1
|
Zhang M, Aris IM, Cardenas A, Rifas-Shiman SL, Lin PID, Ngo LH, Oken E, Hivert MF, Juraschek SP. Pregnancy Metal Mixtures and Blood Pressure and Hypertension in Mid-Life: A Prospective U.S. Cohort Study. Hypertension 2025; 82:640-651. [PMID: 40048682 PMCID: PMC11922668 DOI: 10.1161/hypertensionaha.124.23980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 03/15/2025]
Abstract
BACKGROUND The long-term associations between metal mixtures in pregnancy and women's mid-life blood pressure (BP) and hypertension remain unclear. METHODS In Project Viva (enrolled 1999-2002), we measured nonessential (arsenic, barium, cadmium, cesium, mercury, lead) and essential metals (copper, magnesium, manganese, selenium, zinc) in red blood cells, along with folate and vitamin B12 in plasma, collected during pregnancy. We measured mid-life BP from 2017 to 2021 (median age, 51.2 years). We examined associations of individual metals with BP using linear regression and with hypertension (≥130/80 mm Hg or use of antihypertensive medication) using modified Poisson regression. We used Bayesian kernel machine regression to examine the mixture effects of metals and micronutrients. RESULTS The median follow-up time of the 493 women was 18.1 years (interquartile range, 17.8-18.6 years). After adjustment, a doubling of copper and manganese was associated with 0.75 (95% CI, 0.57-0.99) and 0.80 (95% CI, 0.71-0.91) times the risk of hypertension, respectively. Although higher cesium and selenium levels were associated with a slightly increased risk of hypertension, the 95% CIs were wide and crossed the null. A doubling of vitamin B12 was associated with a 3.64 (95% CI, 1.23-6.04) mm Hg lower systolic BP and a 2.52 (95% CI, 0.72-4.32) mm Hg lower diastolic BP. Bayesian kernel machine regression showed linear associations with no metal-metal or metal-micronutrient interactions. The essential metal mixture was monotonically associated with lower BP, while its association with hypertension showed threshold effects. CONCLUSIONS Optimizing essential metal levels during pregnancy, particularly copper and manganese, along with vitamin B12, may protect against higher BP and hypertension in mid-life women.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (M.Z., L.H.N., S.P.J.)
| | - Izzuddin M Aris
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA (I.M.A., S.L.R.-S., P.-I.D.L., E.O., M.-F.H.)
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford School of Medicine, Palo Alto, CA (A.C.)
| | - Sheryl L Rifas-Shiman
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA (I.M.A., S.L.R.-S., P.-I.D.L., E.O., M.-F.H.)
| | - Pi-I Debby Lin
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA (I.M.A., S.L.R.-S., P.-I.D.L., E.O., M.-F.H.)
| | - Long H Ngo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (M.Z., L.H.N., S.P.J.)
- Department of Biostatistics (L.H.N.), Harvard T.H. Chan School of Public Health, Boston, MA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA (I.M.A., S.L.R.-S., P.-I.D.L., E.O., M.-F.H.)
- Department of Nutrition (E.O., S.P.J.), Harvard T.H. Chan School of Public Health, Boston, MA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA (I.M.A., S.L.R.-S., P.-I.D.L., E.O., M.-F.H.)
- Diabetes Unit, Massachusetts General Hospital, Boston, MA (M.-F.H.)
| | - Stephen P Juraschek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (M.Z., L.H.N., S.P.J.)
- Department of Nutrition (E.O., S.P.J.), Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
2
|
Demirel MA, Şumlu E, Özercan İH, Şahin K, Tuzcu M, Bay V, Kurşun ÖED, Uludağ MO, Akar F. Impact of high-fructose diet and metformin on histomorphological and molecular parameters of reproductive organs and vaginal microbiota of female rat. Sci Rep 2024; 14:27463. [PMID: 39523383 PMCID: PMC11551161 DOI: 10.1038/s41598-024-76211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
There are limited data on the effects of a high-fructose diet on the female reproductive system. Although metformin has some functional effects on female fertility, its reproductive outcome on high fructose diet-induced metabolic syndrome is unclear. The aim of the present study is to evaluate the impact of a high fructose diet on histomorphological and molecular parameters of the reproductive organs and vaginal microbiota as well as the treatment potential of metformin. Wistar albino rats were used in the study. The metabolic syndrome model was induced by a high-fructose diet in rats for 15 weeks. Metformin was orally administered once a day for the last 6 weeks. The high-fructose diet increased blood glucose, triglycerides, insulin, and ovarian testosterone levels; however, it reduced ovarian aromatase levels and follicle numbers and caused uterine inflammation. The high-fructose diet-induced molecular abnormalities on ovarian tissue were demonstrated by the downregulation of ovarian insulin signaling pathway proteins and dysregulation of ovarian mitogenic and apoptotic pathway proteins. A high-fructose diet caused vaginal dysbiosis, metformin increased probiotic bacteria in the vaginal microbiota. Our results revealed that metformin improves ovarian impairments by modulating hormonal balance, insulin level, mapk, and apoptotic signaling molecules, as well as regulating the vaginal microbiota.
