1
|
Olamona VB, Ahmad M. Interpreting Lipid Biomarkers in Cardiac Allograft Vasculopathy. Am J Cardiol 2025:S0002-9149(25)00288-7. [PMID: 40345310 DOI: 10.1016/j.amjcard.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Accepted: 05/03/2025] [Indexed: 05/11/2025]
|
2
|
Chadwick J, Hinterberg MA, Asselbergs FW, Biegel H, Boersma E, Cappola TP, Chirinos JA, Coresh J, Ganz P, Gordon DA, Kureshi N, Loupey KM, Orlenko A, Ostroff R, Sampson L, Shrestha S, Sweitzer NK, Williams SA, Zhao L, Kardys I, Lanfear DE. Harnessing the Plasma Proteome to Predict Mortality in Heart Failure Subpopulations. Circ Heart Fail 2025; 18:e011208. [PMID: 40052265 PMCID: PMC11995852 DOI: 10.1161/circheartfailure.123.011208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/16/2025] [Accepted: 01/29/2025] [Indexed: 03/30/2025]
Abstract
BACKGROUND We derived and validated proteomic risk scores (PRSs) for heart failure (HF) prognosis that provide absolute risk estimates for all-cause mortality within 1 year. METHODS Plasma samples from individuals with HF with reduced ejection fraction (HFrEF; ejection fraction <40%; training/validation n=1247/762) and preserved ejection fraction (HFpEF; ejection fraction ≥50%; training/validation n=725/785) from 3 independent studies were run on the SomaScan Assay measuring ≈5000 proteins. Machine learning techniques resulted in unique 17- and 14-protein models for HFrEF and HFpEF that predict 1-year mortality. Discrimination was assessed via C-index and 1-year area under the curve (AUC), and survival curves were visualized. PRSs were also compared with Meta-Analysis Global Group in Chronic HF (MAGGIC) score and NT-proBNP (N-terminal pro-B-type natriuretic peptide) measurements and further assessed for sensitivity to disease progression in longitudinal samples (HFrEF: n=396; 1107 samples; HFpEF: n=175; 350 samples). RESULTS In validation, the HFpEF PRS performed significantly better (P≤0.1) for mortality prediction (C-index, 0.79; AUC, 0.82) than MAGGIC (C-index, 0.71; AUC, 0.74) and NT-proBNP (PRS C-index, 0.76 and AUC, 0.81 versus NT-proBNP C-index, 0.72 and AUC, 0.76). The HFrEF PRS performed comparably to MAGGIC (PRS C-index, 0.76 and AUC, 0.83 versus MAGGIC C-index, 0.75 and AUC, 0.84) but had a significantly better C-Index (P=0.026) than NT-proBNP (PRS C-index, 0.75 and AUC, 0.78 versus NT-proBNP C-index, 0.73 and AUC, 0.77). PRS included known HF pathophysiology biomarkers (93%) and novel proteins (7%). Longitudinal assessment revealed that HFrEF and HFpEF PRSs were higher and increased more over time in individuals who experienced a fatal event during follow-up. CONCLUSIONS PRSs can provide valid, accurate, and dynamic prognostic estimates for patients with HF. This approach has the potential to improve longitudinal monitoring of patients and facilitate personalized care.
Collapse
Affiliation(s)
- Jessica Chadwick
- Departments of Clinical Research and Development (J. Chadwick, R.O., K.M.L., S.A.W.), SomaLogic Operating Co Inc, Boulder, CO
| | - Michael A. Hinterberg
- Bioinformatics (M.A.H., H.B., N.K., L.S., S.S.), SomaLogic Operating Co Inc, Boulder, CO
| | - Folkert W. Asselbergs
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands (F.W.A.)
- Health Data Research UK and Institute of Health Informatics, University College London, United Kingdom (F.W.A.)
| | - Hannah Biegel
- Bioinformatics (M.A.H., H.B., N.K., L.S., S.S.), SomaLogic Operating Co Inc, Boulder, CO
| | - Eric Boersma
- Erasmus MC, University Medical Center Rotterdam, the Netherlands (E.B., I.K.)
| | - Thomas P. Cappola
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia (T.P.C.)
| | - Julio A. Chirinos
- University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.)
| | | | - Peter Ganz
- Division of Cardiology, Zuckerberg San Francisco General Hospital and Department of Medicine, University of California, San Francisco (P.G.)
| | | | - Natasha Kureshi
- Bioinformatics (M.A.H., H.B., N.K., L.S., S.S.), SomaLogic Operating Co Inc, Boulder, CO
| | - Kelsey M. Loupey
- Departments of Clinical Research and Development (J. Chadwick, R.O., K.M.L., S.A.W.), SomaLogic Operating Co Inc, Boulder, CO
| | - Alena Orlenko
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA (A.O.)
| | - Rachel Ostroff
- Departments of Clinical Research and Development (J. Chadwick, R.O., K.M.L., S.A.W.), SomaLogic Operating Co Inc, Boulder, CO
| | - Laura Sampson
- Bioinformatics (M.A.H., H.B., N.K., L.S., S.S.), SomaLogic Operating Co Inc, Boulder, CO
| | - Sama Shrestha
- Bioinformatics (M.A.H., H.B., N.K., L.S., S.S.), SomaLogic Operating Co Inc, Boulder, CO
| | | | - Stephen A. Williams
- Departments of Clinical Research and Development (J. Chadwick, R.O., K.M.L., S.A.W.), SomaLogic Operating Co Inc, Boulder, CO
| | - Lei Zhao
- Bristol Myers Squibb, Princeton, NJ (D.A.G., L.Z.)
| | - Isabella Kardys
- Erasmus MC, University Medical Center Rotterdam, the Netherlands (E.B., I.K.)
| | - David E. Lanfear
- Center for Individualized and Genomic Medicine Research, Henry Ford Hospital, Detroit, MI (D.E.L.)
| |
Collapse
|
3
|
Stadler JT, Borenich A, Stattau Bisgaard L, Bjergfelt SS, Vijayakumar S, Melholt L, Emrich IE, Hansen D, Bro S, Christoffersen C, Heine GH, Marsche G. ApoM and Major Adverse Cardiovascular Events in Chronic Kidney Disease: A Prospective Cohort Study. Arterioscler Thromb Vasc Biol 2025; 45:496-505. [PMID: 40047074 PMCID: PMC11936471 DOI: 10.1161/atvbaha.124.322367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/18/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Cardiovascular disease is the leading cause of mortality in patients with chronic kidney disease (CKD). APOM plays a critical role in reverse cholesterol transport by facilitating the formation of pre-β-HDL (high-density lipoprotein) and enabling the binding of S1P (sphingosine-1-phosphate) to HDL, a complex involved in several antiatherogenic processes. In this study, we sought to investigate the potential association between plasma APOM levels and the risk of adverse cardiovascular outcomes in individuals with CKD. METHODS Plasma APOM levels were quantified using a sandwich ELISA-based assay. Plasma S1P levels were measured by high-performance liquid chromatography. The primary end point was a composite of major adverse cardiovascular events (MACE) and all-cause mortality. RESULTS In this secondary analysis of the CARE FOR HOMe study (Cardiovascular and Renal Outcome in CKD 2-4 Patients-The Fourth Homburg Evaluation), 463 nondialysis patients with CKD stages G2 to G4 were included. Plasma APOM levels exhibited a significant inverse association with the risk of MACE (standardized hazard ratio, 0.60 [95% CI, 0.49-0.75]; P<0.001) and all-cause mortality (standardized hazard ratio, 0.63 [95% CI, 0.48-0.83]; P<0.001). This inverse association with MACE remained robust after adjusting for established cardiovascular and renal risk factors. These findings were further corroborated in an independent cohort of 822 patients with CKD from the Copenhagen CKD study. Plasma S1P levels showed an inverse association with MACE in univariable analyses; however, this relationship lost statistical significance after multivariable adjustments. CONCLUSIONS Our findings demonstrate a significant association between low plasma APOM levels and an increased risk of MACE in patients with CKD. These results suggest that APOM may play a role in cardiovascular protection in this vulnerable population.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation (J.T.S., G.M.), Medical University of Graz, Austria
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Austria (J.T.S.)
| | - Andrea Borenich
- Institute for Medical Informatics, Statistics and Documentation (A.B.), Medical University of Graz, Austria
| | - Line Stattau Bisgaard
- Departments of Clinical Biochemistry (L.S.B., S.V., L.M., C.C.), Copenhagen University Hospital, Rigshospitalet, Denmark
- Departments of Biomedical Sciences (L.S.B., S.S.B., C.C.), University of Copenhagen, Denmark
| | - Sasha S. Bjergfelt
- Nephrology (S.S.B., S.B.), Copenhagen University Hospital, Rigshospitalet, Denmark
- Departments of Biomedical Sciences (L.S.B., S.S.B., C.C.), University of Copenhagen, Denmark
| | - Sarunja Vijayakumar
- Departments of Clinical Biochemistry (L.S.B., S.V., L.M., C.C.), Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Line Melholt
- Departments of Clinical Biochemistry (L.S.B., S.V., L.M., C.C.), Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Insa E. Emrich
- Faculty of Medicine, Saarland University, Homburg/Saarbrücken, Germany (I.E.E., G.H.H.)
| | - Ditte Hansen
- Clinical Medicine (D.H.), University of Copenhagen, Denmark
- Department of Nephrology, Copenhagen University Hospital, Herlev-Gentofte, Denmark (D.H.)
| | - Susanne Bro
- Nephrology (S.S.B., S.B.), Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Christina Christoffersen
- Departments of Clinical Biochemistry (L.S.B., S.V., L.M., C.C.), Copenhagen University Hospital, Rigshospitalet, Denmark
- Departments of Biomedical Sciences (L.S.B., S.S.B., C.C.), University of Copenhagen, Denmark
| | - Gunnar H. Heine
- Faculty of Medicine, Saarland University, Homburg/Saarbrücken, Germany (I.E.E., G.H.H.)
- Department of Nephrology, Agaplesion Markus Krankenhaus, Frankfurt am Main, Germany (G.H.H.)
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation (J.T.S., G.M.), Medical University of Graz, Austria
| |
Collapse
|
4
|
Lotfinaghsh A, Imam A, Pompian A, Stitziel NO, Javaheri A. Clinical Insights from Proteomics in Heart Failure. Curr Heart Fail Rep 2025; 22:12. [PMID: 40063168 DOI: 10.1007/s11897-025-00698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 05/13/2025]
Abstract
PURPOSE OF REVIEW The pathophysiology of heart failure (HF), a complex and heterogenous condition, remains to be fully understood. Troponin and b-type natriuretic peptide are the only biomarkers that are utilized in clinical practice for HF clinical management. Recent advances in proteomics present a powerful tool to identify risk markers and ultimately, potential molecular mechanisms underlying HF pathogenesis. Herein, we explore traditional and novel heart biomarkers, highlighting their potential role in the pathogenesis of HF. RECENT FINDINGS Recent proteomic analyses have identified numerous proteins including Galectin-3, sST2, GDF-15, FGF21, Endotrophin, THSB-2, ADAMSTL, SVEP1, and anthracycline that are associated with clinical outcomes in HF. These biomarkers are not presently utilized in HF management but may be useful in the future for prediction of death or HF hospitalization. While traditional biomarkers remain essential, proteomic strategies have revealed additional targets that require further mechanistic exploration. Future research should focus on validating these biomarkers and translating proteomic insights into clinical practice to enhance HF management.
Collapse
Affiliation(s)
- Aynaz Lotfinaghsh
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Adnan Imam
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander Pompian
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nathan O Stitziel
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ali Javaheri
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- John Cochran VA Hospital, St Louis, MO, USA.
| |
Collapse
|
5
|
Gan S, Azzo JD, Zhao L, Pourmussa B, Dib MJ, Salman O, Erten O, Ebert C, Richards AM, Javaheri A, Mann DL, Rietzschel E, Zamani P, van Empel V, Cappola TP, Chirinos JA. Transferrin Saturation, Serum Iron, and Ferritin in Heart Failure: Prognostic Significance and Proteomic Associations. Circ Heart Fail 2025; 18:e011728. [PMID: 39831311 PMCID: PMC11835534 DOI: 10.1161/circheartfailure.124.011728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/20/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Iron deficiency (ID) is currently defined as a serum ferritin level <100 or 100 to 299 ng/mL with transferrin saturation (TSAT) <20%. Serum ferritin and TSAT are currently used to define absolute and functional ID. However, individual markers of iron metabolism may be more informative than current arbitrary definitions of ID. METHODS We assessed prognostic associations of ferritin, serum iron, and TSAT among 2050 participants with heart failure (HF) with reduced/mid-range (n=1821) or preserved (n=229) left ventricular ejection fraction enrolled in the PHFS (Penn HF Study), a prospective cohort study. We measured 4928 plasma proteins using an aptamer-based assay (SOMAScanv4) and assessed prognostic and proteomic associations of markers of iron metabolism. RESULTS Ferritin concentrations were not associated with outcomes, whereas low TSAT and serum iron were associated with the risk of all-cause death (TSAT: standardized hazard ratio, 0.84 [95% CI, 0.76-0.93]; P=0.001; serum iron: standardized hazard ratio, 0.87 [95% CI, 0.79-0.96]; P=0.007). Similarly, TSAT was associated with the risk of death or HF-related admission (standardized hazard ratio, 0.89 [95% CI, 0.83-0.95]; P=0.0006). Significant interactions between TSAT and HF with preserved ejection fraction status were found such that TSAT was more strongly associated with the risk of death and death or HF-related admission in HF with preserved ejection fraction. We identified 359 proteins associated with TSAT, including TFRC (transferrin receptor protein; β, -0.455; P<0.0001) and CRP (C-reactive protein; β, -0.355; P<0.0001). Pathway analyses demonstrated associations with lipid metabolism, complement activation, and inflammation. In contrast to the robust associations between TSAT and outcomes, ID and absolute ID defined by current criteria were not associated with death or death or HF-related admission. TSAT was associated with outcomes regardless of the presence of functional versus absolute ID. CONCLUSIONS Low TSAT, but not ferritin concentrations, is significantly associated with adverse outcomes in HF. Low TSAT is more strongly associated with outcomes in HF with preserved ejection fraction. Pathways related to inflammation and lipid metabolism are associated with low TSAT in HF.
