1
|
Lin J, Zhang X, Ge W, Duan Y, Zhang X, Zhang Y, Dai X, Jiang M, Zhang X, Zhang J, Qiang H, Sun D. Rnd3 Ameliorates Diabetic Cardiac Microvascular Injury via Facilitating Trim40-Mediated Rock1 Ubiquitination. Diabetes 2025; 74:569-584. [PMID: 39792251 DOI: 10.2337/db24-0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
ARTICLE HIGHLIGHTS Impaired cardiac microvascular function is a significant contributor to diabetic cardiomyopathy. Rnd3 expression is notably downregulated in cardiac microvascular endothelial cells under diabetic conditions. Rnd3 overexpression mitigates diabetic myocardial microvascular injury and improves cardiac function through the Rock1/myosin light chain signaling pathway. Rnd3 facilitates the recruitment and interaction with Trim40 to promote Rock1 ubiquitination, thereby preserving endothelial barrier integrity in the diabetic heart.
Collapse
Affiliation(s)
- Jie Lin
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Wen Ge
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yu Duan
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xiao Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xinchun Dai
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xiaohua Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jiye Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Huanhuan Qiang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Wu L, Zhu X, Pan S, Chen Y, Luo C, Zhao Y, Xing J, Shi K, Zhang S, Li J, Chai J, Ling X, Qiu J, Wang Y, Shen Z, Jie W, Guo J. Diabetes Advances Cardiomyocyte Senescence Through Interfering Rnd3 Expression and Function. Aging Cell 2025:e70031. [PMID: 40025898 DOI: 10.1111/acel.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025] Open
Abstract
Rnd3 is a small Rho-GTPase that has been implicated in various cardiovascular diseases. Yet, its role in diabetes-induced cardiomyocyte senescence remains unknown. Here we tested the role of Rnd3 in cardiomyocyte senescence and diabetic cardiomyopathy (DCM). The expression of Rnd3 was found to be reduced in peripheral blood mononuclear cells from diabetic patients and correlated negatively with age but positively with cardiac function. In 96-week-old Sprague Dawley (SD) rats, cardiac function was impaired, accompanied by an increased number of SA-β-gal-positive cells and elevated levels of the senescence-associated secretory phenotype (SASP) related factors, compared to those of 12-week-old rats. Diabetes and high glucose (HG, 35 mmol/L D-glucose) suppressed Rnd3 expression in cardiomyocytes and induced cardiomyocyte senescence. The deficiency of Rnd3 exacerbated cardiomyocyte senescence in vitro and in vivo. MicroRNA sequencing in AC16 cells identified a conserved miR-103a-3p (present in humans and rats) as a key HG-upregulated microRNA that bound to the Rnd3 3'-UTR. In cultured cardiomyocytes, miR-103a-3p inhibitors antagonized HG-induced cardiomyocyte senescence dependent on Rnd3 expression. Treatment with AAV9 vectors carrying miR-103a-3p sponges and Rnd3-overexpressing plasmids alleviated cardiomyocyte senescence and restored cardiac function in diabetic SD rats. HG stimulation increased STAT3 (Tyr705) phosphorylation and promoted its nuclear translocation in H9C2 cells, an effect exacerbated by Rnd3 knockout. Mechanistically, Rnd3 interacted with p-STAT3 in the cytoplasm, facilitating proteasome-mediated ubiquitination and p-STAT3 degradation. The STAT3 inhibitor S3I-201 blocked HG-induced STAT3 activation and mitigated cardiomyocyte senescence. These findings suggest that diabetes induces cardiomyocyte senescence via the miR-103a-3p/Rnd3/STAT3 signaling pathway, highlighting a potential therapeutic target for DCM.
Collapse
Affiliation(s)
- Linxu Wu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
- Public Research Center of Hainan Medical University, Haikou, China
| | - Xinglin Zhu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Shanshan Pan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Yan Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Cai Luo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Yangyang Zhao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Jingci Xing
- Department of Pathology and Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, China
| | - Kaijia Shi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Shuya Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Jiaqi Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Jinxuan Chai
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Xuebin Ling
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jianmin Qiu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Yan Wang
- Public Research Center of Hainan Medical University, Haikou, China
| | - Zhihua Shen
- Department of Pathology and Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, China
| | - Wei Jie
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Junli Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
Ge W, Zhang X, Lin J, Wang Y, Zhang X, Duan Y, Dai X, Zhang J, Zhang Y, Jiang M, Qiang H, Zhao Z, Zhang X, Sun D. Rnd3 protects against doxorubicin-induced cardiotoxicity through inhibition of PANoptosis in a Rock1/Drp1/mitochondrial fission-dependent manner. Cell Death Dis 2025; 16:2. [PMID: 39755713 DOI: 10.1038/s41419-024-07322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025]
Abstract
Doxorubicin, a representative drug of the anthracycline class, is widely used in cancer treatment. However, Doxorubicin-induced cardiotoxicity (DIC) presents a significant challenge in its clinical application. Mitochondrial dysfunction plays a central role in DIC, primarily through disrupting mitochondrial dynamics. This study aimed to investigate the impact of Rnd3 (a Rho family GTPase 3) on DIC, with a focus on mitochondrial dynamics. Cardiomyocyte-specific Rnd3 transgenic mice (Rnd3-Tg) and Rnd3LSP/LSP mice (N-Tg) were established for in vivo experiments, and adenoviruses harboring Rnd3 (Ad-Rnd3) or negative control (Ad-Control) were injected in the myocardium for in vitro experiments. The DIC model was established using wild-type, N-Tg, and Rnd3-Tg mice, with subsequent intraperitoneal injection of Dox for 4 weeks. The molecular mechanism was explored through RNA sequencing, immunofluorescence staining, co-immunoprecipitation assay, and protein-protein docking. Dox administration induced significant mitochondrial injury and cardiac dysfunction, which was ameliorated by Rnd3 overexpression. Further, the augmentation of Rnd3 expression mitigated mitochondrial fragmentation which is mediated by dynamin-related protein 1 (Drp1), thereby ameliorating the PANoptosis (pyroptosis, apoptosis, and necroptosis) response induced by Dox. Mechanically, the interaction between Rnd3 and Rho-associated kinase 1 (Rock1) may impede Rock1-induced Drp1 phosphorylation at Ser616, thus inhibiting mitochondrial fission and dysfunction. Interestingly, Rock1 knockdown nullified the effects of Rnd3 on cardiomyocytes PANoptosis, as well as Dox-induced cardiac remodeling and dysfunction elicited by Rnd3. Rnd3 enhances cardiac resilience against DIC by stabilizing mitochondrial dynamics and reducing PANoptosis. Our findings suggest that the Rnd3/Rock1/Drp1 signaling pathway represents a novel target for mitigating DIC, and modulating Rnd3 expression could be a strategic approach to safeguarding cardiac function in patients undergoing Dox treatment. The graphical abstract illustrated the cardioprotective role of Rnd3 in DIC. Rnd3 directly binds to Rock1 in cytoplasm and ameliorates mitochondrial fission by inhibiting Drp1 phosphorylation at ser616, thereby alleviating PANoptosis (apoptosis, pyroptosis, and necroptosis) in DIC.
Collapse
Affiliation(s)
- Wen Ge
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaohua Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yangyang Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiao Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Duan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xinchun Dai
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiye Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huanhuan Qiang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhijing Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Yu C, Qiu Y, Yao F, Wang C, Li J. Chemically Programmed Hydrogels for Spatiotemporal Modulation of the Cardiac Pathological Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404264. [PMID: 38830198 DOI: 10.1002/adma.202404264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/20/2024] [Indexed: 06/05/2024]
Abstract
After myocardial infarction (MI), sustained ischemic events induce pathological microenvironments characterized by ischemia-hypoxia, oxidative stress, inflammatory responses, matrix remodeling, and fibrous scarring. Conventional clinical therapies lack spatially targeted and temporally responsive modulation of the infarct microenvironment, leading to limited myocardial repair. Engineered hydrogels have a chemically programmed toolbox for minimally invasive localization of the pathological microenvironment and personalized responsive modulation over different pathological periods. Chemically programmed strategies for crosslinking interactions, interfacial binding, and topological microstructures in hydrogels enable minimally invasive implantation and in situ integration tailored to the myocardium. This enhances substance exchange and signal interactions within the infarcted microenvironment. Programmed responsive polymer networks, intelligent micro/nanoplatforms, and biological therapeutic cues contribute to the formation of microenvironment-modulated hydrogels with precise targeting, spatiotemporal control, and on-demand feedback. Therefore, this review summarizes the features of the MI microenvironment and chemically programmed schemes for hydrogels to conform, integrate, and modulate the cardiac pathological microenvironment. Chemically programmed strategies for oxygen-generating, antioxidant, anti-inflammatory, provascular, and electrointegrated hydrogels to stimulate iterative and translational cardiac tissue engineering are discussed.
Collapse
Affiliation(s)
- Chaojie Yu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Yuwei Qiu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Changyong Wang
- Tissue Engineering Research Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
5
|
Wu L, Zhu X, Luo C, Zhao Y, Pan S, Shi K, Chen Y, Qiu J, Shen Z, Guo J, Jie W. Mechanistic role of RND3-regulated IL33/ST2 signaling on cardiomyocyte senescence. Life Sci 2024; 348:122701. [PMID: 38724005 DOI: 10.1016/j.lfs.2024.122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Hyperinflammatory responses are pivotal in the cardiomyocyte senescence pathophysiology, with IL33 serving as a crucial pro-inflammatory mediator. Our previous findings highlighted RND3's suppressive effect on IL33 expression. This study aims to explore the role of RND3 in IL33/ST2 signaling activation and in cardiomyocyte senescence. Intramyocardial injection of exogenous IL33 reduces the ejection fraction and fractional shortening of rats, inducing the appearance of senescence-associated secretory phenotype (SASP) in myocardial tissues. Recombinant IL33 treatment of AC16 cardiomyocytes significantly upregulated expression of SASP factors like IL1α, IL6, and MCP1, and increased the p-p65/p65 ratio and proportions of SA-β-gal and γH2AX-positive cells. NF-κB inhibitor pyrrolidinedithiocarbamate ammonium (PDTC) and ST2 antibody astegolimab treatments mitigated above effects. RND3 gene knockout H9C2 cardiomyocytes using CRISPR/Cas9 technology upregulated IL33, ST2L, IL1α, IL6, and MCP1 levels, decreased sST2 levels, and increased SA-β-gal and γH2AX-positive cells. A highly possibility of binding between RND3 and IL33 proteins was showed by molecular docking and co-immunoprecipitation, and loss of RND3 attenuated ubiquitination mediated degradation of IL33; what's more, a panel of ubiquitination regulatory genes closely related to RND3 were screened using qPCR array. In contrast, RND3 overexpression in rats by injection of AAV9-CMV-RND3 particles inhibited IL33, ST2L, IL1α, IL6, and MCP1 expression in cardiac tissues, decreased serum IL33 levels, and increased sST2 levels. These results suggest that RND3 expression in cardiomyocytes modulates cell senescence by inhibiting the IL33/ST2/NF-κB signaling pathway, underscoring its potential as a therapeutic target in cardiovascular senescence.