Collapse
Affiliation(s)
- Mürşide Ayşe Demirel
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Laboratory Animals Breeding, and Experimental Researches Center, Gazi University, Etiler, Ankara, 06330, Turkey.
| | - Esra Şumlu
- Department of Medical Pharmacology, Faculty of Medicine, KTO Karatay University, Konya, Turkey
| | - İbrahim Hanifi Özercan
- Department of Pathology, Medicine Faculty, Health Sciences Institution, University of Firat, Elazig, Turkey
| | - Kazım Şahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Veysel Bay
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100, İzmir, Turkey
| | | | - Mecit Orhan Uludağ
- Department of Clinical Pharmacy, Faculty of Pharmacy, Near East University, Nicosia, Turkey
| | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Asiwe JN, Ajayi AM, Ben-Azu B, Fasanmade AA. Vincristine attenuates isoprenaline-induced cardiac hypertrophy in male Wistar rats via suppression of ROS/NO/NF-қB signalling pathways. Microvasc Res 2024; 155:104710. [PMID: 38880384 DOI: 10.1016/j.mvr.2024.104710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Vincristine (VCR), a vinca alkaloid with anti-tumor and anti-oxidant properties, is acclaimed to possess cardioprotective action. However, the molecular mechanism underlying this protective effect remains unknown. This study investigated the effects of VCR on isoprenaline (ISO), a beta-adrenergic receptor agonist, induced cardiac hypertrophy in male Wistar rats. Animals were pre-treated with ISO (1 mg/kg) intraperitoneally for 14 days before VCR (25 μg/kg) intraperitoneal injection from days 1 to 28. Thereafter, mechanical, and electrical activities of the hearts of the rats were measured using a non-invasive blood pressure monitor and an electrocardiograph, respectively. After which, the heart was homogenized, and supernatants were assayed for contractile proteins: endothelin-1, cardiac troponin-1, angiotensin-II, and creatine kinase-MB, with markers of oxidative/nitrergic stress (SOD, CAT, MDA, GSH, and NO), inflammation (TNF-a and IL-6, NF-kB), and caspase-3 indicative of VCR reduced elevated blood pressure and reversed the abnormal electrocardiogram. ISO-induced increased endothelin-1, cardiac troponin-1, angiotensin-II, and creatine phosphokinase-MB, which were reversed by VCR. ISO also increased TNF-α, IL-6, NF-kB expression with increased caspase-3-mediated apoptosis in the heart. However, VCR reduced ISO-induced inflammation and apoptosis, with improved endogenous antioxidant agents (GSH, SOD, CAT) relative to ISO controls. Moreso, VCR, protected against ISO-induced histoarchitectural degeneration of cardiac myofibre. The result of this study revealed that VCR treatment significantly reverses ISO-induced cardiac hypertrophic phenotypes, via mechanisms connected to improved levels of proteins involved in excitation-contraction, and suppression of oxido-inflammatory and apoptotic pathways.
Collapse
Affiliation(s)
- Jerome Ndudi Asiwe
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria.
| | - Abayomi M Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | | |
Collapse
|
4
|
Patel D, Savvidou MD. Maternal Cardiac Function in Pregnancies with Metabolic Disorders. Eur Cardiol 2024; 19:e08. [PMID: 38983578 PMCID: PMC11231816 DOI: 10.15420/ecr.2023.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/17/2024] [Indexed: 07/11/2024] Open
Abstract
The obesity epidemic is growing and poses significant risks to pregnancy. Metabolic impairment can be associated with short- and long-term maternal and perinatal morbidity and mortality. The cardiovascular implications are known in those with metabolic disorder outside of pregnancy; however, little is known of the cardiac function in pregnancies complicated by obesity. Maternal cardiac adaptation plays a vital role in normal pregnancy and is known to be involved in the pathophysiology of adverse pregnancy outcomes. Bariatric surgery is the most successful treatment for sustainable weight loss and pre-pregnancy bariatric surgery can drastically change the maternal metabolic profile and pregnancy outcomes. In this review, we discuss the available evidence on maternal cardiac function in pregnancies affected by obesity and its associated consequences of gestational diabetes and hypertension (chronic and hypertensive disorders in pregnancy), as well as pregnancies following bariatric surgery.