Collapse
Affiliation(s)
- Sushrima Gan
- Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joe David Azzo
- Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lei Zhao
- Bristol Myers Squibb Company, Princeton, New Jersey, USA
| | - Bianca Pourmussa
- Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marie Joe Dib
- Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Oday Salman
- Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ozgun Erten
- Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - A. Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore
- Christchurch Heart Institute, University of Otago, New Zealand
| | - Ali Javaheri
- Washington University School of Medicine, St. Louis, MO
- John Cochran Veterans Affairs Hospital, St. Louis, MO
| | | | - Ernst Rietzschel
- Department of Cardiovascular Diseases, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Payman Zamani
- Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Vanessa van Empel
- Department of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Thomas P. Cappola
- Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julio A. Chirinos
- Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
6
|
Nielsen VW, Bundgaard Vad O, Holgersen N, Paludan-Müller C, Meseguer Monfort L, Beyer AF, Jemec GBE, Kjærsgaard Andersen R, Egeberg A, Thyssen JP, Svendsen JH, Rosenø NAL, Hansen PR, Thomsen SF, Salling Olesen M. Genetic Susceptibility to Hidradenitis Suppurativa and Predisposition to Cardiometabolic Disease. JAMA Dermatol 2025; 161:22-30. [PMID: 39382891 PMCID: PMC11465120 DOI: 10.1001/jamadermatol.2024.3779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/06/2024] [Indexed: 10/10/2024]
Abstract
Importance Hidradenitis suppurativa (HS) is associated with an increased prevalence of cardiovascular diseases compared with the general population. Any association between polygenic risk for HS, risk of incident cardiometabolic outcomes, and the plasma proteome is unclear. Objective To investigate the genetic correlation between HS and cardiometabolic disease. Design, Setting, and Participants This cohort study used a polygenic risk score (PRS) for HS to examine the risks of coronary artery disease (CAD) and diabetes and identify changes in the plasma proteome in individuals of European ancestry from the UK Biobank. Participants were enrolled from January 1, 2006, to December 31, 2010. End of follow-up was January 1, 2023. Correlations were assessed between HS susceptibility and cardiometabolic traits using linkage disequilibrium score regression. Odds ratios were assessed in logistic regressions. The risk of incident CAD and diabetes was estimated in cause-specific survival models designed as time-to-event analyses. Exposure The PRS for HS. Main Outcomes and Measures Main outcomes were CAD and diabetes diagnosis measured by logistic regressions and incident disease measured by Cox proportional hazards regression models adjusted for sex, age, body mass index, and smoking status. Results The study included 391 481 individuals (median [IQR] age, 58 [51-64] years; 209 235 [53%] female). Genetic variants for HS correlated significantly with variants associated with CAD, diabetes, and plasma levels of high-density lipoprotein cholesterol, triglycerides, and C-reactive protein. Compared with the low-risk group, a high PRS for HS (≥75th percentile) conferred odds ratios of 1.09 (95% CI, 1.06-1.12; P < .001) for CAD and 1.13 (95% CI, 1.10-1.17; P < .001) for diabetes. Estimates remained consistent when examining only incident CAD and diabetes. The PRS for HS was significantly associated with altered expression of 58 plasma proteins. Integrating this proteomic profile and the PRS for HS in a machine learning model improved prediction of CAD and diabetes compared with a reference model based on sex, age, and body mass index. Conclusions and Relevance These findings suggest that a high genetic risk of HS is associated with increased risk of subsequent CAD and diabetes and altered composition of the plasma proteome. Additional investigation into the identified proteins and their potential roles as drug targets is warranted.
Collapse
Affiliation(s)
- Valdemar Wendelboe Nielsen
- Department of Dermato-Venereology and Wound Healing Centre, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Oliver Bundgaard Vad
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj Holgersen
- Department of Dermato-Venereology and Wound Healing Centre, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Christian Paludan-Müller
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laia Meseguer Monfort
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid Filt Beyer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregor Borut Ernst Jemec
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune Kjærsgaard Andersen
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark
- Department of Immunology and Microbiology, Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Egeberg
- Department of Dermato-Venereology and Wound Healing Centre, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- LEO Pharma, Ballerup, Denmark
| | - Jacob P. Thyssen
- Department of Dermato-Venereology and Wound Healing Centre, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- LEO Pharma, Ballerup, Denmark
| | - Jesper Hastrup Svendsen
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nana Aviaaja Lippert Rosenø
- Department of Dermato-Venereology and Wound Healing Centre, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Peter Riis Hansen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital–Herlev and Gentofte, Hellerup, Denmark
| | - Simon Francis Thomsen
- Department of Dermato-Venereology and Wound Healing Centre, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Salling Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Del Gaudio I, Nitzsche A, Boyé K, Bonnin P, Poulet M, Nguyen TQ, Couty L, Ha HTT, Nguyen DT, Cazenave-Gassiot A, Ben Alaya K, Thérond P, Chun J, Wenk MR, Proia RL, Henrion D, Nguyen LN, Eichmann A, Camerer E. Zonation and ligand and dose dependence of sphingosine 1-phosphate receptor-1 signalling in blood and lymphatic vasculature. Cardiovasc Res 2024; 120:1794-1810. [PMID: 39086170 PMCID: PMC11587562 DOI: 10.1093/cvr/cvae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 08/02/2024] Open
Abstract
AIMS Circulating levels of sphingosine 1-phosphate (S1P), an HDL-associated ligand for the endothelial cell (EC) protective S1P receptor-1 (S1PR1), are reduced in disease states associated with endothelial dysfunction. Yet, as S1PR1 has high affinity for S1P and can be activated by ligand-independent mechanisms and EC autonomous S1P production, it is unclear if relative reductions in circulating S1P can cause endothelial dysfunction. It is also unclear how EC S1PR1 insufficiency, whether induced by deficiency in circulating ligand or by S1PR1-directed immunosuppressive therapy, affects different vascular subsets. METHODS AND RESULTS We here fine map the zonation of S1PR1 signalling in the murine blood and lymphatic vasculature, superimpose cell-type-specific and relative deficiencies in S1P production to define ligand source and dose dependence, and correlate receptor engagement to essential functions. In naïve blood vessels, despite broad expression, EC S1PR1 engagement was restricted to resistance-size arteries, lung capillaries, and a subset of high-endothelial venules (HEVs). Similar zonation was observed for albumin extravasation in EC S1PR1-deficient mice, and brain extravasation was reproduced with arterial EC-selective S1pr1 deletion. In lymphatic ECs, S1PR1 engagement was high in collecting vessels and lymph nodes and low in blind-ended capillaries that drain tissue fluids. While EC S1P production sustained S1PR1 signalling in lymphatics and HEV, haematopoietic cells provided ∼90% of plasma S1P and sustained signalling in resistance arteries and lung capillaries. S1PR1 signalling and endothelial function were both surprisingly sensitive to reductions in plasma S1P with apparent saturation around 50% of normal levels. S1PR1 engagement did not depend on sex or age but modestly increased in arteries in hypertension and diabetes. Sphingosine kinase (Sphk)-2 deficiency also increased S1PR1 engagement selectively in arteries, which could be attributed to Sphk1-dependent S1P release from perivascular macrophages. CONCLUSION This study highlights vessel subtype-specific S1PR1 functions and mechanisms of engagement and supports the relevance of S1P as circulating biomarker for endothelial function.
Collapse
Affiliation(s)
- Ilaria Del Gaudio
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Anja Nitzsche
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Kevin Boyé
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Philippe Bonnin
- Physiologie Clinique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Lariboisière, Paris, France
- Université Paris Cité, INSERM U1144, UFR de Pharmacie, Paris, France
| | - Mathilde Poulet
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Toan Q Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Ludovic Couty
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Hoa T T Ha
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Dat T Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Amaury Cazenave-Gassiot
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Khaoula Ben Alaya
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Patrice Thérond
- Service de Biochimie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital de Bicêtre, Le Kremlin Bicêtre, France
- UFR de Pharmacie, EA 4529, Châtenay-Malabry, France
| | - Jerold Chun
- Neuroscience Drug Discovery, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Markus R Wenk
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Richard L Proia
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Institutes of Health, Bethesda, MD, USA
| | - Daniel Henrion
- MitoVasc Department, Angers University, Team 2 (CarMe), Angers University Hospital (CHU of Angers), CNRS, INSERM U1083, Angers, France
| | - Long N Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Anne Eichmann
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
- Department of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, USA
| | - Eric Camerer
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| |
Collapse
|
8
|
Frances L, Croyal M, Pittet S, Da Costa Fernandes L, Boulaire M, Monbrun L, Blaak EE, Christoffersen C, Moro C, Tavernier G, Viguerie N. The adipocyte apolipoprotein M is negatively associated with inflammation. J Lipid Res 2024; 65:100648. [PMID: 39303980 PMCID: PMC11513530 DOI: 10.1016/j.jlr.2024.100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
Obesity is associated with the development of local adipose tissue (AT) and systemic inflammation. Most adipokines are upregulated with obesity and have pro-inflammatory properties. Few are downregulated and possess beneficial anti-inflammatory effects. The apolipoprotein M (APOM) is an adipokine whose expression is low during obesity and associated with a metabolically healthy AT. Here, the role of adipose-derived APOM on obesity-associated AT inflammation was investigated by measuring the expression of pro-inflammatory genes in human and mouse models. In 300 individuals with obesity, AT APOM mRNA level was negatively associated with plasma hs-CRP. The inflammatory profile was assessed in Apom-/- and WT mice fed a normal chow diet (NCD), or a high-fat diet (HFD) to induce AT inflammation. After HFD, mice had a higher inflammatory profile in AT and liver, and a 50% lower Apom gene expression compared with NCD-fed mice. Apom deficiency was associated with a higher inflammatory signature in AT compared with WT mice but not in the liver. Adeno-associated viruses encoding human APOM were used to induce APOM overexpression: in vivo, in WT mice AT prior to HFD; in vitro, in human adipocytes which conditioned media was applied to ThP-1 macrophages. The murine AT overexpressing APOM gene had a reduced inflammatory profile. The macrophages treated with APOM-enriched media from adipocytes exhibited lower IL6 and MCP1 gene expression compared with macrophages treated with control media, independently of S1P. Our study highlights the protective role of adipocyte APOM against obesity-induced AT inflammation.
Collapse
Affiliation(s)
- Laurie Frances
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Mikael Croyal
- Nantes Université, CNRS, INSERM, Institut du Thorax, Nantes, France; Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, Nantes, France; Mass Spectrometry Core Facility, CRNH-Ouest, Nantes, France
| | - Soline Pittet
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Léa Da Costa Fernandes
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Milan Boulaire
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Laurent Monbrun
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+(MUMC+), Maastricht, The Netherlands
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cédric Moro
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Geneviève Tavernier
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France.
| | - Nathalie Viguerie
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France.
| |
Collapse
|
9
|
Dib MJ, Azzo JD, Zhao L, Salman O, Gan S, De Buyzere ML, De Meyer T, Ebert C, Gunawardhana K, Liu L, Gordon D, Seiffert D, Ching-Pin C, Zamani P, Cohen JB, Pourmussa B, Kun S, Gill D, Burgess S, van Empel V, Richards AM, Dennis J, Javaheri A, Mann DL, Cappola TP, Rietzschel E, Chirinos JA. Proteome-Wide Genetic Investigation of Large Artery Stiffness. JACC Basic Transl Sci 2024; 9:1178-1191. [PMID: 39534640 PMCID: PMC11551872 DOI: 10.1016/j.jacbts.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 11/16/2024]
Abstract
The molecular mechanisms contributing to large artery stiffness (LAS) are not fully understood. The aim of this study was to investigate the association between circulating plasma proteins and LAS using complementary proteomic and genomic analyses. A total of 106 proteins associated with carotid-femoral pulse-wave velocity, a noninvasive measure of LAS, were identified in 1,178 individuals from the Asklepios study cohort. Mendelian randomization analyses revealed causal effects of 13 genetically predicted plasma proteins on pulse pressure, including cartilage intermediate layer protein-2, high-temperature requirement A serine peptidase-1, and neuronal growth factor-1. These findings suggest potential novel therapeutic targets to reduce LAS and its related diseases.
Collapse
Affiliation(s)
- Marie-Joe Dib
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joe David Azzo
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lei Zhao
- Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Oday Salman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sushrima Gan
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marc L. De Buyzere
- Department of Cardiovascular Diseases, Ghent University Hospital, Ghent, Belgium
| | - Tim De Meyer
- Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | | - Laura Liu
- Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - David Gordon
- Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | | | | | - Payman Zamani
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jordana B. Cohen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bianca Pourmussa
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Seavmeiyin Kun
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
| | - Stephen Burgess
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Vanessa van Empel
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - A. Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | | | - Ali Javaheri
- Washington University School of Medicine, St. Louis, Missouri, USA
- John J. Cochran Veterans Hospital, St. Louis, Missouri, USA
| | - Douglas L. Mann
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thomas P. Cappola
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ernst Rietzschel
- Department of Cardiovascular Diseases, Ghent University Hospital, Ghent, Belgium
| | - Julio A. Chirinos
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Kuo A, Hla T. Regulation of cellular and systemic sphingolipid homeostasis. Nat Rev Mol Cell Biol 2024; 25:802-821. [PMID: 38890457 PMCID: PMC12034107 DOI: 10.1038/s41580-024-00742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
One hundred and fifty years ago, Johann Thudichum described sphingolipids as unusual "Sphinx-like" lipids from the brain. Today, we know that thousands of sphingolipid molecules mediate many essential functions in embryonic development and normal physiology. In addition, sphingolipid metabolism and signalling pathways are dysregulated in a wide range of pathologies, and therapeutic agents that target sphingolipids are now used to treat several human diseases. However, our understanding of sphingolipid regulation at cellular and organismal levels and their functions in developmental, physiological and pathological settings is rudimentary. In this Review, we discuss recent advances in sphingolipid pathways in different organelles, how secreted sphingolipid mediators modulate physiology and disease, progress in sphingolipid-targeted therapeutic and diagnostic research, and the trans-cellular sphingolipid metabolic networks between microbiota and mammals. Advances in sphingolipid biology have led to a deeper understanding of mammalian physiology and may lead to progress in the management of many diseases.