Collapse
Affiliation(s)
- Linxu Wu
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China; Public Research Center of Hainan Medical University, Haikou 571199, P.R. China
| | - Xinglin Zhu
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Cai Luo
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Yangyang Zhao
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Shanshan Pan
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Kaijia Shi
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Yan Chen
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Jianmin Qiu
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Zhihua Shen
- Department of Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, P.R. China.
| | - Junli Guo
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China.
| | - Wei Jie
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China.
| |
Collapse
|
6
|
Hu W, Wang M, Sun G, Zhang L, Lu H. RND3 modulates microglial polarization and alleviates neuroinflammation in Parkinson's disease by suppressing NLRP3 inflammasome activation. Exp Cell Res 2024; 439:114088. [PMID: 38744409 DOI: 10.1016/j.yexcr.2024.114088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Neuroinflammation mediated by microglia plays an important role in the etiology of Parkinson's disease (PD). Rho family GTPase 3 (RND3) exerts anti-inflammatory effects and may act as a potential new inducer of neuroprotective phenotypes in microglia. However, whether RND3 can be used to regulate microglia activation or reduce neuroinflammation in PD remains elusive. The study investigated the microglia modulating effects and potential anti-inflammatory effects of RND3 in vivo and in vitro, using animal models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD and cell models of BV-2 cells stimulated by LPS plus IFN-γ with or without RND3-overexpression. The results showed that RND3 was highly expressed in the MPTP-induced PD mouse model and BV-2 cells treated with LPS and IFN-γ. In vivo experiments confirmed that RND3 overexpression could modulate microglia phenotype and ameliorate MPTP-induced neuroinflammation through inhibiting activation of the NLRP3 inflammasome in substantia nigra pars compacta (SNpc). In vitro study showed that RND3 overexpression could attenuate the production of pro-inflammatory factors in BV2 cells stimulated by LPS and IFN-γ. Mechanistically, RND3 reduced the activation of the NLRP3 inflammasome upon LPS and IFN-γ stimulation. Taken together, these findings suggest that RND3 modulates microglial polarization and alleviates neuroinflammation in Parkinson's disease by suppressing NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Wentao Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Menghan Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guifang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Limin Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
7
|
Hu F, Hu T, Qiao Y, Huang H, Zhang Z, Huang W, Liu J, Lai S. Berberine inhibits excessive autophagy and protects myocardium against ischemia/reperfusion injury via the RhoE/AMPK pathway. Int J Mol Med 2024; 53:49. [PMID: 38577949 PMCID: PMC10999226 DOI: 10.3892/ijmm.2024.5373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Several studies have shown that berberine (BBR) is effective in protecting against myocardial ischemia‑reperfusion injury (MI/RI). However, the precise molecular mechanism remains elusive. The present study observed the mechanism and the safeguarding effect of BBR against hypoxia/reoxygenation (H/R) myocardial injury in H9c2 cells. BBR pretreatment significantly improved the decrease of cell viability, P62 protein, Rho Family GTPase 3 (RhoE) protein, ubiquinone subunit B8 protein, ubiquinol‑cytochrome c reductase core protein U, the Bcl‑2‑associated X protein/B‑cell lymphoma 2 ratio, glutathione (GSH) and the GSH/glutathione disulphide (GSSG) ratio induced by H/R, while reducing the increase in lactate dehydrogenase, microtubule‑associated protein 1 light 3 protein, caspase‑3 activity, reactive oxygen species, GSSG and malonaldehyde caused by H/R. Transmission electron microscopy and LysoTracker Red DND‑99 staining results showed that BBR pretreatment inhibited H/R‑induced excessive autophagy by mediating RhoE. BBR also inhibited mitochondrial permeability transition, maintained the stability of the mitochondrial membrane potential, reduced the apoptotic rate, and increased the level of caspase‑3. However, the protective effects of BBR were attenuated by pAD/RhoE‑small hairpin RNA, rapamycin (an autophagy activator) and compound C (an AMP‑activated protein kinase inhibitor). These new findings suggested that BBR protects the myocardium from MI/RI by inhibiting excessive autophagy, maintaining mitochondrial function, improving the energy supply and redox homeostasis, and attenuating apoptosis through the RhoE/AMP‑activated protein kinase pathway.
Collapse
Affiliation(s)
- Fajia Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tie Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yamei Qiao
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huang Huang
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zeyu Zhang
- Institute of Nanchang University Trauma Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenxiong Huang
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jichun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Songqing Lai
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
8
|
Xu Q, Xiao Z, Yang Q, Yu T, Deng X, Chen N, Huang Y, Wang L, Guo J, Wang J. Hydrogel-based cardiac repair and regeneration function in the treatment of myocardial infarction. Mater Today Bio 2024; 25:100978. [PMID: 38434571 PMCID: PMC10907859 DOI: 10.1016/j.mtbio.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
A life-threatening illness that poses a serious threat to human health is myocardial infarction. It may result in a significant number of myocardial cells dying, dilated left ventricles, dysfunctional heart function, and ultimately cardiac failure. Based on the development of emerging biomaterials and the lack of clinical treatment methods and cardiac donors for myocardial infarction, hydrogels with good compatibility have been gradually applied to the treatment of myocardial infarction. Specifically, based on the three processes of pathophysiology of myocardial infarction, we summarized various types of hydrogels designed for myocardial tissue engineering in recent years, including natural hydrogels, intelligent hydrogels, growth factors, stem cells, and microRNA-loaded hydrogels. In addition, we also describe the heart patch and preparation techniques that promote the repair of MI heart function. Although most of these hydrogels are still in the preclinical research stage and lack of clinical trials, they have great potential for further application in the future. It is expected that this review will improve our knowledge of and offer fresh approaches to treating myocardial infarction.
Collapse
Affiliation(s)
- Qiaxin Xu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510630, China
| | - Qianzhi Yang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Tingting Yu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Xiujiao Deng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Nenghua Chen
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Lihong Wang
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Endocrinology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jun Guo
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
9
|
de Ávila MJR, López-López S, García-Blázquez A, Ruiz-García A, González-Gómez MJ, Nueda ML, Baladrón V, Pérez-Roger I, Poch E, Ballester-Lurbe B, García-Ramírez JJ, Monsalve EM, Díaz-Guerra MJM. RND3 Potentiates Proinflammatory Activation through NOTCH Signaling in Activated Macrophages. J Immunol Res 2024; 2024:2264799. [PMID: 38343633 PMCID: PMC10857877 DOI: 10.1155/2024/2264799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/27/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Macrophage activation is a complex process with multiple control elements that ensures an adequate response to the aggressor pathogens and, on the other hand, avoids an excess of inflammatory activity that could cause tissue damage. In this study, we have identified RND3, a small GTP-binding protein, as a new element in the complex signaling process that leads to macrophage activation. We show that RND3 expression is transiently induced in macrophages activated through Toll receptors and potentiated by IFN-γ. We also demonstrate that RND3 increases NOTCH signaling in macrophages by favoring NOTCH1 expression and its nuclear activity; however, Rnd3 expression seems to be inhibited by NOTCH signaling, setting up a negative regulatory feedback loop. Moreover, increased RND3 protein levels seem to potentiate NFκB and STAT1 transcriptional activity resulting in increased expression of proinflammatory genes, such as Tnf-α, Irf-1, or Cxcl-10. Altogether, our results indicate that RND3 seems to be a new regulatory element which could control the activation of macrophages, able to fine tune the inflammatory response through NOTCH.
Collapse
Affiliation(s)
- María José Romero de Ávila
- Medical School, Biomedicine Institute (IB-UCLM)/Biomedicine Unit, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008, Albacete, Spain
| | - Susana López-López
- Medical School, Biomedicine Institute (IB-UCLM)/Biomedicine Unit, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008, Albacete, Spain
- Research Unit, University Hospital Complex of Albacete, C/Laurel s/n, 02008, Albacete, Spain
| | - Aarón García-Blázquez
- Medical School, Biomedicine Institute (IB-UCLM)/Biomedicine Unit, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008, Albacete, Spain
| | - Almudena Ruiz-García
- Biochemistry and Molecular Biology Branch, School of Pharmacy/CRIB/Biomedicine Unit, Department of Inorganic and Organic Chemistry and Biochemistry, University of Castilla-La Mancha/CSIC, Albacete, Spain
| | - María Julia González-Gómez
- Medical School, Biomedicine Institute (IB-UCLM)/Biomedicine Unit, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008, Albacete, Spain
| | - María Luisa Nueda
- Biochemistry and Molecular Biology Branch, School of Pharmacy/CRIB/Biomedicine Unit, Department of Inorganic and Organic Chemistry and Biochemistry, University of Castilla-La Mancha/CSIC, Albacete, Spain
| | - Victoriano Baladrón
- Medical School, Biomedicine Institute (IB-UCLM)/Biomedicine Unit, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008, Albacete, Spain
| | - Ignacio Pérez-Roger
- Department of Biomedical Sciences School of Health Sciences, University Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, E-46115 Alfara del Patriarca, Valencia, Spain
| | - Enric Poch
- Department of Biomedical Sciences School of Health Sciences, University Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, E-46115 Alfara del Patriarca, Valencia, Spain
| | - Begoña Ballester-Lurbe
- Department of Biomedical Sciences School of Health Sciences, University Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, E-46115 Alfara del Patriarca, Valencia, Spain
| | - José Javier García-Ramírez
- Medical School, Biomedicine Institute (IB-UCLM)/Biomedicine Unit, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008, Albacete, Spain
| | - Eva M. Monsalve
- Medical School, Biomedicine Institute (IB-UCLM)/Biomedicine Unit, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008, Albacete, Spain
| | - María José M. Díaz-Guerra
- Medical School, Biomedicine Institute (IB-UCLM)/Biomedicine Unit, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008, Albacete, Spain
| |
Collapse
|
10
|
Gao X, Li S, Wang W, Zhang X, Yu X, Fan C, Li W, Yang C, Wang L, Ji Q. Caspase-3 and gasdermin E mediate macrophage pyroptosis in periodontitis. J Periodontal Res 2024; 59:140-150. [PMID: 37885312 DOI: 10.1111/jre.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND AND OBJECTIVES Periodontitis is a chronic inflammatory disease linked to pyroptosis, an inflammatory cell death process. Macrophages are essential for maintaining microenvironment homeostasis, which is crucial for periodontal health. This study explores the mechanisms underlying the relationship between macrophage pyroptosis and periodontitis. METHODS Expression of the pyroptosis marker gasdermin E (GSDME) and the macrophage surface marker CD68 was examined by immunofluorescence double staining in healthy and periodontitis gingival tissues. In an in vitro pyroptosis model, RAW264.7 cells were irritated using Porphyromonas gingivalis-lipopolysaccharide (P. gingivalis-LPS) after treatment with either a nuclear factor kappa-B (NF-κB) agonist or inhibitor. The mRNA and protein levels of NF-κB, caspase-3, GSDME, and interleukin-1β (IL-1β) were evaluated through qRT-PCR, western blotting, and ELISA techniques. RESULTS GSDME and CD68 were heavily elevated in inflamed gingival tissues compared to healthy tissues and co-localized in the same region. Furthermore, exposure to P. gingivalis-LPS resulted in a significant upregulation of NF-κB, caspase-3, GSDME, and IL-1β at both the mRNA and protein levels in RAW264.7 cells. NF-κB agonist or inhibitor pretreatment enhanced or inhibited these effects. CONCLUSIONS GSDME-mediated macrophage pyroptosis is implicated in periodontitis. Based on in vitro experiments, P. gingivalis-LPS causes pyroptosis in RAW264.7 cells through the caspase-3/GSDME pathway. Furthermore, NF-κB regulates this pyroptotic pathway.