Collapse
Affiliation(s)
- Deesha Patel
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
| | - Makrina D Savvidou
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Fetal Medicine Unit, Chelsea and Westminster Hospital London, UK
| |
Collapse
|
5
|
Ferreira RM, Ferron FVF, Borges VTM, Peraçoli JC, Ferron AJT, Roscani MG, Hueb JC, Bazan R, Martin LC, Bazan SGZ. Association of cardiovascular risk factors and myocardial hypertrophy in women with preeclampsia history. Life Sci 2024; 346:122646. [PMID: 38614304 DOI: 10.1016/j.lfs.2024.122646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
AIMS A historic of preeclampsia (PE) has been associated with cardiovascular disease (CVD) in women. There are substantial evidences that cardiovascular changes resulting from PE can persist even after pregnancy end. Therefore, the aims was to evaluate the prevalence of myocardial hypertrophy in young women 12 months after PE event as well as try to identify risk factors for these changes. MATERIALS AND METHODS Single-center observational prospective cross-sectional study that included 118 consecutive patients after 12 months of PE. Clinical and laboratory evaluations, echocardiogram were performed. Myocardial hypertrophy (LVH) was defined as an index myocardial mass ≥ 45 g/m2.7, for women. Classical risk factors for CVD were considered. Analysis included linear or logistic regression and Spearman's correlation coefficient. Significance level of 5 %. KEY FINDINGS Systemic arterial hypertension (SAH) was identified in 52 patients (44 %), overweight/obesity (OOB) in 82 (69 %), dyslipidemia in 68 (57 %) and metabolic syndrome in 47 patients (40 %). LVH was present in 35 cases (29 %) and associated with OOB (OR = 4.51; CI95%:1.18-17.17, p < 0.001), in a model corrected for age and SAH diagnosis. When only the metabolic syndrome components were analyzed, in the multiple logistic regression model, the abdominal circumference was the only clinical variable associated with LVH (OR = 17.65; CI95%:3.70-84.17; p < 0.001). SIGNIFICANCE It was observed a high prevalence of ventricular hypertrophy in young women with a history of pre-eclampsia. This condition was associated with the presence of obesity.
Collapse
Affiliation(s)
- Ricardo Mattos Ferreira
- Department of Internal Medicine, Botucatu Medical School-UNESP, São Paulo State University, Botucatu, Brazil
| | | | | | - José Carlos Peraçoli
- Department of Gynecology and Obstetrics, Botucatu Medical School - UNESP, São Paulo State University, Botucatu, Brazil
| | - Artur Junio Togneri Ferron
- Department of Internal Medicine, Botucatu Medical School-UNESP, São Paulo State University, Botucatu, Brazil
| | - Meliza Goi Roscani
- Department of Medicine, Federal University of Sao Carlos-UFSCar, São Carlos, Brazil
| | - João Carlos Hueb
- Department of Internal Medicine, Botucatu Medical School-UNESP, São Paulo State University, Botucatu, Brazil
| | - Rodrigo Bazan
- Department of Neurology, Botucatu Medical School-UNESP, São Paulo State University, Botucatu, Brazil
| | - Luis Cuadrado Martin
- Department of Internal Medicine, Botucatu Medical School-UNESP, São Paulo State University, Botucatu, Brazil
| | - Silméia Garcia Zanati Bazan
- Department of Internal Medicine, Botucatu Medical School-UNESP, São Paulo State University, Botucatu, Brazil.
| |
Collapse
|
6
|
Taube N, Kabir R, Ebenebe OV, Garbus H, Alam El Din SM, Illingworth E, Fitch M, Wang N, Kohr MJ. Prenatal arsenite exposure alters maternal cardiac remodeling during late pregnancy. Toxicol Appl Pharmacol 2024; 483:116833. [PMID: 38266874 PMCID: PMC10922692 DOI: 10.1016/j.taap.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Exposure to inorganic arsenic through drinking water is widespread and has been linked to many chronic diseases, including cardiovascular disease. Arsenic exposure has been shown to alter hypertrophic signaling in the adult heart, as well as in utero offspring development. However, the effect of arsenic on maternal cardiac remodeling during pregnancy has not been studied. As such, there is a need to understand how environmental exposure contributes to adverse pregnancy-related cardiovascular events. This study seeks to understand the impact of trivalent inorganic arsenic exposure during gestation on maternal cardiac remodeling in late pregnancy, as well as offspring outcomes. C57BL/6 J mice were exposed to 0 (control), 100 or 1000 μg/L sodium arsenite (NaAsO2) beginning at embryonic day (E) 2.5 and continuing through E17.5. Maternal heart function and size were assessed via transthoracic echocardiography, gravimetric measurement, and histology. Transcript levels of hypertrophic markers were probed via qRT-PCR and confirmed by western blot. Offspring outcomes were assessed through echocardiography and gravimetric measurement. We found that maternal heart size was smaller and transcript levels of Esr1 (estrogen receptor alpha), Pgrmc1 (progesterone receptor membrane component 1) and Pgrmc2 (progesterone receptor membrane component 2) reduced during late pregnancy with exposure to 1000 μg/L iAs vs. non-exposed pregnant controls. Both 100 and 1000 μg/L iAs also reduced transcription of Nppa (atrial natriuretic peptide). Akt protein expression was also significantly reduced after 1000 μg/L iAs exposure in the maternal heart with no change in activating phosphorylation. This significant abrogation of maternal cardiac hypertrophy suggests that arsenic exposure during pregnancy can potentially contribute to cardiovascular disease. Taken together, our findings further underscore the importance of reducing arsenic exposure during pregnancy and indicate that more research is needed to assess the impact of arsenic and other environmental exposures on the maternal heart and adverse pregnancy events.
