR2 target engagement and explore the efficacy of two repurposed therapies in pulmonary arterial hypertension patients with BMPR2 mutations. Patients will be stratified based on two BMPR2 mutation classes: missense and haploinsufficient mutations. Eligible subjects will be randomised to one of the three arms (two active therapy arms and a placebo arm, all plus standard of care) following a Bayesian response-adaptive design implemented independently in each stratum and updated in response to a novel panel of primary biomarkers designed to assess biological modification of the disease. DISCUSSION The results of this trial will provide the first randomised evidence of the efficacy of these therapies to rescue BMPR2 function and will efficiently explore the potential for a differential response of these therapies per mutation class to address causes rather than consequences of this rare disease. TRIAL REGISTRATION The study has been registered with ISRCTN (ISRCTN10304915, 22/09/2023).
Collapse
Affiliation(s)
- Nina Deliu
- MRC Biostatistics Unit, Cambridge University, Cambridge, UK.
- MEMOTEF, Sapienza University, Rome, Italy.
| | - Rajenki Das
- MRC Biostatistics Unit, Cambridge University, Cambridge, UK
| | - Angelique May
- VPD-HLRI, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Joseph Newman
- VPD-HLRI, Department of Medicine, University of Cambridge, Cambridge, UK
- Royal Papworth Hospital, Cambridge, UK
| | - Jo Steele
- Papworth Trials Unit Collaboration, Royal Papworth Hospital, Cambridge, UK
| | - Melissa Duckworth
- Papworth Trials Unit Collaboration, Royal Papworth Hospital, Cambridge, UK
| | - Rowena J Jones
- VPD-HLRI, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Martin R Wilkins
- Imperial College London, Heart Lung Research Institute, London, UK
| | - Mark R Toshner
- VPD-HLRI, Department of Medicine, University of Cambridge, Cambridge, UK
- Royal Papworth Hospital, Cambridge, UK
| | - Sofia S Villar
- MRC Biostatistics Unit, Cambridge University, Cambridge, UK
| |
Collapse
|
6
|
Wei ZX, Cai XX, Fei YD, Wang Q, Hu XL, Li C, Hou JW, Yang YL, Wang YP, Li YG. Ntsr1 contributes to pulmonary hypertension by enhancing endoplasmic reticulum stress via JAK2-STAT3-Thbs1 signaling. Transl Res 2024; 269:64-75. [PMID: 38395391 DOI: 10.1016/j.trsl.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Pulmonary hypertension (PH) is a severe clinical syndrome with pulmonary vascular remodeling and poor long-term prognosis. Neurotensin receptor 1 (Ntsr1), serve as one of the G protein-coupled receptors (GPCRs), implicates in various biological processes, but the potential effects of Ntsr1 in PH development are unclear. The Sugen/Hypoxia (SuHx) or monocrotaline (MCT) induced rat PH model was used in our study and the PH rats showed aggravated pulmonary artery remodeling and increased right ventricular systolic pressure (RVSP). Our results revealed that Ntsr1 induced endoplasmic reticulum (ER) stress response via ATF6 activation contributed to the development of PH. Moreover, RNA-sequencing (RNA-seq) and phosphoproteomics were performed and the Ntsr1-JAK2-STAT3-thrombospondin 1 (Thbs1)-ATF6 signaling was distinguished as the key pathway. In vitro, pulmonary artery smooth muscle cells (PASMCs) under hypoxia condition showed enhanced proliferation and migration properties, which could be inhibited by Ntsr1 knockdown, JAK2 inhibitor (Fedratinib) treatment, STAT3 inhibitior (Stattic) treatment, Thbs1 knockdown or ATF6 knockdown. In addition, adeno-associated virus 1 (AAV1) were used to knockdown the expression of Ntsr1, Thbs1 or ATF6 in rats and reversed the phenotype of PH. In summary, our results reveal that Ntsr1-JAK2-STAT3-Thbs1 pathway can induce enhanced ER stress via ATF6 activation and increased PASMC proliferation and migration capacities, which can be mechanism of the pulmonary artery remodeling and PH. Targeting Ntsr1 might be a novel therapeutic strategy to ameliorate PH.
Collapse
Affiliation(s)
- Zhi-Xing Wei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Xing-Xing Cai
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yu-Dong Fei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Qian Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Xiao-Liang Hu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Cheng Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Jian-Wen Hou
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yu-Li Yang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yue-Peng Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China.
| |
Collapse
|
7
|
Ding J, Ji R, Wang Z, Jia Y, Meng T, Song X, Gao J, He Q. Cardiovascular protection of YiyiFuzi powder and the potential mechanisms through modulating mitochondria-endoplasmic reticulum interactions. Front Pharmacol 2024; 15:1405545. [PMID: 38978978 PMCID: PMC11228702 DOI: 10.3389/fphar.2024.1405545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death worldwide and represent a major public health challenge. YiyiFuzi Powder (YYFZ), composed of Coicis semen and Fuzi, is a classical traditional Chinese medicine prescription from the Synopsis of Golden Chamber dating back to the Han Dynasty. Historically, YYFZ has been used to treat various CVD, rooted in Chinese therapeutic principles. Network pharmacology analysis indicated that YYFZ may exhibit direct or indirect effects on mitochondria-endoplasmic reticulum (ER) interactions. This review, focusing on the cardiovascular protective effects of Coicis semen and Fuzi, summarizes the potential mechanisms by which YYFZ acts on mitochondria and the ER. The underlying mechanisms are associated with regulating cardiovascular risk factors (such as blood lipids and glucose), impacting mitochondrial structure and function, modulating ER stress, inhibiting oxidative stress, suppressing inflammatory responses, regulating cellular apoptosis, and maintaining calcium ion balance. The involved pathways include, but were not limited to, upregulating the IGF-1/PI3K/AKT, cAMP/PKA, eNOS/NO/cGMP/SIRT1, SIRT1/PGC-1α, Klotho/SIRT1, OXPHOS/ATP, PPARα/PGC-1α/SIRT3, AMPK/JNK, PTEN/PI3K/AKT, β2-AR/PI3K/AKT, and modified Q cycle signaling pathways. Meanwhile, the MCU, NF-κB, and JAK/STAT signaling pathways were downregulated. The PERK/eIF2α/ATF4/CHOP, PERK/SREBP-1c/FAS, IRE1, PINK1-dependent mitophagy, and AMPK/mTOR signaling pathways were bidirectionally regulated. High-quality experimental studies are needed to further elucidate the underlying mechanisms of YYFZ in CVD treatment.
Collapse
Affiliation(s)
- Jingyi Ding
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Ji
- Department of Intensive Care Unit, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyi Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzhi Jia
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Meng
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinbin Song
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyong He
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Grynblat J, Khouri C, Hlavaty A, Jaïs X, Savale L, Chaumais MC, Kularatne M, Jevnikar M, Boucly A, Antigny F, Perros F, Simonneau G, Sitbon O, Humbert M, Montani D. Characteristics and outcomes of patients developing pulmonary hypertension associated with proteasome inhibitors. Eur Respir J 2024; 63:2302158. [PMID: 38697649 DOI: 10.1183/13993003.02158-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) has been described in patients treated with proteasome inhibitors (PIs). Our objective was to evaluate the association between PIs and PAH. METHODS Characteristics of incident PAH cases previously treated with carfilzomib or bortezomib were analysed from the French pulmonary hypertension registry and the VIGIAPATH programme from 2004 to 2023, concurrently with a pharmacovigilance disproportionality analysis using the World Health Organization (WHO) global database (VigiBase) and a meta-analysis of randomised controlled trials. RESULTS 11 incident cases of PI-associated PAH were identified (six with carfilzomib and five with bortezomib) with a female:male ratio of 2.7:1, a median age of 61 years, and a median delay between PI first exposure and PAH of 6 months. Four patients died (two from right heart failure, one from respiratory distress and one from an unknown cause). At diagnosis, six were in New York Heart Association Functional Class III/IV with severe haemodynamic impairment (median mean pulmonary arterial pressure 39 mmHg, cardiac index 2.45 L·min-1·m-2 and pulmonary vascular resistance 7.2 WU). In the WHO pharmacovigilance database, 169 cases of PH associated with PI were reported since 2013 with significant signals of disproportionate reporting (SDR) for carfilzomib, regardless of the definition of cases or control group. However, SDR for bortezomib were inconsistent. The systematic review identified 17 clinical trials, and carfilzomib was associated with a significantly higher risk of dyspnoea, severe dyspnoea and PH compared with bortezomib. CONCLUSION PIs may induce PAH in patients undergoing treatment, with carfilzomib emitting a stronger signal than bortezomib, and these patients should be monitored closely.
Collapse
Affiliation(s)
- Julien Grynblat
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
- These authors contributed equally to this work
| | - Charles Khouri
- Univ. Grenoble Alpes, HP2 Laboratory, INSERM U 1300, Grenoble, France
- Pharmacovigilance Unit and Clinical Pharmacology Department, Grenoble Alpes University Hospital, Grenoble, France
- These authors contributed equally to this work
| | - Alex Hlavaty
- Univ. Grenoble Alpes, HP2 Laboratory, INSERM U 1300, Grenoble, France
- Pharmacovigilance Unit and Clinical Pharmacology Department, Grenoble Alpes University Hospital, Grenoble, France
| | - Xavier Jaïs
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Laurent Savale
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marie Camille Chaumais
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- School of Pharmacy, University of Paris-Saclay, Saclay, France
- AP-HP, Department of Pharmacy, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Mithum Kularatne
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
- Division of Respiratory Medicine, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mitja Jevnikar
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Athénaïs Boucly
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Frédéric Perros
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Gérald Simonneau
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Olivier Sitbon
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - David Montani
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
9
|
Delmotte P, Yap JQ, Dasgupta D, Sieck GC. Chemical Chaperone 4-PBA Mitigates Tumor Necrosis Factor Alpha-Induced Endoplasmic Reticulum Stress in Human Airway Smooth Muscle. Int J Mol Sci 2023; 24:15816. [PMID: 37958799 PMCID: PMC10649207 DOI: 10.3390/ijms242115816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Airway inflammation and pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα) underlie the pathophysiology of respiratory diseases, including asthma. Previously, we showed that TNFα activates the inositol-requiring enzyme 1α (IRE1α)/X-box binding protein 1 spliced (XBP1s) endoplasmic reticulum (ER) stress pathway in human airway smooth muscle (hASM) cells. The ER stress pathway is activated by the accumulation of unfolded proteins in the ER. Accordingly, chemical chaperones such as 4-phenylbutyric acid (4-PBA) may reduce ER stress activation. In the present study, we hypothesized that chemical chaperone 4-PBA mitigates TNFα-induced ER stress in hASM cells. hASM cells were isolated from bronchiolar tissue obtained from five patients with no history of smoking or respiratory diseases. The hASM cells' phenotype was confirmed via the expression of alpha-smooth muscle actin and elongated morphology. hASM cells from the same patient sample were then separated into three 12 h treatment groups: (1) TNFα (20 ng/mL), (2) TNFα + 4-PBA (1 μM, 30 min pretreatment), and (3) untreated control. The expressions of total IRE1α and phosphorylated IRE1α (pIRE1αS724) were determined through Western blotting. The splicing of XBP1 mRNA was analyzed using RT-PCR. We found that TNFα induced an increase in pIRE1αS724 phosphorylation, which was mitigated by treatment with chemical chaperone 4-PBA. We also found that TNFα induced an increase in XBP1s mRNA, which was also mitigated by treatment with chemical chaperone 4-PBA. These results support our hypothesis and indicate that chemical chaperone 4-PBA treatment mitigates TNFα-induced ER stress in hASM cells.
