1
|
Li R, Huang Y, Lin K, Li X, Dilger JP, Lin J. Distinct Effects of Sevoflurane and Propofol on Vascular Permeability In Vitro and in a Mouse Model. Anesthesiology 2025; 142:1058-1070. [PMID: 40042511 DOI: 10.1097/aln.0000000000005434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
BACKGROUND General anesthetics may substantially influence endothelium function, potentially affecting outcomes of surgical patients, but their effects are unclear. Here, the authors studied a commonly used inhaled anesthetic, sevoflurane, and an intravenous anesthetic, propofol, on vascular endothelial permeability using multiple in vitro assays and a mouse model. METHODS Human umbilical vein endothelial cells and mouse pulmonary endothelial cells (MPECs) were used for in vitro models to test the effect of anesthetics on endothelial permeability. The effect of anesthetics on pulmonary vascular leakage was analyzed using AngioSense 750 (PerkinElmer, USA) fluorescent tracer and rhodamine-labeled 3-kD dextran in a mouse model. Downstream targets were identified using RNA sequencing and confirmed by quantitative real-time polymerase chain reaction and Western blot. RESULTS Sevoflurane at clinically relevant concentrations disrupted the endothelial monolayer formed by human umbilical vein endothelial cells and MPECs in transwell permeability models. Sevoflurane, but not propofol, induced a 1.8-fold increase of AngioSense dye accumulation in mouse lung over control, indicating pulmonary vascular leakage in the sevoflurane group. RNA sequencing analysis, quantitative real-time polymerase chain reaction, and Western blot analysis revealed that sevoflurane induced the expression and activation of hypoxia-inducible factor 1α (HIF-1α) in vitro and in vivo . The activation of HIF-1α led to the increased expression of its downstream vascular endothelial growth factor (VEGF). The knockdown of HIF-1α restored the change of endothelial permeability and abolished the increase of VEGF induced by sevoflurane in MPECs. CONCLUSIONS The authors' results demonstrate that sevoflurane increased endothelial and pulmonary vascular permeability via HIF-1α and VEGF. Propofol had no significant effect on the permeability of endothelium.
Collapse
Affiliation(s)
- Ru Li
- Department of Anesthesiology, Stony Brook University, Renaissance School of Medicine, Stony Brook, New York
| | - Yujie Huang
- Department of Anesthesiology, Stony Brook University, Renaissance School of Medicine, Stony Brook, New York; Department of Preventive and Restorative Dental Sciences, University of California-San Francisco School of Dentistry, San Francisco, California
| | - Kevin Lin
- Department of Anesthesiology, Stony Brook University, Renaissance School of Medicine, Stony Brook, New York
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - James P Dilger
- Department of Anesthesiology, and Department of Physiology and Biophysics, Stony Brook University, Renaissance School of Medicine, Stony Brook, New York
| | - Jun Lin
- Department of Anesthesiology, Stony Brook University, Renaissance School of Medicine, Stony Brook, New York
| |
Collapse
|
2
|
Zhakeer G, Zeng Y, E G, Maimaitiaili N, Ju P, Yao H, Shi Y, Zhai M, Li K, Zhuang J, Cao Y, Yu Q, Peng W. T reg Cells Attenuate Pulmonary Venous Remodeling in PH-LHD via NLRC3 Signaling. Circ Res 2025; 136:e113-e128. [PMID: 40235449 DOI: 10.1161/circresaha.124.325201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Pulmonary venous remodeling is a key pathological feature of pulmonary hypertension associated with left heart disease (PH-LHD). This study aims to investigate the role of regulatory T (Treg) cells in this process. METHODS We used mouse models with transverse aortic constriction and cell depletion of Foxp3-DTR/tdTomato mice to examine Treg cells' function around pulmonary veins in PH-LHD in vivo. To confirm the effect of Nlrc3-/- Treg cells on PH-LHD, we utilized 3 mouse models: Nlrc3 knockout mice, athymic mice, and endothelial cell lineage tracing Cdh5CreERT2+/--mT/mG+/- mice. The interaction proteins and signaling pathways of Treg cells during endothelial-to-mesenchymal transition were elucidated by protein docking prediction, coimmunoprecipitation and cocultivation of Treg cells with venous endothelial cells. RESULTS Treg cells were abundant around pulmonary veins of