Collapse
Affiliation(s)
- Nicole Taube
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Raihan Kabir
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Obialunanma V Ebenebe
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Haley Garbus
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Sarah-Marie Alam El Din
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Emily Illingworth
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Michael Fitch
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Nadan Wang
- Cardiology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark J Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.
| |
Collapse
|
7
|
Xu Z, Chen P, Wang L, Yan J, Yan X, Li D. Relationship between TyG index and the degree of coronary artery lesions in patients with H-type hypertension. Cardiovasc Diabetol 2024; 23:23. [PMID: 38216931 PMCID: PMC10787468 DOI: 10.1186/s12933-023-02013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/04/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND The TyG index, a prominent metric for assessing insulin resistance, has gained traction as a prognostic tool for cardiovascular disease. Nevertheless, the understanding of the prognostic significance of the extent of coronary artery stenosis in individuals afflicted with H-type hypertension remains limited. METHODS A retrospective study was conducted at Wuhan Third Hospital, including a cohort of 320 inpatients who were diagnosed with hypertension in combination with coronary artery disease. The study period spanned from January 1, 2021, to February 1, 2023. The study cohort was stratified based on the severity of stenosis into three distinct groups: low stenosis, medium stenosis, and high stenosis, as determined by the Gensini score derived from coronary angiography findings. The present study aimed to investigate the association between the severity of coronary stenosis and the number of lesion branches, utilizing the TyG index as a testing indicator. The predictive ability of TyG for coronary lesion severity was assessed using logistic regression analysis. RESULTS The results of our study indicate a positive correlation between elevated levels of TyG and an increased susceptibility to severe stenosis in individuals diagnosed with H-type hypertension. Upon careful consideration of potential confounding variables, it has been observed that the TyG index exhibits a robust association with the likelihood of severe stenosis in individuals with H-type hypertension (odds ratio [OR] = 4000, 95% confidence interval CI 2.411-6.635, p = 0.0001), as well as the prevalence of multivessel disease (OR = 1.862, 95% CI 1.036-3.348, p < 0.0001). The TyG index demonstrated superior predictive ability for severe coronary stenosis in patients with H-type hypertension compared to those without H-type hypertension (area under the curve [AUC] = 0.888, 95% confidence interval CI 0.838-0.939, p < 0.0001, versus AUC = 0.615, 95% CI 0.494-0.737, p < 0.05). CONCLUSION The TyG index is an independent risk factor for the degree of coronary stenosis and a better predictor in patients with H-type hypertension combined with coronary artery disease.
Collapse
Affiliation(s)
- Zhengwen Xu
- Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, 430074, Hubei, China
| | - Peixian Chen
- Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, 430074, Hubei, China
| | - Lian Wang
- Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, 430074, Hubei, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
| | - Xisheng Yan
- Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, 430074, Hubei, China.
| | - Dongsheng Li
- Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, 430074, Hubei, China.
| |
Collapse
|
8
|
Li Y, Johnson JP, Yang Y, Yu D, Kubo H, Berretta RM, Wang T, Zhang X, Foster M, Yu J, Tilley DG, Houser SR, Chen X. Effects of maternal hypothyroidism on postnatal cardiomyocyte proliferation and cardiac disease responses of the progeny. Am J Physiol Heart Circ Physiol 2023; 325:H702-H719. [PMID: 37539452 PMCID: PMC10659327 DOI: 10.1152/ajpheart.00320.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Maternal hypothyroidism (MH) could adversely affect the cardiac disease responses of the progeny. This study tested the hypothesis that MH reduces early postnatal cardiomyocyte (CM) proliferation so that the adult heart of MH progeny has a smaller number of larger cardiac myocytes, which imparts adverse cardiac disease responses following injury. Thyroidectomy (TX) was used to establish MH. The progeny from mice that underwent sham or TX surgery were termed Ctrl (control) or MH (maternal hypothyroidism) progeny, respectively. MH progeny had similar heart weight (HW) to body weight (BW) ratios and larger CM size consistent with fewer CMs at postnatal day 60 (P60) compared with Ctrl (control) progeny. MH progeny had lower numbers of EdU+, Ki67+, and phosphorylated histone H3 (PH3)+ CMs, which suggests they had a decreased CM proliferation in the postnatal timeframe. RNA-seq data showed that genes related to DNA replication were downregulated in P5 MH hearts, including bone morphogenetic protein 10 (Bmp10). Both in vivo and in vitro studies showed Bmp10 treatment increased CM proliferation. After transverse aortic constriction (TAC), the MH progeny had more severe cardiac pathological remodeling compared with the Ctrl progeny. Thyroid hormone (T4) treatment for MH mothers preserved their progeny's postnatal CM proliferation capacity and prevented excessive pathological remodeling after TAC. Our results suggest that CM proliferation during early postnatal development was significantly reduced in MH progeny, resulting in fewer CMs with hypertrophy in adulthood. These changes were associated with more severe cardiac disease responses after pressure overload.NEW & NOTEWORTHY Our study shows that compared with Ctrl (control) progeny, the adult progeny of mothers who have MH (MH progeny) had fewer CMs. This reduction of CM numbers was associated with decreased postnatal CM proliferation. Gene expression studies showed a reduced expression of Bmp10 in MH progeny. Bmp10 has been linked to myocyte proliferation. In vivo and in vitro studies showed that Bmp10 treatment of MH progeny and their myocytes could increase CM proliferation. Differences in CM number and size in adult hearts of MH progeny were linked to more severe cardiac structural and functional remodeling after pressure overload. T4 (synthetic thyroxine) treatment of MH mothers during their pregnancy, prevented the reduction in CM number in their progeny and the adverse response to disease stress.