Collapse
Affiliation(s)
| | | | | | - Gary C. Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; (P.D.); (J.Q.Y.); (D.D.)
| |
Collapse
|
10
|
Geng Y, Hu Y, Zhang F, Tuo Y, Ge R, Bai Z. Mitochondria in hypoxic pulmonary hypertension, roles and the potential targets. Front Physiol 2023; 14:1239643. [PMID: 37645564 PMCID: PMC10461481 DOI: 10.3389/fphys.2023.1239643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023] Open
Abstract
Mitochondria are the centrol hub for cellular energy metabolisms. They regulate fuel metabolism by oxygen levels, participate in physiological signaling pathways, and act as oxygen sensors. Once oxygen deprived, the fuel utilizations can be switched from mitochondrial oxidative phosphorylation to glycolysis for ATP production. Notably, mitochondria can also adapt to hypoxia by making various functional and phenotypes changes to meet the demanding of oxygen levels. Hypoxic pulmonary hypertension is a life-threatening disease, but its exact pathgenesis mechanism is still unclear and there is no effective treatment available until now. Ample of evidence indicated that mitochondria play key factor in the development of hypoxic pulmonary hypertension. By hypoxia-inducible factors, multiple cells sense and transmit hypoxia signals, which then control the expression of various metabolic genes. This activation of hypoxia-inducible factors considered associations with crosstalk between hypoxia and altered mitochondrial metabolism, which plays an important role in the development of hypoxic pulmonary hypertension. Here, we review the molecular mechanisms of how hypoxia affects mitochondrial function, including mitochondrial biosynthesis, reactive oxygen homeostasis, and mitochondrial dynamics, to explore the potential of improving mitochondrial function as a strategy for treating hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Yumei Geng
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Yu Hu
- Department of Pharmacy, Qinghai Provincial Traffic Hospital, Xining, China
| | - Fang Zhang
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Yajun Tuo
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Rili Ge
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Zhenzhong Bai
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| |
Collapse
|
11
|
Gallardo-Vara E, Ntokou A, Dave JM, Jovin DG, Saddouk FZ, Greif DM. Vascular pathobiology of pulmonary hypertension. J Heart Lung Transplant 2023; 42:544-552. [PMID: 36604291 PMCID: PMC10121751 DOI: 10.1016/j.healun.2022.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/31/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Pulmonary hypertension (PH), increased blood pressure in the pulmonary arteries, is a morbid and lethal disease. PH is classified into several groups based on etiology, but pathological remodeling of the pulmonary vasculature is a common feature. Endothelial cell dysfunction and excess smooth muscle cell proliferation and migration are central to the vascular pathogenesis. In addition, other cell types, including fibroblasts, pericytes, inflammatory cells and platelets contribute as well. Herein, we briefly note most of the main cell types active in PH and for each cell type, highlight select signaling pathway(s) highly implicated in that cell type in this disease. Among others, the role of hypoxia-inducible factors, growth factors (e.g., vascular endothelial growth factor, platelet-derived growth factor, transforming growth factor-β and bone morphogenetic protein), vasoactive molecules, NOTCH3, Kruppel-like factor 4 and forkhead box proteins are discussed. Additionally, deregulated processes of endothelial-to-mesenchymal transition, extracellular matrix remodeling and intercellular crosstalk are noted. This brief review touches upon select critical facets of PH pathobiology and aims to incite further investigation that will result in discoveries with much-needed clinical impact for this devastating disease.
Collapse
Affiliation(s)
- Eunate Gallardo-Vara
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Aglaia Ntokou
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Jui M Dave
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Daniel G Jovin
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Fatima Z Saddouk
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Daniel M Greif
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut.
| |
Collapse
|
12
|
Yang L, Wan N, Gong F, Wang X, Feng L, Liu G. Transcription factors and potential therapeutic targets for pulmonary hypertension. Front Cell Dev Biol 2023; 11:1132060. [PMID: 37009479 PMCID: PMC10064017 DOI: 10.3389/fcell.2023.1132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Pulmonary hypertension (PH) is a refractory and fatal disease characterized by excessive pulmonary arterial cell remodeling. Uncontrolled proliferation and hypertrophy of pulmonary arterial smooth muscle cells (PASMCs), dysfunction of pulmonary arterial endothelial cells (PAECs), and abnormal perivascular infiltration of immune cells result in pulmonary arterial remodeling, followed by increased pulmonary vascular resistance and pulmonary pressure. Although various drugs targeting nitric oxide, endothelin-1 and prostacyclin pathways have been used in clinical settings, the mortality of pulmonary hypertension remains high. Multiple molecular abnormalities have been implicated in pulmonary hypertension, changes in numerous transcription factors have been identified as key regulators in pulmonary hypertension, and a role for pulmonary vascular remodeling has been highlighted. This review consolidates evidence linking transcription factors and their molecular mechanisms, from pulmonary vascular intima PAECs, vascular media PASMCs, and pulmonary arterial adventitia fibroblasts to pulmonary inflammatory cells. These findings will improve the understanding of particularly interactions between transcription factor-mediated cellular signaling pathways and identify novel therapies for pulmonary hypertension.
Collapse
Affiliation(s)
- Liu Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Naifu Wan
- Department of Vascular & Cardiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fanpeng Gong
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianfeng Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Guizhu Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Guizhu Liu,
| |
Collapse
|
13
|
Sun Y, Liu S, Chen C, Yang S, Pei G, Lin M, Wang T, Long J, Yan Q, Yao J, Lin Y, Yi F, Meng L, Tan Y, Ai Q, Chen N, Yang Y. The mechanism of programmed death and endoplasmic reticulum stress in pulmonary hypertension. Cell Death Discov 2023; 9:78. [PMID: 36841823 PMCID: PMC9968278 DOI: 10.1038/s41420-023-01373-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Pulmonary hypertension (PH) was a cardiovascular disease with high morbidity and mortality. PH was a chronic disease with complicated pathogenesis and uncontrollable factors. PH was divided into five groups according to its pathogenesis and clinical manifestations. Although the treatment and diagnosis of PH has made great progress in the past ten years. However, the diagnosis and prognosis of the PAH had a great contrast, which was not conducive to the diagnosis and treatment of PH. If not treated properly, it will lead to right ventricular failure or even death. Therefore, it was necessary to explore the pathogenesis of PH. The problem we urgently need to solve was to find and develop drugs for the treatment of PH. We reviewed the PH articles in the past 10 years or so as well as systematically summarized the recent advance. We summarized the latest research on the key regulatory factors (pyroptosis, apoptosis, necroptosis, ferroptosis, and endoplasmic reticulum stress) involved in PH. To provide theoretical basis and basis for finding new therapeutic targets and research directions of PH.
Collapse
Affiliation(s)
- Yang Sun
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal & Child Health Care, Changsha, P. R. China
| | - Chen Chen
- grid.412643.60000 0004 1757 2902Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, P. R. China
| | - Songwei Yang
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Gang Pei
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Meiyu Lin
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Ting Wang
- grid.501248.aDepartment of Rehabilitation Medicine, Zhuzhou Central Hospital, Zhuzhou, P. R. China
| | - Junpeng Long
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Qian Yan
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Jiao Yao
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Yuting Lin
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Fan Yi
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, P. R. China
| | - Lei Meng
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Yong Tan
- Department of nephrology, Xiangtan Central Hospital, Xiangtan, P. R. China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China. .,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China.
| |
Collapse
|
14
|
Mechanism of Hypoxia-Mediated Smooth Muscle Cell Proliferation Leading to Vascular Remodeling. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3959845. [PMID: 36593773 PMCID: PMC9805398 DOI: 10.1155/2022/3959845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022]
Abstract
Vascular remodeling refers to changes in the size, contraction, distribution, and flow rate of blood vessels and even changes in vascular function. Vascular remodeling can cause cardiovascular and cerebrovascular diseases. It can also lead to other systemic diseases, such as pulmonary hypertension, pulmonary atherosclerosis, chronic obstructive pulmonary disease, stroke, and ascites of broilers. Hypoxia is one of the main causes of vascular remodeling. Prolonged hypoxia or intermittent hypoxia can lead to loss of lung ventilation, causing respiratory depression, irregular respiratory rhythms, and central respiratory failure. Animals that are unable to adapt to the highland environment are also prone to sustained constriction of the small pulmonary arteries, increased resistance to pulmonary circulation, and impaired blood circulation, leading to pulmonary hypertension and right heart failure if they live in a highland environment for long periods of time. However, limited studies have been found on the relationship between hypoxia and vascular remodeling. Therefore, this review will explore the relationship between hypoxia and vascular remodeling from the aspects of endoplasmic reticulum stress, mitochondrial dysfunction, abnormal calcium channel, disordered cellular metabolism, abnormal expression of miRNA, and other factors. This will help to understand the detailed mechanism of hypoxia-mediated smooth muscle cell proliferation and vascular remodeling for the better treatment and management of diseases due to vascular remodeling.
Collapse
|
15
|
Devendran A, Kar S, Bailey R, Trivieri MG. The Role of Bone Morphogenetic Protein Receptor Type 2 ( BMPR2) and the Prospects of Utilizing Induced Pluripotent Stem Cells (iPSCs) in Pulmonary Arterial Hypertension Disease Modeling. Cells 2022; 11:3823. [PMID: 36497082 PMCID: PMC9741276 DOI: 10.3390/cells11233823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary vascular resistance (PVR), causing right ventricular hypertrophy and ultimately death from right heart failure. Heterozygous mutations in the bone morphogenetic protein receptor type 2 (BMPR2) are linked to approximately 80% of hereditary, and 20% of idiopathic PAH cases, respectively. While patients carrying a BMPR2 gene mutation are more prone to develop PAH than non-carriers, only 20% will develop the disease, whereas the majority will remain asymptomatic. PAH is characterized by extreme vascular remodeling that causes pulmonary arterial endothelial cell (PAEC) dysfunction, impaired apoptosis, and uncontrolled proliferation of the pulmonary arterial smooth muscle cells (PASMCs). To date, progress in understanding the pathophysiology of PAH has been hampered by limited access to human tissue samples and inadequacy of animal models to accurately mimic the pathogenesis of human disease. Along with the advent of induced pluripotent stem cell (iPSC) technology, there has been an increasing interest in using this tool to develop patient-specific cellular models that precisely replicate the pathogenesis of PAH. In this review, we summarize the currently available approaches in iPSC-based PAH disease modeling and explore how this technology could be harnessed for drug discovery and to widen our understanding of the pathophysiology of PAH.