Collapse
Affiliation(s)
- Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Salman O, Zamani P, Zhao L, Dib MJ, Gan S, Azzo JD, Pourmussa B, Richards AM, Javaheri A, Mann DL, Rietzschel E, Zhao M, Wang Z, Ebert C, Liu L, Gunawardhana KL, Greenawalt D, Carayannopoulos L, Chang C, van Empel V, Gogain J, Schafer PH, Gordon DA, Ramirez‐Valle F, Cappola TP, Chirinos JA. Prognostic Significance and Biologic Associations of Senescence-Associated Secretory Phenotype Biomarkers in Heart Failure. J Am Heart Assoc 2024; 13:e033675. [PMID: 39206715 PMCID: PMC11646520 DOI: 10.1161/jaha.123.033675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The role of cellular senescence in human heart failure (HF) remains unclear. The senescence-associated secretory phenotype (SASP) is composed of proteins released by senescent cells. We assessed the prognostic significance and biologic pathways associated with the SASP in human HF using a plasma proteomics approach. METHODS AND RESULTS We measured 25 known SASP proteins among 2248 PHFS (Penn HF Study) participants using the SOMAScan V4 assay. We extracted the common variance in these proteins to generate SASP factor scores and assessed the relationship between these SASP factor scores and (1) all-cause death and (2) the composite of death or HF hospital admission. We also assessed the relationship of each SASP factor to 4746 other proteins, correcting for multiple comparisons, followed by pathway analyses. Two SASP factors were identified. Both factors were associated with older age, lower estimated glomerular filtration rate, and more advanced New York Heart Association class, among other clinical variables. Both SASP factors exhibited a significant positive association with the risk of death independent of the Meta-Analysis of Global-Group in Chronic HF score and NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels. The 2 identified SASP factors were associated with 1201 and 1554 proteins, respectively, belonging to various pathways including the coagulation system, complement system, acute phase response signaling, and retinoid X receptor-related pathways that regulate cell metabolism. CONCLUSIONS Increased SASP components are independently associated with adverse outcomes in HF. Biologic pathways associated with SASP are predominantly related to coagulation, inflammation, and cell metabolism.
Collapse
Affiliation(s)
- Oday Salman
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | - Payman Zamani
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Lei Zhao
- Bristol Myers Squibb CompanyPrincetonNJUSA
| | - Marie Joe Dib
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | - Sushrima Gan
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | - Joe David Azzo
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | - Bianca Pourmussa
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Arthur Mark Richards
- Cardiovascular Research Institute, National University of SingaporeSingapore CitySingapore
- Christchurch Heart Institute, University of OtagoDunedinNew Zealand
| | - Ali Javaheri
- Washington University School of MedicineSt. LouisMOUSA
| | | | - Ernst Rietzschel
- Department of Cardiovascular DiseasesGhent University and Ghent University HospitalGhentBelgium
| | - Manyun Zhao
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | | | | | - Laura Liu
- Bristol Myers Squibb CompanyPrincetonNJUSA
| | | | | | | | | | - Vanessa van Empel
- Department of CardiologyCardiovascular Research Institute Maastricht (CARIM)MaastrichtNetherlands
| | | | | | | | | | - Thomas P. Cappola
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Julio A. Chirinos
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
12
|
Salman O, Zhao L, Cohen JB, Dib MJ, Azzo JD, Gan S, Richards AM, Pourmussa B, Doughty R, Javaheri A, Mann DL, Rietzschel E, Zhao M, Wang Z, Ebert C, van Empel V, Kammerhoff K, Maranville J, Gogain J, Dennis J, Schafer PH, Seiffert D, Gordon DA, Ramirez‐Valle F, Cappola TP, Chirinos JA. Proteomic Correlates and Prognostic Significance of Kidney Injury in Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2024; 13:e033660. [PMID: 39206761 PMCID: PMC11646498 DOI: 10.1161/jaha.123.033660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/15/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Kidney disease is common in heart failure with preserved ejection fraction (HFpEF). However, the biologic correlates and prognostic significance of kidney injury (KI), in HFpEF, beyond the estimated glomerular filtration rate (eGFR), are unclear. METHODS AND RESULTS Using baseline plasma samples from the TOPCAT (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist) trial, we measured the following KI biomarkers: cystatin-C, fatty acid-binding protein-3, Beta-2 microglobulin, neutrophil gelatinase-associated lipocalin, and kidney-injury molecule-1. Factor analysis was used to extract the common variability underlying these biomarkers. We assessed the relationship between the KI-factor score and the risk of death or HF-related hospital admission in models adjusted for the Meta-Analysis Global Group in Chronic Heart Failure risk score and eGFR. We also assessed the relationship between the KI factor score and ~5000 plasma proteins, followed by pathway analysis. We validated our findings among HFpEF participants in the Penn Heart Failure Study. KI was associated with the risk of death or HF-related hospital admission independent of the Meta-Analysis Global Group in Chronic Heart Failure risk score and eGFR. Both the risk score and eGFR were no longer associated with death or HF-related hospital admission after adjusting for the KI factor score. KI was predominantly associated with proteins and biologic pathways related to complement activation, inflammation, fibrosis, and cholesterol homeostasis. KI was associated with 140 proteins, which reproduced across cohorts. Findings regarding biologic associations and the prognostic significance of KI were also reproduced in the validation cohort. CONCLUSIONS KI is associated with adverse outcomes in HFpEF independent of baseline eGFR. Patients with HFpEF and KI exhibit a plasma proteomic signature indicative of complement activation, inflammation, fibrosis, and impaired cholesterol homeostasis.
Collapse
Affiliation(s)
- Oday Salman
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | - Lei Zhao
- Bristol Myers Squibb CompanyPrincetonNJUSA
| | - Jordana B. Cohen
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Marie Joe Dib
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | - Joe David Azzo
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | - Sushrima Gan
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | - A. Mark Richards
- Cardiovascular Research InstituteNational University of SingaporeSingapore
- Christchurch Heart InstituteUniversity of OtagoNew Zealand
| | - Bianca Pourmussa
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | | | - Ali Javaheri
- Washington University School of MedicineSt. LouisMOUSA
| | | | - Ernst Rietzschel
- Department of Cardiovascular DiseasesGhent University and Ghent University HospitalGhentBelgium
| | - Manyun Zhao
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | | | | | - Vanessa van Empel
- Department of CardiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | | | | | | | | | | | | | | | | | - Thomas P. Cappola
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Julio A. Chirinos
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
13
|
deFilippi CR, Shah P, Shah SJ, Alemayehu W, Lam CSP, Butler J, Roessig L, O'Connor CM, Westerhout CM, Armstrong PW. Proteomics Identify Clinical Phenotypes and Predict Functional Outcomes in Heart Failure With Preserved Ejection Fraction: Insights From VITALITY-HFpEF. Circ Heart Fail 2024; 17:e011792. [PMID: 39206547 DOI: 10.1161/circheartfailure.124.011792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome that may emerge from overlapping systemic processes associated with comorbidities. We assessed whether unique clusters of circulating proteins are associated with specific clinical characteristics and functional status at baseline and follow-up in a well-phenotyped cohort of patients with HFpEF. METHODS We evaluated 368 proteins associated with cardiovascular disease and inflammation in prerandomization blood samples from 763 VITALITY-HFpEF (Vericiguat to Improve Physical Functioning in Daily Living Activities of Patients With HFpEF) participants who had a left ventricular ejection fraction ≥45% and a heart failure decompensation event within 6 months. Proteins were clustered, and their associations with clinical characteristics, baseline, and 24-week functional outcomes (Kansas City Cardiomyopathy Questionnaire Physical Limitation Score, 6-minute walk distance [6MWD], and Fried frailty phenotype) were estimated with linear regression. Elastic net regression was used to derive a proteomic summary composite to predict changes in 24-week functional outcomes. RESULTS Four unique protein clusters were identified, containing 24, 66, 197, and 81 proteins. At baseline, 2 protein clusters with the hub proteins caspase-3 and Dickkopf-related protein 1 were associated with increased frailty, whereas the cluster with tumor necrosis factor receptor 1 as a hub protein was associated with lower Kansas City Cardiomyopathy Questionnaire Physical Limitation Score and shorter 6MWD. By contrast, the cluster with protein C as a hub protein was associated with less frailty and longer a 6MWD. The 24-week increase in 6MWD was negatively correlated with the protein cluster with caspase-3; the protein C cluster was correlated with less frailty at 24 weeks. The baseline proteomic summary composite predicted observed changes in Kansas City Cardiomyopathy Questionnaire Physical Limitation Score and 6MWD at 24 weeks (r=0.42 and 0.30; P<0.001 for both). CONCLUSIONS Proteomics differentiate specific baseline functional traits associated with HFpEF and may facilitate phenotyping in a heterogeneous disease. These proteins also provide insights into the diverse pathophysiology of HFpEF and which patients may improve functional status during follow-up. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT03547583.
Collapse
Affiliation(s)
| | - Palak Shah
- Inova Heart and Vascular Institute, Falls Church, VA (C.R.d., P.S., C.M.O.)
| | - Sanjiv J Shah
- Feinberg School of Medicine, Northwestern University, Chicago, IL (S.J.S.)
| | | | - Carolyn S P Lam
- National Heart Centre Singapore and Duke-National University of Singapore, Singapore (C.S.P.L.)
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX (J.B.)
- University of Mississippi, Jackson (J.B.)
| | | | | | - Cynthia M Westerhout
- Canadian VIGOUR Centre, University of Alberta, Edmonton, AB (W.A., C.M.W., P.W.A.)
| | - Paul W Armstrong
- Canadian VIGOUR Centre, University of Alberta, Edmonton, AB (W.A., C.M.W., P.W.A.)
| |
Collapse
|
14
|
SenthilKumar G, Zirgibel Z, Cohen KE, Katunaric B, Jobe AM, Shult CG, Limpert RH, Freed JK. Ying and Yang of Ceramide in the Vascular Endothelium. Arterioscler Thromb Vasc Biol 2024; 44:1725-1736. [PMID: 38899471 PMCID: PMC11269027 DOI: 10.1161/atvbaha.124.321158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Ceramides, a group of biologically active sphingolipids, have been described as the new cholesterol given strong evidence linking high plasma ceramide with endothelial damage, risk for early adverse cardiovascular events, and development of cardiometabolic disease. This relationship has sparked great interest in investigating therapeutic targets with the goal of suppressing ceramide formation. However, the growing data challenge this paradigm of ceramide as solely eliciting detrimental effects to the cardiovascular system. Studies show that ceramides are necessary for maintaining proper endothelial redox states, mechanosensation, and membrane integrity. Recent work in preclinical models and isolated human microvessels highlights that the loss of ceramide formation can in fact propagate vascular endothelial dysfunction. Here, we delve into these conflicting findings to evaluate how ceramide may be capable of exerting both beneficial and damaging effects within the vascular endothelium. We propose a unifying theory that while basal levels of ceramide in response to physiological stimuli are required for the production of vasoprotective metabolites such as S1P (sphingosine-1-phosphate), the chronic accumulation of ceramide can promote activation of pro-oxidative stress pathways in endothelial cells. Clinically, the evidence discussed here highlights the potential challenges associated with therapeutic suppression of ceramide formation as a means of reducing cardiovascular disease risk.
Collapse
Affiliation(s)
- Gopika SenthilKumar
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Zachary Zirgibel
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Katie E. Cohen
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee WI
| | - Boran Katunaric
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Alyssa M. Jobe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Carolyn G. Shult
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Rachel H. Limpert
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Julie K. Freed
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| |
Collapse
|
15
|
Frances L, Croyal M, Ruidavets JB, Maraninchi M, Combes G, Raffin J, de Souto Barreto P, Ferrières J, Blaak EE, Perret B, Moro C, Valéro R, Martinez LO, Viguerie N. Identification of circulating apolipoprotein M as a new determinant of insulin sensitivity and relationship with adiponectin. Int J Obes (Lond) 2024; 48:973-980. [PMID: 38491190 PMCID: PMC11216985 DOI: 10.1038/s41366-024-01510-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The adiponectin is one of the rare adipokines down-regulated with obesity and protects against obesity-related disorders. Similarly, the apolipoprotein M (apoM) is expressed in adipocytes and its expression in adipose tissue is associated with metabolic health. We compared circulating apoM with adiponectin regarding their relationship with metabolic parameters and insulin sensitivity and examined their gene expression patterns in adipocytes and in the adipose tissue. METHODS Circulating apoM and adiponectin were examined in 169 men with overweight in a cross-sectional study, and 13 patients with obesity during a surgery-induced slimming program. Correlations with clinical parameters including the insulin resistance index (HOMA-IR) were analyzed. Multiple regression analyses were performed on HOMA-IR. The APOM and ADIPOQ gene expression were measured in the adipose tissue from 267 individuals with obesity and a human adipocyte cell line. RESULTS Participants with type 2 diabetes had lower circulating adiponectin and apoM, while apoM was higher in individuals with dyslipidemia. Similar to adiponectin, apoM showed negative associations with HOMA-IR and hs-CRP (r < -0.2), and positive correlations with HDL markers (HDL-C and apoA-I, r > 0.3). Unlike adiponectin, apoM was positively associated with LDL markers (LDL-C and apoB100, r < 0.20) and negatively correlated with insulin and age (r < -0.2). The apoM was the sole negative determinant of HOMA-IR in multiple regression models, while adiponectin not contributing significantly. After surgery, the change in HOMA-IR was negatively associated with the change in circulating apoM (r = -0.71), but not with the change in adiponectin. The APOM and ADIPOQ gene expression positively correlated in adipose tissue (r > 0.44) as well as in adipocytes (r > 0.81). In adipocytes, APOM was downregulated by inflammatory factors and upregulated by adiponectin. CONCLUSIONS The apoM rises as a new partner of adiponectin regarding insulin sensitivity. At the adipose tissue level, the adiponectin may be supported by apoM to promote a healthy adipose tissue. TRIAL REGISTRATION NCT01277068, registered 13 January 2011; NCT02332434, registered 5 January 2015; and NCT00390637, registered 20 October 2006.