Collapse
Affiliation(s)
- Yijia Li
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Jaslyn P Johnson
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Yijun Yang
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Daohai Yu
- Department of Biomedical Education and Data Science, Center for Biostatistics and Epidemiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Hajime Kubo
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Remus M Berretta
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Tao Wang
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Xiaoying Zhang
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Cardiovascular Research Center, Philadelphia, Pennsylvania, United States
| | - Michael Foster
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Jun Yu
- Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Cardiovascular Research Center, Philadelphia, Pennsylvania, United States
| | - Douglas G Tilley
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Cardiovascular Research Center, Philadelphia, Pennsylvania, United States
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Xiongwen Chen
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
9
|
Taube N, Kabir R, Ebenebe OV, Garbus H, Din SMAE, Illingworth E, Fitch M, Wang N, Kohr MJ. Prenatal Arsenite Exposure Alters Maternal Cardiac Remodeling During Late Pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559986. [PMID: 37808684 PMCID: PMC10557683 DOI: 10.1101/2023.09.28.559986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Exposure to inorganic arsenic through drinking water is widespread and has been linked to many chronic diseases, including cardiovascular disease. Arsenic exposure has been shown to alter hypertrophic signaling in the adult heart, as well as in-utero offspring development. However, the effect of arsenic on maternal cardiac remodeling during pregnancy has not been studied. As such, there is a need to understand how environmental exposure contributes to adverse pregnancy-related cardiovascular events. This study seeks to understand the impact of trivalent inorganic arsenic exposure during gestation on maternal cardiac remodeling in late pregnancy, as well as offspring outcomes. C57BL/6J mice were exposed to 0 (control), 100 or 1000 µg/L sodium arsenite (NaAsO 2 ) beginning at embryonic day (E) 2.5 and continuing through E17.5. Maternal heart function and size were assessed via transthoracic echocardiography, gravimetric measurement, and histology. Transcript levels of hypertrophic markers were probed via qRT-PCR and confirmed by western blot. Offspring outcomes were assessed through echocardiography and gravimetric measurement. We found that exposure to 1000 µg/L iAs abrogated normal physiologic growth of the maternal heart during late pregnancy and reduced transcript levels of estrogen receptor alpha (ERα), progesterone receptor membrane component 1 (Pgrmc1) and progesterone receptor membrane component 2 (Pgrmc2). Both 100 and 1000 µg/L iAs also reduced transcription of protein kinase B (Akt) and atrial natriuretic peptide (ANP). Akt protein expression was also significantly reduced after 1000 µg/L iAs exposure in the maternal heart with no change in activating phosphorylation. This significant abrogation of maternal cardiac hypertrophy suggests that arsenic exposure during pregnancy can potentially contribute to cardiovascular disease. Taken together, our findings further underscore the importance of reducing arsenic exposure during pregnancy and indicate that more research is needed to assess the impact of arsenic and other environmental exposures on the maternal heart and adverse pregnancy events.