Collapse
Affiliation(s)
- Anichavezhi Devendran
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sumanta Kar
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rasheed Bailey
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Giovanna Trivieri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Cardiology Unit, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
16
|
Al Zaidi M, Pizarro C, Bley C, Repges E, Sedaghat A, Zimmer S, Jansen F, Tiyerili V, Nickenig G, Skowasch D, Aksoy A. ER-stress-induced secretion of circulating glucose-regulated protein 78kDa (GRP78) ameliorates pulmonary artery smooth muscle cell remodelling. Cell Stress Chaperones 2022; 27:561-572. [PMID: 36029373 PMCID: PMC9485380 DOI: 10.1007/s12192-022-01292-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is driven by vascular remodelling due to inflammation and cellular stress, including endoplasmic reticulum stress (ER stress). The main ER-stress chaperone, glucose-regulated protein 78 kDa (GRP78), is known to have protective effects in inflammatory diseases through extracellular signalling. The aim of this study is to investigate its significance in PAH. Human pulmonary arterial smooth muscle cells (PASMC) were stimulated with compounds that induce ER stress, after which the secretion of GRP78 into the cell medium was analysed by western blot. We found that when ER stress was induced in PASMC, there was also a time-dependent secretion of GRP78. Next, naïve PASMC were treated with conditioned medium (CM) from the ER-stressed donor PASMC. Incubation with CM from ER-stressed PASMC reduced the viability, oxidative stress, and expression of inflammatory and ER-stress markers in target cells. These effects were abrogated when the donor cells were co-treated with Brefeldin A to inhibit active secretion of GRP78. Direct treatment of PASMC with recombinant GRP78 modulated the expression of key inflammatory markers. Additionally, we measured GRP78 plasma levels in 19 PAH patients (Nice Group I) and correlated the levels to risk stratification according to ESC guidelines. Here, elevated plasma levels of GRP78 were associated with a favourable risk stratification. In conclusion, GRP78 is secreted by PASMC under ER stress and exhibits protective effects from the hallmarks of PAH in vitro. Circulating GRP78 may serve as biomarker for risk adjudication of patients with PAH. Proposed mechanism of ER-stress-induced GRP78 secretion by PASMC. Extracellular GRP78 can be measured as a circulating biomarker and is correlated with favourable clinical characteristics. Conditioned medium from ER-stressed PASMC reduces extensive viability, ROS formation, inflammation, and ER stress in target cells. These effects can be abolished by blocking protein secretion in donor cells by using Brefeldin A.
Collapse
Affiliation(s)
- Muntadher Al Zaidi
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Carmen Pizarro
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Carolin Bley
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Elena Repges
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alexander Sedaghat
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sebastian Zimmer
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Felix Jansen
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Vedat Tiyerili
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Georg Nickenig
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Dirk Skowasch
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Adem Aksoy
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
17
|
Chen J, Luo J, Qiu H, Tang Y, Yang X, Chen Y, Li Z, Li J. Apolipoprotein A5 ameliorates MCT induced pulmonary hypertension by inhibiting ER stress in a GRP78 dependent mechanism. Lipids Health Dis 2022; 21:69. [PMID: 35941581 PMCID: PMC9358849 DOI: 10.1186/s12944-022-01680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a chronic, progressive lung vascular disease accompanied by elevated pulmonary vascular pressure and resistance, and it is characterized by increased pulmonary artery smooth muscle cell (PASMC) proliferation. Apolipoprotein A5 (ApoA5) improves monocrotaline (MCT)-induced PAH and right heart failure; however, the underlying mechanism remains unknown. Here we speculate that ApoA5 has a protective effect in pulmonary vessels and aim to evaluate the mechanism. Methods ApoA5 is overexpressed in an MCT-induced PAH animal model and platelet-derived growth factor (PDGF)-BB-induced proliferating PASMCs. Lung vasculature remodeling was measured by immunostaining, and PASMC proliferation was determined by cell counting kit‐8 and 5‐ethynyl‐2'‐deoxyuridine5‐ethynyl‐2'‐deoxyuridine incorporation assays. Coimmunoprecipitation-mass spectrometry was used to investigate the probable mechanism. Next, its role and mechanism were further verified by knockdown studies. Results ApoA5 level was decreased in MCT-induced PAH lung as well as PASMCs. Overexpression of ApoA5 could help to inhibit the remodeling of pulmonary artery smooth muscle. ApoA5 could inhibit PDGF-BB-induced PASMC proliferation and endoplasmic reticulum stress by increasing the expression of glucose-regulated protein 78 (GRP78). After knocking down GRP78, the protecting effects of ApoA5 have been blocked. Conclusion ApoA5 ameliorates MCT-induced PAH by inhibiting endoplasmic reticulum stress in a GRP78 dependent mechanism. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01680-4.
Collapse
Affiliation(s)
- Jingyuan Chen
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha City, Hunan Province, 410011, China
| | - Jun Luo
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha City, Hunan Province, 410011, China
| | - Haihua Qiu
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha City, Hunan Province, 410011, China
| | - Yi Tang
- Department of Cardiology, Clinical Medicine Research Center of Heart Failure of Hunan Province, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
| | - Xiaojie Yang
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha City, Hunan Province, 410011, China
| | - Yusi Chen
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha City, Hunan Province, 410011, China
| | - Zilu Li
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha City, Hunan Province, 410011, China
| | - Jiang Li
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha City, Hunan Province, 410011, China.
| |
Collapse
|
18
|
Zhang Z, Liu C, Bai Y, Li X, Gao X, Li C, Guo G, Chen S, Sun M, Liu K, Li Y, He K. Pipersentan: A De Novo Synthetic Endothelin Receptor Antagonist that Inhibits Monocrotaline- and Hypoxia-Induced Pulmonary Hypertension. Front Pharmacol 2022; 13:920222. [PMID: 35795553 PMCID: PMC9251115 DOI: 10.3389/fphar.2022.920222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Although major advances have been made in the pathogenesis and management of pulmonary arterial hypertension (PAH), the endothelin system is still considered to play a vital role in the pathology of PAH due to its vasoconstrictive action. Endothelin receptor antagonists (ERAs), either as monotherapy or in combination with other drugs, have attracted much attention in the treatment of this lethal disease, and research is continuing. Methods: A novel ERA, pipersentan 5-(1,3-Benzodioxol-5-yl)-6-[2-(5-bromopyrimidin-2-yl)oxyethoxy]-N-(2-methoxyethylsulfamoyl)pyrimidin-4-amine, was recently synthesized and the physicochemical characterizations and the pharmacology both in vitro and in vivo were studied. Results: This orally administered ERA can both competitively and selectively inhibit the binding of endothelin-1 (ET-1) to its receptors with good physicochemical characteristics. Pipersentan efficaciously antagonized the effects of ET-1 on pulmonary artery smooth muscle cell proliferation, migration and calcium mobilization and effectively improved right ventricular hypertrophy and pulmonary arterial pressure in both monocrotaline- and hypoxia-induced pulmonary hypertension (PH) rat models. Conclusions: This profile identifies pipersentan as a new agent for treating ET-1 system activation-related PH.
Collapse
Affiliation(s)
- Zeyu Zhang
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunlei Liu
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yongyi Bai
- Department of Cardiology, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin Li
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Xiaojian Gao
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Chen Li
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Ge Guo
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Si Chen
- Senior Department of Cardiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Mingzhuang Sun
- Senior Department of Cardiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kang Liu
- Senior Department of Cardiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Li
- Senior Department of Cardiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Kunlun He,
| |
Collapse
|
19
|
Li YE, Sowers JR, Hetz C, Ren J. Cell death regulation by MAMs: from molecular mechanisms to therapeutic implications in cardiovascular diseases. Cell Death Dis 2022; 13:504. [PMID: 35624099 PMCID: PMC9142581 DOI: 10.1038/s41419-022-04942-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria are interconnected intracellular organelles with vital roles in the regulation of cell signaling and function. While the ER participates in a number of biological processes including lipid biosynthesis, Ca2+ storage and protein folding and processing, mitochondria are highly dynamic organelles governing ATP synthesis, free radical production, innate immunity and apoptosis. Interplay between the ER and mitochondria plays a crucial role in regulating energy metabolism and cell fate control under stress. The mitochondria-associated membranes (MAMs) denote physical contact sites between ER and mitochondria that mediate bidirectional communications between the two organelles. Although Ca2+ transport from ER to mitochondria is vital for mitochondrial homeostasis and energy metabolism, unrestrained Ca2+ transfer may result in mitochondrial Ca2+ overload, mitochondrial damage and cell death. Here we summarize the roles of MAMs in cell physiology and its impact in pathological conditions with a focus on cardiovascular disease. The possibility of manipulating ER-mitochondria contacts as potential therapeutic approaches is also discussed.
Collapse
Affiliation(s)
- Yiran E Li
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - James R Sowers
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Buck Institute for Research in Aging, Novato, CA, 94945, USA
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
20
|
Hsu CH, Roan JN, Fang SY, Chiu MH, Cheng TT, Huang CC, Lin MW, Lam CF. Transplantation of viable mitochondria improves right ventricular performance and pulmonary artery remodeling in rats with pulmonary arterial hypertension. J Thorac Cardiovasc Surg 2022; 163:e361-e373. [PMID: 32948302 DOI: 10.1016/j.jtcvs.2020.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Because mitochondrial dysfunction is a key factor in the progression of pulmonary hypertension, this study tested the hypothesis that transplantation of exogenous viable mitochondria can reverse pulmonary artery remodeling and restore right ventricular performance in pulmonary hypertension. METHODS Pulmonary hypertension was induced by parenteral injection of monocrotaline (60 mg/kg) and creation of a left-to-right shunt aortocaval fistula in rats. Three weeks after creation of fistula, the animals were randomly assigned to receive intravenous delivery of placebo solution or allogeneic mitochondria once weekly for 3 consecutive weeks. Mitochondria (100 μg) were isolated from the freshly harvested soleus muscles of naïve rats. Transthoracic echocardiography was performed at 3 weeks after mitochondrial delivery. RESULTS Ex vivo heart-lung block images acquired by an IVIS Spectrum (PerkinElmer, Waltham, Mass) imaging system confirmed the enhancement of MitoTracker (Invitrogen, Carlsbad, Calif) fluorescence in the pulmonary arteries. Mitochondria transplantation significantly increased lung tissue adenosine triphosphate concentrations and improved right ventricular performance, as evidenced by a reduction in serum levels of B-type natriuretic peptide and ventricular diameter. Right ventricular mass and wall thickness were restored in the mitochondrial group. In the pulmonary arteries of rats that received mitochondrial treatment, vascular smooth muscle cells expressed higher levels of α-smooth muscle actin and smooth muscle myosin heavy chain II, indicating the maintenance of the nonproliferative, contractile phenotype. The hyper-reactivity of isolated pulmonary arteries to α-adrenergic stimulation was also attenuated after mitochondrial transplantation. CONCLUSIONS Transplantation of viable mitochondria can restore the contractile phenotype and vasoreactivity of the pulmonary artery, thereby reducing the afterload and right ventricular remodeling in rats with established pulmonary hypertension. The improvement in overall right ventricular performance suggests that mitochondrial transplantation can be a revolutionary clinical therapeutic option for the management of pulmonary hypertension.