transverse aortic constriction-induced PH-LHD and were essential for promoting inflammation resolution and inhibiting pulmonary venous remodeling. Nlrc3 expression was reduced in mice and patients with PH-LHD. NLRC3 (nucleotide-oligomerization domain-like receptor family CARD domain containing 3) deficiency inhibited Treg cell proliferation and impaired their immunosuppressive and endothelial-to-mesenchymal transition-protective effects. Mechanistically, NLRC3 interacted with TRAM (TRIF-related adaptor molecule) and regulated interferon regulatory factor 3 (IRF3)/NF-κB (nuclear factor-κB) p65 signaling in cluster differentiation 4+ (CD4+) T cells. NLRC3-deficient Treg cells promoted interleukin (IL)-18 expression through IRF3/NF-κB p65 signaling, and thus IL-18 secretion activated endothelial receptor tyrosine kinase (RTK) signaling, favoring endothelial-to-mesenchymal transition progression in pulmonary veins and PH-LHD progress. This process was reversible with IL-18 binding protein in vivo. CONCLUSIONS NLRC3 is crucial for Treg cells to prevent pulmonary venous remodeling in PH-LHD, primarily by modulating IL-18 secretion, which inhibits endothelial-to-mesenchymal transition and thereby improves disease progression and prognosis.
Collapse
MESH Headings
- Animals
- Vascular Remodeling
- Signal Transduction
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/immunology
- Humans
- Pulmonary Veins/metabolism
- Pulmonary Veins/pathology
- Pulmonary Veins/physiopathology
- Pulmonary Veins/immunology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/immunology
- Hypertension, Pulmonary/genetics
- Mice, Knockout
- Mice
- Disease Models, Animal
- Male
- Transcription Factor RelA/metabolism
- Female
- Mice, Inbred C57BL
- Cells, Cultured
Collapse
Affiliation(s)
- Gulinigeer Zhakeer
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
| | - Yanxi Zeng
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
| | - Guangxi E
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
| | - Nuerbiyemu Maimaitiaili
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
| | - Peinan Ju
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
| | - Hongyun Yao
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China (H.Y.)
| | - Yefei Shi
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
| | - Ming Zhai
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
| | - Ke Li
- Neuroregeneration Key Laboratory of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China (K.L.)
| | - Jianhui Zhuang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
- Department of Cardiology, Shigatse People's Hospital, Tibet, China (J.Z.)
| | - Yunshan Cao
- Heart, Lung and Vessels Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu Sichuan, China (Y.C.)
| | - Qing Yu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
| | - Wenhui Peng
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
| |
Collapse
|
3
|
Shah FH, Nam YS, Bang JY, Hwang IS, Kim DH, Ki M, Lee HW. Targeting vascular endothelial growth receptor-2 (VEGFR-2): structural biology, functional insights, and therapeutic resistance. Arch Pharm Res 2025:10.1007/s12272-025-01545-1. [PMID: 40341988 DOI: 10.1007/s12272-025-01545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Angiogenesis, the process of new blood vessel formation, is a fundamental physiological process implicated in several pathological disorders. The vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are crucial for angiogenesis and vasculogenesis. Among them, the tyrosine kinase receptor VEGFR-2 is primarily expressed in endothelial cells (ECs). These cells regulate various physiological responses, including differentiation, cell proliferation, migration, and survival, by binding to VEGF mitogens. Vascular Endothelial Growth Factor Receptor 2 (VEGFR-2) is a key regulator of this process, making it a prime target for therapeutic intervention. Several drugs targeting VEGFR-2 have been approved and are currently utilized to halt the pathological axis of VEGF-VEGFR. This review will focus on the recent developments in the molecular structure and function of VEGFR-2, the molecular mechanism of VEGFR-2 activation, and its downstream signaling pathway. It will also discuss therapies and experimental drugs approved to inhibit the function of VEGFR-2 and the resistance mechanism.