Collapse
|
10
|
Li Y, Kubo H, Yu D, Yang Y, Johnson JP, Eaton DM, Berretta RM, Foster M, McKinsey TA, Yu J, Elrod JW, Chen X, Houser SR. Combining three independent pathological stressors induces a heart failure with preserved ejection fraction phenotype. Am J Physiol Heart Circ Physiol 2023; 324:H443-H460. [PMID: 36763506 PMCID: PMC9988529 DOI: 10.1152/ajpheart.00594.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 02/11/2023]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is defined as HF with an ejection fraction (EF) ≥ 50% and elevated cardiac diastolic filling pressures. The underlying causes of HFpEF are multifactorial and not well-defined. A transgenic mouse with low levels of cardiomyocyte (CM)-specific inducible Cavβ2a expression (β2a-Tg mice) showed increased cytosolic CM Ca2+, and modest levels of CM hypertrophy, and fibrosis. This study aimed to determine if β2a-Tg mice develop an HFpEF phenotype when challenged with two additional stressors, high-fat diet (HFD) and Nω-nitro-l-arginine methyl ester (l-NAME, LN). Four-month-old wild-type (WT) and β2a-Tg mice were given either normal chow (WT-N, β2a-N) or HFD and/or l-NAME (WT-HFD, WT-LN, WT-HFD-LN, β2a-HFD, β2a-LN, and β2a-HFD-LN). Some animals were treated with the histone deacetylase (HDAC) (hypertrophy regulators) inhibitor suberoylanilide hydroxamic acid (SAHA) (β2a-HFD-LN-SAHA). Echocardiography was performed monthly. After 4 mo of treatment, terminal studies were performed including invasive hemodynamics and organs weight measurements. Cardiac tissue was collected. Four months of HFD plus l-NAME treatment did not induce a profound HFpEF phenotype in FVB WT mice. β2a-HFD-LN (3-Hit) mice developed features of HFpEF, including increased atrial natriuretic peptide (ANP) levels, preserved EF, diastolic dysfunction, robust CM hypertrophy, increased M2-macrophage population, and myocardial fibrosis. SAHA reduced the HFpEF phenotype in the 3-Hit mouse model, by attenuating these effects. The 3-Hit mouse model induced a reliable HFpEF phenotype with CM hypertrophy, cardiac fibrosis, and increased M2-macrophage population. This model could be used for identifying and preclinical testing of novel therapeutic strategies.NEW & NOTEWORTHY Our study shows that three independent pathological stressors (increased Ca2+ influx, high-fat diet, and l-NAME) together produce a profound HFpEF phenotype. The primary mechanisms include HDAC-dependent-CM hypertrophy, necrosis, increased M2-macrophage population, fibroblast activation, and myocardial fibrosis. A role for HDAC activation in the HFpEF phenotype was shown in studies with SAHA treatment, which prevented the severe HFpEF phenotype. This "3-Hit" mouse model could be helpful in identifying novel therapeutic strategies to treat HFpEF.
Collapse
Affiliation(s)
- Yijia Li
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Hajime Kubo
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Daohai Yu
- Department of Biomedical Education and Data Science, Center for Biostatistics and Epidemiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Yijun Yang
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Jaslyn P Johnson
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Deborah M Eaton
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Remus M Berretta
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Michael Foster
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Jun Yu
- Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Cardiovascular Research Center, Philadelphia, Pennsylvania, United States
| | - John W Elrod
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Cardiovascular Research Center, Philadelphia, Pennsylvania, United States
| | - Xiongwen Chen
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
11
|
Liu IF, Lin TC, Wang SC, Yen CH, Li CY, Kuo HF, Hsieh CC, Chang CY, Chang CR, Chen YH, Liu YR, Lee TY, Huang CY, Hsu CH, Lin SJ, Liu PL. Long-term administration of Western diet induced metabolic syndrome in mice and causes cardiac microvascular dysfunction, cardiomyocyte mitochondrial damage, and cardiac remodeling involving caveolae and caveolin-1 expression. Biol Direct 2023; 18:9. [PMID: 36879344 PMCID: PMC9987103 DOI: 10.1186/s13062-023-00363-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Long-term consumption of an excessive fat and sucrose diet (Western diet, WD) has been considered a risk factor for metabolic syndrome (MS) and cardiovascular disease. Caveolae and caveolin-1 (CAV-1) proteins are involved in lipid transport and metabolism. However, studies investigating CAV-1 expression, cardiac remodeling, and dysfunction caused by MS, are limited. This study aimed to investigate the correlation between the expression of CAV-1 and abnormal lipid accumulation in the endothelium and myocardium in WD-induced MS, and the occurrence of myocardial microvascular endothelial cell dysfunction, myocardial mitochondrial remodeling, and damage effects on cardiac remodeling and cardiac function. METHODS We employed a long-term (7 months) WD feeding mouse model to measure the effect of MS on caveolae/vesiculo-vacuolar organelle (VVO) formation, lipid deposition, and endothelial cell dysfunction in cardiac microvascular using a transmission electron microscopy (TEM) assay. CAV-1 and endothelial nitric oxide synthase (eNOS) expression and interaction were evaluated using real-time polymerase chain reaction, Western blot, and immunostaining. Cardiac mitochondrial shape transition and damage, mitochondria-associated endoplasmic reticulum membrane (MAM) disruption, cardiac function change, caspase-mediated apoptosis pathway activation, and cardiac remodeling were examined using TEM, echocardiography, immunohistochemistry, and Western blot assay. RESULTS Our study demonstrated that long-term WD feeding caused obesity and MS in mice. In mice, MS increased caveolae and VVO formation in the microvascular system and enhanced CAV-1 and lipid droplet binding affinity. In addition, MS caused a significant decrease in eNOS expression, vascular endothelial cadherin, and β-catenin interactions in cardiac microvascular endothelial cells, accompanied by impaired vascular integrity. MS-induced endothelial dysfunction caused massive lipid accumulation in the cardiomyocytes, leading to MAM disruption, mitochondrial shape transition, and damage. MS promoted brain natriuretic peptide expression and activated the caspase-dependent apoptosis pathway, leading to cardiac dysfunction in mice. CONCLUSION MS resulted in cardiac dysfunction, remodeling by regulating caveolae and CAV-1 expression, and endothelial dysfunction. Lipid accumulation and lipotoxicity caused MAM disruption and mitochondrial remodeling in cardiomyocytes, leading to cardiomyocyte apoptosis and cardiac dysfunction and remodeling.