Collapse
Affiliation(s)
- Chih-Hsin Hsu
- Department of Internal Medicine, National Cheng Kung University Hospital and College of Medicine, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Jun-Neng Roan
- Division of Cardiovascular Surgery, Department of Surgery, National Cheng Kung University Hospital and College of Medicine, Tainan, Taiwan
| | - Shih-Yuan Fang
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Hsuan Chiu
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Ting Cheng
- Department of Anesthesiology, E-Da Hospital and E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Chien-Chi Huang
- Department of Medical Research, E-Da Hospital and E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Ming-Wei Lin
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, E-Da Hospital and E-Da Cancer Hospital, Kaohsiung, Taiwan; School of Medicine, I-Shou University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Fuh Lam
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Anesthesiology, E-Da Hospital and E-Da Cancer Hospital, Kaohsiung, Taiwan; School of Medicine, I-Shou University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
21
|
Yu W, Xu G, Chen H, Xiao L, Liu G, Hu P, Li S, Kasim V, Zeng C, Tong X. The substitution of SERCA2 redox cysteine 674 promotes pulmonary vascular remodeling by activating IRE1 α/XBP1s pathway. Acta Pharm Sin B 2022; 12:2315-2329. [PMID: 35646520 PMCID: PMC9136575 DOI: 10.1016/j.apsb.2021.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening disease characterized by pulmonary vascular remodeling, in which hyperproliferation of pulmonary artery smooth muscle cells (PASMCs) plays an important role. The cysteine 674 (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) is the critical redox regulatory cysteine to regulate SERCA2 activity. Heterozygous SERCA2 C674S knock-in mice (SKI), where one copy of C674 was substituted by serine to represent partial C674 oxidative inactivation, developed significant pulmonary vascular remodeling resembling human PH, and their right ventricular systolic pressure modestly increased with age. In PASMCs, substitution of C674 activated inositol requiring enzyme 1 alpha (IRE1α) and spliced X-box binding protein 1 (XBP1s) pathway, accelerated cell cycle and cell proliferation, which reversed by IRE1α/XBP1s pathway inhibitor 4μ8C. In addition, suppressing the IRE1α/XBP1s pathway prevented pulmonary vascular remodeling caused by substitution of C674. Similar to SERCA2a, SERCA2b is also important to restrict the proliferation of PASMCs. Our study articulates the causal effect of C674 oxidative inactivation on the development of pulmonary vascular remodeling and PH, emphasizing the importance of C674 in restricting PASMC proliferation to maintain pulmonary vascular homeostasis. Moreover, the IRE1α/XBP1s pathway and SERCA2 might be potential targets for PH therapy.
Collapse
Affiliation(s)
- Weimin Yu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Institute of Health Biological Chemical Medication, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing 400038, China
| | - Hui Chen
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Li Xiao
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Gang Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Pingping Hu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Corresponding author.
| |
Collapse
|
22
|
Important Functions and Molecular Mechanisms of Mitochondrial Redox Signaling in Pulmonary Hypertension. Antioxidants (Basel) 2022; 11:antiox11030473. [PMID: 35326123 PMCID: PMC8944689 DOI: 10.3390/antiox11030473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are important organelles that act as a primary site to produce reactive oxygen species (ROS). Additionally, mitochondria play a pivotal role in the regulation of Ca2+ signaling, fatty acid oxidation, and ketone synthesis. Dysfunction of these signaling molecules leads to the development of pulmonary hypertension (PH), atherosclerosis, and other vascular diseases. Features of PH include vasoconstriction and pulmonary artery (PA) remodeling, which can result from abnormal proliferation, apoptosis, and migration of PA smooth muscle cells (PASMCs). These responses are mediated by increased Rieske iron–sulfur protein (RISP)-dependent mitochondrial ROS production and increased mitochondrial Ca2+ levels. Mitochondrial ROS and Ca2+ can both synergistically activate nuclear factor κB (NF-κB) to trigger inflammatory responses leading to PH, right ventricular failure, and death. Evidence suggests that increased mitochondrial ROS and Ca2+ signaling leads to abnormal synthesis of ketones, which play a critical role in the development of PH. In this review, we discuss some of the recent findings on the important interactive role and molecular mechanisms of mitochondrial ROS and Ca2+ in the development and progression of PH. We also address the contributions of NF-κB-dependent inflammatory responses and ketone-mediated oxidative stress due to abnormal regulation of mitochondrial ROS and Ca2+ signaling in PH.
Collapse
|
23
|
Jiang H, Niu Y, He Y, Li X, Xu Y, Liu X. Proteomic analysis reveals that Xbp1s promotes hypoxic pulmonary hypertension through the p-JNK MAPK pathway. J Cell Physiol 2021; 237:1948-1963. [PMID: 34964131 DOI: 10.1002/jcp.30664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 01/02/2023]
Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by elevated pulmonary artery resistance and vascular remodeling. Endoplasmic reticulum stress (ERS) is reported to be involved in HPH, but the underlying mechanisms remain uncertain. We found that Xbp1s, a potent transcription factor during ERS, was elevated in hypoxic-cultured rat PASMCs and lung tissues from HPH rats. Our in vitro experiments demonstrated that overexpressing Xbp1s can promote proliferation, cell viability, and migration and inhibit the apoptosis of PASMCs, while silencing Xbp1s led to the opposite. Through data-independent acquisition (DIA) mass spectrometry, we identified extensive proteomic alterations regulated by hypoxia and Xbp1s. Further validation revealed that p-JNK, rather than p-ERK or p-p38, was the downstream effector of Xbp1s. p-JNK inhibition reversed the biological effects of Xbp1s overexpression in vitro. In the animal HPH model, rats were randomly assigned to five groups: normoxia, hypoxia, hypoxia+AAV-CTL (control), hypoxia+AAV-Xbp1s (prevention), and hypoxia+AAV-Xbp1s (therapy). Adeno-associated virus (AAV) serotype 1-mediated Xbp1s knockdown in the prevention and therapy groups significantly reduced right ventricular systolic pressure, total pulmonary resistance, right ventricular hypertrophy, and the medial wall thickness of muscularized distal pulmonary arterioles; AAV-Xbp1s also decreased proliferating cell nuclear antigen expression and increased apoptosis in pulmonary arterioles. Collectively, our findings demonstrated that the Xbp1s-p-JNK pathway is important in hypoxic vascular remodeling and that targeting this pathway could be an effective strategy to prevent and alleviate HPH development.
Collapse
Affiliation(s)
- Hongxia Jiang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yang Niu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yuanzhou He
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| |
Collapse
|
24
|
Cao X, Fang X, Guo M, Li X, He Y, Xie M, Xu Y, Liu X. TRB3 mediates vascular remodeling by activating the MAPK signaling pathway in hypoxic pulmonary hypertension. Respir Res 2021; 22:312. [PMID: 34906150 PMCID: PMC8670293 DOI: 10.1186/s12931-021-01908-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypoxic pulmonary hypertension (PH) is a refractory pulmonary vascular remodeling disease, and the efficiency of current PH treatment strategies is unsatisfactory. Tribbles homolog 3 (TRB3), a member of the pseudokinase family, is upregulated in diverse types of cellular stresses and functions as either a pro-proliferative or pro-apoptotic factor depending on the specific microenvironment. The regulatory mechanisms of TRB3 in hypoxic PH are poorly understood. METHODS We performed studies using TRB3-specific silencing and overexpressing lentiviral vectors to investigate the potential roles of TRB3 on hypoxic pulmonary artery smooth muscle cells (PASMCs). Adeno-associated virus type 1(AVV1) vectors encoding short-hairpin RNAs against rat TRB3 were used to assess the role of TRB3 on hypoxic PH. TRB3 protein expression in PH patients was explored in clinical samples by western blot analysis. RESULTS The results of whole-rat genome oligo microarrays showed that the expression of TRB3 and endoplasmic reticulum stress (ERS)-related genes was upregulated in hypoxic PASMCs. TRB3 protein expression was significantly upregulated by hypoxia and thapsigargin. In addition, 4-PBA and 4μ8C, both inhibitors of ERS, decreased the expression of TRB3. TRB3 knockdown promoted apoptosis and damaged the proliferative and migratory abilities of hypoxic PASMCs as well as inhibited activation of the MAPK signaling pathway. TRB3 overexpression stimulated the proliferation and migration of PASMCs but decreased the apoptosis of PASMCs, which was partly reversed by specific inhibitors of ERK, JNK and p38 MAPK. The Co-IP results revealed that TRB3 directly interacts with ERK, JNK, and p38 MAPK. Knockdown of TRB3 in rat lung tissue reduced the right ventricular systolic pressure and decreased pulmonary medial wall thickness in hypoxic PH model rats. Further, the expression of TRB3 in lung tissues was higher in patients with PH compared with those who have normal pulmonary artery pressure. CONCLUSIONS TRB3 was upregulated in hypoxic PASMCs and was affected by ERS. TRB3 plays a key role in the pathogenesis of hypoxia-induced PH by binding and activating the ERK, JNK, and p38 MAPK pathways. Thus, TRB3 might be a promising target for the treatment of hypoxic PH.
Collapse
Affiliation(s)
- Xiaopei Cao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Fang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingzhou Guo
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanzhou He
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xie
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, 430030, China.
| |
Collapse
|
25
|
Zhang Y, Zervopoulos SD, Boukouris AE, Lorenzana-Carrillo MA, Saleme B, Webster L, Liu Y, Haromy A, Tabatabaei Dakhili SA, Ussher JR, Sutendra G, Michelakis ED. SNPs for Genes Encoding the Mitochondrial Proteins Sirtuin3 and Uncoupling Protein 2 Are Associated With Disease Severity, Type 2 Diabetes, and Outcomes in Patients With Pulmonary Arterial Hypertension and This Is Recapitulated in a New Mouse Model Lacking Both Genes. J Am Heart Assoc 2021; 10:e020451. [PMID: 34719264 PMCID: PMC9075406 DOI: 10.1161/jaha.120.020451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Isolated loss‐of‐function single nucleotide polymorphisms (SNPs) for SIRT3 (a mitochondrial deacetylase) and UCP2 (an atypical uncoupling protein enabling mitochondrial calcium entry) have been associated with both pulmonary arterial hypertension (PAH) and insulin resistance, but their collective role in animal models and patients is unknown. Methods and Results In a prospective cohort of patients with PAH (n=60), we measured SNPs for both SIRT3 and UCP2, along with several clinical features (including invasive hemodynamic data) and outcomes. We found SIRT3 and UCP2 SNPs often both in the same patient in a homozygous or heterozygous manner, correlating positively with PAH severity and associated with the presence of type 2 diabetes and 10‐year outcomes (death and transplantation). To explore this mechanistically, we generated double knockout mice for Sirt3 and Ucp2 and found increasing severity of PAH (mean pulmonary artery pressure, right ventricular hypertrophy/dilatation and extensive vascular remodeling, including inflammatory plexogenic lesions, in a gene dose‐dependent manner), along with insulin resistance, compared with wild‐type mice. The suppressed mitochondrial function (decreased respiration, increased mitochondrial membrane potential) in the double knockout pulmonary artery smooth muscle cells was associated with apoptosis resistance and increased proliferation, compared with wild‐type mice. Conclusions Our work supports the metabolic theory of PAH and shows that these mice exhibit spontaneous severe PAH (without environmental or chemical triggers) that mimics human PAH and may explain the findings in our patient cohort. Our study offers a new mouse model of PAH, with several features of human disease that are typically absent in other PAH mouse models.