Collapse
Affiliation(s)
- Xiangru Gao
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Shuhan Li
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Wenxuan Wang
- Department of Stomatology, Qingdao West Coast New Area Central Hospital, Qingdao, China
| | - Xiangyan Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinbo Yu
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chun Fan
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Li
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caixiu Yang
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Lei Wang
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiuxia Ji
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Carmo HRP, Bonilha I, Barreto J, Tognolini M, Zanotti I, Sposito AC. High-Density Lipoproteins at the Interface between the NLRP3 Inflammasome and Myocardial Infarction. Int J Mol Sci 2024; 25:1290. [PMID: 38279290 PMCID: PMC10816227 DOI: 10.3390/ijms25021290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Despite significant therapeutic advancements, morbidity and mortality following myocardial infarction (MI) remain unacceptably high. This clinical challenge is primarily attributed to two significant factors: delayed reperfusion and the myocardial injury resulting from coronary reperfusion. Following reperfusion, there is a rapid intracellular pH shift, disruption of ionic balance, heightened oxidative stress, increased activity of proteolytic enzymes, initiation of inflammatory responses, and activation of several cell death pathways, encompassing apoptosis, necroptosis, and pyroptosis. The inflammatory cell death or pyroptosis encompasses the activation of the intracellular multiprotein complex known as the NLRP3 inflammasome. High-density lipoproteins (HDL) are endogenous particles whose components can either promote or mitigate the activation of the NLRP3 inflammasome. In this comprehensive review, we explore the role of inflammasome activation in the context of MI and provide a detailed analysis of how HDL can modulate this process.
Collapse
Affiliation(s)
- Helison R. P. Carmo
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| | - Isabella Bonilha
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| | - Joaquim Barreto
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| | | | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Andrei C. Sposito
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| |
Collapse
|
12
|
Liu W, Hu C, Long L, He S, Zhang W, Wang Z, Yang L, Wang Y. An injectable carrier for spatiotemporal and sequential release of therapeutic substances to treat myocardial infarction. J Control Release 2024; 365:29-42. [PMID: 37931807 DOI: 10.1016/j.jconrel.2023.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Myocardial infarction (MI) has become the primary cause of cardiovascular mortality, while the current treatment methods in clinical all have their shortcomings. Injectable biomaterials have emerged as a promising solution for cardiac tissue repair after MI. In this study, we designed a smart multifunctional carrier that could meet the treatment needs of different MI pathological processes by programmatically releasing different therapeutic substances. The carrier could respond to inflammatory microenvironment in the early stage of MI with rapid release of curcumin (Cur), and then sustained release recombinant humanized collagen type III (rhCol III) to treat MI. The rapid release of Cur reduced inflammation and apoptosis in the early stages, while the sustained release of rhCol III promoted angiogenesis and cardiac repair in the later stages. In vitro and in vivo results suggested that the multifunctional carrier could effectively improve cardiac function, promote the repair of infarcted tissue, and inhibit ventricular remodeling by reducing cell apoptosis and inflammation, and promoting angiogenesis in the different pathological processes of MI. Therefore, this programmed-release carrier provides a promising protocol for MI therapy.
Collapse
Affiliation(s)
- Wenqi Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Linyu Long
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Shuyi He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Wen Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Zhicun Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Li Yang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
13
|
Hu S, Liang Y, Chen J, Gao X, Zheng Y, Wang L, Jiang J, Zeng M, Luo M. Mechanisms of hydrogel-based microRNA delivery systems and its application strategies in targeting inflammatory diseases. J Tissue Eng 2024; 15:20417314241265897. [PMID: 39092451 PMCID: PMC11292707 DOI: 10.1177/20417314241265897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024] Open
Abstract
Hydrogels, composed of three-dimensional polymer networks, are excellent delivery carriers and have been extensively employed in the biomedical field. Inflammation acts as a protective mechanism to prevent harmful substances from entering living organisms, but chronic, long-lasting inflammation can cause oxidative stress, which damages tissue and organs and adversely affects patients' quality of life. The aberrant expression of microRNAs (miRNAs) has been found to play a significant part in the etiology and progression of inflammatory diseases, as suggested by growing evidence. Numerous hydrogels that can act as gene carriers for the intracellular delivery of miRNA have been described during ongoing research into innovative hydrogel materials. MiRNA hydrogel delivery systems, which are loaded with exogenous miRNA inhibitors or mimics, enable targeted miRNA intervention in inflammatory diseases and effectively prevent environmental stressors from degrading or inactivating miRNA. In this review, we summarize the classification of miRNA hydrogel delivery systems, the basic strategies and mechanisms for loading miRNAs into hydrogels, highlight the biomedical applications of miRNA hydrogel delivery systems in inflammatory diseases, and share our viewpoints on potential opportunities and challenges in the promising region of miRNA delivery systems. These findings may provide a new theoretical basis for the prevention and treatment of inflammation-related diseases and lay the foundation for clinical translation.
Collapse
Affiliation(s)
- Shaorun Hu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Yu Liang
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jinxiang Chen
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Xiaojun Gao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Liqun Wang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| |
Collapse
|
14
|
Zhou H, Yan L, Huang H, Li X, Xia Q, Zheng L, Shao B, Gao Q, Sun N, Shi J. Tat-NTS peptide protects neurons against cerebral ischemia-reperfusion injury via ANXA1 SUMOylation in microglia. Theranostics 2023; 13:5561-5583. [PMID: 37908731 PMCID: PMC10614677 DOI: 10.7150/thno.85390] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
Rationale: Recent studies indicate that microglial activation and the resulting inflammatory response could be potential targets of adjuvant therapy for ischemic stroke. Many studies have emphasized a well-established function of Annexin-A1 (ANXA1) in the immune system, including the regulation of microglial activation. Nevertheless, few therapeutic interventions targeting ANXA1 in microglia for ischemic stroke have been conducted. In the present study, Tat-NTS, a small peptide developed to prevent ANXA1 from entering the nucleus, was utilized. We discovered the underlying mechanism that Tat-NTS peptide targets microglial ANXA1 to protect against ischemic brain injury. Methods: Preclinical studies of ischemic stroke were performed using an oxygen-glucose deprivation and reperfusion (OGD/R) cell model in vitro and the middle cerebral artery occlusion (MCAO) animal model of ischemic stroke in vivo. Confocal imaging and 3D reconstruction analyses for detecting the protein expression and subcellular localization of microglia in vivo. Co-immunoprecipitation (Co-IP), immunoblotting, ELISA, quantitative real-time PCR (qRT-PCR), Luciferase reporter assay for determining the precise molecular mechanism. Measurement on the cytotoxicity of Tat-NTS peptide for microglia was assessed by CCK-8 and LDH assay. TUNEL staining was used to detect the microglia conditioned medium-mediated neuronal apoptosis. Adeno-associated viruses (AAVs) were injected into the cerebral cortex, striatum and hippocampal CA1 region of adult male Cx3cr1-Cre mice, to further verify the neurofunctional outcome and mechanism of Tat-NTS peptide by TTC staining, the modified Neurological Severity Score (mNSS) test, the open field test (OFT), the novel object recognition task (NORT), the Morris water maze (MWM) test, the long-term potentiation (LTP) and the Transmission electron microscopy (TEM). Results: It was observed that administration of Tat-NTS led to a shift of subcellular localization of ANXA1 in microglia from the nucleus to the cytoplasm in response to ischemic injury. Notably, this shift was accompanied by an increase in ANXA1 SUMOylation in microglia and a transformation of microglia towards an anti-inflammatory phenotype. We confirmed that Tat-NTS-induced ANXA1 SUMOylation in microglia mediated IKKα degradation via NBR1-dependent selective autophagy, then blocking the activation of the NF-κB pathway. As a result, the expression and release of the pro-inflammatory factors IL-1β and TNF-α were reduced in both in vitro and in vivo experiments. Furthermore, we found that Tat-NTS peptide's protective effect on microglia relieved ischemic neuron apoptosis. Finally, we demonstrated that Tat-NTS peptide administration, through induction of ANXA1 SUMOylation in microglia, reduced infarct volume, improved neurological function and facilitated behavioral recovery in MCAO mice. Conclusions: Our study provides evidence for a novel mechanism of Tat-NTS peptide in regulating microglial ANXA1 function and its substantial neuroprotective effect on neurons with ischemic injuries. These findings suggest that Tat-NTS peptides have a high potential for clinical application and may be a promising therapeutic candidate for treating cerebral ischemia.
Collapse
Affiliation(s)
- Huijuan Zhou
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, China
| | - Lulu Yan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, China
| | - Hezhou Huang
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, China
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xing Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qian Xia
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lu Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Bin Shao
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, China
| | - Qian Gao
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, China
| | - Ning Sun
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, China
| | - Jing Shi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, China
| |
Collapse
|
15
|
Wang Y, Li J, Han H, Huang H, Du H, Cheng L, Ma C, Cai Y, Li G, Tao J, Cheng P. Application of locally responsive design of biomaterials based on microenvironmental changes in myocardial infarction. iScience 2023; 26:107662. [PMID: 37670787 PMCID: PMC10475519 DOI: 10.1016/j.isci.2023.107662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Morbidity and mortality caused by acute myocardial infarction (AMI) are on the rise, posing a grave threat to the health of the general population. Up to now, interventional, surgical, and pharmaceutical therapies have been the main treatment methods for AMI. Effective and timely reperfusion therapy decreases mortality, but it cannot stimulate myocardial cell regeneration or reverse ventricular remodeling. Cell therapy, gene therapy, immunotherapy, anti-inflammatory therapy, and several other techniques are utilized by researchers to improve patients' prognosis. In recent years, biomaterials for AMI therapy have become a hot spot in medical care. Biomaterials furnish a microenvironment conducive to cell growth and deliver therapeutic factors that stimulate cell regeneration and differentiation. Biomaterials adapt to the complex microenvironment and respond to changes in local physical and biochemical conditions. Therefore, environmental factors and material properties must be taken into account when designing biomaterials for the treatment of AMI. This article will review the factors that need to be fully considered in the design of biological materials.
Collapse
Affiliation(s)
- Yiren Wang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Junlin Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hukui Han
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huihui Huang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huan Du
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lianying Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Cui Ma
- Department of Mathematics, Army Medical University, Chongqing 400038, China
| | - Yongxiang Cai
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu 610072, China
| |
Collapse
|
16
|
Choo SP, Lee I, Lee JH, Lee D, Park H, Park JH, Cho S, Choi YS. Transcriptomic patterns in early-secretory and mid-secretory endometrium in a natural menstrual cycle immediately before in vitro fertilization and embryo transfer. Obstet Gynecol Sci 2023; 66:417-429. [PMID: 37460099 PMCID: PMC10514596 DOI: 10.5468/ogs.22315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/06/2023] [Accepted: 06/04/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the endometrial transcriptomic patterns in the early secretory phase (ESP) and mid-secretory phase (MSP) of the natural menstrual cycle before in vitro fertilization and embryo transfer (IVF-ET). METHODS Thirty patients whose endometrial tissues were obtained from the ESP or MSP of a natural menstrual cycle immediately before IVF-ET were included. Endometrial dating was histologically confirmed as ESP (cycle days 16-18) or MSP (cycle days 19-21), according to the noyes criteria. The patients were divided into two groups depending on the IVF-ET outcome: pregnant (n=14; 7 in ESP and 7 in MSP) or non-pregnant (n=16; 8 in ESP and 8 in MSP). Differentially expressed genes (DEGs) in the MSP, compared to the ESP, were identified using NanoString nCounter (NanoString Technologies, Seattle, WA, USA) data for both the pregnant and non-pregnant groups. RESULTS Thirteen DEGs in the pregnant group and 11 DEGs in the non-pregnant group were identified in the MSP compared to those in the ESP. In both groups, adrenoceptor alpha 2A, interleukin 1 receptor-associated kinase 2, a disintegrin and metalloproteinase with thrombospondin repeats 15 (ADAMTS15), serpin family E member 1, integrin subunit beta 3, transmembrane protein 252 (TMEM252), huntingtin associated protein 1, C2 calcium-dependent domain containing 4A, and integrin subunit alpha 2 were upregulated in the MSP, compared to the ESP. TMEM37, galactosidase beta 1 like 2, Rho family GTPase 3, and cytochrome P450 family 24 subfamily A member 1 were upregulated in the MSP only in the pregnant group. ADAMTS8 was downregulated and monoamine oxidase A was upregulated in the MSP only in the non-pregnant group. CONCLUSION Transcriptomic patterns in the endometrium immediately before IVF-ET appear to differ according to the IVF-ET outcome. These novel DEGs, which have not been previously studied, may have functional significance during the window of implantation and serve as potential biomarkers of endometrial receptivity.