Collapse
Affiliation(s)
- I-Fan Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.,Heart Center, Cheng Hsin General Hospital, Taipei, 112401, Taiwan
| | - Tzu-Chieh Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Hsuan-Fu Kuo
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chong-Chao Hsieh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chia-Yuan Chang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Chuang-Rung Chang
- Department of Medical Science, National Tsing Hua University, Hsinchu, 300044, Taiwan.,Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan.,Department of Psychology, College of Medical and Health Science, Asia University, Taichung, 413305, Taiwan
| | - Yu-Ru Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Tsung-Ying Lee
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chi-Yuan Huang
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chih-Hsin Hsu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 701401, Taiwan.
| | - Shing-Jong Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan. .,Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112201, Taiwan. .,Taipei Heart Institute, Taipei Medical University, Taipei, 110301, Taiwan. .,Heart Center, Cheng-Hsin General Hospital, Taipei, 112401, Taiwan.
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807378, Taiwan. .,Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.
| |
Collapse
|
12
|
Eaton DM, Berretta RM, Lynch JE, Travers JG, Pfeiffer RD, Hulke ML, Zhao H, Hobby ARH, Schena G, Johnson JP, Wallner M, Lau E, Lam MPY, Woulfe KC, Tucker NR, McKinsey TA, Wolfson MR, Houser SR. Sex-specific responses to slow progressive pressure overload in a large animal model of HFpEF. Am J Physiol Heart Circ Physiol 2022; 323:H797-H817. [PMID: 36053749 PMCID: PMC9550571 DOI: 10.1152/ajpheart.00374.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022]
Abstract
Approximately 50% of all heart failure (HF) diagnoses can be classified as HF with preserved ejection fraction (HFpEF). HFpEF is more prevalent in females compared with males, but the underlying mechanisms are unknown. We previously showed that pressure overload (PO) in male felines induces a cardiopulmonary phenotype with essential features of human HFpEF. The goal of this study was to determine if slow progressive PO induces distinct cardiopulmonary phenotypes in females and males in the absence of other pathological stressors. Female and male felines underwent aortic constriction (banding) or sham surgery after baseline echocardiography, pulmonary function testing, and blood sampling. These assessments were repeated at 2 and 4 mo postsurgery to document the effects of slow progressive pressure overload. At 4 mo, invasive hemodynamic studies were also performed. Left ventricle (LV) tissue was collected for histology, myofibril mechanics, extracellular matrix (ECM) mass spectrometry, and single-nucleus RNA sequencing (snRNAseq). The induced pressure overload (PO) was not different between sexes. PO also induced comparable changes in LV wall thickness and myocyte cross-sectional area in both sexes. Both sexes had preserved ejection fraction, but males had a slightly more robust phenotype in hemodynamic and pulmonary parameters. There was no difference in LV fibrosis and ECM composition between banded male and female animals. LV snRNAseq revealed changes in gene programs of individual cell types unique to males and females after PO. Based on these results, both sexes develop cardiopulmonary dysfunction but the phenotype is somewhat less advanced in females.NEW & NOTEWORTHY We performed a comprehensive assessment to evaluate the effects of slow progressive pressure overload on cardiopulmonary function in a large animal model of heart failure with preserved ejection fraction (HFpEF) in males and females. Functional and structural assessments were performed at the organ, tissue, cellular, protein, and transcriptional levels. This is the first study to compare snRNAseq and ECM mass spectrometry of HFpEF myocardium from males and females. The results broaden our understanding of the pathophysiological response of both sexes to pressure overload. Both sexes developed a robust cardiopulmonary phenotype, but the phenotype was equal or a bit less robust in females.