Collapse
Affiliation(s)
- Yongneng Zhang
- Department of Medicine (Cardiology), Faculty of Medicine and Dentistry University of Alberta Edmonton Alberta Canada
| | - Sotirios D Zervopoulos
- Department of Medicine (Cardiology), Faculty of Medicine and Dentistry University of Alberta Edmonton Alberta Canada
| | - Aristeidis E Boukouris
- Department of Medicine (Cardiology), Faculty of Medicine and Dentistry University of Alberta Edmonton Alberta Canada
| | | | - Bruno Saleme
- Department of Medicine (Cardiology), Faculty of Medicine and Dentistry University of Alberta Edmonton Alberta Canada
| | - Linda Webster
- Department of Medicine (Cardiology), Faculty of Medicine and Dentistry University of Alberta Edmonton Alberta Canada
| | - Yongsheng Liu
- Department of Medicine (Cardiology), Faculty of Medicine and Dentistry University of Alberta Edmonton Alberta Canada
| | - Alois Haromy
- Department of Medicine (Cardiology), Faculty of Medicine and Dentistry University of Alberta Edmonton Alberta Canada
| | | | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences University of Alberta Edmonton Alberta Canada
| | - Gopinath Sutendra
- Department of Medicine (Cardiology), Faculty of Medicine and Dentistry University of Alberta Edmonton Alberta Canada
| | - Evangelos D Michelakis
- Department of Medicine (Cardiology), Faculty of Medicine and Dentistry University of Alberta Edmonton Alberta Canada
| |
Collapse
|
26
|
Xu X, Li H, Wei Q, Li X, Shen Y, Guo G, Chen Y, He K, Liu C. Novel Targets in a High-Altitude Pulmonary Hypertension Rat Model Based on RNA-seq and Proteomics. Front Med (Lausanne) 2021; 8:742436. [PMID: 34805208 PMCID: PMC8595261 DOI: 10.3389/fmed.2021.742436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
High-altitude pulmonary hypertension (HAPH) is a complication arising from an inability to acclimatize to high altitude and is associated with high morbidity and mortality. We aimed to analyze the effects of macitentan, selexipag, riociguat, and reoxygenation on HAPH, and to screen possible targets of these treatments for future drug screening. Rats were subjected to hypobaric hypoxia for 35 days to induce HAPH, and treated with vehicle or selexipag, macitentan, riociguat, or with reoxygenation, from days 21 to 35. Selexipag, macitentan, and reoxygenation prevented an increase in mean pulmonary artery pressure and hypoxia-induced right ventricular hypertrophy, compared to the vehicle. Riociguat had little effect. RNA-seq and proteomics revealed strong correlations between responses to the three drugs, which had almost identical effects. GO-enrichment revealed that the differentially expressed genes included those involved in metabolic regulation, transcription, and translation. Various molecular pathways were annotated. Selexipag, macitentan, and reoxygenation ameliorated HAPH. Serpina1, Cryz, and Cmc1 were identified, via multi-omics screening, as key genes involved in HAPH. These findings provide new insights into the targeted drug mechanisms in HAPH.
Collapse
Affiliation(s)
- Xiang Xu
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Hanlu Li
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Qingxia Wei
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Xin Li
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yanying Shen
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Ge Guo
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yibing Chen
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Chunlei Liu
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
27
|
Jiang H, Ding D, He Y, Li X, Xu Y, Liu X. Xbp1s-Ddit3 promotes MCT-induced pulmonary hypertension. Clin Sci (Lond) 2021; 135:2467-2481. [PMID: 34676402 PMCID: PMC8564003 DOI: 10.1042/cs20210612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Pulmonary hypertension (PH) is a life-threatening disease characterized by vascular remodeling. Exploring new therapy target is urgent. The purpose of the present study is to investigate whether and how spliced x-box binding protein 1 (xbp1s), a key component of endoplasmic reticulum stress (ERS), contributes to the pathogenesis of PH. Forty male SD rats were randomly assigned to four groups: Control, Monocrotaline (MCT), MCT+AAV-CTL (control), and MCT+AAV-xbp1s. The xbp1s protein levels were found to be elevated in lung tissues of the MCT group. Intratracheal injection of adeno-associated virus serotype 1 carrying xbp1s shRNA (AAV-xbp1s) to knock down the expression of xbp1s effectively ameliorated the MCT-induced elevation of right ventricular systolic pressure (RVSP), total pulmonary resistance (TPR), right ventricular hypertrophy and medial wall thickness of muscularized distal pulmonary arterioles. The abnormally increased positive staining rates of proliferating cell nuclear antigen (PCNA) and Ki67 and decreased positive staining rates of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) in pulmonary arterioles were also reversed in the MCT+AAV-xbp1s group. For mechanistic exploration, bioinformatics prediction of the protein network was performed on the STRING database, and further verification was performed by qRT-PCR, Western blots and co-immunoprecipitation (Co-IP). DNA damage-inducible transcript 3 (Ddit3) was identified as a downstream protein that interacted with xbp1s. Overexpression of Ddit3 restored the decreased proliferation, migration and cell viability caused by silencing of xbp1s. The protein level of Ddit3 was also highly consistent with xbp1s in the animal model. Taken together, our study demonstrated that xbp1s-Ddit3 may be a potential target to interfere with vascular remodeling in PH.
Collapse
MESH Headings
- Animals
- Apoptosis
- Arterial Pressure
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/chemically induced
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Male
- Monocrotaline
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Rats, Sprague-Dawley
- Signal Transduction
- Transcription Factor CHOP/genetics
- Transcription Factor CHOP/metabolism
- Vascular Remodeling
- Ventricular Dysfunction, Right/chemically induced
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Function, Right
- X-Box Binding Protein 1/genetics
- X-Box Binding Protein 1/metabolism
- Rats
Collapse
Affiliation(s)
- Hongxia Jiang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Dandan Ding
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yuanzhou He
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| |
Collapse
|
28
|
Hypoxia and the integrated stress response promote pulmonary hypertension and preeclampsia: Implications in drug development. Drug Discov Today 2021; 26:2754-2773. [PMID: 34302972 DOI: 10.1016/j.drudis.2021.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/31/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022]
Abstract
Chronic hypoxia is a common cause of pulmonary hypertension, preeclampsia, and intrauterine growth restriction (IUGR). The molecular mechanisms underlying these diseases are not completely understood. Chronic hypoxia may induce the generation of reactive oxygen species (ROS) in mitochondria, promote endoplasmic reticulum (ER) stress, and result in the integrated stress response (ISR) in the pulmonary artery and uteroplacental tissues. Numerous studies have implicated hypoxia-inducible factors (HIFs), oxidative stress, and ER stress/unfolded protein response (UPR) in the development of pulmonary hypertension, preeclampsia and IUGR. This review highlights the roles of HIFs, mitochondria-derived ROS and UPR, as well as their interplay, in the pathogenesis of pulmonary hypertension and preeclampsia, and their implications in drug development.
Collapse
|
29
|
Zhou Y, Murugan DD, Khan H, Huang Y, Cheang WS. Roles and Therapeutic Implications of Endoplasmic Reticulum Stress and Oxidative Stress in Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10081167. [PMID: 34439415 PMCID: PMC8388996 DOI: 10.3390/antiox10081167] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
In different pathological states that cause endoplasmic reticulum (ER) calcium depletion, altered glycosylation, nutrient deprivation, oxidative stress, DNA damage or energy perturbation/fluctuations, the protein folding process is disrupted and the ER becomes stressed. Studies in the past decade have demonstrated that ER stress is closely associated with pathogenesis of obesity, insulin resistance and type 2 diabetes. Excess nutrients and inflammatory cytokines associated with metabolic diseases can trigger or worsen ER stress. ER stress plays a critical role in the induction of endothelial dysfunction and atherosclerosis. Signaling pathways including AMP-activated protein kinase and peroxisome proliferator-activated receptor have been identified to regulate ER stress, whilst ER stress contributes to the imbalanced production between nitric oxide (NO) and reactive oxygen species (ROS) causing oxidative stress. Several drugs or herbs have been proved to protect against cardiovascular diseases (CVD) through inhibition of ER stress and oxidative stress. The present article reviews the involvement of ER stress and oxidative stress in cardiovascular dysfunction and the potential therapeutic implications.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
| | - Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Yu Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
- Correspondence: ; Tel.: +853-8822-4914
| |
Collapse
|
30
|
Lopez-Crisosto C, Arias-Carrasco R, Sepulveda P, Garrido-Olivares L, Maracaja-Coutinho V, Verdejo HE, Castro PF, Lavandero S. Novel molecular insights and public omics data in pulmonary hypertension. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166200. [PMID: 34144090 DOI: 10.1016/j.bbadis.2021.166200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022]
Abstract
Pulmonary hypertension is a rare disease with high morbidity and mortality which mainly affects women of reproductive age. Despite recent advances in understanding the pathogenesis of pulmonary hypertension, the high heterogeneity in the presentation of the disease among different patients makes it difficult to make an accurate diagnosis and to apply this knowledge to effective treatments. Therefore, new studies are required to focus on translational and personalized medicine to overcome the lack of specificity and efficacy of current management. Here, we review the majority of public databases storing 'omics' data of pulmonary hypertension studies, from animal models to human patients. Moreover, we review some of the new molecular mechanisms involved in the pathogenesis of pulmonary hypertension, including non-coding RNAs and the application of 'omics' data to understand this pathology, hoping that these new approaches will provide insights to guide the way to personalized diagnosis and treatment.
Collapse
Affiliation(s)
- Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile
| | - Raul Arias-Carrasco
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile
| | - Pablo Sepulveda
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Garrido-Olivares
- Cardiovascular Surgery, Division of Surgery, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile
| | - Hugo E Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile; Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|
31
|
West JD, Austin ED, Rizzi EM, Yan L, Tanjore H, Crabtree AL, Moore CS, Muthian G, Carrier EJ, Jacobson DA, Hamid R, Kendall PL, Majka S, Rathinasabapathy A. KCNK3 Mutation Causes Altered Immune Function in Pulmonary Arterial Hypertension Patients and Mouse Models. Int J Mol Sci 2021; 22:ijms22095014. [PMID: 34065088 PMCID: PMC8126011 DOI: 10.3390/ijms22095014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Loss of function KCNK3 mutation is one of the gene variants driving hereditary pulmonary arterial hypertension (PAH). KCNK3 is expressed in several cell and tissue types on both membrane and endoplasmic reticulum and potentially plays a role in multiple pathological process associated with PAH. However, the role of various stressors driving the susceptibility of KCNK3 mutation to PAH is unknown. Hence, we exposed kcnk3fl/fl animals to hypoxia, metabolic diet and low dose lipopolysaccharide (LPS) and performed molecular characterization of their tissue. We also used tissue samples from KCNK3 patients (skin fibroblast derived inducible pluripotent stem cells, blood, lungs, peripheral blood mononuclear cells) and performed microarray, immunohistochemistry (IHC) and mass cytometry time of flight (CyTOF) experiments. Although a hypoxic insult did not alter vascular tone in kcnk3fl/fl mice, RNASeq study of these lungs implied that inflammatory and metabolic factors were altered, and the follow-up diet study demonstrated a dysregulation of bone marrow cells in kcnk3fl/fl mice. Finally, a low dose LPS study clearly showed that inflammation could be a possible second hit driving PAH in kcnk3fl/fl mice. Multiplex, IHC and CyTOF immunophenotyping studies on human samples confirmed the mouse data and strongly indicated that cell mediated, and innate immune responses may drive PAH susceptibility in these patients. In conclusion, loss of function KCNK3 mutation alters various physiological processes from vascular tone to metabolic diet through inflammation. Our data suggests that altered circulating immune cells may drive PAH susceptibility in patients with KCNK3 mutation.