Collapse
Affiliation(s)
- Laurie Frances
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, 31432, Toulouse, France
| | - Mikaël Croyal
- Nantes Université, CHU Nantes, CNRS, INSERM, BioCore, US16, SFR Bonamy, 44000, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, 44000, Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, 44000, Nantes, France
| | | | - Marie Maraninchi
- Aix Marseille Université, APHM, INSERM, INRAe, C2VN, Department of Nutrition, Metabolic Diseases and Endocrinology, University Hospital La Conception, 13385, Marseille, France
| | - Guillaume Combes
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, 31432, Toulouse, France
- Institut Hospitalo-Universitaire HealthAge, IHU HealthAge, Inserm, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
| | - Jérémy Raffin
- Institut Hospitalo-Universitaire HealthAge, IHU HealthAge, Inserm, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 31000, Toulouse, France
| | - Philippe de Souto Barreto
- CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, 31000, Toulouse, France
- Institut Hospitalo-Universitaire HealthAge, IHU HealthAge, Inserm, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 31000, Toulouse, France
| | - Jean Ferrières
- CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, 31000, Toulouse, France
- Department of Cardiology, Toulouse Rangueil University Hospital, Toulouse University School of Medicine, Toulouse, France
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+(MUMC+), Maastricht, The Netherlands
| | - Bertrand Perret
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, 31432, Toulouse, France
- Institut Hospitalo-Universitaire HealthAge, IHU HealthAge, Inserm, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
| | - Cédric Moro
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, 31432, Toulouse, France
| | - René Valéro
- Aix Marseille Université, APHM, INSERM, INRAe, C2VN, Department of Nutrition, Metabolic Diseases and Endocrinology, University Hospital La Conception, 13385, Marseille, France
| | - Laurent O Martinez
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, 31432, Toulouse, France.
- Institut Hospitalo-Universitaire HealthAge, IHU HealthAge, Inserm, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.
| | - Nathalie Viguerie
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), UMR1297, 31432, Toulouse, France.
| |
Collapse
|
16
|
Carland C, Zhao L, Salman O, Cohen JB, Zamani P, Xiao Q, Dongre A, Wang Z, Ebert C, Greenawalt D, van Empel V, Richards AM, Doughty RN, Rietzschel E, Javaheri A, Wang Y, Schafer PH, Hersey S, Carayannopoulos LN, Seiffert D, Chang C, Gordon DA, Ramirez‐Valle F, Mann DL, Cappola TP, Chirinos JA. Urinary Proteomics and Outcomes in Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2024; 13:e033410. [PMID: 38639358 PMCID: PMC11179922 DOI: 10.1161/jaha.123.033410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Although several studies have addressed plasma proteomics in heart failure with preserved ejection fraction, limited data are available on the prognostic value of urinary proteomics. The objective of our study was to identify urinary proteins/peptides associated with death and heart failure admission in patients with heart failure with preserved ejection fraction. METHODS AND RESULTS The study population included participants enrolled in TOPCAT (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial). The relationship between urine protein levels and the risk of death or heart failure admission was assessed using Cox regression, in both nonadjusted analyses and adjusting for urine creatinine levels, and the MAGGIC (Meta-Analysis Global Group in Chronic Heart Failure) score. A total of 426 (12.4%) TOPCAT participants had urinary protein data and were included. There were 40 urinary proteins/peptides significantly associated with death or heart failure admission in nonadjusted analyses, 21 of which were also significant adjusted analyses. Top proteins in the adjusted analysis included ANGPTL2 (angiopoietin-like protein 2) (hazard ratio [HR], 0.5731 [95% CI, 0.47-0.7]; P=3.13E-05), AMY2A (α amylase 2A) (HR, 0.5496 [95% CI, 0.44-0.69]; P=0.0001), and DNASE1 (deoxyribonuclease-1) (HR, 0.5704 [95% CI, 0.46-0.71]; P=0.0002). Higher urinary levels of proteins involved in fibrosis (collagen VI α-1, collagen XV α-1), metabolism (pancreatic α-amylase 2A/B, mannosidase α class 1A member 1), and inflammation (heat shock protein family D member 1, inducible T cell costimulatory ligand) were associated with a lower risk of death or heart failure admission. CONCLUSIONS Our study identifies several novel associations between urinary proteins/peptides and outcomes in heart failure with preserved ejection fraction. Many of these associations are independent of clinical risk scores and may aid in risk stratification in this patient population.
Collapse
Affiliation(s)
- Corinne Carland
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Lei Zhao
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | - Oday Salman
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Jordana B. Cohen
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Payman Zamani
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Qing Xiao
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | | | | | | | | | - Vanessa van Empel
- Department of CardiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - A. Mark Richards
- Cardiovascular Research Institute, National University of SingaporeSingapore
- Christchurch Heart Institute, University of OtagoChristchurchNew Zealand
| | - Robert N. Doughty
- Christchurch Heart Institute, University of OtagoChristchurchNew Zealand
| | - Ernst Rietzschel
- Department of Cardiovascular DiseasesGhent University Hospital and Ghent UniversityGhentBelgium
| | - Ali Javaheri
- Washington University School of MedicineSt. LouisMOUSA
| | - Yixin Wang
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | | | | | | | | | | | | | | | | | - Thomas P. Cappola
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Julio A. Chirinos
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
17
|
Dib M, Levin MG, Zhao L, Diab A, Wang Z, Ebert C, Salman O, Azzo JD, Gan S, Zamani P, Cohen JB, Gill D, Burgess S, Zagkos L, van Empel V, Richards AM, Doughty R, Rietzschel ER, Kammerhoff K, Kvikstad E, Maranville J, Schafer P, Seiffert DA, Ramirez‐Valle F, Gordon DA, Chang C, Javaheri A, Mann DL, Cappola TP, Chirinos JA. Proteomic Associations of Adverse Outcomes in Human Heart Failure. J Am Heart Assoc 2024; 13:e031154. [PMID: 38420755 PMCID: PMC10944037 DOI: 10.1161/jaha.123.031154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Identifying novel molecular drivers of disease progression in heart failure (HF) is a high-priority goal that may provide new therapeutic targets to improve patient outcomes. The authors investigated the relationship between plasma proteins and adverse outcomes in HF and their putative causal role using Mendelian randomization. METHODS AND RESULTS The authors measured 4776 plasma proteins among 1964 participants with HF with a reduced left ventricular ejection fraction enrolled in PHFS (Penn Heart Failure Study). Assessed were the observational relationship between plasma proteins and (1) all-cause death or (2) death or HF-related hospital admission (DHFA). The authors replicated nominally significant associations in the Washington University HF registry (N=1080). Proteins significantly associated with outcomes were the subject of 2-sample Mendelian randomization and colocalization analyses. After correction for multiple testing, 243 and 126 proteins were found to be significantly associated with death and DHFA, respectively. These included small ubiquitin-like modifier 2 (standardized hazard ratio [sHR], 1.56; P<0.0001), growth differentiation factor-15 (sHR, 1.68; P<0.0001) for death, A disintegrin and metalloproteinase with thrombospondin motifs-like protein (sHR, 1.40; P<0.0001), and pulmonary-associated surfactant protein C (sHR, 1.24; P<0.0001) for DHFA. In pathway analyses, top canonical pathways associated with death and DHFA included fibrotic, inflammatory, and coagulation pathways. Genomic analyses provided evidence of nominally significant associations between levels of 6 genetically predicted proteins with DHFA and 11 genetically predicted proteins with death. CONCLUSIONS This study implicates multiple novel proteins in HF and provides preliminary evidence of associations between genetically predicted plasma levels of 17 candidate proteins and the risk for adverse outcomes in human HF.
Collapse
Affiliation(s)
- Marie‐Joe Dib
- Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Michael G. Levin
- Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Lei Zhao
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | - Ahmed Diab
- Washington University School of MedicineSt. LouisMOUSA
| | | | | | - Oday Salman
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Joe David Azzo
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Sushrima Gan
- Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Payman Zamani
- Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Jordana B. Cohen
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Renal‐Electrolyte and Hypertension Division, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public HealthImperial College LondonLondonUnited Kingdom
| | - Stephen Burgess
- MRC Integrative Epidemiology UnitUniversity of BristolUnited Kingdom
- Department of Public Health and Primary CareUniversity of CambridgeUnited Kingdom
| | - Loukas Zagkos
- Department of Epidemiology and Biostatistics, School of Public HealthImperial College LondonLondonUnited Kingdom
| | - Vanessa van Empel
- Department of CardiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - A. Mark Richards
- Department of CardiologyMaastricht University Medical CenterMaastrichtThe Netherlands
- Cardiovascular Research InstituteNational University of SingaporeSingapore
| | - Rob Doughty
- Christchurch Heart InstituteUniversity of OtagoChristchurchNew Zealand
| | | | | | | | | | | | | | | | | | | | - Ali Javaheri
- Washington University School of MedicineSt. LouisMOUSA
- John J. Cochran Veterans HospitalSt. LouisMOUSA
| | | | - Thomas P. Cappola
- Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Julio A. Chirinos
- Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
18
|
Azzo JD, Dib MJ, Zagkos L, Zhao L, Wang Z, Chang CP, Ebert C, Salman O, Gan S, Zamani P, Cohen JB, van Empel V, Richards AM, Javaheri A, Mann DL, Rietzschel E, Schafer P, Seiffert DA, Gill D, Burgess S, Ramirez-Valle F, Gordon DA, Cappola TP, Chirinos JA. Proteomic Associations of NT-proBNP (N-Terminal Pro-B-Type Natriuretic Peptide) in Heart Failure With Preserved Ejection Fraction. Circ Heart Fail 2024; 17:e011146. [PMID: 38299345 PMCID: PMC7615693 DOI: 10.1161/circheartfailure.123.011146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels are variably elevated in heart failure with preserved ejection fraction (HFpEF), even in the presence of increased left ventricular filling pressures. NT-proBNP levels are prognostic in HFpEF and have been used as an inclusion criterion for several recent randomized clinical trials. However, the underlying biologic differences between HFpEF participants with high and low NT-proBNP levels remain to be fully understood. METHODS We measured 4928 proteins using an aptamer-based proteomic assay (SOMAScan) in available plasma samples from 2 cohorts: (1) Participants with HFpEF enrolled in the PHFS (Penn Heart Failure Study; n=253); (2) TOPCAT (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial) participants in the Americas (n=218). We assessed the relationship between SOMAScan-derived plasma NT-proBNP and levels of other proteins available in the SOMAScan assay version 4 using robust linear regression, with correction for multiple comparisons, followed by pathway analysis. RESULTS NT-proBNP levels exhibited prominent proteome-wide associations in PHFS and TOPCAT cohorts. Proteins most strongly associated with NT-proBNP in both cohorts included SVEP1 (sushi, von Willebrand factor type-A, epidermal growth factor, and pentraxin domain containing 1; βTOPCAT=0.539; P<0.0001; βPHFS=0.516; P<0.0001) and ANGPT2 (angiopoietin 2; βTOPCAT=0.571; P<0.0001; βPHFS=0.459; P<0.0001). Canonical pathway analysis demonstrated consistent associations with multiple pathways related to fibrosis and inflammation. These included hepatic fibrosis and inhibition of matrix metalloproteases. Analyses using cut points corresponding to estimated quantitative concentrations of 360 pg/mL (and 480 pg/mL in atrial fibrillation) revealed similar proteomic associations. CONCLUSIONS Circulating NT-proBNP levels exhibit prominent proteomic associations in HFpEF. Our findings suggest that higher NT-proBNP levels in HFpEF are a marker of fibrosis and inflammation. These findings will aid the interpretation of NT-proBNP levels in HFpEF and may guide the selection of participants in future HFpEF clinical trials.
Collapse
Affiliation(s)
- Joe David Azzo
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Marie-Joe Dib
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia PA
| | - Loukas Zagkos
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Lei Zhao
- Bristol-Myers Squibb Company, Lawrenceville, NJ
| | | | | | | | - Oday Salman
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sushrima Gan
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia PA
| | - Payman Zamani
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia PA
| | - Jordana B. Cohen
- Bristol-Myers Squibb Company, Lawrenceville, NJ
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA
| | - Vanessa van Empel
- Department of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A. Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Ali Javaheri
- Washington University School of Medicine, St. Louis, MO
- John J. Cochran Veterans Hospital, St. Louis, MO
| | | | - Ernst Rietzschel
- Department of Cardiovascular Diseases, Ghent University Hospital, Ghent, Belgium
| | | | | | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Stephen Burgess
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | | | - Thomas P. Cappola
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia PA
| | - Julio A. Chirinos
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia PA
| |
Collapse
|
19
|
Ozcan M, Zhu X, Zhang H, Javaheri A. Editorial: Lipids, lipoproteins and COVID-19. Front Cardiovasc Med 2023; 10:1293249. [PMID: 38028441 PMCID: PMC10646584 DOI: 10.3389/fcvm.2023.1293249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Mualla Ozcan
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Xuewei Zhu
- Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Hanrui Zhang
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Ali Javaheri
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, John J. Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| |
Collapse
|
20
|
Xing L, Liu Y, Wang J, Tian P, Liu P. High-Density Lipoprotein and Heart Failure. Rev Cardiovasc Med 2023; 24:321. [PMID: 39076447 PMCID: PMC11272862 DOI: 10.31083/j.rcm2411321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/31/2024] Open
Abstract
The protective effect of high-density lipoprotein (HDL) on atherosclerosis is well known, and its mechanisms of action has been extensively studied. However, the impact of HDL on heart failure and its mechanisms are still controversial or unknown. The cardioprotective role of HDL may be reflected in its antioxidant, anti-inflammatory, anti-apoptotic, and endothelial function protection. In epidemiological studies, high-density lipoprotein cholesterol (HDL-C) levels have been negatively associated with heart failure (HF). The major protein component of HDL-C is apolipoprotein (Apo) A-I, while paraoxonase-1 (PON-1) is an essential mediator for many protective functions of HDL, and HDL may act through components like (Apo) A-I or PON-1 to delay heart failure progress. HDL can slow heart failure disease progression through parts like (Apo) A-I or PON-1. The potential causality between HDL and heart failure, the role of HDL in the pathogenesis of HF, and its interaction with C-reactive protein (CRP), triglycerides (TG), and monocytes in the process of heart failure have been briefly summarized and discussed in this article. HDL plays an important role in the pathogenesis, progression and treatment of HF.