Collapse
Affiliation(s)
- Sung Pil Choo
- Department of Obstetrics and Gynecology, Inha University Hospital, College of Medicine, Inha University, Incheon,
Korea
| | - Inha Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul,
Korea
| | - Jae-Hoon Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul,
Korea
| | - Dowon Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Hyemin Park
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Joo Hyun Park
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul,
Korea
- Department of Obstetrics and Gynecology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin,
Korea
| | - SiHyun Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul,
Korea
| | - Young Sik Choi
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul,
Korea
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| |
Collapse
|
17
|
Zhang Y, Zhu Z, Cao Y, Xiong Z, Duan Y, Lin J, Zhang X, Jiang M, Liu Y, Man W, Jia T, Feng J, Chen Y, Li C, Guo B, Sun D. Rnd3 suppresses endothelial cell pyroptosis in atherosclerosis through regulation of ubiquitination of TRAF6. Clin Transl Med 2023; 13:e1406. [PMID: 37743632 PMCID: PMC10518494 DOI: 10.1002/ctm2.1406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND As the main pathological basis for various cardiovascular and cerebrovascular diseases, atherosclerosis has become one of the leading causes of death and disability worldwide. Emerging evidence has suggested that Rho GTPase Rnd3 plays an indisputable role in cardiovascular diseases, although its function in atherosclerosis remains unclear. Here, we found a significant correlation between Rnd3 and pyroptosis of aortic endothelial cells (ECs). METHODS ApoeKO mice were utilized as a model for atherosclerosis. Endothelium-specific transgenic mice were employed to disrupt the expression level of Rnd3 in vivo. Mechanistic investigation of the impact of Rnd3 on endothelial cell pyroptosis was carried out using liquid chromatography tandem mass spectrometry (LC-MS/MS), co-immunoprecipitation (Co-IP) assays, and molecular docking. RESULTS Evidence from gain-of-function and loss-of-function studies denoted a protective role for Rnd3 against ECs pyroptosis. Downregulation of Rnd3 sensitized ECs to pyroptosis under oxidized low density lipoprotein (oxLDL) challenge and exacerbated atherosclerosis, while overexpression of Rnd3 effectively prevented these effects. LC-MS/MS, Co-IP assay, and molecular docking revealed that Rnd3 negatively regulated pyroptosis signaling by direct interaction with the ring finger domain of tumor necrosis factor receptor-associated factor 6 (TRAF6). This leads to the suppression of K63-linked TRAF6 ubiquitination and the promotion of K48-linked TRAF6 ubiquitination, inhibiting the activation of NF-κB and promoting the degradation of TRAF6. Moreover, TRAF6 knockdown countered Rnd3 knockout-evoked exacerbation of EC pyroptosis in vivo and vitro. CONCLUSIONS These findings establish a critical functional connection between Rnd3 and the TRAF6/NF-κB/NLRP3 signaling pathway in ECs, indicating the essential role of Rnd3 in preventing pyroptosis of ECs.
Collapse
Affiliation(s)
- Yan Zhang
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Zhengru Zhu
- Department of OtolaryngologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Yang Cao
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Zhenyu Xiong
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Yu Duan
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Jie Lin
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Xuebin Zhang
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Mengyuan Jiang
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Yue Liu
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Wanrong Man
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Tengfei Jia
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Jiaxu Feng
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Yanyan Chen
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Congye Li
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Baolin Guo
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Dongdong Sun
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
18
|
Xiang K, Wu H, Liu Y, Wang S, Li X, Yang B, Zhang Y, Ma L, Lu G, He L, Ni Q, Zhang L. MOF-derived bimetallic nanozyme to catalyze ROS scavenging for protection of myocardial injury. Theranostics 2023; 13:2721-2733. [PMID: 37215581 PMCID: PMC10196836 DOI: 10.7150/thno.83543] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Rationale: Myocardial injury triggers intense oxidative stress, inflammatory response, and cytokine release, which are essential for myocardial repair and remodeling. Excess reactive oxygen species (ROS) scavenging and inflammation elimination have long been considered to reverse myocardial injuries. However, the efficacy of traditional treatments (antioxidant, anti-inflammatory drugs and natural enzymes) is still poor due to their intrinsic defects such as unfavorable pharmacokinetics and bioavailability, low biological stability, and potential side effects. Nanozyme represents a candidate to effectively modulate redox homeostasis for the treatment of ROS related inflammation diseases. Methods: We develop an integrated bimetallic nanozyme derived from metal-organic framework (MOF) to eliminate ROS and alleviate inflammation. The bimetallic nanozyme (Cu-TCPP-Mn) is synthesized by embedding manganese and copper into the porphyrin followed by sonication, which could mimic the cascade activities of superoxide dismutase (SOD) and catalase (CAT) to transform oxygen radicals to hydrogen peroxide, followed by the catalysis of hydrogen peroxide into oxygen and water. Enzyme kinetic analysis and oxygen-production velocities analysis were performed to evaluate the enzymatic activities of Cu-TCPP-Mn. We also established myocardial infarction (MI) and myocardial ischemia-reperfusion (I/R) injury animal models to verify the ROS scavenging and anti-inflammation effect of Cu-TCPP-Mn. Results: As demonstrated by kinetic analysis and oxygen-production velocities analysis, Cu-TCPP-Mn nanozyme possesses good performance in both SOD- and CAT-like activities to achieve synergistic ROS scavenging effect and provide protection for myocardial injury. In both MI and I/R injury animal models, this bimetallic nanozyme represents a promising and reliable technology to protect the heart tissue from oxidative stress and inflammation-induced injury, and enables the myocardial function to recover from otherwise severe damage. Conclusions: This research provides a facile and applicable method to develop a bimetallic MOF nanozyme, which represents a promising alternative to the treatment of myocardial injuries.
Collapse
Affiliation(s)
- Kaiyan Xiang
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Haoguang Wu
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yu Liu
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Sheng Wang
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xueling Li
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bowei Yang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yunming Zhang
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Long Ma
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Guangming Lu
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liangcan He
- School of Medicine and Health, Key Laboratory of Micro-systems and Micro-structures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001 China
| | - Qianqian Ni
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Longjiang Zhang
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
19
|
Wu Q, Xu R, Zhang K, Sun R, Yang M, Li K, Liu H, Xue Y, Xu H, Guo Y. Characterization of early myocardial inflammation in ischemia-reperfusion injury. Front Immunol 2023; 13:1081719. [PMID: 36814859 PMCID: PMC9939645 DOI: 10.3389/fimmu.2022.1081719] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/30/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Myocardial injury may be caused by myocardial ischemia-reperfusion (IR), and salvaging such an injury is still a great challenge in clinical practice. This study comprehensively characterized the physiopathologic changes of myocardial injury after IR to explore the underlying mechanism in the early reperfusion phase with particular emphasis on early myocardial inflammation. METHODS AND RESULTS The experimental IR model was obtained by the left anterior descending artery's transient ligation of C57BL/6 mice. T2W signals of all mice showed increased signal at different IR stages. It was positively correlated with inflammatory cytokines and cells. T2W imaging by 7.0 T MRI surprisingly detected signal enhancement, but histopathology and flow cytometry did not reveal any inflammatory cells infiltration within 3 h after IR. Cardiomyocyte swelling and increased vascular permeability were observed by WGA staining and ultrastructural analysis, respectively. The 3 h IR group showed that the cardiomyocytes were severely affected with disintegrating myofilaments and mitochondria. Both VEGF and phosphorylated Src protein were markedly expressed in the 3 h IR group in comparison with the sham group, and TUNEL staining displayed little positive cells. Cleaved caspase-3 apoptin also has similar expression levels with that of the sham group. Resident macrophages had notably become M1 phenotype. The T2W signal was still elevated, and we observed that collagen deposition occurred from 1 to 7 days. CONCLUSIONS The inflammation response during the first week after reperfusion injury gradually increase 3 h later, but the main manifestation before that was edema. This study indicated that the first 3 h may be crucial to the early rescue process for reperfusion-induced myocardial injury due to inflammatory cell infiltration absence and apoptosis.