Collapse
Affiliation(s)
- James D. West
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Eric D. Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (E.D.A.); (L.Y.); (R.H.)
| | - Elise M. Rizzi
- Division of Allergy and Immunology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; (E.M.R.); (P.L.K.)
| | - Ling Yan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (E.D.A.); (L.Y.); (R.H.)
| | - Harikrishna Tanjore
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Amber L. Crabtree
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Christy S. Moore
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Gladson Muthian
- Department of Cancer Biology, Biochemistry and Neuropharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Erica J. Carrier
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA;
| | - Rizwan Hamid
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (E.D.A.); (L.Y.); (R.H.)
| | - Peggy L. Kendall
- Division of Allergy and Immunology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; (E.M.R.); (P.L.K.)
| | - Susan Majka
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA;
| | - Anandharajan Rathinasabapathy
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
- Correspondence:
| |
Collapse
|
32
|
The Downregulation of ADAM17 Exerts Protective Effects against Cardiac Fibrosis by Regulating Endoplasmic Reticulum Stress and Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5572088. [PMID: 34035876 PMCID: PMC8118735 DOI: 10.1155/2021/5572088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/27/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023]
Abstract
Background A disintegrin and metalloproteinase 17 (ADAM17) is a transmembrane protein that is widely expressed in various tissues; it mediates the shedding of many membrane-bound molecules, involving cell-cell and cell-matrix interactions. We investigated the role of ADAM17 within mouse cardiac fibroblasts (mCFs) in heart fibrosis. Methods mCFs were isolated from the hearts of neonatal mice. Effects of ADAM17 on the differentiation of mCFs towards myofibroblasts and their fibrotic behaviors following induction with TGF-β1 were examined. The expression levels of fibrotic proteins, such as collagen I and α-SMA, were assessed by qRT-PCR analysis and western blotting. Cell proliferation and migration were measured using the CCK-8 and wound healing assay. To identify the target gene for ADAM17, the protein levels of the components of endoplasmic reticulum (ER) stress and the PINK1/Parkin pathway were assessed following ADAM17 silencing. The effects of ADAM17 silencing or treatment with thapsigargin, a key stimulator of acute ER stress, on mCFs proliferation, migration, and collagen secretion were also examined. In vivo, we used a mouse model of cardiac fibrosis established by left anterior descending artery ligation; the mice were administered oral gavage with a selective ADAM17 inhibitor (TMI-005) for 4 weeks after the operation. Results We found that the ADAM17 expression levels were higher in fibrosis heart tissues and TGF-β1-treated mCFs. The ADAM17-specific siRNAs decreased TGF-β1-induced increase in the collagen secretion, proliferation, and migration of mCFs. Knockdown of ADAM17 reduces the activation of mCFs by inhibiting the ATF6 branch of ER stress and further activating mitophagy. Moreover, decreased ADAM17 expression also ameliorated cardiac fibrosis and improved heart function. Conclusions This study highlights that mCF ADAM17 expression plays a key role in cardiac fibrosis by regulating ER stress and mitophagy, thereby limiting fibrosis and improving heart function. Therefore, ADAM17 downregulation, within the physiological range, could exert protective effects against cardiac fibrosis.
Collapse
|
33
|
Wang AP, Yang F, Tian Y, Su JH, Gu Q, Chen W, Gong SX, Ma XF, Qin XP, Jiang ZS. Pulmonary Artery Smooth Muscle Cell Senescence Promotes the Proliferation of PASMCs by Paracrine IL-6 in Hypoxia-Induced Pulmonary Hypertension. Front Physiol 2021; 12:656139. [PMID: 33897463 PMCID: PMC8058366 DOI: 10.3389/fphys.2021.656139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/23/2021] [Indexed: 01/14/2023] Open
Abstract
Pulmonary hypertension (PH) is a critical and dangerous disease in cardiovascular system. Pulmonary vascular remodeling is an important pathophysiological mechanism for the development of pulmonary arterial hypertension. Pulmonary artery smooth muscle cell (PASMC) proliferation, hypertrophy, and enhancing secretory activity are the main causes of pulmonary vascular remodeling. Previous studies have proven that various active substances and inflammatory factors, such as interleukin 6 (IL-6), IL-8, chemotactic factor for monocyte 1, etc., are involved in pulmonary vascular remodeling in PH. However, the underlying mechanisms of these active substances to promote the PASMC proliferation remain to be elucidated. In our study, we demonstrated that PASMC senescence, as a physiopathologic mechanism, played an essential role in hypoxia-induced PASMC proliferation. In the progression of PH, senescence PASMCs could contribute to PASMC proliferation via increasing the expression of paracrine IL-6 (senescence-associated secretory phenotype). In addition, we found that activated mTOR/S6K1 pathway can promote PASMC senescence and elevate hypoxia-induced PASMC proliferation. Further study revealed that the activation of mTOR/S6K1 pathway was responsible for senescence PASMCs inducing PASMC proliferation via paracrine IL-6. Targeted inhibition of PASMC senescence could effectively suppress PASMC proliferation and relieve pulmonary vascular remodeling in PH, indicating a potential for the exploration of novel anti-PH strategies.
Collapse
Affiliation(s)
- Ai-Ping Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China.,Department of Physiology, Institute of Neuroscience, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China.,Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Fang Yang
- Laboratory of Vascular Biology, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Jian-Hui Su
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Qing Gu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Chen
- Department of Physiology, Institute of Neuroscience, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Shao-Xin Gong
- Department of Pathology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xiao-Feng Ma
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Xu-Ping Qin
- Laboratory of Vascular Biology, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
34
|
Abstract
A link between oxidative stress and hypertension has been firmly established in multiple animal models of hypertension but remains elusive in humans. While initial studies focused on inactivation of nitric oxide by superoxide, our understanding of relevant reactive oxygen species (superoxide, hydrogen peroxide, and peroxynitrite) and how they modify complex signaling pathways to promote hypertension has expanded significantly. In this review, we summarize recent advances in delineating the primary and secondary sources of reactive oxygen species (nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, endoplasmic reticulum, and mitochondria), the posttranslational oxidative modifications they induce on protein targets important for redox signaling, their interplay with endogenous antioxidant systems, and the role of inflammasome activation and endoplasmic reticular stress in the development of hypertension. We highlight how oxidative stress in different organ systems contributes to hypertension, describe new animal models that have clarified the importance of specific proteins, and discuss clinical studies that shed light on how these processes and pathways are altered in human hypertension. Finally, we focus on the promise of redox proteomics and systems biology to help us fully understand the relationship between ROS and hypertension and their potential for designing and evaluating novel antihypertensive therapies.
Collapse
Affiliation(s)
- Kathy K Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, USA
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Francisco Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| |
Collapse
|
35
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
36
|
Wang M, Luo P, Shi W, Guo J, Huo S, Yan D, Peng L, Zhang C, Lv J, Lin L, Li S. S-Nitroso-L-Cysteine Ameliorated Pulmonary Hypertension in the MCT-Induced Rats through Anti-ROS and Anti-Inflammatory Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6621232. [PMID: 33574976 PMCID: PMC7861928 DOI: 10.1155/2021/6621232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 12/05/2022]
Abstract
Pulmonary hypertension (PH) is a progressive and life-threatening chronic disease in which increased pulmonary artery pressure (PAP) and pulmonary vasculature remodeling are prevalent. Inhaled nitric oxide (NO) has been used in newborns to decrease PAP in the clinic; however, the effects of NO endogenous derivatives, S-nitrosothiols (SNO), on PH are still unknown. We have reported that S-nitroso-L-cysteine (CSNO), one of the endogenous derivatives of NO, inhibited RhoA activity through oxidative nitrosation of its C16/20 residues, which may be beneficial for both vasodilation and remodeling. In this study, we presented data to show that inhaled CSNO attenuated PAP in the monocrotaline- (MCT-) induced PH rats and, moreover, improved right ventricular (RV) hypertrophy and fibrosis induced by RV overloaded pressure. In addition, aerosolized CSNO significantly inhibited the hyperactivation of signal transducers and activators of transduction 3 (STAT3) and extracellular regulated protein kinases (ERK) pathways in the lung of MCT-induced rats. CSNO also regulated the expression of smooth muscle contractile protein and improved aberrant endoplasmic reticulum (ER) stress and mitophagy in lung tissues following MCT induction. On the other hand, CSNO inhibited reactive oxygen species (ROS) production in vitro, which is induced by angiotensin II (AngII) as well as interleukin 6 (IL-6). In addition, CSNO inhibited excessive ER stress and mitophagy induced by AngII and IL-6 in vitro; finally, STAT3 and ERK phosphorylation was inhibited by CSNO in a concentration-dependent manner. Taken together, CSNO led to pulmonary artery relaxation and regulated pulmonary circulation remodeling through anti-ROS and anti-inflammatory pathways and may be used as a therapeutic option for PH treatment.
Collapse
Affiliation(s)
- Moran Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Luo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengqi Huo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Yan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Shimizu T, Higashijima Y, Kanki Y, Nakaki R, Kawamura T, Urade Y, Wada Y. PERK inhibition attenuates vascular remodeling in pulmonary arterial hypertension caused by BMPR2 mutation. Sci Signal 2021; 14:14/667/eabb3616. [PMID: 33500333 DOI: 10.1126/scisignal.abb3616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease characterized by excessive pulmonary vascular remodeling. However, despite advances in therapeutic strategies, patients with PAH bearing mutations in the bone morphogenetic protein receptor type 2 (BMPR2)-encoding gene present severe phenotypes and outcomes. We sought to investigate the effect of PER-like kinase (PERK), which participates in one of three major pathways associated with the unfolded protein response (UPR), on PAH pathophysiology in BMPR2 heterozygous mice. BMPR2 heterozygosity in pulmonary artery smooth muscle cells (PASMCs) decreased the abundance of the antiapoptotic microRNA miR124-3p through the arm of the UPR mediated by PERK. Hypoxia promoted the accumulation of unfolded proteins in BMPR2 heterozygous PASMCs, resulting in increased PERK signaling, cell viability, cellular proliferation, and glycolysis. Proteomic analyses revealed that PERK ablation suppressed PDGFRβ-STAT1 signaling and glycolysis in hypoxic BMPR2 heterozygous PASMCs. Furthermore, PERK ablation or PERK inhibition ameliorated pulmonary vascular remodeling in the Sugen/chronic hypoxia model of PAH, irrespective of BMPR2 status. Hence, these findings suggest that PERK inhibition is a promising therapeutic strategy for patients with PAH with or without BMPR2 mutation.