Collapse
Affiliation(s)
- Liyun Xing
- Department of Cardiology, the Second Hospital of Shandong University,
250033 Jinan, Shandong, China
| | - Yixuan Liu
- School of Clinical and Basic Medicine, Shandong First Medical University,
250117 Jinan, Shandong, China
| | - Jiayu Wang
- Department of Cardiology, the Second Hospital of Shandong University,
250033 Jinan, Shandong, China
| | - Peiqing Tian
- Department of Cardiology, the Second Hospital of Shandong University,
250033 Jinan, Shandong, China
| | - Ping Liu
- Department of Cardiology, the Second Hospital of Shandong University,
250033 Jinan, Shandong, China
| |
Collapse
|
21
|
Gan S, Zhao L, Salman O, Wang Z, Ebert C, Azzo JD, Dib MJ, Zamani P, Cohen JB, Kammerhoff K, Schafer P, Seiffert DA, Ramirez-Valle F, Gordon DA, Cvijic ME, Gunawardhana K, Liu L, Chang CP, Cappola TP, Chirinos JA. Proteomic Correlates of the Urinary Protein/Creatinine Ratio in Heart Failure With Preserved Ejection Fraction. Am J Cardiol 2023; 206:312-319. [PMID: 37734292 PMCID: PMC10874232 DOI: 10.1016/j.amjcard.2023.08.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Proteinuria is common in heart failure with preserved ejection fraction (HFpEF), but its biologic correlates are poorly understood. We assessed the relation between 49 plasma proteins and the urinary protein/creatinine ratio (UPCR) in 365 participants in the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist Trial. Linear regression and network analysis were used to represent relations between protein biomarkers and UPCR. Higher UPCR was associated with older age, a greater proportion of female gender, smaller prevalence of previous myocardial infarction, and greater prevalence of diabetes, insulin use, smoking, and statin use, in addition to a lower estimated glomerular filtration rate, hematocrit, and diastolic blood pressure. Growth differentiation factor 15 (GDF-15; β = 0.15, p <0.0001), followed by N-terminal proatrial natriuretic peptide (NT-proANP; β = 0.774, p <0.0001), adiponectin (β = 0.0005, p <0.0001), fibroblast growth factor 23 (FGF-23, β = 0.177; p <0.0001), and soluble tumor necrosis factor receptors I (β = 0.002, p <0.0001) and II (β = 0.093, p <0.0001) revealed the strongest associations with UPCR. Network analysis showed that UPCR is linked to various proteins primarily through FGF-23, which, along with GDF-15, indicated node characteristics with strong connectivity, whereas UPCR did not. In a model that included FGF-23 and UPCR, the former was predictive of the risk of death or heart-failure hospital admission (standardized hazard ratio 1.83, 95% confidence interval 1.49 to 2.26, p <0.0001) and/or all-cause death (standardized hazard ratio 1.59, 95% confidence interval 1.22 to 2.07, p = 0.0005), whereas UPCR was not prognostic. Proteinuria in HFpEF exhibits distinct proteomic correlates, primarily through its association with FGF-23, a well-known prognostic marker in HFpEF. However, in contrast to FGF-23, UPCR does not hold independent prognostic value.
Collapse
Affiliation(s)
- Sushrima Gan
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Cardiovascular Medicine, Hospital of The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lei Zhao
- Bristol-Myers Squibb Company, Lawrenceville, New Jersey
| | - Oday Salman
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Cardiovascular Medicine, Hospital of The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zhaoqing Wang
- Bristol-Myers Squibb Company, Lawrenceville, New Jersey
| | | | - Joe David Azzo
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Cardiovascular Medicine, Hospital of The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marie Joe Dib
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Cardiovascular Medicine, Hospital of The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Payman Zamani
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Cardiovascular Medicine, Hospital of The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jordana B Cohen
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biostatistics, Epidemiology, and Informatics
| | | | - Peter Schafer
- Bristol-Myers Squibb Company, Lawrenceville, New Jersey
| | | | | | | | | | | | - Laura Liu
- Bristol-Myers Squibb Company, Lawrenceville, New Jersey
| | | | - Thomas P Cappola
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Cardiovascular Medicine, Hospital of The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julio A Chirinos
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Cardiovascular Medicine, Hospital of The University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
22
|
Muendlein A, Heinzle C, Brandtner EM, Leiherer A, Geiger K, Gaenger S, Drexel H, Dechow T, Decker T. Plasma apolipoprotein M predicts overall survival in metastatic breast cancer patients. Breast Cancer Res Treat 2023; 201:571-576. [PMID: 37490173 DOI: 10.1007/s10549-023-07045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE Apolipoprotein M (APOM) is a plasma apolipoprotein closely involved with lipid metabolism and inflammation. In vitro studies suggest that APOM may also have a tumor-suppressive role in breast cancer. In the present study, we aimed to evaluate the impact of plasma APOM levels on the prognosis of breast cancer patients. METHODS We measured APOM levels using an enzyme-linked immunosorbent assay in 75 patients with ER-positive/HER2-negative metastatic breast cancer. The endpoint was overall survival (OS) at 24 months. RESULTS During the 24-month follow-up period, 34.7% of the patients died. Baseline APOM levels were significantly reduced in patients who deceased during follow-up compared to survivors (42.7 ± 14.5 µg/mL versus 52.2 ± 13.8 µg/mL; P = 0.003). Cox regression analysis showed a hazard ratio of 0.30 [95% confidence interval 0.15-0.61]; P < 0.001 per doubling of APOM levels. Correction for age, C-reactive protein, menopausal state, histology of the primary tumor, metastatic site, number of metastases, endocrine resistance, scheduled therapy line, and kind of scheduled therapy indicated that circulating APOM predicted OS independently of these parameters (HRper doubling = 0.23 [0.09-0.56; P = 0.001). CONCLUSIONS Our study suggests that circulating APOM is significantly linked with reduced mortality in metastatic breast cancer patients.
Collapse
Affiliation(s)
- Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria.
| | - Christine Heinzle
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria
- Medical Central Laboratories, Feldkirch, Austria
| | - Eva Maria Brandtner
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria
| | - Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria
- Medical Central Laboratories, Feldkirch, Austria
| | - Kathrin Geiger
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria
- Medical Central Laboratories, Feldkirch, Austria
| | - Stella Gaenger
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria
- Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
23
|
Corbacho-Alonso N, Sastre-Oliva T, López-Almodovar LF, Solis J, Padial LR, Tejerina T, Carrascal M, Mourino-Alvarez L, Barderas MG. Diabetes mellitus and aortic stenosis head to head: toward personalized medicine in patients with both pathologies. Transl Res 2023; 259:35-45. [PMID: 37085047 DOI: 10.1016/j.trsl.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
Diabetes mellitus (DM) and calcific aortic stenosis (CAS) are common morbidities in the elderly, which are both chronic, progressive and often concomitant diseases. Several studies revealed that DM increases the risk of developing severe CAS, yet clear information about the relationship between both these diseases and the influence of DM on the progression of CAS is currently lacking. To evaluate the effect of DM on aortic valves and on the process of calcification, and to achieve better patient management in daily clinical practice, we analysed calcified and noncalcified valve tissue from patients with severe CAS, with or without DM. A proteomic strategy using isobaric tags was adopted and the plasma concentrations of nine proteins were studied using 3 orthogonal methods and in a separate cell model. The differentially expressed proteins identified are implicated in biological processes like endopeptidase activity, lipid metabolism, coagulation, and fibrinolysis. The results obtained provide evidence that DM provokes changes in the proteome of aortic valves, affecting valve calcification. This finding may help enhance our understanding of the pathogenesis of CAS and how DM affects the evolution of this condition, an important step in identifying targets to personalize the treatment of these patients.
Collapse
Affiliation(s)
- Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | | | - Jorge Solis
- Department of Cardiology, Hospital Universitario 12 de Octubre and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; AtriaClinic, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis R Padial
- Department of Cardiology, Hospital General Universitario de Toledo, SESCAM, Toledo, Spain
| | - Teresa Tejerina
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Montserrat Carrascal
- Biological and Environmental Proteomics, Institut d'Investigacions Biomèdiques de Barcelona-CSIC, IDIBAPS, Barcelona, Spain
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Maria G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain.
| |
Collapse
|
24
|
Mo ZW, Peng YM, Zhang YX, Li Y, Kang BA, Chen YT, Li L, Sorci-Thomas MG, Lin YJ, Cao Y, Chen S, Liu ZL, Gao JJ, Huang ZP, Zhou JG, Wang M, Chang GQ, Deng MJ, Liu YJ, Ma ZS, Hu ZJ, Dong YG, Ou ZJ, Ou JS. High-density lipoprotein regulates angiogenesis by long non-coding RNA HDRACA. Signal Transduct Target Ther 2023; 8:299. [PMID: 37574469 PMCID: PMC10423722 DOI: 10.1038/s41392-023-01558-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/17/2023] [Accepted: 07/09/2023] [Indexed: 08/15/2023] Open
Abstract
Normal high-density lipoprotein (nHDL) can induce angiogenesis in healthy individuals. However, HDL from patients with coronary artery disease undergoes various modifications, becomes dysfunctional (dHDL), and loses its ability to promote angiogenesis. Here, we identified a long non-coding RNA, HDRACA, that is involved in the regulation of angiogenesis by HDL. In this study, we showed that nHDL downregulates the expression of HDRACA in endothelial cells by activating WW domain-containing E3 ubiquitin protein ligase 2, which catalyzes the ubiquitination and subsequent degradation of its transcription factor, Kruppel-like factor 5, via sphingosine 1-phosphate (S1P) receptor 1. In contrast, dHDL with lower levels of S1P than nHDL were much less effective in decreasing the expression of HDRACA. HDRACA was able to bind to Ras-interacting protein 1 (RAIN) to hinder the interaction between RAIN and vigilin, which led to an increase in the binding between the vigilin protein and proliferating cell nuclear antigen (PCNA) mRNA, resulting in a decrease in the expression of PCNA and inhibition of angiogenesis. The expression of human HDRACA in a hindlimb ischemia mouse model inhibited the recovery of angiogenesis. Taken together, these findings suggest that HDRACA is involved in the HDL regulation of angiogenesis, which nHDL inhibits the expression of HDRACA to induce angiogenesis, and that dHDL is much less effective in inhibiting HDRACA expression, which provides an explanation for the decreased ability of dHDL to stimulate angiogenesis.
Collapse
Affiliation(s)
- Zhi-Wei Mo
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yi-Xin Zhang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Bi-Ang Kang
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Le Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | | | - Yi-Jun Lin
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yang Cao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Si Chen
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ze-Long Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Jian-Jun Gao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhan-Peng Huang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jia-Guo Zhou
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, China
| | - Mian Wang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guang-Qi Chang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng-Jie Deng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Jia Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhen-Sheng Ma
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zuo-Jun Hu
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Gang Dong
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, P.R. China.
| |
Collapse
|
25
|
Li Y, Tam WW, Yu Y, Zhuo Z, Xue Z, Tsang C, Qiao X, Wang X, Wang W, Li Y, Tu Y, Gao Y. The application of Aptamer in biomarker discovery. Biomark Res 2023; 11:70. [PMID: 37468977 DOI: 10.1186/s40364-023-00510-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
Biomarkers are detectable molecules that can reflect specific physiological states of cells, organs, and organisms and therefore be regarded as indicators for specific diseases. And the discovery of biomarkers plays an essential role in cancer management from the initial diagnosis to the final treatment regime. Practically, reliable clinical biomarkers are still limited, restricted by the suboptimal methods in biomarker discovery. Nucleic acid aptamers nowadays could be used as a powerful tool in the discovery of protein biomarkers. Nucleic acid aptamers are single-strand oligonucleotides that can specifically bind to various targets with high affinity. As artificial ssDNA or RNA, aptamers possess unique advantages compared to conventional antibodies. They can be flexible in design, low immunogenicity, relative chemical/thermos stability, as well as modifying convenience. Several SELEX (Systematic Evolution of Ligands by Exponential Enrichment) based methods have been generated recently to construct aptamers for discovering new biomarkers in different cell locations. Secretome SELEX-based aptamers selection can facilitate the identification of secreted protein biomarkers. The aptamers developed by cell-SELEX can be used to unveil those biomarkers presented on the cell surface. The aptamers from tissue-SELEX could target intracellular biomarkers. And as a multiplexed protein biomarker detection technology, aptamer-based SOMAScan can analyze thousands of proteins in a single run. In this review, we will introduce the principle and workflow of variations of SELEX-based methods, including secretome SELEX, ADAPT, Cell-SELEX and tissue SELEX. Another powerful proteome analyzing tool, SOMAScan, will also be covered. In the second half of this review, how these methods accelerate biomarker discovery in various diseases, including cardiovascular diseases, cancer and neurodegenerative diseases, will be discussed.
Collapse
Affiliation(s)
- Yongshu Li
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China.
| | - Winnie Wailing Tam
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomic, Peking University Shenzhen Graduate School, Shenzhen, China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhichao Xue
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Chiman Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoting Qiao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Weijing Wang
- Shantou University Medical College, Shantou, China
| | - Yongyi Li
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou City, China.
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China.
| |
Collapse
|
26
|
Ren L, Li F, Tan X, Fan Y, Ke B, Zhang Y, Jiang H, Jia L, Wang Y, Du J. Abnormal plasma ceramides refine high-risk patients with worsening heart failure. Front Cardiovasc Med 2023; 10:1185595. [PMID: 37456812 PMCID: PMC10339027 DOI: 10.3389/fcvm.2023.1185595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Background Worsening heart failure (WHF) is a heterogeneous clinical syndrome with poor prognosis. More effective risk stratification tools are required to identify high-risk patients. Evidence suggest that aberrant ceramide accumulation can be affected by heart failure risk factors and as a driver of tissue damage. We hypothesized that specific ceramide lengths and ratios serve as biomarkers for risk stratification in WHF patients by reflecting pathological changes of distinct organ dysfunctions. Medthods We measured seven plasma ceramides using liquid chromatography-mass spectrometry (LC-MS) in 1,558 patients, including 1,262 participants in retrospective discovery set and 296 WHF patients in prospective validation set in BIOMS-HF study (Registry Study of Biomarkers in Heart Failure). Univariable and multivariable logistic regression models were constructed to identify associations of ceramides with organ dysfunctions. Results We constructed three ceramide-based scores linked independently to heart, liver, and kidney dysfunction, with ceramides and ratios included in each score specifying systemic inflammation, chronic metabolic disorder, and water-sodium retention. The combined ceramide heart failure score (CHFS) was independently associated with adverse outcomes [Hazard Ratio, 2.80 (95% CI: 1.78-4.40; P < 0.001); 2.68 995% CI: 1.12-6.46; P = 0.028)] and improved the predictive value of Acute Decompensated Heart Failure National Registry score and BNP [net reclassification index, 0.34 (95% confidence interval, CI: 0.19-0.50); 0.42 (95% CI: 0.13-0.70)] in the discovery and validation set, respectively. Lower BNP levels, but higher CHFS had the highest hazard of future adverse events in WHF patients. Conclusion Abnormal plasma ceramides, associated with heart and peripheral organ dysfunctions, provide incremental prognostic information over the ADHERE score and brain natriuretic peptide concentration for risk stratification in WHF patients. This may facilitate the reclassification of high-risk patients in need of aggressive therapeutic interventions.