Collapse
Affiliation(s)
- Fahad Hassan Shah
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, Republic of Korea
| | - Yoon Seok Nam
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, Republic of Korea
| | - Jun Young Bang
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, Republic of Korea
| | - In Seo Hwang
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| | - Dae Hong Kim
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, Republic of Korea
| | - Minkyoung Ki
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, Republic of Korea
| | - Heon-Woo Lee
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, Republic of Korea.
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea.
| |
Collapse
|
4
|
Chen J, Jiang C, Hu X, Zhang Y, Gao X, Guo X, Jin H, Zhang Y, Wu Y, Liang J, Liu P, Liu P. Mechanism of pulmonary arterial vascular cell dysfunction in pulmonary hypertension in broiler chickens. Avian Pathol 2025:1-12. [PMID: 40272452 DOI: 10.1080/03079457.2025.2480802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 04/25/2025]
Abstract
Broiler ascites syndrome is a common and complex disease in broiler farming, which severely impacts broiler growth performance and health and brings huge economic losses to the breeding industry. Hypoxia has been shown to be an important cause of this disease. Prolonged exposure of broiler chickens to a hypoxic environment induces pulmonary vasoconstriction, which leads to an increase in pulmonary artery pressure, triggering pulmonary artery remodelling and compensatory right ventricular hypertrophy, and ultimately ascites. Pulmonary artery remodelling is a process in which the vascular wall tissue structure and function undergo pathological changes after the pulmonary artery is stimulated by various injuries or hypoxia, including endothelial dysfunction, abnormal proliferation of pulmonary artery smooth muscle cells, vascular fibrosis, etc. When these cells are damaged or stimulated, they may undergo programmed cell death, an orderly and regulated mode of cell death that is important for maintaining the stability of the body's internal environment. It has been demonstrated that death modes such as apoptosis and autophagy are involved in the pathophysiologic process of pulmonary hypertension, but their specific molecular mechanisms are still unclear. In this review, we first describe the pathogenesis of broiler ascites, then describe the specific mechanism of dysfunction of pulmonary artery vascular cells in broiler ascites syndrome, and finally elaborate the progression of different programmed cell death in broiler pulmonary hypertension. This study aims to elucidate the specific mechanisms underlying the dysfunction of pulmonary artery vascular cells in broiler pulmonary hypertension, thereby enhancing our understanding of the pathogenesis of this syndrome.
Collapse
Affiliation(s)
- Juan Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Chenxi Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Xiaoqin Hu
- Jiangxi Agricultural Engineering Vocational College, Zhangshu, Jiangxi, People's Republic of China
| | - Yun Zhang
- Huaihua City Maternal and Child Health Care Hospital, Huaihua, Hunan, People's Republic of China
| | - Xiaona Gao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Xiaoquan Guo
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Huibo Jin
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Ying Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Yirong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Jing Liang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Pei Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| | - Ping Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nan Chang, People's Republic of China
| |
Collapse
|
5
|
Peng H, Du Z, Li J, Wang W, Li Z, Ru S. The sprouting angiogenesis and vascular dysfunction triggered by bisphenol S and tetrabromobisphenol S through disrupting vascular endothelial-cadherin in zebrafish. ENVIRONMENTAL RESEARCH 2025; 278:121632. [PMID: 40246265 DOI: 10.1016/j.envres.2025.121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
Exogenous chemical toxicants may be important inducers of pathological angiogenesis diseases. However, few studies have investigated the associations between pathological angiogenesis diseases and chemical toxicant exposures, and the specific mechanism by which chemical toxicants induce sprouting angiogenesis is unclear. In this study, zebrafish were exposed to bisphenol S (BPS, 1-100 μg/L) and tetrabromobisphenol S (TBBPS, 0.1 and 10 μg/L) from the embryonic stage to the larval stage to investigate how pollutants interfere with angiogenesis and the function of ectopic sprouting vessels. The results showed that BPS and TBBPS promoted ectopic sprouting angiogenesis in different types of vascular plexuses, including the posterior cardinal vein (PCV) and superficial choroidal vessels (SOVs), at different developmental time points. Proteomic analyses of eGFP-positive endothelial cells (ECs) isolated from Tg(flk1: eGFP) zebrafish revealed that both BPS and TBBPS induced ectopic angiogenesis by acting on vascular endothelial-cadherin (VE-cadherin) and activating downstream proangiogenic signaling. In ectopic sprouting vessels induced by BPS and TBBPS, increased endothelial permeability resulted in white blood cell recruitment. Human oxidized lipids also tended to deposit in these ectopic vessels following BPS and TBBPS exposure. These findings suggest that chemical toxicant-induced ectopic angiogenesis is an important cause of vascular dysfunction and related diseases.