Collapse
Affiliation(s)
- Takashi Shimizu
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan. .,Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Yoshiki Higashijima
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan.,Department of Bioinformational Pharmacology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.,Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan.,Laboratory of Laboratory/Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | | | - Takeshi Kawamura
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yoshihiro Urade
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| |
Collapse
|
38
|
Dunmore BJ, Jones RJ, Toshner MR, Upton PD, Morrell NW. Approaches to treat pulmonary arterial hypertension by targeting bmpr2 - from cell membrane to nucleus. Cardiovasc Res 2021; 117:2309-2325. [PMID: 33399862 DOI: 10.1093/cvr/cvaa350] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is estimated to affect between 10-50 people per million worldwide. The lack of cure and devastating nature of the disease means that treatment is crucial to arrest rapid clinical worsening. Current therapies are limited by their focus on inhibiting residual vasoconstriction rather than targeting key regulators of the cellular pathology. Potential disease-modifying therapies may come from research directed towards causal pathways involved in the cellular and molecular mechanisms of disease. It is widely acknowledged, that targeting reduced expression of the critical bone morphogenetic protein type-2 receptor (BMPR2) and its associated signalling pathways is a compelling therapeutic avenue to explore. In this review we highlight the advances that have been made in understanding this pathway and the therapeutics that are being tested in clinical trials and the clinic to treat PAH.
Collapse
Affiliation(s)
- Benjamin J Dunmore
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Rowena J Jones
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Mark R Toshner
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Paul D Upton
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| |
Collapse
|
39
|
Salibe-Filho W, Araujo TLS, G. Melo E, B. C. T. Coimbra L, Lapa MS, Acencio MMP, Freitas-Filho O, Capelozzi VL, Teixeira LR, Fernandes CJCS, Jatene FB, Laurindo FRM, Terra-Filho M. Shear stress-exposed pulmonary artery endothelial cells fail to upregulate HSP70 in chronic thromboembolic pulmonary hypertension. PLoS One 2020; 15:e0242960. [PMID: 33270690 PMCID: PMC7714249 DOI: 10.1371/journal.pone.0242960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/12/2020] [Indexed: 12/31/2022] Open
Abstract
The pathophysiological mechanisms underlying chronic thromboembolic pulmonary hypertension (CTEPH) are still unclear. Endothelial cell (EC) remodeling is believed to contribute to this pulmonary disease triggered by thrombus and hemodynamic forces disbalance. Recently, we showed that HSP70 levels decrease by proatherogenic shear stress. Molecular chaperones play a major role in proteostasis in neurological, cancer and inflammatory/ infectious diseases. To shed light on microvascular responses in CTEPH, we characterized the expression of molecular chaperones and annexin A2, a component of the fibrinolytic system. There is no animal model that reproduces microvascular changes in CTEPH, and this fact led us to isolated endothelial cells from patients with CTEPH undergoing pulmonary endarterectomy (PEA). We exposed CTEPH-EC and control human pulmonary endothelial cells (HPAEC) to high- (15 dynes/cm2) or low- (5 dynes/cm2) shear stress. After high-magnitude shear stress HPAEC upregulated heat shock protein 70kDa (HSP70) and the HSP ER paralogs 78 and 94kDa glucose-regulated protein (GRP78 and 94), whereas CTEPH-ECs failed to exhibit this response. At static conditions, both HSP70 and HSP90 families in CTEPH-EC are decreased. Importantly, immunohistochemistry analysis showed that HSP70 expression was downregulated in vivo, and annexin A2 was upregulated. Interestingly, wound healing and angiogenesis assays revealed that HSP70 inhibition with VER-155008 further impaired CTEPH-EC migratory responses. These results implicate HSP70 as a novel master regulator of endothelial dysfunction in type 4 PH. Overall, we first show that global failure of HSP upregulation is a hallmark of CTEPH pathogenesis and propose HSP70 as a potential biomarker of this condition.
Collapse
Affiliation(s)
- William Salibe-Filho
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| | - Thaís L. S. Araujo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Everton G. Melo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Luiza B. C. T. Coimbra
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Monica S. Lapa
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| | - Milena M. P. Acencio
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| | - Orival Freitas-Filho
- Cardiovascular Surgery Division, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| | - Lisete Ribeiro Teixeira
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| | - Caio J. C. S. Fernandes
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| | - Fabio Biscegli Jatene
- Cardiovascular Surgery Division, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| | - Francisco R. M. Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| | - Mario Terra-Filho
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - São Paulo, Brazil
| |
Collapse
|
40
|
Gao P, Yan Z, Zhu Z. Mitochondria-Associated Endoplasmic Reticulum Membranes in Cardiovascular Diseases. Front Cell Dev Biol 2020; 8:604240. [PMID: 33240899 PMCID: PMC7680862 DOI: 10.3389/fcell.2020.604240] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) and mitochondria are physically connected to form dedicated structural domains known as mitochondria-associated ER membranes (MAMs), which participate in fundamental biological processes, including lipid and calcium (Ca2+) homeostasis, mitochondrial dynamics and other related cellular behaviors such as autophagy, ER stress, inflammation and apoptosis. Many studies have proved the importance of MAMs in maintaining the normal function of both organelles, and the abnormal amount, structure or function of MAMs is related to the occurrence of cardiovascular diseases. Here, we review the knowledge regarding the components of MAMs according to their different functions and the specific roles of MAMs in cardiovascular physiology and pathophysiology, focusing on some highly prevalent cardiovascular diseases, including ischemia-reperfusion, diabetic cardiomyopathy, heart failure, pulmonary arterial hypertension and systemic vascular diseases. Finally, we summarize the possible mechanisms of MAM in cardiovascular diseases and put forward some obstacles in the understanding of MAM function we may encounter.
Collapse
Affiliation(s)
- Peng Gao
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
41
|
Abstract
Acute Respiratory Distress Syndrome is a severe disorder affecting thousands of individuals worldwide. The available medical countermeasures do not sufficiently suppress the unacceptable high mortality rates associated with those in need. Thus, intense efforts aim to delineate the function of the lung endothelium, so to deliver new therapeutic approaches against this disease. The present manuscript attempts to shed light on the interrelations between the unfolded protein response and autophagy towards lung disease, to deliver a new line of possible therapeutic approaches against the ferocious Acute Respiratory Distress Syndrome.
Collapse
Affiliation(s)
- Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| |
Collapse
|
42
|
Xin W, Zhang M, Yu Y, Li S, Ma C, Zhang J, Jiang Y, Li Y, Zheng X, Zhang L, Zhao X, Pei X, Zhu D. BCAT1 binds the RNA-binding protein ZNF423 to activate autophagy via the IRE1-XBP-1-RIDD axis in hypoxic PASMCs. Cell Death Dis 2020; 11:764. [PMID: 32938905 PMCID: PMC7494854 DOI: 10.1038/s41419-020-02930-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Abnormal functional changes in pulmonary artery smooth muscle cells are the main causes of many lung diseases. Among, autophagy plays a crucial role. However, the specific molecular regulatory mechanism of autophagy in PASMCs remains unclear. Here, we first demonstrate that BCAT1 played a key role in the autophagy of hypoxic PASMCs and hypoxic model rats. BCAT1-induced activation and accumulation of the autophagy signaling proteins BECN1 and Atg5 by the endoplasmic reticulum (ER) stress pathway. Interestingly, we discovered that BCAT1 bound IRE1 on the ER to activate expression of its downstream pathway XBP-1-RIDD axis to activate autophagy. More importantly, we identified an RNA-binding protein, zinc finger protein 423, which promoted autophagy by binding adenylate/uridylate (AU)-rich elements in the BCAT1 mRNA 3′-untranslated region. Overall, our results identify BCAT1 as a potential therapeutic target for the clinical treatment of lung diseases and reveal a novel posttranscriptional regulatory mechanism and signaling pathway in hypoxia-induced PASMC autophagy.
Collapse
Affiliation(s)
- Wei Xin
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Min Zhang
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China.,Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China
| | - Yang Yu
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Songlin Li
- College of Pharmacy, Harbin University of Commerce, Harbin, 150076, P.R. China
| | - Cui Ma
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China.,College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Junting Zhang
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Yuan Jiang
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Yiying Li
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Xiaodong Zheng
- Department of Genetic and Cell Biology, Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Lixin Zhang
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China.,College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Xijuan Zhao
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China.,College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Xuzhong Pei
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Daling Zhu
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China. .,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China. .,State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Daqing, 163319, P.R. China. .,Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, 150081, P.R. China.
| |
Collapse
|
43
|
Shi Z, Yin Y, Li C, Ding H, Mu N, Wang Y, Jin S, Ma H, Liu M, Zhou J. Lipocalin-2-induced proliferative endoplasmic reticulum stress participates in Kawasaki disease-related pulmonary arterial abnormalities. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1000-1012. [PMID: 32915407 DOI: 10.1007/s11427-019-1772-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 06/30/2020] [Indexed: 11/30/2022]
Abstract
Clinical cases have reported pulmonary arterial structural and functional abnormalities in patients with Kawasaki disease (KD); however, the underlying mechanisms are unclear. In this study, a KD rat model was established via the intraperitoneal injection of Lactobacillus casei cell wall extract (LCWE). The results showed that pulmonary arterial functional and structural abnormalities were observed in KD rats. Furthermore, proliferative endoplasmic reticulum stress (ER stress) was observed in the pulmonary arteries of KD rats. Notably, the level of lipocalin-2 (Lcn 2), a trigger factor of inflammation, was remarkably elevated in the plasma and lung tissues of KD rats; increased Lcn 2 levels following LCWE stimulation may result from polymorphonuclear neutrophils (PMNs). Correspondingly, in cultured pulmonary artery smooth muscle cells (PASMCs), Lcn 2 markedly augmented the cleavage and nuclear localization of activating transcription factor-6 (ATF6), upregulated the transcription of glucose regulated protein 78 (GRP78) and neurite outgrowth inhibitor (NOGO), and promoted PASMCs proliferation. However, proapoptotic C/EBP homologous protein (CHOP) and caspase 12 levels were not elevated. Treatment with 4-phenyl butyric acid (4-PBA, a specific inhibitor of ER stress) inhibited PASMCs proliferation induced by Lcn 2 and attenuated pulmonary arterial abnormalities and right ventricular hypertrophy and reduced right ventricular systolic pressure in KD rats. In conclusion, Lcn 2 remarkably facilitates proliferative ER stress in PASMCs, which probably accounts for KD-related pulmonary arterial abnormalities.