Collapse
Affiliation(s)
- Lu Ren
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing lnstitute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fengjuan Li
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing lnstitute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xin Tan
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing lnstitute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yangkai Fan
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing lnstitute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Bingbing Ke
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yixin Zhang
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universitat Munchen (LMU), Munich, Germany
| | - Hongfeng Jiang
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing lnstitute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lixin Jia
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing lnstitute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yuan Wang
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing lnstitute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jie Du
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing lnstitute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Drexler Y, Molina J, Elfassy T, Ma R, Christoffersen C, Kurano M, Yatomi Y, Mariani LH, Contreras G, Merscher S, Fornoni A. Identification of Glomerular and Plasma Apolipoprotein M as Novel Biomarkers in Glomerular Disease. Kidney Int Rep 2023; 8:884-897. [PMID: 37069998 PMCID: PMC10105063 DOI: 10.1016/j.ekir.2023.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Dysregulation of sphingolipid and cholesterol metabolism contributes to the pathogenesis of glomerular diseases (GDs). Apolipoprotein M (ApoM) promotes cholesterol efflux and modulates the bioactive sphingolipid sphingosine-1-phosphate (S1P). Glomerular ApoM expression is decreased in patients with focal segmental glomerulosclerosis (FSGS). We hypothesized that glomerular ApoM deficiency occurs in GD and that ApoM expression and plasma ApoM correlate with outcomes. Methods Patients with GD from the Nephrotic Syndrome Study Network (NEPTUNE) were studied. We compared glomerular mRNA expression of ApoM (gApoM), sphingosine kinase 1 (SPHK1), and S1P receptors 1 to 5 (S1PR1-5) in patients (n = 84) and controls (n = 6). We used correlation analyses to determine associations between gApoM, baseline plasma ApoM (pApoM), and urine ApoM (uApoM/Cr). We used linear regression to determine whether gApoM, pApoM, and uApoM/Cr were associated with baseline estimated glomerular filtration rate (eGFR) and proteinuria. Using Cox models, we determined whether gApoM, pApoM, and uApoM/Cr were associated with complete remission (CR) and the composite of end-stage kidney disease (ESKD) or ≥40% eGFR decline. Results gApoM was reduced (P < 0.01) and SPHK1 and S1PR1 to 5 expression was increased (P < 0.05) in patients versus controls, consistent with ApoM/S1P pathway modulation. gApoM positively correlated with pApoM in the overall cohort (r = 0.34, P < 0.01) and in the FSGS (r = 0.48, P < 0.05) and minimal change disease (MCD) (r = 0.75, P < 0.05) subgroups. Every unit decrease in gApoM and pApoM (log2) was associated with a 9.77 ml/min per 1.73 m2 (95% confidence interval [CI]: 3.96-15.57) and 13.26 ml/min per 1.73 m2 (95% CI: 3.57-22.96) lower baseline eGFR, respectively (P < 0.01). From Cox models adjusted for age, sex, or race, pApoM was a significant predictor of CR (hazard ratio [HR]: 1.85; 95% CI: 1.06-3.23). Conclusions pApoM is a potential noninvasive biomarker of gApoM deficiency and strongly associates with clinical outcomes in GD.
Collapse
Affiliation(s)
- Yelena Drexler
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Judith Molina
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Tali Elfassy
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ruixuan Ma
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Christina Christoffersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Laura H. Mariani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gabriel Contreras
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
28
|
Kazmirczak F, Prins KW. ApoM Activates Autophagy and Suppresses Lyosomal Lethargy to Combat Doxorubicin Cardiomyopathy. JACC Basic Transl Sci 2023; 8:356-358. [PMID: 37034281 PMCID: PMC10077149 DOI: 10.1016/j.jacbts.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Affiliation(s)
- Felipe Kazmirczak
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kurt W Prins
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
29
|
Guo Z, Valenzuela Ripoll C, Picataggi A, Rawnsley DR, Ozcan M, Chirinos JA, Chendamarai E, Girardi A, Riehl T, Evie H, Diab A, Kovacs A, Hyrc K, Ma X, Asnani A, Shewale SV, Scherrer-Crosbie M, Cowart LA, Parks JS, Zhao L, Gordon D, Ramirez-Valle F, Margulies KB, Cappola TP, Desai AA, Pedersen LN, Bergom C, Stitziel NO, Rettig MP, DiPersio JF, Hajny S, Christoffersen C, Diwan A, Javaheri A. Apolipoprotein M Attenuates Anthracycline Cardiotoxicity and Lysosomal Injury. JACC Basic Transl Sci 2023; 8:340-355. [PMID: 37034289 PMCID: PMC10077122 DOI: 10.1016/j.jacbts.2022.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 01/06/2023]
Abstract
Apolipoprotein M (ApoM) binds sphingosine-1-phosphate (S1P) and is inversely associated with mortality in human heart failure (HF). Here, we show that anthracyclines such as doxorubicin (Dox) reduce circulating ApoM in mice and humans, that ApoM is inversely associated with mortality in patients with anthracycline-induced heart failure, and ApoM heterozygosity in mice increases Dox-induced mortality. In the setting of Dox stress, our studies suggest ApoM can help sustain myocardial autophagic flux in a post-transcriptional manner, attenuate Dox cardiotoxicity, and prevent lysosomal injury.
Collapse
Affiliation(s)
- Zhen Guo
- Washington University School of Medicine, St Louis, Missouri, USA
| | | | | | | | - Mualla Ozcan
- Washington University School of Medicine, St Louis, Missouri, USA
| | - Julio A. Chirinos
- Perelman School of Medicine, University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Amanda Girardi
- Washington University School of Medicine, St Louis, Missouri, USA
| | - Terrence Riehl
- Washington University School of Medicine, St Louis, Missouri, USA
| | - Hosannah Evie
- Washington University School of Medicine, St Louis, Missouri, USA
| | - Ahmed Diab
- Washington University School of Medicine, St Louis, Missouri, USA
| | - Attila Kovacs
- Washington University School of Medicine, St Louis, Missouri, USA
| | - Krzysztof Hyrc
- Hope Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Xiucui Ma
- Washington University School of Medicine, St Louis, Missouri, USA
- John Cochran Veterans Affairs Medical Center, St Louis, Missouri, USA
| | - Aarti Asnani
- Beth Israel Deaconess, Harvard Medical School, Boston, Massachusetts, USA
| | - Swapnil V. Shewale
- Perelman School of Medicine, University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marielle Scherrer-Crosbie
- Perelman School of Medicine, University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lauren Ashley Cowart
- Virginia Commonwealth University, Richmond, Virginia, USA
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - John S. Parks
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Lei Zhao
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - David Gordon
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | - Kenneth B. Margulies
- Perelman School of Medicine, University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas P. Cappola
- Perelman School of Medicine, University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Carmen Bergom
- Washington University School of Medicine, St Louis, Missouri, USA
| | | | | | - John F. DiPersio
- Washington University School of Medicine, St Louis, Missouri, USA
| | - Stefan Hajny
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Abhinav Diwan
- Washington University School of Medicine, St Louis, Missouri, USA
- John Cochran Veterans Affairs Medical Center, St Louis, Missouri, USA
| | - Ali Javaheri
- Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
30
|
Schreiner C, Powell TL, Palmer C, Jansson T. Placental proteins with predicted roles in fetal development decrease in premature infants. Pediatr Res 2022; 92:1316-1324. [PMID: 35132128 PMCID: PMC9357234 DOI: 10.1038/s41390-022-01942-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Emerging evidence from animal experiments indicate that factors secreted by the placenta are critical for normal fetal organ development. Our objective was to characterize the umbilical vein and artery proteome in preterm infants and identify proteins that decrease in the neonatal circulation following delivery. METHODS Cord blood at delivery and neonatal blood at 48-72 h of life was collected in 25 preterm infants. Plasma protein abundance was determined using the SomaLogic platform. RESULTS When comparing protein levels of umbilical venous to arterial cord blood, 434 proteins were significantly higher indicating placental secretion into the fetal circulation. Moreover, when comparing neonatal blood to umbilical vein levels, 142 proteins were significantly lower. These proteins included Endoplasmic reticulum resident protein 29, CD59, Fibroblast growth factor 2 and Dynactin subunit 2, which are involved in brain development and prevention of brain damage as well as Fibroblast growth factor 1 which prevents lung fibrosis. CONCLUSIONS The late second trimester human placenta secretes proteins into the fetal circulation which decrease following delivery. Many of these proteins are predicted to be important in the development of fetal organs. Further studies are needed to directly link placental proteins to organ development and poor outcomes in preterm infants. IMPACT Prematurity remains a leading cause of morbidity and mortality requiring the development of novel treatments. Emerging evidence from animal studies suggest that factors secreted from the placenta may be critical in the development of the fetus. We report that the preterm human placenta secretes an array of proteins into the fetal circulation. Some of these proteins are predicted to be involved in the development of the brain and the lung. When born prematurely, infants are deprived of these placental proteins, which may contribute to their poor outcomes.
Collapse
Affiliation(s)
- Cynthia Schreiner
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Pediatrics at Renown Children's Hospital, Reno, NV, USA.
| | - Theresa L Powell
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Obstetrics, Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Claire Palmer
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Jansson
- Department of Obstetrics, Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
31
|
Santos-Gallego CG, Requena-Ibáñez JA, Badimón JJ. High-density lipoprotein cholesterol: a new marker in heart failure. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2022; 75:855-857. [PMID: 35787950 DOI: 10.1016/j.rec.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Carlos G Santos-Gallego
- Atherothrombosis Research Unit, Cardiology Department, Mount Sinai Hospital, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, United States.
| | - Juan Antonio Requena-Ibáñez
- Atherothrombosis Research Unit, Cardiology Department, Mount Sinai Hospital, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Juan José Badimón
- Atherothrombosis Research Unit, Cardiology Department, Mount Sinai Hospital, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
32
|
Chen X, Ma Y, Xie Y, Pu J. Aptamer-based applications for cardiovascular disease. Front Bioeng Biotechnol 2022; 10:1002285. [PMID: 36312558 PMCID: PMC9606242 DOI: 10.3389/fbioe.2022.1002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease (especially atherosclerosis) is a major cause of death worldwide, and novel diagnostic tools and treatments for this disease are urgently needed. Aptamers are single-stranded oligonucleotides that specifically recognize and bind to the targets by forming unique structures in vivo, enabling them to rival antibodies in cardiac applications. Chemically synthesized aptamers can be readily modified in a site-specific way, so they have been engineered in the diagnosis of cardiac diseases and anti-thrombosis therapeutics. Von Willebrand Factor plays a unique role in the formation of thrombus, and as an aptamer targeting molecule, has shown initial success in antithrombotic treatment. A combination of von Willebrand Factor and nucleic acid aptamers can effectively inhibit the progression of blood clots, presenting a positive diagnosis and therapeutic effect, as well as laying a novel theory and strategy to improve biocompatibility paclitaxel drug balloon or implanted stent in the future. This review summarizes aptamer-based applications in cardiovascular disease, including biomarker discovery and future management strategy. Although relevant applications are relatively new, the significant advancements achieved have demonstrated that aptamers can be promising agents to realize the integration of diagnosis and therapy in cardiac research.
Collapse
Affiliation(s)
| | | | | | - Jun Pu
- *Correspondence: Yuquan Xie, ; Jun Pu,
| |
Collapse
|
33
|
Chirinos JA, Zhao L, Reese-Petersen AL, Cohen JB, Genovese F, Richards AM, Doughty RN, Díez J, González A, Querejeta R, Zamani P, Nuñez J, Wang Z, Ebert C, Kammerhoff K, Maranville J, Basso M, Qian C, Rasmussen DGK, Schafer PH, SeifFert D, Karsdal MA, Gordon DA, Ramirez-Valle F, Cappola TP. Endotrophin, a Collagen VI Formation-Derived Peptide, in Heart Failure. NEJM EVIDENCE 2022; 1:10.1056/evidoa2200091. [PMID: 37645406 PMCID: PMC10465122 DOI: 10.1056/evidoa2200091] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
BACKGROUND Endotrophin, a collagen type VI-derived peptide, mediates metabolic dysregulation, inflammation, and fibrosis in animal models, but has not been studied in human heart failure (HF). METHODS We examined the association between circulating endotrophin and outcomes in participants suffering from HF with preserved ejection fraction (HFpEF) enrolled in the TOPCAT trial (n=205). Associations were validated in a participant-level meta-analysis (n=810) that included participants with HFpEF from the PHFS study (United States; n=174), PEOPLE cohort (New Zealand; n=168), a randomized trial of vasodilator therapy (United States; n=45), a cohort from Donostia University Hospital and University of Navarra (Spain; n=171), and the TRAINING-HF trial (Spain; n=47). We also assessed associations in HF with reduced ejection fraction in PHFS (n=1,642). RESULTS Plasma endotrophin levels at baseline were associated with risk of future death (standardized hazard ratio [HR] = 1.74; 95% confidence interval [CI]=1.36-2.24; P<0.001) and death or HF-related hospital admission (DHFA; standardized HR=2.11; 95% CI= 1.67-2.67; P<0.001) in TOPCAT. Endotrophin improved reclassification and discrimination for these outcomes beyond the MAGGIC risk score and NT-proBNP (N-terminal pro b-type natriuretic peptide). Findings were confirmed in the participant-level meta-analysis. In participants with HF with reduced ejection fraction in PHFS, endotrophin levels were associated with death (standardized HR=1.82; 95% CI=1.66-2.00; P<0.001) and DHFA (standardized HR=1.40; 95% CI=1.31-1.50; P<0.001), but the strength of the latter association was substantially lower than for the MAGGIC risk score (standardized HR=1.93; 95% CI=1.76-2.12) and BNP (standardized HR=1.78; 95% CI=1.66-1.92). CONCLUSIONS Circulating endotrophin levels are independently associated with future poor outcomes in patients with HF, particularly in HFpEF. (Funded by Bristol Myers Squibb; Instituto de Salud Carlos III [Spain] and European Regional Development Fund; European Commission CRUCIAL project; and the U.S. National Institutes of Health National Heart, Lung, and Blood Institute.).