Collapse
Affiliation(s)
- Qihong Wu
- Department of Radiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Xu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kun Zhang
- Department of Radiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ran Sun
- Department of Radiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengxi Yang
- Department of Radiology, Sichuan Cancer Hospital, Chengdu, Sichuan, China
| | - Kuan Li
- Department of Radiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hanrui Liu
- Department of Radiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiyuan Xue
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huayan Xu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingkun Guo
- Department of Radiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Yang J, Tong T, Zhu C, Zhou M, Jiang Y, Chen H, Que L, Liu L, Zhu G, Ha T, Chen Q, Li C, Xu Y, Li J, Li Y. Peli1 contributes to myocardial ischemia/reperfusion injury by impairing autophagy flux via its E3 ligase mediated ubiquitination of P62. J Mol Cell Cardiol 2022; 173:30-46. [PMID: 36179399 DOI: 10.1016/j.yjmcc.2022.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023]
Abstract
Autophagy flux is impaired during myocardial ischemia/reperfusion (M-I/R) via the accumulation of autophagosome and insufficient clearance, which exacerbates cardiomyocyte death. Peli1 (Pellion1) is a RING finger domain-containing ubiquitin E3 ligase that could catalyze the polyubiquitination of substrate proteins. Peli1 has been demonstrated to play an important role in ischemic cardiac diseases. However, little is known about whether Peli1 is involved in the regulation of autophagy flux during M-I/R. The present study investigated whether M-I/R induced impaired autophagy flux could be mediated through Peli1 dependent mechanisms. We induced M-I/R injury in wild type (WT) and Peli1 knockout mice and observed that M-I/R significantly decreased cardiac function that was associated with increased cardiac Peli1 expression and upregulated autophagy-associated protein LC3II and P62. In contrast, Peli1 knockout mice exhibited significant improvement of M-I/R induced cardiac dysfunction and decreased LC3II and P62 expression. Besides, inhibitors of autophagy also increased the infarct size in Peli1 knockout mice after 24 h of reperfusion. Mechanistic studies demonstrated that in vivo I/R or in vitro hypoxia/reoxygenation (H/R) markedly increased the Peli1 E3 ligase activity which directly promoted the ubiquitination of P62 at lysine(K)7 via K63-linkage to inhibit its dimerization and autophagic degradation. Co-immunoprecipitation and GST-pull down assay indicated that Peli1 interacted with P62 via the Ring domain. In addition, Peli1 deficiency also decreased cardiomyocyte apoptosis. Together, our work demonstrated a critical link between increased expression and activity of Peli1 and autophagy flux blockage in M-I/R injury, providing insight into a promising strategy for treating myocardium M-I/R injury.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tingting Tong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Chenghao Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Miao Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuqing Jiang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hao Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Pathology, Wannan Medical College, Wuhu 241002, Anhui, China
| | - Linli Que
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Li Liu
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Guoqing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tuanzhu Ha
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN 37614-0575, USA
| | - Qi Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN 37614-0575, USA
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Institute of Biomedical Research, Liaocheng University, Liaocheng 252000, Shandong, China
| | - Jiantao Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
21
|
Zhang S, Fan L, Wang Y, Xu J, Shen Q, Xie J, Zeng Z, Zhou T. Dihydromyricetin ameliorates osteogenic differentiation of human aortic valve interstitial cells by targeting c-KIT/interleukin-6 signaling pathway. Front Pharmacol 2022; 13:932092. [PMID: 36003494 PMCID: PMC9393384 DOI: 10.3389/fphar.2022.932092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Aims: Calcific aortic valve disease (CAVD) is a chronic cardiovascular disease with high morbidity that lacks effective pharmacotherapeutics. As a natural flavonoid extracted from Ampelopsis grossedentata, dihydromyricetin (DHM) has been shown to be effective in protecting against atherosclerosis; yet, the therapeutic role of DHM in CAVD remains poorly understood. Herein, we aimed to clarify the therapeutic implications of DHM in CAVD and the underlying molecular mechanisms in human valvular interstitial cells (hVICs). Methods and Results: The protein levels of two known osteogenesis-specific genes (alkaline phosphatase, ALP; runt-related transcription factor 2, Runx2) and calcified nodule formation in hVICs were detected by Western blot and Alizarin Red staining, respectively. The results showed that DHM markedly ameliorated osteogenic induction medium (OM)-induced osteogenic differentiation of hVICs, as evidenced by downregulation of ALP and Runx2 expression and decreased calcium deposition. The SwissTargetPrediction database was used to identify the potential AVC-associated direct protein target of DHM. Protein-protein interaction (PPI) analysis revealed that c-KIT, a tyrosine-protein kinase, can act as a credible protein target of DHM, as evidenced by molecular docking. Mechanistically, DHM-mediated inhibition of c-KIT phosphorylation drove interleukin-6 (IL-6) downregulation in CAVD, thereby ameliorating OM-induced osteogenic differentiation of hVICs and aortic valve calcification progression. Conclusion: DHM ameliorates osteogenic differentiation of hVICs by blocking the phosphorylation of c-KIT, thus reducing IL-6 expression in CAVD. DHM could be a viable therapeutic supplement to impede CAVD.
Collapse
Affiliation(s)
- Shaoshao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Leilei Fan
- Department of Gastrointestinal Surgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yongjun Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianjun Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Shen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhua Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhipeng Zeng
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Dai L, Chen X, Zhang H, Zeng H, Yin Z, Ye Z, Wei Y. RND3 Transcriptionally Regulated by FOXM1 Inhibits the Migration and Inflammation of Synovial Fibroblasts in Rheumatoid Arthritis Through the Rho/ROCK Pathway. J Interferon Cytokine Res 2022; 42:279-289. [PMID: 35699481 DOI: 10.1089/jir.2021.0228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic immune disease. Rho family GTPase 3 (RND3) has been reported to play an important role in inflammatory diseases. In this study, the expression of RND3 in RA was analyzed by gene chips. After RND3 was overexpressed, cell counting kit-8 assay was to detect the viability of fibroblast-like synovial cells (RA-FLSs). Transwell assays were to appraise the migratory and invasive capacities of RA-FLSs. Enzyme-linked immunosorbent assay (ELISA) and Western blot analysis were to estimate inflammatory response. In addition, MMP3 and MMP9 levels were also tested by ELISA analysis. After forkhead box M1 (FOXM1) was overexpressed, RND3 expression was detected by Western blot. The transcriptional relationship between FOXM1 and RND3 was predicted by HumanTFDB and JASPAR databases. Luciferase reporter and chromatin immunoprecipitation assays verified the binding ability of FOXM1 and RND3. The role of FOXM1/RND3 axis in RA was detected again by functional experiments. Western blot detected the expression of Rho/ROCK pathway-related proteins. RND3 expression was downregulated in RA. Overexpression of RND3 reduced the proliferation, migration, invasion, and inflammation of RA-FLSs. RND3 was inhibited by FOXM1 transcription, and upregulated FOXM1 reduced the inhibitory effect of RND3 overexpression on cell growth and inflammation, which might be associated with the Rho/ROCK pathway. RND3 transcriptionally regulated by FOXM1 inhibited the migration and inflammation of RA-FLSs in RA through the Rho/ROCK pathway.
Collapse
Affiliation(s)
- Liping Dai
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Xinpeng Chen
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Huichang Zhang
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Huiqiong Zeng
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhihua Yin
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhizhong Ye
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Yazhi Wei
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| |
Collapse
|
23
|
Chen J, Song Y, Wang Q, Li Q, Tan H, Gao J, Zhang N, Weng X, Sun D, Yakufu W, Wang Z, Qian J, Pang Z, Huang Z, Ge J. Targeted neutrophil-mimetic liposomes promote cardiac repair by adsorbing proinflammatory cytokines and regulating the immune microenvironment. J Nanobiotechnology 2022; 20:218. [PMID: 35525963 PMCID: PMC9077972 DOI: 10.1186/s12951-022-01433-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
Acute myocardial infarction (MI) induces a sterile inflammatory response that may result in poor cardiac remodeling and dysfunction. Despite the progress in anti-cytokine biologics, anti-inflammation therapy of MI remains unsatisfactory, due largely to the lack of targeting and the complexity of cytokine interactions. Based on the nature of inflammatory chemotaxis and the cytokine-binding properties of neutrophils, we fabricated biomimetic nanoparticles for targeted and broad-spectrum anti-inflammation therapy of MI. By fusing neutrophil membranes with conventional liposomes, we fabricated biomimetic liposomes (Neu-LPs) that inherited the surface antigens of the source cells, making them ideal decoys of neutrophil-targeted biological molecules. Based on their abundant chemokine and cytokine membrane receptors, Neu-LPs targeted infarcted hearts, neutralized proinflammatory cytokines, and thus suppressed intense inflammation and regulated the immune microenvironment. Consequently, Neu-LPs showed significant therapeutic efficacy by providing cardiac protection and promoting angiogenesis in a mouse model of myocardial ischemia-reperfusion. Therefore, Neu-LPs have high clinical translation potential and could be developed as an anti-inflammatory agent to remove broad-spectrum inflammatory cytokines during MI and other neutrophil-involved diseases.
Collapse
Affiliation(s)
- Jing Chen
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yanan Song
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Qiaozi Wang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Qiyu Li
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Haipeng Tan
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jinfeng Gao
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ning Zhang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xueyi Weng
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Dili Sun
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wusiman Yakufu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhengmin Wang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhiqing Pang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China.
| | - Zheyong Huang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
24
|
Liao LZ, Chen ZC, Wang SS, Liu WB, Zhao CL, Zhuang XD. NLRP3 inflammasome activation contributes to the pathogenesis of cardiocytes aging. Aging (Albany NY) 2021; 13:20534-20551. [PMID: 34432650 PMCID: PMC8436929 DOI: 10.18632/aging.203435] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/03/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The NOD-like receptor protein 3 (NOD-like receptor protein 3, NLRP3) inflammasome is associated with many physiological processes related to aging. We investigated whether NLRP3 inflammasome activation contributes to the pathogenesis of cardiocytes aging dissected the underlying mechanism. METHODS H9c2 cells were treated with different concentrations of D-galactose (D-gal, 0, 2, 10 and 50 g/L) for 24 hours. The cytochemical staining, flow cytometry and fluorescence microscope analysis were employed to detect the β-galactosidase (β-gal) activity. Western blot analysis was used to detect the age-associated proteins (P53, P21) and NLRP3 inflammasome proteins [NLRP3, apoptosis-associated speck-like protein (ASC)]. Confocal fluorescent images were applied to capture the colocalization of NLRP3 and caspase-1. Intracellular reactive oxygen species (ROS) was measured using 2'7'-dichlorodihydrofluorescein diacetate (DCFH-DA) by flow cytometry and visualized using a fluorescence microscope. The IL-1β, IL-18 and lactate dehydrogenase (LDH) release were also detected. RESULTS D-gal induced-H9c2 cells caused cardiocytes' aging changes (β-gal staining, CellEvent™ Senescence Green staining, P53, P21) in a concentration-dependent manner. NLRP3 inflammasomes were activated, IL-1β, IL-18 and LDH release and ROS generation were increased in the cardiocytes aging progress. When MCC950 inhibited NLRP3 inflammasomes, it attenuated the cardiocytes aging, yet the ROS generation was similar. Inhibition of ROS by NAC attenuated cardiocytes aging and inhibited the NLRP3 inflammasome activation at the same time. NLRP3 inflammasome activation by nigericin-induced cardiocytes cells aging progress. CONCLUSIONS NLRP3 inflammasome activation contributes to the pathogenesis of cardiocytes aging, and ROS generation may serve as a potential mechanism by which NLRP3 inflammasome is activated.
Collapse
Affiliation(s)
- Li-Zhen Liao
- Guangdong Engineering Research Center for Light and Health, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, P.R. China
| | - Zhi-Chong Chen
- Cardiovascular Department, The Sixth Affiliated Hospital of Sun Yat-Sen University, Tianhe, Guangzhou, Guangdong, P.R. China
| | - Sui-Sui Wang
- Guangdong Engineering Research Center for Light and Health, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, P.R. China
| | - Wen-Bin Liu
- Guangdong Engineering Research Center for Light and Health, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, P.R. China
| | - Chang-Lin Zhao
- Guangdong Engineering Research Center for Light and Health, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, P.R. China
| | - Xiao-Dong Zhuang
- Cardiology Department, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
25
|
Lu W, Meng Z, Hernandez R, Zhou C. Fibroblast-specific IKKβ deficiency ameliorates angiotensin II-induced adverse cardiac remodeling in mice. JCI Insight 2021; 6:e150161. [PMID: 34324438 PMCID: PMC8492299 DOI: 10.1172/jci.insight.150161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/28/2021] [Indexed: 12/03/2022] Open
Abstract
Cardiac inflammation and fibrosis contribute significantly to hypertension-related adverse cardiac remodeling. IκB kinase β (IKK-β), a central coordinator of inflammation through activation of NF-κB, has been demonstrated as a key molecular link between inflammation and cardiovascular disease. However, the cell-specific contribution of IKK-β signaling toward adverse cardiac remodeling remains elusive. Cardiac fibroblasts are one of the most populous nonmyocyte cell types in the heart that play a key role in mediating cardiac fibrosis and remodeling. To investigate the function of fibroblast IKK-β, we generated inducible fibroblast-specific IKK-β–deficient mice. Here, we report an important role of IKK-β in the regulation of fibroblast functions and cardiac remodeling. Fibroblast-specific IKK-β–deficient male mice were protected from angiotensin II–induced cardiac hypertrophy, fibrosis, and macrophage infiltration. Ablation of fibroblast IKK-β inhibited angiotensin II–stimulated fibroblast proinflammatory and profibrogenic responses, leading to ameliorated cardiac remodeling and improved cardiac function in IKK-β–deficient mice. Findings from this study establish fibroblast IKK-β as a key factor regulating cardiac fibrosis and function in hypertension-related cardiac remodeling.