Collapse
Affiliation(s)
- Zhaoling Shi
- Department of Pediatrics, Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Ding
- Department of Pediatrics, Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Shanshan Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China.
| | - Manling Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jie Zhou
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
44
|
Hu XQ, Song R, Romero M, Dasgupta C, Min J, Hatcher D, Xiao D, Blood A, Wilson SM, Zhang L. Gestational Hypoxia Inhibits Pregnancy-Induced Upregulation of Ca 2+ Sparks and Spontaneous Transient Outward Currents in Uterine Arteries Via Heightened Endoplasmic Reticulum/Oxidative Stress. Hypertension 2020; 76:930-942. [PMID: 32683903 PMCID: PMC7429261 DOI: 10.1161/hypertensionaha.120.15235] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hypoxia during pregnancy profoundly affects uterine vascular adaptation and increases the risk of pregnancy complications, including preeclampsia and fetal intrauterine growth restriction. We recently demonstrated that increases in Ca2+ sparks and spontaneous transient outward currents (STOCs) played an essential role in pregnancy-induced uterine vascular adaptation. In the present study, we hypothesize that gestational hypoxia suppresses Ca2+ sparks/STOCs coupling leading to increased uterine vascular tone via enhanced endoplasmic reticulum (ER)/oxidative stress. Uterine arteries were obtained from nonpregnant and near-term pregnant sheep residing in low altitude or acclimatizing to high-altitude (3801 m) hypoxia for ≈110 days. High-altitude hypoxia suppressed pregnancy-induced upregulation of RyR1 and RyR2 (ryanodine receptor 1 and 2) protein abundance, Ca2+ sparks, and STOCs in uterine arteries. Inhibition of Ca2+ sparks/STOCs with the RyR inhibitor ryanodine significantly increased pressure-dependent myogenic tone in uterine arteries from low-altitude normoxic pregnant animals but not those from high-altitude hypoxic pregnant animals. Gestational hypoxia significantly increased ER/oxidative stress in uterine arteries. Of importance, the hypoxia-mediated suppression of Ca2+ sparks/STOCs and increase in myogenic tone in uterine arteries of pregnant animals were reversed by inhibiting ER/oxidative stress. Of great interest, the impaired sex hormonal regulation of STOCs in high-altitude animals was annulled by scavenging reactive oxygen species but not by inhibiting ER stress. Together, the findings reveal the differential mechanisms of ER and oxidative stresses in suppressing Ca2+ sparks/STOCs and increasing myogenic tone of uterine arteries in hypoxia during gestation, providing new insights into the understanding of pregnancy complications associated with hypoxia.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Rui Song
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Monica Romero
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Chiranjib Dasgupta
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Joseph Min
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Daisy Hatcher
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Daliao Xiao
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Arlin Blood
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Sean M Wilson
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Lubo Zhang
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| |
Collapse
|
45
|
Dunmore BJ, Yang X, Crosby A, Moore S, Long L, Huang C, Southwood M, Austin ED, Rana A, Upton PD, Morrell NW. 4PBA Restores Signaling of a Cysteine-substituted Mutant BMPR2 Receptor Found in Patients with Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2020; 63:160-171. [PMID: 32255665 DOI: 10.1165/rcmb.2019-0321oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mutations in the gene encoding BMPR2 (bone morphogenetic protein type 2 receptor) are the major cause of heritable pulmonary arterial hypertension (PAH). Point mutations in the BMPR2 ligand-binding domain involving cysteine residues (such as C118W) are causative of PAH and predicted to cause protein misfolding. Using heterologous overexpression systems, we showed previously that these mutations lead to retention of BMPR2 in the endoplasmic reticulum but are partially rescued by chemical chaperones. Here, we sought to determine whether the chemical chaperone 4-phenylbutyrate (4PBA) restores BMPR2 signaling in primary cells and in a knockin mouse harboring a C118W mutation. First, we confirmed dysfunctional BMP signaling in dermal fibroblasts isolated from a family with PAH segregating the BMPR2 C118W mutation. After BMP4 treatment, the induction of downstream signaling targets (Smad1/5, ID1 [inhibitor of DNA binding 1], and ID2) was significantly reduced in C118W mutant cells. Treatment with 4PBA significantly rescued Smad1/5, ID1, and ID2 expression. Pulmonary artery smooth muscle cells isolated from the lungs of heterozygous mice harboring the Bmpr2 C118W mutation exhibited significantly increased proliferation. In the presence of 4PBA, hyperproliferation was dramatically reduced. Furthermore, in vivo, 4PBA treatment of Bmpr2 C118W mice partially rescued Bmpr2 expression, restored downstream signaling, and improved vascular remodeling. These findings demonstrate in primary cells and in a knockin mouse that the repurposed small-molecule chemical chaperone 4PBA might be a promising precision medicine approach to treat PAH in patients with specific subtypes of BMPR2 mutation involving cysteine substitutions in the ligand-binding domain.
Collapse
Affiliation(s)
- Benjamin J Dunmore
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, United Kingdom
| | - XuDong Yang
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, United Kingdom
| | - Alexi Crosby
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, United Kingdom
| | - Stephen Moore
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, United Kingdom
| | - Lu Long
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, United Kingdom
| | - Christopher Huang
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, United Kingdom
| | - Mark Southwood
- Pathology Research, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom; and
| | - Eric D Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Amer Rana
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, United Kingdom
| | - Paul D Upton
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, United Kingdom
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, United Kingdom
| |
Collapse
|
46
|
Barabutis N. Unfolded Protein Response in Lung Health and Disease. Front Med (Lausanne) 2020; 7:344. [PMID: 32850879 PMCID: PMC7406640 DOI: 10.3389/fmed.2020.00344] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
The unfolded protein response (UPR) is a complex element, destined to protect the cells against a diverse variety of extracellular and intracellular challenges. UPR activation devises highly efficient responses to counteract cellular threats. If those activities fail, it will dictate cellular execution. The current work focuses on the role of UPR in pulmonary function, by immersing into the highly interrelated network that operates toward the endothelial barrier function. A highly sophisticated UPR manipulation shall reveal new therapeutic possibilities against inflammatory lung disease, such as acute lung injury and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| |
Collapse
|
47
|
Abstract
Background A growing body of literature suggests the cell–intrinsic activity of Atf6α during ER stress responses has implications for tissue cell number during growth and development, as well as in adult biology and tumorigenesis [1]. This concept is important, linking the cellular processes of secretory protein synthesis and endoplasmic reticulum stress response with functional tissue capacity and organ size. However, the field contains conflicting observations, especially notable in secretory cell types like the pancreatic beta cell. Scope of review Here we summarize current knowledge of the basic biology of Atf6α, along with the pleiotropic roles Atf6α plays in cell life and death decisions and possible explanations for conflicting observations. We include studies investigating the roles of Atf6α in cell survival, death and proliferation using well-controlled methodology and specific validated outcome measures, with a focus on endocrine and metabolic tissues when information was available. Major conclusions The net outcome of Atf6α on cell survival and cell death depends on cell type and growth conditions, the presence and degree of ER stress, and the duration and intensity of Atf6α activation. It is unquestioned that Atf6α activity influences the cell fate decision between survival and death, although opposite directions of this outcome are reported in different contexts. Atf6α can also trigger cell cycle activity to expand tissue cell number through proliferation. Much work remains to be done to clarify the many gaps in understanding in this important emerging field.
Collapse
Affiliation(s)
- Rohit B Sharma
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jarin T Snyder
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Laura C Alonso
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
48
|
Zolty R. Pulmonary arterial hypertension specific therapy: The old and the new. Pharmacol Ther 2020; 214:107576. [PMID: 32417272 DOI: 10.1016/j.pharmthera.2020.107576] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 02/08/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a vascular disorder associated with high morbidity and mortality rate and is characterized by pulmonary vascular remodeling and increased pulmonary vascular resistance, ultimately resulting in right ventricular failure and death. Over the past few decades, significant advances in the understanding of the epidemiology, pathogenesis, and pathophysiology of pulmonary arterial hypertension have occured. This has led to the development of disease specific treatment including prostanoids, endothelin receptor antagonists, phosphodiesterase inhibitors, and soluble guanylate cyclase stimulators. These therapies significantly improve exercise capacity, quality of life, pulmonary hemodynamics, but none of the current treatments are actually curative and long-term prognosis remains poor. Thus, there is a clear need to develop new therapies. Several potential pharmacologic agents for the treatment of pulmonary arterial hypertension are under clinical development and some promising results with these treatments have been reported. These agents include tyrosine protein kinase inhibitors, rho-kinase inhibitors, synthetically produced vasoactive intestinal peptide, antagonists of the 5-HT2 receptors, and others. This article will review several of these promising new therapies and will discuss the current evidence regarding their potential benefit in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Ronald Zolty
- Cardiovascular Divisions, 982265 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, United States of America.
| |
Collapse
|
49
|
Murugesan C, Manivannan P, Gangatharan M. Pros and cons in prion diseases abatement: Insights from nanomedicine and transmissibility patterns. Int J Biol Macromol 2020; 145:21-27. [PMID: 31866542 DOI: 10.1016/j.ijbiomac.2019.12.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/27/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022]
Abstract
Ample research progress with nanotechnology applications in health and medicine implies precision and accuracy in the scenario of neurodegenerative disorders, for which impending research in ultimate and complete cure has been the vision worldwide. The complexity of prion disease has been unravelled by scientists and demarcated for efficient abatement protocols, but which are still under research and clinical trials. Drug delivery strategies combating prion diseases across the blood brain barrier, the efficacy of drugs and biocompatibility remain a serious question to be thoroughly studied for effective diagnosis and treatment. The present review compiles comprehensively the current treatment modalities against prion diseases and future prospects of nanotechnology addressing diagnosis and treatment of prion diseases with a special emphasis on transmissibility. Further, approaches for anti-prion technology, immunotherapy, and hindrances in vaccine development are discussed.
Collapse
Affiliation(s)
- Chandrasekaran Murugesan
- Department of Food Science and Biotechnology, 209 Neungdong-ro, Gwangjin-gu, Sejong University, Seoul 05006, Republic of Korea.
| | - Paramasivan Manivannan
- Department of Microbiology, Bharathidasan University, Tiruchirappalli 24, Tamilnadu, India
| | | |
Collapse
|
50
|
Hu Y, Yang W, Xie L, Liu T, Liu H, Liu B. Endoplasmic reticulum stress and pulmonary hypertension. Pulm Circ 2020; 10:2045894019900121. [PMID: 32110387 PMCID: PMC7000863 DOI: 10.1177/2045894019900121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Pulmonary hypertension is a fatal disease of which pulmonary vasculopathy is the main pathological feature resulting in the mean pulmonary arterial pressure higher than 25 mmHg. Moreover, pulmonary hypertension remains a tough problem with unclear molecular mechanisms. There have been dozens of studies about endoplasmic reticulum stress during the onset of pulmonary hypertension in patients, suggesting that endoplasmic reticulum stress may have a critical effect on the pathogenesis of pulmonary hypertension. The review aims to summarize the rationale to elucidate the role of endoplasmic reticulum stress in pulmonary hypertension. Started by reviewing the mechanisms responsible for the unfolded protein response following endoplasmic reticulum stress, the potential link between endoplasmic reticulum stress and pulmonary hypertension were introduced, and the contributions of endoplasmic reticulum stress to different vascular cells, mitochondria, and inflammation were described, and finally the potential therapies of attenuating endoplasmic reticulum stress for pulmonary hypertension were discussed.
Collapse
Affiliation(s)
- Yanan Hu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenhao Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liang Xie
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tao Liu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hanmin Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Bin Liu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|