Collapse
Affiliation(s)
- Julio A Chirinos
- Hospital of the University of Pennsylvania, Philadelphia
- University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | - Lei Zhao
- Bristol Myers Squibb Company, Princeton, NJ
| | | | | | | | - A Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Dunedin, New Zealand
| | | | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, IdiSNA and CIBERCV, Pamplona, Navarra, Spain
- Departments of Cardiology and Nephrology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, IdiSNA and CIBERCV, Pamplona, Navarra, Spain
| | - Ramón Querejeta
- Department of Cardiology, Hospital Universitario Donostia, San Sebastián, Guipúzcoa, Spain
| | - Payman Zamani
- Hospital of the University of Pennsylvania, Philadelphia
- University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | - Julio Nuñez
- Hospital Clínico Universitario de Valencia, Universidad de Valencia, INCLIVA, CIBER Cardiovascular, Valencia, Spain
| | | | | | | | | | | | - Chenao Qian
- University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | | | | | | | | | | | | | - Thomas P Cappola
- Hospital of the University of Pennsylvania, Philadelphia
- University of Pennsylvania, Perelman School of Medicine, Philadelphia
| |
Collapse
|
34
|
Katz DH, Robbins JM, Deng S, Tahir UA, Bick AG, Pampana A, Yu Z, Ngo D, Benson MD, Chen ZZ, Cruz DE, Shen D, Gao Y, Bouchard C, Sarzynski MA, Correa A, Natarajan P, Wilson JG, Gerszten RE. Proteomic profiling platforms head to head: Leveraging genetics and clinical traits to compare aptamer- and antibody-based methods. SCIENCE ADVANCES 2022; 8:eabm5164. [PMID: 35984888 PMCID: PMC9390994 DOI: 10.1126/sciadv.abm5164] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 07/07/2022] [Indexed: 05/10/2023]
Abstract
High-throughput proteomic profiling using antibody or aptamer-based affinity reagents is used increasingly in human studies. However, direct analyses to address the relative strengths and weaknesses of these platforms are lacking. We assessed findings from the SomaScan1.3K (N = 1301 reagents), the SomaScan5K platform (N = 4979 reagents), and the Olink Explore (N = 1472 reagents) profiling techniques in 568 adults from the Jackson Heart Study and 219 participants in the HERITAGE Family Study across four performance domains: precision, accuracy, analytic breadth, and phenotypic associations leveraging detailed clinical phenotyping and genetic data. Across these studies, we show evidence supporting more reliable protein target specificity and a higher number of phenotypic associations for the Olink platform, while the Soma platforms benefit from greater measurement precision and analytic breadth across the proteome.
Collapse
Affiliation(s)
- Daniel H. Katz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jeremy M. Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Shuliang Deng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Usman A. Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Akhil Pampana
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Zhi Yu
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Debby Ngo
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mark D. Benson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Zsu-Zsu Chen
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Daniel E. Cruz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Dongxiao Shen
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yan Gao
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Claude Bouchard
- Human Genomic Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Mark A. Sarzynski
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - Adolfo Correa
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Pradeep Natarajan
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - James G. Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
35
|
Safi M, Borup A, Stevns Hansen C, Rossing P, Thorsten Jensen M, Christoffersen C. Association between plasma apolipoprotein M and cardiac autonomic neuropathy in type 1 diabetes. Diabetes Res Clin Pract 2022; 189:109943. [PMID: 35690270 DOI: 10.1016/j.diabres.2022.109943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/09/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022]
Abstract
AIM Diabetes may lead to severe complications e.g. cardiac autonomic neuropathy (CAN) characterized by an increased risk of cardiovascular mortality. CAN is diagnosed by a decreased heart rate viability (HRV). Sphingosine-1-Phosphate (S1P) carried by the HDL-associated apolipoprotein M (apoM) is linked to a reduction in the heart rate, and treatment with an S1P-agonist increases HRV. The present study aimed to investigate if plasma apoM was associated with an increased risk of CAN. METHODS The study includes 278 individuals with Type 1 Diabetes recruited from Steno Diabetes Center in Copenhagen from 2010 to 2012. RESULTS A change of 0.1 µM plasma apoM was associated with the diagnosis of CAN (Odds ratio: 1.11 (1.02; 1.21), p = 0.013). ApoM plasma levels were also positively associated with CAN when adjusted for age and gender (Odds ratio: 1.11 (1.02; 1.21), p = 0.013) as well as lipids, beta-blockers, blood pressure, and alcohol (Odds ratio: 1.14 (1.04; 1.26), p = 0.005) and Hbga1c and time with diabetes (Odds ratio: 1.13 (1.02; 1.25), p = 0.01). Plasma apoM was also associated with a significantly lower SDNN as well as high frequency power in all adjusted models. CONCLUSION Increased plasma apoM was associated with an increased risk of CAN as well as a significant reduction in HRV indices. This could represent changes in parasympathetic activity, but, further studies are needed to also explore additional molecular alterations behind such observations.
Collapse
Affiliation(s)
- Mostafa Safi
- Department of Clinical Biochemistry, Rigshospitalet, Denmark; Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Anna Borup
- Department of Clinical Biochemistry, Rigshospitalet, Denmark; Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark; Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Magnus Thorsten Jensen
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Denmark; Department of Cardiology, Copenhagen University Hospital Amager Hvidovre, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Denmark; Department of Biomedical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
36
|
Spampinato SF, Sortino MA, Salomone S. Sphingosine-1-phosphate and Sphingosine-1-phosphate receptors in the cardiovascular system: pharmacology and clinical implications. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:95-139. [PMID: 35659378 DOI: 10.1016/bs.apha.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a lipid that binds and activates five distinct receptor subtypes, S1P1, S1P2, S1P3, S1P4, S1P5, widely expressed in different cells, tissues and organs. In the cardiovascular system these receptors have been extensively studied, but no drug acting on them has been approved so far for treating cardiovascular diseases. In contrast, a number of S1P receptor agonists are approved as immunomodulators, mainly for multiple sclerosis, because of their action on lymphocyte trafficking. This chapter summarizes the available information on S1P receptors in the cardiovascular system and discusses their potential for treating cardiovascular conditions and/or their role on the clinical pharmacology of drugs so far approved for non-cardiovascular conditions. Basic research has recently produced data useful to understand the molecular pharmacology of S1P and S1P receptors, regarding biased agonism, S1P storage, release and vehiculation and chaperoning by lipoproteins, paracrine actions, intracellular non-receptorial S1P actions. On the other hand, the approval of fingolimod and newer generation S1P receptor ligands as immunomodulators, provides information on a number of clinical observations on the impact of these drugs on cardiovascular system which need to be integrated with preclinical data. S1P receptors are potential targets for prevention and treatment of major cardiovascular conditions, including hypertension, myocardial infarction, heart failure and stroke.
Collapse
Affiliation(s)
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy.
| |
Collapse
|
37
|
HDL: un nuevo biomarcador para la insuficiencia cardiaca. Rev Esp Cardiol 2022. [DOI: 10.1016/j.recesp.2022.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Diab A, Valenzuela Ripoll C, Guo Z, Javaheri A. HDL Composition, Heart Failure, and Its Comorbidities. Front Cardiovasc Med 2022; 9:846990. [PMID: 35350538 PMCID: PMC8958020 DOI: 10.3389/fcvm.2022.846990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Although research on high-density lipoprotein (HDL) has historically focused on atherosclerotic coronary disease, there exists untapped potential of HDL biology for the treatment of heart failure. Anti-oxidant, anti-inflammatory, and endothelial protective properties of HDL could impact heart failure pathogenesis. HDL-associated proteins such as apolipoprotein A-I and M may have significant therapeutic effects on the myocardium, in part by modulating signal transduction pathways and sphingosine-1-phosphate biology. Furthermore, because heart failure is a complex syndrome characterized by multiple comorbidities, there are complex interactions between heart failure, its comorbidities, and lipoprotein homeostatic mechanisms. In this review, we will discuss the effects of heart failure and associated comorbidities on HDL, explore potential cardioprotective properties of HDL, and review novel HDL therapeutic targets in heart failure.
Collapse
|
39
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145:e153-e639. [PMID: 35078371 DOI: 10.1161/cir.0000000000001052] [Citation(s) in RCA: 3143] [Impact Index Per Article: 1047.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
40
|
Izquierdo MC, Shanmugarajah N, Lee SX, Kraakman MJ, Westerterp M, Kitamoto T, Harris M, Cook JR, Gusarova GA, Zhong K, Marbuary E, O-Sullivan I, Rasmus NF, Camastra S, Unterman TG, Ferrannini E, Hurwitz BE, Haeusler RA. Hepatic FoxOs link insulin signaling with plasma lipoprotein metabolism through an apolipoprotein M/sphingosine-1-phosphate pathway. J Clin Invest 2022; 132:146219. [PMID: 35104242 PMCID: PMC8970673 DOI: 10.1172/jci146219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple beneficial cardiovascular effects of HDL depend on sphingosine-1-phosphate (S1P). S1P associates with HDL by binding to apolipoprotein M (ApoM). Insulin resistance is a major driver of dyslipidemia and cardiovascular risk. However, the mechanisms linking alterations in insulin signaling with plasma lipoprotein metabolism are incompletely understood. The insulin-repressible FoxO transcription factors mediate key effects of hepatic insulin action on glucose and lipoprotein metabolism. This work tested whether hepatic insulin signaling regulates HDL-S1P and aimed to identify the underlying molecular mechanisms. We report that insulin-resistant, nondiabetic individuals had decreased HDL-S1P levels, but no change in total plasma S1P. This also occurred in insulin-resistant db/db mice, which had low ApoM and a specific reduction of S1P in the HDL fraction, with no change in total plasma S1P levels. Using mice lacking hepatic FoxOs (L-FoxO1,3,4), we found that hepatic FoxOs were required for ApoM expression. Total plasma S1P levels were similar to those in controls, but S1P was nearly absent from HDL and was instead increased in the lipoprotein-depleted plasma fraction. This phenotype was restored to normal by rescuing ApoM in L-FoxO1,3,4 mice. Our findings show that insulin resistance in humans and mice is associated with decreased HDL-associated S1P. Our study shows that hepatic FoxO transcription factors are regulators of the ApoM/S1P pathway.
Collapse
Affiliation(s)
- María Concepción Izquierdo
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Niroshan Shanmugarajah
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Samuel X Lee
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Michael J Kraakman
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Marit Westerterp
- Department of Pediatrics, University of Groningen, Groningen, Netherlands
| | - Takumi Kitamoto
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Michael Harris
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Joshua R Cook
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Galina A Gusarova
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Kendra Zhong
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Elijah Marbuary
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - InSug O-Sullivan
- Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, United States of America
| | - Nikolaus F Rasmus
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa School of Medicine, Pisa, Italy
| | - Terry G Unterman
- Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, United States of America
| | - Ele Ferrannini
- Department of Internal Medicine, CNR Institute of Clinical Physiology, Pisa, Italy
| | - Barry E Hurwitz
- Department of Psychology, University of Miami, Miami, United States of America
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, United States of America
| |
Collapse
|
41
|
Bisgaard LS, Christoffersen C. The apoM/S1P Complex-A Mediator in Kidney Biology and Disease? Front Med (Lausanne) 2021; 8:754490. [PMID: 34722589 PMCID: PMC8553247 DOI: 10.3389/fmed.2021.754490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Kidney disease affects more than 10% of the population, can be both acute and chronic, and is linked to other diseases such as cardiovascular disease, diabetes, and sepsis. Despite the detrimental consequences for patients, no good treatment options directly targeting the kidney are available. Thus, a better understanding of the pathology and new treatment modalities are required. Accumulating evidence suggests that the apolipoprotein M/sphingosine-1-phosphate (apoM/S1P) axis is a likely drug target, but significant gaps in our knowledge remain. In this review, we present what has so far been elucidated about the role of apoM in normal kidney biology and describe how changes in the apoM/S1P axis are thought to affect the development of kidney disease. ApoM is primarily produced in the liver and kidneys. From the liver, apoM is secreted into circulation, where it is attached to lipoproteins (primarily HDL). Importantly, apoM is a carrier of the bioactive lipid S1P. S1P acts by binding to five different receptors. Together, apoM/S1P plays a role in several biological mechanisms, such as inflammation, endothelial cell permeability, and lipid turnover. In the kidney, apoM is primarily expressed in the proximal tubular cells. S1P can be produced locally in the kidney, and several of the five S1P receptors are present in the kidney. The functional role of kidney-derived apoM as well as plasma-derived apoM is far from elucidated and will be discussed based on both experimental and clinical studies. In summary, the current studies provide evidence that support a role for the apoM/S1P axis in kidney disease; however, additional pre-clinical and clinical studies are needed to reveal the mechanisms and target potential in the treatment of patients.
Collapse
Affiliation(s)
- Line S Bisgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Ren AH, Diamandis EP, Kulasingam V. Uncovering the Depths of the Human Proteome: Antibody-based Technologies for Ultrasensitive Multiplexed Protein Detection and Quantification. Mol Cell Proteomics 2021; 20:100155. [PMID: 34597790 PMCID: PMC9357438 DOI: 10.1016/j.mcpro.2021.100155] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/01/2021] [Accepted: 09/25/2021] [Indexed: 12/20/2022] Open
Abstract
Probing the human proteome in tissues and biofluids such as plasma is attractive for biomarker and drug target discovery. Recent breakthroughs in multiplex, antibody-based, proteomics technologies now enable the simultaneous quantification of thousands of proteins at as low as sub fg/ml concentrations with remarkable dynamic ranges of up to 10-log. We herein provide a comprehensive guide to the methodologies, performance, technical comparisons, advantages, and disadvantages of established and emerging technologies for the multiplexed ultrasensitive measurement of proteins. Gaining holistic knowledge on these innovations is crucial for choosing the right multiplexed proteomics tool for applications at hand to critically complement traditional proteomics methods. This can bring researchers closer than ever before to elucidating the intricate inner workings and cross talk that spans multitude of proteins in disease mechanisms.