Collapse
Affiliation(s)
- Weiwei Lu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, United States of America
| | - Zhaojie Meng
- Division of Biomedical Sciences, University of California, Riverside, United States of America
| | - Rebecca Hernandez
- Division of Biomedical Sciences, University of California, Riverside, United States of America
| | - Changcheng Zhou
- Division of Biomedical Sciences, University of California, Riverside, United States of America
| |
Collapse
|
26
|
Huang L, Ma Y, Chen L, Chang J, Zhong M, Wang Z, Sun Y, Chen X, Sun F, Xiao L, Chen J, Lai Y, Yan C, Yue X. Maternal RND3/RhoE deficiency impairs placental mitochondrial function in preeclampsia by modulating the PPARγ-UCP2 cascade. FASEB J 2021; 35:e21555. [PMID: 34046947 DOI: 10.1096/fj.202002639rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/25/2022]
Abstract
Preeclampsia (PE) is a life-threatening disease of pregnant women associated with severe hypertension, proteinuria, or multi-organ injuries. Mitochondrial-mediated placental oxidative stress plays a key role in the pathogenesis of PE. However, the underlying mechanism remains to be revealed. Here, we identify Rnd3, a small Rho GTPase, regulating placental mitochondrial reactive oxygen species (ROS). We showed that Rnd3 is down-regulated in primary trophoblasts isolated from PE patients. Loss of Rnd3 in trophoblasts resulted in excessive ROS generation, cell apoptosis, mitochondrial injury, and proton leakage from the respiratory chain. Moreover, Rnd3 overexpression partially rescues the mitochondrial defects and oxidative stress in human PE primary trophoblasts. Rnd3 physically interacts with the peroxisome proliferators-activated receptor γ (PPARγ) and promotes the PPARγ-mitochondrial uncoupling protein 2 (UCP2) cascade. Forced expression of PPARγ rescues deficiency of Rnd3-mediated mitochondrial dysfunction. We conclude that Rnd3 acts as a novel protective factor in placental mitochondria through PPARγ-UCP2 signaling and highlight that downregulation of Rnd3 is a potential factor involved in PE pathogenesis.
Collapse
Affiliation(s)
- Liping Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Lu Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiang Chang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Sun
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xia Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fei Sun
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Xiao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianing Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingjun Lai
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuming Yan
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojing Yue
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Xu Y, Guo W, Zeng D, Fang Y, Wang R, Guo D, Qi B, Xue Y, Xue F, Jin Z, Li Y, Zhang M. Inhibiting miR-205 Alleviates Cardiac Ischemia/Reperfusion Injury by Regulating Oxidative Stress, Mitochondrial Function, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9986506. [PMID: 34306321 PMCID: PMC8263220 DOI: 10.1155/2021/9986506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/18/2021] [Accepted: 06/02/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND miR-205 is important for oxidative stress, mitochondrial dysfunction, and apoptosis. The roles of miR-205 in cardiac ischemia/reperfusion (I/R) injury remain unknown. The aim of this research is to reveal whether miR-205 could regulate cardiac I/R injury by focusing upon the oxidative stress, mitochondrial function, and apoptosis. METHODS Levels of miR-205 and Rnd3 were examined in the hearts with I/R injury. Myocardial infarct size, cardiac function, oxidative stress, mitochondria function, and cardiomyocyte apoptosis were detected in mice with myocardial ischemia/reperfusion (MI/R) injury. The primary neonatal cardiomyocytes underwent hypoxia/reoxygenation (H/R) to simulate MI/R injury. RESULTS miR-205 levels were significantly elevated in cardiac tissues from I/R in comparison with those from Sham. In comparison with controls, levels of Rnd3 were significantly decreased in the hearts from mice with MI/R injury. Furthermore, inhibiting miR-205 alleviated MI/R-induced apoptosis, reduced infarct size, prevented oxidative stress increase and mitochondrial fragmentation, and improved mitochondrial functional capacity and cardiac function. Consistently, overexpression of miR-205 increased infarct size and promoted apoptosis, oxidative stress, and mitochondrial dysfunction in mice with MI/R injury. In cultured mouse neonatal cardiomyocytes, downregulation of miR-205 reduced oxidative stress in H/R-treated cardiomyocytes. Finally, inhibiting Rnd3 ablated the cardioprotective effects of miR-205 inhibitor in MI/R injury. CONCLUSIONS We conclude that inhibiting miR-205 reduces infarct size, improves cardiac function, and suppresses oxidative stress, mitochondrial dysfunction, and apoptosis by promoting Rnd3 in MI/R injury. miR-205 inhibitor-induced Rnd3 activation is a valid target to treat MI/R injury.
Collapse
Affiliation(s)
- Yuerong Xu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Wangang Guo
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Di Zeng
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yexian Fang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Runze Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dong Guo
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bingchao Qi
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yugang Xue
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Feng Xue
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zuolin Jin
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
28
|
Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction. J Control Release 2021; 335:216-236. [PMID: 34022323 DOI: 10.1016/j.jconrel.2021.05.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI) has been considered as the leading cause of cardiovascular-related deaths worldwide. Although traditional therapeutic agents including various bioactive species such as growth factors, stem cells, and nucleic acids have demonstrated somewhat usefulness for the restoration of cardiac functions, the therapeutic efficiency remains unsatisfactory most likely due to the off-target-associated side effects and low localized retention of the used therapeutic agents in the infarcted myocardium, which constitutes a substantial barrier for the effective treatment of MI. Injectable hydrogels are regarded as a minimally invasive technology that can overcome the clinical and surgical limitations of traditional stenting by a modulated sol-gel transition and localized transport of a variety of encapsulated cargoes, leading to enhanced therapeutic efficiency and improved patient comfort and compliance. However, the design of injectable hydrogels for myocardial repair and the mechanism of action of bioactive substance-loaded hydrogels for MI repair remain unclear. To elucidate these points, we summarized the recent progresses made on the use of injectable hydrogels for encapsulation of various therapeutic substances for MI treatment with an emphasis on the mechanism of action of hydrogel systems for myocardial repair. Specifically, the pathogenesis of MI and the rational design of injectable hydrogels for myocardial repair were presented. Next, the mechanisms of various biotherapeutic substance-loaded injectable hydrogels for myocardial repair was discussed. Finally, the potential challenges and future prospects for the use of injectable hydrogels for MI treatment were proposed for the purpose of drawing theoretical guidance on the development of novel therapeutic strategies for efficient treatment of MI.
Collapse
|
29
|
Zhu Y, Wang Q, Lin H, Chen K, Zheng C, Chen L, Ma S, Liao W, Bin J, Liao Y. Characterizing a long-term chronic heart failure model by transcriptomic alterations and monitoring of cardiac remodeling. Aging (Albany NY) 2021; 13:13585-13614. [PMID: 33891565 PMCID: PMC8202904 DOI: 10.18632/aging.202879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/02/2021] [Indexed: 12/23/2022]
Abstract
The long-term characteristics of transcriptomic alterations and cardiac remodeling in chronic heart failure (CHF) induced by myocardial infarction (MI) in mice are not well elucidated. This study aimed to reveal the dynamic changes in the transcriptome and cardiac remodeling in post-MI mice over a long time period. Monitoring C57BL/6 mice with MI for 8 months showed that approximately 44% of mice died of cardiac rupture in the first 2 weeks and others survived to 8 months with left ventricular (LV) aneurysm. The transcriptomic profiling analysis of cardiac tissues showed that the Integrin and WNT pathways were activated at 8 months after MI while the metabolism-related pathways were inversely inhibited. Subsequent differential analysis at 1 and 8 months post-MI revealed significant enrichments in biological processes, including consistent regulation of metabolism-related pathways. Moreover, echocardiographic monitoring showed a progressive increase in LV dimensions and a decrease in the LV fractional shortening during the first 4 weeks, and these parameters progressed at a lower rate till 8 months. A similar trend was found in the invasive LV hemodynamics, cardiac morphological and histological analyses. These results suggested that mouse MI model is ideal for long-term studies, and transcriptomic findings may provide new CHF therapeutic targets.
Collapse
Affiliation(s)
- Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiancheng Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kaitong Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Siyuan Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| |
Collapse
|
30
|
Inducible Guanylate-Binding Protein 7 Facilitates Influenza A Virus Replication by Suppressing Innate Immunity via NF-κB and JAK-STAT Signaling Pathways. J Virol 2021; 95:JVI.02038-20. [PMID: 33408175 DOI: 10.1128/jvi.02038-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Guanylate-binding protein 7 (GBP7) belongs to the GBP family, which plays key roles in mediating innate immune responses to intracellular pathogens. Thus far, GBP7 has been reported to be a critical cellular factor against bacterial infection. However, the relationship between GBP7 and influenza A virus (IAV) replication is unknown. Here, we showed that GBP7 expression was significantly upregulated in the lungs of mice, human peripheral blood mononuclear cells (PBMCs), and A549 cells during IAV infection. Using the CRISPR-Cas9 system and overexpression approaches, it was found that GBP7 knockout inhibited IAV replication by enhancing the expression of IAV-induced type I interferon (IFN), type III IFN, and proinflammatory cytokines. Conversely, overexpression of GBP7 facilitated IAV replication by suppressing the expression of those factors. Furthermore, GBP7 knockout enhanced IAV-induced nuclear factor-κB (NF-κB) activation and phosphorylation of stat1 and stat2; overexpression of GBP7 had the opposite effect. Our data indicated that GBP7 suppresses innate immune responses to IAV infection via NF-κB and JAK-STAT signaling pathways. Taken together, upon IAV infection, the induced GBP7 facilitated IAV replication by suppressing innate immune responses to IAV infection, which suggested that GBP7 serves as a therapeutic target for controlling IAV infection.IMPORTANCE So far, few studies have mentioned the distinct function of guanylate-binding protein 7 (GBP7) on virus infection. Here, we reported that GBP7 expression was significantly upregulated in the lungs of mice, human PBMCs, and A549 cells during IAV infection. GBP7 facilitated IAV replication by suppressing the expression of type I interferon (IFN), type III IFN, and proinflammatory cytokines. Furthermore, it was indicated that GBP7 suppresses innate immune responses to IAV infection via NF-κB and JAK-STAT signaling pathways. Taken together, our results elucidate a critical role of GBP7 in the host immune system during IAV infection.