Collapse
Affiliation(s)
- Deborah M Eaton
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Remus M Berretta
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jacqueline E Lynch
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Pediatrics, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Joshua G Travers
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Alexander R H Hobby
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Giana Schena
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jaslyn P Johnson
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Markus Wallner
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Edward Lau
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Maggie P Y Lam
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Nathan R Tucker
- Masonic Medical Research Institute, Utica, New York
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Boston, Massachusetts
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Marla R Wolfson
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Pediatrics, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Fulghum KL, Smith JB, Chariker J, Garrett LF, Brittian KR, Lorkiewicz P, McNally LA, Uchida S, Jones SP, Hill BG, Collins HE. Metabolic Signatures of Pregnancy-Induced Cardiac Growth. Am J Physiol Heart Circ Physiol 2022; 323:H146-H164. [PMID: 35622533 DOI: 10.1152/ajpheart.00105.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of this study was to develop an atlas of the metabolic, transcriptional, and proteomic changes that occur with pregnancy in the maternal heart. Timed pregnancy studies in FVB/NJ mice revealed significant increases in heart size by day 8 of pregnancy (mid-pregnancy; MP), which was sustained throughout the rest of the term compared with non-pregnant controls. Cardiac hypertrophy and myocyte cross-sectional area were highest 7 d after birth (post-birth; PB) and were associated with significant increases in end-diastolic and end-systolic left ventricular volumes and cardiac output. Metabolomics analyses revealed that, by day 16 of pregnancy (late pregnancy; LP), metabolites associated with nitric oxide production as well as acylcholines, sphingomyelins, and fatty acid species were elevated, which coincided with a lower activation state of phosphofructokinase and higher levels of pyruvate dehydrogenase kinase 4 (Pdk4). In the postpartum period, urea cycle metabolites, polyamines, and phospholipid levels were markedly elevated in the maternal heart. Cardiac transcriptomics in LP revealed significant increases in not only Pdk4, but also genes that regulate glutamate and ketone body oxidation, which were preceded in MP by higher expression of transcripts controlling cell proliferation and angiogenesis. Proteomics analysis of the maternal heart in LP and PB revealed significant reductions in several contractile filaments and mitochondrial complex subunits. Collectively, these findings describe the coordinated molecular changes that occur in the maternal heart during and after pregnancy.
Collapse
Affiliation(s)
- Kyle L Fulghum
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Juliette B Smith
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Julia Chariker
- KY INBRE Genomics Core, University of Louisville, Louisville, KY, United States
| | - Lauren F Garrett
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Kenneth R Brittian
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Pawel Lorkiewicz
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Lindsey A McNally
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Steven P Jones
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Bradford G Hill
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Helen E Collins
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
14
|
Chung E, Gonzalez K, Ullevig SL, Zhang J, Umeda M. Obesity, not a high fat, high sucrose diet alone, induced glucose intolerance and cardiac dysfunction during pregnancy and postpartum. Sci Rep 2021; 11:18057. [PMID: 34508150 PMCID: PMC8433413 DOI: 10.1038/s41598-021-97336-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease is the leading cause of death in women during pregnancy and the postpartum period. Obesity is an independent risk factor for cardiovascular diseases. Nearly 60% of women of reproductive age are considered overweight or obese, cardiovascular disease morbidity and mortality continue to be pervasive. The objective of this study was to determine the effects of an obesogenic diet on the cardiometabolic health of dams during pregnancy and postpartum. Female mice were fed either a high-fat, high-sucrose diet (HFHS) or a refined control diet (CON) for 8 weeks before initiation of pregnancy and throughout the study period. Mice in the HFHS showed two distinct phenotypes, obesity-prone (HFHS/OP) and obesity resistance (HFHS/OR). Pre-pregnancy obesity (HFHS/OP) induced glucose intolerance before pregnancy and during postpartum. Systolic function indicated by the percent fractional shortening (%FS) was significantly decreased in the HFHS/OP at late pregnancy (vs. HFHS/OR) and weaning (vs. CON), but no differences were found at 6 weeks of postpartum among groups. No induction of pathological cardiac hypertrophy markers was found during postpartum. Plasma adiponectin was decreased while total cholesterol was increased in the HFHS/OP. Our results suggested that obesity, not the diet alone, negatively affected cardiac adaptation during pregnancy and postpartum.
Collapse
Affiliation(s)
- Eunhee Chung
- Department of Kinesiology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| | - Kassandra Gonzalez
- Department of Kinesiology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Sarah L Ullevig
- College for Health, Community and Policy, University of Texas at San Antonio, San Antonio, TX, USA
| | - John Zhang
- Department of Kinesiology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Masataka Umeda
- Department of Kinesiology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| |
Collapse
|
15
|
Mehmood M. Letter by Mehmood Regarding Article, "Cardiac Remodeling During Pregnancy With Metabolic Syndrome: Prologue of Pathological Remodeling". Circulation 2021; 144:e68. [PMID: 34310162 DOI: 10.1161/circulationaha.121.054354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Muddassir Mehmood
- Division of Cardiology, Department of Medicine, The University of Tennessee Medical Center, Knoxville
| |
Collapse
|
16
|
Yang Y, Houser SR. Response to Letter Regarding Article, "Cardiac Remodeling During Pregnancy With Metabolic Syndrome: Prologue of Pathological Remodeling". Circulation 2021; 144:e69. [PMID: 34310164 DOI: 10.1161/circulationaha.121.055583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yijun Yang
- Independence Blue Cross Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Steven R Houser
- Independence Blue Cross Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|