Collapse
Affiliation(s)
- Annie H Ren
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| |
Collapse
|
43
|
Yao Mattisson I, Christoffersen C. Apolipoprotein M and its impact on endothelial dysfunction and inflammation in the cardiovascular system. Atherosclerosis 2021; 334:76-84. [PMID: 34482091 DOI: 10.1016/j.atherosclerosis.2021.08.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023]
Abstract
Apolipoprotein M (apoM) is a member of the lipocalin superfamily and is predominantly associated with high-density lipoprotein (HDL). It was found that apoM is the chaperon to the bioactive sphingolipid, sphingosine-1-phosphate (S1P). Several studies have since contributed to expand the knowledge on apoM, S1P, and the apoM/S1P-complex in cardiovascular diseases. For instance, the HDL-bound apoM/S1P complex serves as a bridge between HDL and endothelial cells, maintaining a healthy endothelial barrier. Evidence indicates, however, that the apoM/S1P complex may has both protective and harmful effects on the cardiovascular system, which suggests the need for more research to understand the interplay between these molecules. This review aims to shed light on the most recent findings on apoM/S1P-signaling and its impact on endothelial dysfunction, inflammation, and cardiovascular diseases. Finally, it will be discussed whether drugs that target apoM and/or S1P-signaling may be beneficial to patients with cardiovascular and inflammatory diseases.
Collapse
Affiliation(s)
- Ingrid Yao Mattisson
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark; Department of Clinical Sciences Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark.
| |
Collapse
|
44
|
Del Gaudio I, Rubinelli L, Sasset L, Wadsack C, Hla T, Di Lorenzo A. Endothelial Spns2 and ApoM Regulation of Vascular Tone and Hypertension Via Sphingosine-1-Phosphate. J Am Heart Assoc 2021; 10:e021261. [PMID: 34240614 PMCID: PMC8483458 DOI: 10.1161/jaha.121.021261] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Most of the circulating sphingosine-1-phosphate (S1P) is bound to ApoM (apolipoprotein M) of high-density lipoprotein (HDL) and mediates many beneficial effects of HDL on the vasculature via G protein-coupled S1P receptors. HDL-bound S1P is decreased in atherosclerosis, myocardial infarction, and diabetes mellitus. In addition to being the target, the endothelium is a source of S1P, which is transported outside of the cells by Spinster-2, contributing to circulating S1P as well as to local signaling. Mice lacking endothelial S1P receptor 1 are hypertensive, suggesting a vasculoprotective role of S1P signaling. This study investigates the role of endothelial-derived S1P and ApoM-bound S1P in regulating vascular tone and blood pressure. Methods and Results ApoM knockout (ApoM KO) mice and mice lacking endothelial Spinster-2 (ECKO-Spns2) were infused with angiotensin II for 28 days. Blood pressure, measured by telemetry and tail-cuff, was significantly increased in both ECKO-Spns2 and ApoM KO versus control mice, at baseline and following angiotensin II. Notably, ECKO-Spns2 presented an impaired vasodilation to flow and blood pressure dipping, which is clinically associated with increased risk for cardiovascular events. In hypertension, both groups presented reduced flow-mediated vasodilation and some degree of impairment in endothelial NO production, which was more evident in ECKO-Spns2. Increased hypertension in ECKO-Spns2 and ApoM KO mice correlated with worsened cardiac hypertrophy versus controls. Conclusions Our study identifies an important role for Spinster-2 and ApoM-HDL in blood pressure homeostasis via S1P-NO signaling and dissects the pathophysiological impact of endothelial-derived S1P and ApoM of HDL-bound S1P in hypertension and cardiac hypertrophy.
Collapse
Affiliation(s)
- Ilaria Del Gaudio
- Department of Pathology and Laboratory Medicine Cardiovascular Research InstituteFeil Family Brain & Mind Research InstituteWeill Cornell Medicine New York NY.,Department of Obstetrics and Gynecology Medical University of Graz Austria
| | - Luisa Rubinelli
- Department of Pathology and Laboratory Medicine Cardiovascular Research InstituteFeil Family Brain & Mind Research InstituteWeill Cornell Medicine New York NY
| | - Linda Sasset
- Department of Pathology and Laboratory Medicine Cardiovascular Research InstituteFeil Family Brain & Mind Research InstituteWeill Cornell Medicine New York NY
| | - Christian Wadsack
- Department of Obstetrics and Gynecology Medical University of Graz Austria
| | - Timothy Hla
- Vascular Biology Program Boston Children's Hospital and Department of Surgery Harvard Medical School Boston MA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine Cardiovascular Research InstituteFeil Family Brain & Mind Research InstituteWeill Cornell Medicine New York NY
| |
Collapse
|
45
|
Trakaki A, Marsche G. Current Understanding of the Immunomodulatory Activities of High-Density Lipoproteins. Biomedicines 2021; 9:biomedicines9060587. [PMID: 34064071 PMCID: PMC8224331 DOI: 10.3390/biomedicines9060587] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Lipoproteins interact with immune cells, macrophages and endothelial cells - key players of the innate and adaptive immune system. High-density lipoprotein (HDL) particles seem to have evolved as part of the innate immune system since certain HDL subspecies contain combinations of apolipoproteins with immune regulatory functions. HDL is enriched in anti-inflammatory lipids, such as sphingosine-1-phosphate and certain saturated lysophospholipids. HDL reduces inflammation and protects against infection by modulating immune cell function, vasodilation and endothelial barrier function. HDL suppresses immune cell activation at least in part by modulating the cholesterol content in cholesterol/sphingolipid-rich membrane domains (lipid rafts), which play a critical role in the compartmentalization of signaling pathways. Acute infections, inflammation or autoimmune diseases lower HDL cholesterol levels and significantly alter HDL metabolism, composition and function. Such alterations could have a major impact on disease progression and may affect the risk for infections and cardiovascular disease. This review article aims to provide a comprehensive overview of the immune cell modulatory activities of HDL. We focus on newly discovered activities of HDL-associated apolipoproteins, enzymes, lipids, and HDL mimetic peptides.
Collapse
|
46
|
Gui H, She R, Luzum J, Li J, Bryson TD, Pinto Y, Sabbah HN, Williams LK, Lanfear DE. Plasma Proteomic Profile Predicts Survival in Heart Failure With Reduced Ejection Fraction. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003140. [PMID: 33999650 DOI: 10.1161/circgen.120.003140] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND It remains unclear whether the plasma proteome adds value to established predictors in heart failure (HF) with reduced ejection fraction (HFrEF). We sought to derive and validate a plasma proteomic risk score (PRS) for survival in patients with HFrEF (HFrEF-PRS). METHODS Patients meeting Framingham criteria for HF with EF<50% were enrolled (N=1017) and plasma underwent SOMAscan profiling (4453 targets). Patients were randomly divided 2:1 into derivation and validation cohorts. The HFrEF-PRS was derived using Cox regression of all-cause mortality adjusted for clinical score and NT-proBNP (N-terminal pro-B-type natriuretic peptide), then was tested in the validation cohort. Risk stratification improvement was evaluated by C statistic, integrated discrimination index, continuous net reclassification index, and median improvement in risk score for 1-year and 3-year mortality. RESULTS Participants' mean age was 68 years, 48% identified as Black, 35% were female, and 296 deaths occurred. In derivation (n=681), 128 proteins associated with mortality, 8 comprising the optimized HFrEF-PRS. In validation (n=336) the HFrEF-PRS associated with mortality (hazard ratio, 2.27 [95% CI, 1.84-2.82], P=6.3×10-14), Kaplan-Meier curves differed significantly between HFrEF-PRS quartiles (P=2.2×10-6), and it remained significant after adjustment for clinical score and NT-proBNP (hazard ratio, 1.37 [95% CI, 1.05-1.79], P=0.021). The HFrEF-PRS improved metrics of risk stratification (C statistic change, 0.009, P=0.612; integrated discrimination index, 0.041, P=0.010; net reclassification index=0.391, P=0.078; median improvement in risk score=0.039, P=0.016) and associated with cardiovascular death and HF phenotypes (eg, 6-minute walk distance, EF change). Most HFrEF-PRS proteins had little known connection to HFrEF. CONCLUSIONS A plasma multiprotein score improved risk stratification in patients with HFrEF and identified novel candidates.
Collapse
Affiliation(s)
- Hongsheng Gui
- Center for Individualized and Genomic Medicine Research (CIGMA) (H.G., J. Luzum, T.D.B., K.W., D.E.L.), Henry Ford Hospital
| | - Ruicong She
- Department of Public Health Sciences, Henry Ford Health System, Detroit (R.S., J. Li)
| | - Jasmine Luzum
- Center for Individualized and Genomic Medicine Research (CIGMA) (H.G., J. Luzum, T.D.B., K.W., D.E.L.), Henry Ford Hospital.,Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor (J. Luzum)
| | - Jia Li
- Department of Public Health Sciences, Henry Ford Health System, Detroit (R.S., J. Li)
| | - Timothy D Bryson
- Center for Individualized and Genomic Medicine Research (CIGMA) (H.G., J. Luzum, T.D.B., K.W., D.E.L.), Henry Ford Hospital
| | - Yigal Pinto
- Department of Cardiology, University of Amsterdam Medical Center, the Netherlands (Y.P.)
| | - Hani N Sabbah
- Heart and Vascular Institute (H.N.S., D.E.L.), Henry Ford Hospital
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA) (H.G., J. Luzum, T.D.B., K.W., D.E.L.), Henry Ford Hospital
| | - David E Lanfear
- Center for Individualized and Genomic Medicine Research (CIGMA) (H.G., J. Luzum, T.D.B., K.W., D.E.L.), Henry Ford Hospital.,Heart and Vascular Institute (H.N.S., D.E.L.), Henry Ford Hospital
| |
Collapse
|
47
|
Li H, Rosenzweig A. Understanding Heart Failure With Preserved Ejection Fraction in a Diabetic Way. JACC Basic Transl Sci 2021; 6:100-102. [PMID: 33688851 PMCID: PMC7907634 DOI: 10.1016/j.jacbts.2020.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Haobo Li
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony Rosenzweig
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
48
|
Hanff TC, Cohen JB, Zhao L, Javaheri A, Zamani P, Prenner SB, Rietzschel E, Jia Y, Walsh A, Maranville J, Wang Z, Adam L, Ramirez-Valle F, Schafer P, Seiffert D, Gordon DA, Cvijic ME, Cappola TP, Chirinos JA. Quantitative Proteomic Analysis of Diabetes Mellitus in Heart Failure With Preserved Ejection Fraction. JACC Basic Transl Sci 2021; 6:89-99. [PMID: 33665511 PMCID: PMC7907637 DOI: 10.1016/j.jacbts.2020.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 01/25/2023]
Abstract
Diabetes mellitus (DM) is associated with a higher risk of heart failure hospitalization and mortality in patients with heart failure with preserved ejection fraction (HFpEF). Using SomaScan assays and proteomics analysis of plasma from participants in the TOPCAT (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist) trial and the Penn Heart Failure Study, this study identified 10 proteins with significantly different expression in patients with HFpEF and DM. Of these, apolipoprotein M was found to mediate 72% (95% CI: 36% to 100%; p < 0.001) of the association between DM and the risk of cardiovascular death, aborted cardiac arrest, and heart failure hospitalization.
Collapse
Affiliation(s)
- Thomas C. Hanff
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jordana B. Cohen
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lei Zhao
- Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Ali Javaheri
- Division of Cardiovascular Medicine, Washington University School of Medicine St. Louis, Missouri, USA
| | - Payman Zamani
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stuart B. Prenner
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ernst Rietzschel
- Department of Cardiovascular Diseases, Ghent University, Ghent, Belgium
| | - Yi Jia
- SomaLogic, Boulder, Colorado, USA
| | - Alice Walsh
- Bristol-Myers Squibb, Princeton, New Jersey, USA
| | | | | | - Leonard Adam
- Bristol-Myers Squibb, Princeton, New Jersey, USA
| | | | | | | | | | | | - Thomas P. Cappola
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julio A. Chirinos
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
49
|
Christoffersen C. Apolipoprotein M-A Marker or an Active Player in Type II Diabetes? Front Endocrinol (Lausanne) 2021; 12:665393. [PMID: 34093440 PMCID: PMC8176018 DOI: 10.3389/fendo.2021.665393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/03/2021] [Indexed: 11/15/2022] Open
Abstract
Apolipoprotein M (apoM) is a member of the lipocalin superfamily and an important carrier of the small bioactive lipid sphingosine-1-phosphate (S1P). The apoM/S1P complex is attached to all lipoproteins, but exhibits a significant preference for high-density lipoproteins. Although apoM, S1P, and the apoM/S1P complex have been discovered more than a decade earlier, the overall function of the apoM/S1P complex remains controversial. Evidence suggests that the complex plays a role in inflammation and cholesterol metabolism and is important for maintaining a healthy endothelial barrier, regulating the turnover of triglycerides from lipoproteins, and reducing cholesterol accumulation in vessel walls. Recent studies have also addressed the role of apoM and S1P in the development of diabetes and obesity. However, limited evidence is available, and the data published so far deviates. This review discusses the specific elements indicative of the protective or harmful effects of apoM, S1P, and the apoM/S1P complex on type 2 diabetes development. Since drugs targeting the S1P system and its receptors are available and could be potentially used for treating diabetes, this research topic is a pertinent one.
Collapse
Affiliation(s)
- Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Christina Christoffersen,
| |
Collapse
|
50
|
High-Density Lipoprotein-Targeted Therapies for Heart Failure. Biomedicines 2020; 8:biomedicines8120620. [PMID: 33339429 PMCID: PMC7767106 DOI: 10.3390/biomedicines8120620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
The main and common constituents of high-density lipoproteins (HDLs) are apolipoprotein A-I, cholesterol, and phospholipids. Biochemical heterogeneity of HDL particles is based on the variable presence of one or more representatives of at least 180 proteins, 200 lipid species, and 20 micro RNAs. HDLs are circulating multimolecular platforms that perform divergent functions whereby the potential of HDL-targeted interventions for treatment of heart failure can be postulated based on its pleiotropic effects. Several murine studies have shown that HDLs exert effects on the myocardium, which are completely independent of any impact on coronary arteries. Overall, HDL-targeted therapies exert a direct positive lusitropic effect on the myocardium, inhibit the development of cardiac hypertrophy, suppress interstitial and perivascular myocardial fibrosis, increase capillary density in the myocardium, and prevent the occurrence of heart failure. In four distinct murine models, HDL-targeted interventions were shown to be a successful treatment for both pre-existing heart failure with reduced ejection fraction (HFrEF) and pre-existing heart failure with preserved ejection fraction (HFrEF). Until now, the effect of HDL-targeted interventions has not been evaluated in randomized clinical trials in heart failure patients. As HFpEF represents an important unmet therapeutic need, this is likely the preferred therapeutic domain for clinical translation.
Collapse
|