Collapse
|
31
|
From miRNA Target Gene Network to miRNA Function: miR-375 Might Regulate Apoptosis and Actin Dynamics in the Heart Muscle via Rho-GTPases-Dependent Pathways. Int J Mol Sci 2020; 21:ijms21249670. [PMID: 33352947 PMCID: PMC7765785 DOI: 10.3390/ijms21249670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are short, single-stranded, non-coding ribonucleic acid (RNA) molecules, which are involved in the regulation of main biological processes, such as apoptosis or cell proliferation and differentiation, through sequence-specific interaction with target mRNAs. In this study, we propose a workflow for predicting miRNAs function by analyzing the structure of the network of their target genes. This workflow was applied to study the functional role of miR-375 in the heart muscle (myocardium), since this miRNA was previously shown to be associated with heart diseases, and data on its function in the myocardium are mostly unclear. We identified PIK3CA, RHOA, MAPK3, PAFAH1B1, CTNNB1, MYC, PRKCA, ERBB2, and CDC42 as key genes in the miR-375 regulated network and predicted the possible function of miR-375 in the heart muscle, consisting mainly in the regulation of the Rho-GTPases-dependent signaling pathways. We implemented our algorithm for miRNA function prediction into a Python module, which is available at GitHub.
Collapse
|
32
|
Lai XX, Zhang N, Chen LY, Luo YY, Shou BY, Xie XX, Liu RH. Latifolin protects against myocardial infarction by alleviating myocardial inflammatory via the HIF-1α/NF-κB/IL-6 pathway. PHARMACEUTICAL BIOLOGY 2020; 58:1156-1166. [PMID: 33222562 PMCID: PMC7717487 DOI: 10.1080/13880209.2020.1840597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/02/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT The Traditional Chinese herb medicine Dalbergia odorifera T. Chen (Fabaceae), exerted a protective effect on myocardial ischaemia. Latifolin is a neoflavonoid extracted from Dalbergia odorifera. It has been reported to have the effects of anti-inflammation and cardiomyocyte protection. OBJECTIVE To investigate whether latifolin can improve myocardial infarction (MI) through attenuating myocardial inflammatory and to explore its possible mechanisms. MATERIALS AND METHODS Left coronary artery was ligated to induce a rat model of MI, and the rats were treated with sodium carboxymethyl cellulose (CMC-Na) or different doses of latifolin (25, 50, 100 mg/kg/d) by oral gavage for 28 days. Serum contents of myocardial enzyme were measured at seven and fourteen days after treatment. Cardiac function, infarct size, histopathological changes and inflammatory cells infiltration was assessed at 28 days after treatment. Western blotting was used to investigate the underlying mechanisms. RESULTS Latifolin treatment markedly decreased the contents of myocardial enzymes, and increased left ventricular ejection fraction (85.27% vs. 59.11%) and left ventricular fractional shortening (62.71% vs. 45.53%). Latifolin was found to significantly reduced infarction size (27.78% vs. 39.07%), myocardial fibrosis and the numbers of macrophage infiltration (436 cells/mm2 vs. 690 cells/mm2). In addition, latifolin down-regulated the expression levels of hypoxia-inducible factor-1α (0.95-fold), phospho-nuclear factor-κB (0.2-fold) and interleukin-6 (1.11-fold). DISCUSSION AND CONCLUSIONS Latifolin can protect against myocardial infarction by improving myocardial inflammation through the HIF-1α/NF-κB/IL-6 signalling pathway. Accordingly, latifolin may be a promising drug for pharmacological treatment of ischaemic cardiovascular disease.
Collapse
Affiliation(s)
- Xiao-Xiao Lai
- National Pharmaceutical Engineering Centre for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ni Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lan-Ying Chen
- National Pharmaceutical Engineering Centre for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ying-Ying Luo
- National Pharmaceutical Engineering Centre for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Bin-Yao Shou
- National Pharmaceutical Engineering Centre for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xin-Xu Xie
- National Pharmaceutical Engineering Centre for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Rong-Hua Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
33
|
Han X, Zhao ZA, Yan S, Lei W, Wu H, Lu XA, Chen Y, Li J, Wang Y, Yu M, Wang Y, Zheng Y, Wang H, Shen Z, Hu S. CXADR-like membrane protein protects against heart injury by preventing excessive pyroptosis after myocardial infarction. J Cell Mol Med 2020; 24:13775-13788. [PMID: 33084169 PMCID: PMC7753842 DOI: 10.1111/jcmm.15955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Myocardial infarction (MI) results in cardiomyocyte death and ultimately leads to heart failure. Pyroptosis is a type of the inflammatory programmed cell death that has been found in various diseased tissues. However, the role of pyroptosis in MI heart remains unknown. Here, we showed that CXADR‐like membrane protein (CLMP) was involved in pyroptosis in the mouse MI heart. Our data showed that CLMP was strongly expressed in fibroblasts of the infarcted mouse hearts. The Clmp+/− mice showed more serious myocardial fibrosis and ventricular dysfunction post‐MI than wild‐type (Clmp+/+) mice, indicating a protective effect of the fibroblast‐expressed CLMP against MI‐induced heart damage. Transcriptome analyses by RNA sequencing indicated that Il‐1β mRNA was significantly increased in the MI heart of Clmp+/− mouse, which indicated a more serious inflammatory response. Meanwhile, cleaved caspase‐1 and Gasdermin D were significantly increased in the Clmp+/− MI heart, which demonstrated enhanced pyroptosis in the Clmp knockdown heart. Further analysis revealed that the pyroptosis mainly occurred in cardiac fibroblasts (CFs). Compared to wild‐type fibroblasts, Clmp+/− CFs showed more serious pyroptosis and inflammatory after LPS plus nigericin treatment. Collectively, our results indicate that CLMP participates in the pyroptotic and inflammatory response of CFs in MI heart. We have provided a novel pyroptotic insight into the ischaemic heart, which might hold substantial potential for the treatment of MI.
Collapse
Affiliation(s)
- Xinglong Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation & Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, China
| | - Shiping Yan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Hongchun Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Xing-Ai Lu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Yueqiu Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Jingjing Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Yaning Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Yongming Wang
- MOE Key Laboratory of Contemporary Anthropology at School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China.,Children's Hospital of Fudan University, Shanghai, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
34
|
Abstract
Rnd proteins constitute a subfamily of Rho GTPases represented in mammals by Rnd1, Rnd2 and Rnd3. Despite their GTPase structure, their specific feature is the inability to hydrolyse GTP-bound nucleotide. This aspect makes them atypical among Rho GTPases. Rnds are regulated for their expression at the transcriptional or post-transcriptional levels and they are activated through post-translational modifications and interactions with other proteins. Rnd proteins are mainly involved in the regulation of the actin cytoskeleton and cell proliferation. Whereas Rnd3 is ubiquitously expressed, Rnd1 and 2 are tissue-specific. Increasing data has described their important role during development and diseases. Herein, we describe their involvement in physiological and pathological conditions with a focus on the neuronal and vascular systems, and summarize their implications in tumorigenesis.
Collapse
Affiliation(s)
- Sara Basbous
- INSERM, BaRITOn, U1053, F-33000, Univ. Bordeaux, Bordeaux, France
| | - Roberta Azzarelli
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Emilie Pacary
- INSERM, U1215 - Neurocentre Magendie, F-33077, Univ. Bordeaux, Bordeaux, France
| | - Violaine Moreau
- INSERM, BaRITOn, U1053, F-33000, Univ. Bordeaux, Bordeaux, France
| |
Collapse
|
35
|
Identification and characterization of a new isoform of small GTPase RhoE. Commun Biol 2020; 3:572. [PMID: 33060740 PMCID: PMC7562701 DOI: 10.1038/s42003-020-01295-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/04/2020] [Indexed: 11/09/2022] Open
Abstract
The Rho family of GTPases consists of 20 members including RhoE. Here, we discover the existence of a short isoform of RhoE designated as RhoEα, the first Rho GTPase isoform generated from alternative translation. Translation of this new isoform is initiated from an alternative start site downstream of and in-frame with the coding region of the canonical RhoE. RhoEα exhibits a similar subcellular distribution while its protein stability is higher than RhoE. RhoEα contains binding capability to RhoE effectors ROCK1, p190RhoGAP and Syx. The distinct transcriptomes of cells with the expression of RhoE and RhoEα, respectively, are demonstrated. The data propose distinctive and overlapping biological functions of RhoEα compared to RhoE. In conclusion, this study reveals a new Rho GTPase isoform generated from alternative translation. The discovery provides a new scope of understanding the versatile functions of small GTPases and underlines the complexity and diverse roles of small GTPases. Dai et al. report the identification and characterization of a new isoform of RhoE (RhoEα), a member of the Rho GTPase family, which is generated from the same gene by alternative translation initiation at the downstream ATG codon 46. Compared to RhoE, RhoEα does not differ in the subcellular localization but has increased protein stability and distinct molecular signalling profile.
Collapse
|
36
|
Mou T, Luo Y, Huang Z, Zheng D, Pu X, Shen A, Pu J, Li T, Dai J, Chen W, Wu Z. Inhibition of microRNA-128-3p alleviates liver ischaemia-reperfusion injury in mice through repressing the Rnd3/NF- κB axis. Innate Immun 2020; 26:528-536. [PMID: 32486927 PMCID: PMC7491242 DOI: 10.1177/1753425920928449] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/05/2023] Open
Abstract
Although liver ischaemia-reperfusion (I/R) injury remains the primary underlying reason for liver transplant failure or post-transplantation liver dysfunction, the underlying mechanism is still largely elusive. MicroRNAs (miRNA) are involved in multiple physiological and pathological processes, including inflammation. Here, we identified that the miR-128-3p/Rho family GTPase 3 (Rnd3)/NF-κB axis might play a critical role in liver I/R injury. Our results demonstrated that the level of miR-128-3p was negatively correlated with the Rnd3 level during liver I/R. Dual luciferase reporter assay results proved that Rnd3 mRNA was a direct target of miR-128-3p. Additionally, Western blotting and quantitative RT-PCR analyses revealed that knock-down of miR-128-3p could up-regulate Rnd3 mRNA and protein levels, thereby suppressing the NF-κB pathway through down-regulating NF-κB p65. Consequently, the serum levels of NF-κB-associated inflammatory factors and aspartate aminotransferase/alanine aminotransferase were decreased. Moreover, overexpression of Rnd3 could reverse the activation of NF-κB caused by miR-128-3p agomir during liver I/R injury. Overall, our study results suggest that repression of miR-128-3p can alleviate liver I/R injury through the miR-128-3p/Rnd3/NF-κB axis and may facilitate the development of novel protective approaches against liver I/R injury.
Collapse
Affiliation(s)
- Tong Mou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, PR China
| | - Yunhai Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, PR China
| | - Zuotian Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, PR China
| | | | - Xingyu Pu
- West China Hospital, Sichuan University, PR China
| | - Ai Shen
- Hepatobiliary Pancreatic Tumour Centre, Chongqing University Cancer Hospital, PR China
| | - Junliang Pu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, PR China
| | - Tingting Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, PR China
| | - Jiangwen Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, PR China
| | - Wei Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, PR China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, PR China
| |
Collapse
|
37
|
Jiang M, Wang H, Liu Z, Lin L, Wang L, Xie M, Li D, Zhang J, Zhang R. Endoplasmic reticulum stress-dependent activation of iNOS/NO-NF-κB signaling and NLRP3 inflammasome contributes to endothelial inflammation and apoptosis associated with microgravity. FASEB J 2020; 34:10835-10849. [PMID: 32592441 DOI: 10.1096/fj.202000734r] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Abstract
Exposure to microgravity results in vascular remodeling and cardiovascular dysfunction. To elucidate the mechanism involved in this condition, we investigated whether endoplasmic reticulum (ER) stress during simulated microgravity induced endothelial inflammation and apoptosis in human umbilical vein endothelial cells (HUVECs). Microgravity was simulated by clinorotation in the current study. We examined markers of ER stress, inducible nitric oxide (NO) synthase (iNOS)/NO content, proinflammatory cytokine production, nuclear factor kappa B (NF-κB)/IκB signaling, NLRP3 inflammasome, and detected apoptosis in HUVECs. We found that the levels of C/EBP homologous protein and glucose-regulated protein 78, pro-inflammatory cytokines (IL-6, TNF-α, IL-8, and IL-1β), and iNOS/NO content were upregulated by clinorotation. ER stress inhibition with tauroursodeoxycholic acid or 4-phenylbutyric acid and iNOS inhibition with 1400 W dramatically suppressed activation of the NF-κB/IκB pathway and the NLRP3 inflammasome, and decreased the production of pro-inflammatory cytokines. The increase of apoptosis in HUVECs during clinorotation was significantly suppressed by inhibiting ER stress, iNOS activity, NF-κB/IκB, and the NLRP3 inflammasome signaling pathway. Therefore, simulated microgravity causes ER stress in HUVECs, and subsequently activates iNOS/NO-NF-κB/IκB and the NLRP3 inflammasome signaling pathway, which have key roles in the induction of endothelial inflammation and apoptosis.
Collapse
Affiliation(s)
- Min Jiang
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Haiming Wang
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Zifan Liu
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Lejian Lin
- Department of Cardiology, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Wang
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Manjiang Xie
- Department of Aerospace Physiology & Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Danyang Li
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Jibin Zhang
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Ran Zhang
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
38
|
Shao Z, Wang K, Zhang S, Yuan J, Liao X, Wu C, Zou Y, Ha Y, Shen Z, Guo J, Jie W. Ingenuity pathway analysis of differentially expressed genes involved in signaling pathways and molecular networks in RhoE gene‑edited cardiomyocytes. Int J Mol Med 2020; 46:1225-1238. [PMID: 32705255 PMCID: PMC7388835 DOI: 10.3892/ijmm.2020.4661] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
RhoE/Rnd3 is an atypical member of the Rho superfamily of proteins, However, the global biological function profile of this protein remains unsolved. In the present study, a RhoE‑knockout H9C2 cardiomyocyte cell line was established using CRISPR/Cas9 technology, following which differentially expressed genes (DEGs) between the knockout and wild‑type cell lines were screened using whole genome expression gene chips. A total of 829 DEGs, including 417 upregulated and 412 downregulated, were identified using the threshold of fold changes ≥1.2 and P<0.05. Using the ingenuity pathways analysis system with a threshold of ‑Log (P‑value)>2, 67 canonical pathways were found to be enriched. Many of the detected signaling pathways, including that of oncostatin M signaling, were found to be associated with the inflammatory response. Subsequent disease and function analysis indicated that apart from cardiovascular disease and development function, RhoE may also be involved in other diseases and function, including organismal survival, cancer, organismal injury and abnormalities, cell‑to‑cell signaling and interaction, and molecular transport. In addition, 885 upstream regulators were enriched, including 59 molecules that were predicated to be strongly activated (Z‑score >2) and 60 molecules that were predicated to be significantly inhibited (Z‑scores <‑2). In particular, 33 regulatory effects and 25 networks were revealed to be associated with the DEGs. Among them, the most significant regulatory effects were 'adhesion of endothelial cells' and 'recruitment of myeloid cells' and the top network was 'neurological disease', 'hereditary disorder, organismal injury and abnormalities'. In conclusion, the present study successfully edited the RhoE gene in H9C2 cells using CRISPR/Cas9 technology and subsequently analyzed the enriched DEGs along with their associated canonical signaling pathways, diseases and functions classification, upstream regulatory molecules, regulatory effects and interaction networks. The results of the present study should facilitate the discovery of the global biological and functional properties of RhoE and provide new insights into role of RhoE in human diseases, especially those in the cardiovascular system.
Collapse
Affiliation(s)
- Zhongming Shao
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Keke Wang
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Shuya Zhang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jianling Yuan
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xiaoming Liao
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Caixia Wu
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yuan Zou
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yanping Ha
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Zhihua Shen
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Junli Guo
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Wei Jie
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
39
|
Li L, Li ZB, Jia M, Chu HT. Therapeutic effects of KANK2 in myocardial infarction rats might be associated with the NF-κB p65 inhibition. Int Immunopharmacol 2020; 86:106687. [PMID: 32570033 DOI: 10.1016/j.intimp.2020.106687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE KN motif and ankyrin repeat domains 2 (KANK2) may inhibit the activation of (NF-kappaB) p65, which plays a role in myocardial injury. Thus, our study aims to discover the effect of KANK2 on myocardial infarction (MI) induced by ligating the left anterior descending coronary artery (LAD) through regulating NF-κB p65 in vivo. METHODS MI rats underwent LAD ligation were administered with intramyocardial injections of KANK2/Control activation plasmids. Six weeks after MI, pressure-volume (P/V) loops was used to investigate the cardiac function of rats, then the following detections were performed, including TTC staining, HE staining, immunofluorescence, Masson' s trichrome staining, ELISA assay, TUNEL staining, immunohistochemistry, qRT-PCR and Western blotting. RESULTS MI rats decreased in maximum pressure (pmax), ejection fraction (EF%), peak rate of pressure rise (dpdtmax) and decline (-dpdtmax) with increased end diastolic pressure (EDP), which was partially reversed by KANK2 overexpression. Besides, KANK2 CRISPR activation plasmids reduced infarct size with less collagen fiber proliferation and neutrophil infiltration in infarct tissues, as well as suppressed pro-inflammatory factors expressions in MI rats. Moreover, injection of KANK2 activation plasmid decreased collagen deposition, aggravated cardiomyocyte apoptosis, enhanced the capillary density, and increased the expressions of VEGF and bFGF in the infarct and peri-infarct regions of MI rats. KANK2 lowered myocardial NF-κB p65 expression in MI rats. CONCLUSION KANK2 may play its therapeutic role in MI through improving cardiac function, decreasing myocardial collagen deposition, reducing cardiomyocyte apoptosis, and increasing angiogenesis, which might be associated with the reduction of NF-κB p65 expression.
Collapse
Affiliation(s)
- Lin Li
- Department of Cardiovascular Medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, PR China
| | - Zai-Bo Li
- Department of Cardiovascular Medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, PR China
| | - Min Jia
- Department of Cardiovascular Medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, PR China
| | - Hong-Tao Chu
- Department of Cardiovascular Medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, PR China.
| |
Collapse
|
40
|
Deng J, Guo M, Li G, Xiao J. Gene therapy for cardiovascular diseases in China: basic research. Gene Ther 2020; 27:360-369. [PMID: 32341485 DOI: 10.1038/s41434-020-0148-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease has become a major disease affecting health in the whole world. Gene therapy, delivering foreign normal genes into target cells to repair damages caused by defects and abnormal genes, shows broad prospects in treating different kinds of cardiovascular diseases. China has achieved great progress of basic gene therapy researches and pathogenesis of cardiovascular diseases in recent years. This review will summarize the latest research about gene therapy of proteins, epigenetics, including noncoding RNAs and genome-editing technology in myocardial infarction, cardiac ischemia-reperfusion injury, atherosclerosis, muscle atrophy, and so on in China. We wish to highlight some important findings about the essential roles of basic gene therapy in this field, which might be helpful for searching potential therapeutic targets for cardiovascular disease.
Collapse
Affiliation(s)
- Jiali Deng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Mengying Guo
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China.,School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts, General Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China. .,School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
41
|
Jiang WY, Huo JY, Chen C, Chen R, Ge TT, Chang Q, Hu JW, Geng J, Jiang ZX, Shan QJ. Renal denervation ameliorates post-infarction cardiac remodeling in rats through dual regulation of oxidative stress in the heart and brain. Biomed Pharmacother 2019; 118:109243. [DOI: 10.1016/j.biopha.2019.109243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 01/06/2023] Open
|
42
|
Sun Q, Dong H, Li Y, Yuan F, Xu Y, Mao S, Xiong X, Chen Q, Liu B. Small GTPase RHOE/RND3, a new critical regulator of NF-κB signalling in glioblastoma multiforme? Cell Prolif 2019; 52:e12665. [PMID: 31332862 PMCID: PMC6797521 DOI: 10.1111/cpr.12665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 01/17/2023] Open
Abstract
Objectives Abnormal activation of NF‐κB signalling is a major mechanism of apoptosis resistance in glioblastoma multiforme (GBM). Therefore, better understanding of the regulation of NF‐κB signalling has a significant impact for GBM therapy. Here, we uncovered a critical role of the small GTPase RND3 in regulating the p65 subunit of NF‐κB and NF‐κB signalling in GBM. Materials and methods Human GBM samples, GBM cells and a human orthotopic GBM‐xenografted animal model were used. The mechanisms of RND3 in regulation of NF‐κB signalling and GBM cell apoptosis were examined by luciferase assay, quantitative PCR, immunostaining, immunoblotting, immunofluorescence, coimmunoprecipitation, TUNEL staining, JC‐1 analysis and flow cytometry. Results Overexpression of RND3 led to reduced p65 activity in GBM‐cultured cells and a GBM animal model, indicating that the NF‐κB pathway is negatively regulated by RND3 in GBM. Mechanistically, we found that RND3 bound p65 and promoted p65 ubiquitination, leading to decreased p65 protein levels. Furthermore, RND3 enhanced cleaved caspase 3 levels and promoted apoptosis in GBM cells, and RND3 expression was positively correlated with cleaved caspase 3 and IL‐8 in human GBM samples. The effect of RND3 on promoting apoptosis disappeared when p65 ubiquitination was blocked by protease inhibitor carfilzomib or upon co‐expression of ectopic p65. Conclusions RND3 binds p65 protein and promotes its ubiquitination, resulting in reduced p65 protein expression and inhibition of NF‐κB signalling to induce GBM cell apoptosis.
Collapse
Affiliation(s)
- Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huimin Dong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Cell Biology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
| | - Fan'en Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shanping Mao
- Department of Cell Biology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
43
|
Qiu L, Xu C, Chen J, Li Q, Jiang H. Downregulation of the transcriptional co-activator PCAF inhibits the proliferation and migration of vascular smooth muscle cells and attenuates NF-κB-mediated inflammatory responses. Biochem Biophys Res Commun 2019; 513:41-48. [PMID: 30935684 DOI: 10.1016/j.bbrc.2019.03.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/23/2019] [Indexed: 01/06/2023]
Abstract
P300/CBP-associated factor (PCAF) regulates vascular inflammation. This study was to explore the effect of PCAF on the proliferation and migrationof vascular smooth muscle cells (VSMCs) and neointimal hyperplasia in balloon-injured rat carotid artery. Downregulation of PCAF remarkably suppressed VSMCs proliferation and migration induced by lipopolysaccharide, and also significantly inhibit the nuclear translocation of nuclear factor-kappaB p65. Meanwhile, downregulation of PCAF inhibited the mRNA expression of tumor necrosis factor-α and interleukin-6, and also the levels in culture supernatants. Moreover, downregulation of PCAF profoundly reduced the intima area and the ratio of intima area to media area in balloon-injured rat carotid artery. In addition, the expression of PCNA and NF-κB p65 in intima were decreased by downregulation of PCAF. These results highlight that PCAF may be a potential target for prevention and treatment of neointimal hyperplasia and restenosis after angioplasty.
Collapse
Affiliation(s)
- Liqiang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Changwu Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Qi Li
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| |
Collapse
|