Collapse
Affiliation(s)
- Hongyuan Peng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zehui Du
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jiali Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
6
|
Li Y, Liu X, Dong Y, Zhou Y. Angiogenesis causes and vasculogenic mimicry formation in the context of cancer stem cells. Biochim Biophys Acta Rev Cancer 2025; 1880:189323. [PMID: 40239849 DOI: 10.1016/j.bbcan.2025.189323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Tumor occurrence, development, invasion, and metastasis are regulated by multiple mechanisms. Among these, angiogenesis promotes tumor progression mainly by supplying tumor tissue and providing channels for tumor metastasis. Cancer stem cells (CSCs) are another important factor affecting tumor progression by involving in tumor initiation and development, while remaining insensitive to conventional antitumor treatments. Among treatment strategies for them, owing to the existence of alternative angiogenic pathways or the risk of damaging normal stem cells, the clinical effect is not ideal. Angiogenesis and CSCs may influence each other in this process. Tumor angiogenesis can support CSC self-renewal by providing a suitable microenvironment, whereas CSCs can regulate tumor neovascularization and mediate drug resistance to anti-angiogenic therapy. This review summarized the role of vascular niche formed by angiogenesis in CSC self-renewal and stemness maintenance, and the function of CSCs in endothelial progenitor cell differentiation and pro-angiogenic factor upregulation. We also elucidated the malignant loop between CSCs and angiogenesis promoting tumor progression. Additionally, we summarized and proposed therapeutic targets, including blocking tumor-derived endothelial differentiation, inhibiting pro-angiogenic factor upregulation, and directly targeting endothelial-like cells comprising CSCs. And we analyzed the feasibility of these strategies to identify more effective methods to improve tumor treatment.
Collapse
Affiliation(s)
- Ying Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaofang Liu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yaodong Dong
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Yingying Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
7
|
Lin YY, Warren E, Macklin BL, Ramirez L, Gerecht S. Endothelial-pericyte interactions regulate angiogenesis via VEGFR2 signaling during retinal development and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.08.642174. [PMID: 40161680 PMCID: PMC11952325 DOI: 10.1101/2025.03.08.642174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Pericytes stabilize the microvasculature by enhancing endothelial barrier integrity, resulting in functional networks. During retinal development, pericyte recruitment is crucial for stabilizing nascent angiogenic vasculature. However, in adulthood, disrupted endothelial-pericyte interactions lead to vascular dropout and pathological angiogenesis in ocular microvascular diseases, and strategies to stabilize the retinal vasculature are lacking. We demonstrate that direct endothelial-pericyte contact downregulates pVEGFR2 in endothelial cells, which enhances pericyte migration and promotes endothelial cell barrier function. Intravitreal injection of a VEGFR2 inhibitor in mouse models of the developing retina and oxygen-induced retinopathy increased pericyte recruitment and aided vascular stability. The VEGFR2 inhibitor further rescued ischemic retinopathy by enhancing vascularization and tissue growth while reducing vascular permeability. Our findings offer a druggable target to support the growth of functional and mature microvasculature in ocular microvascular diseases and tissue regeneration overall.
Collapse
|
8
|
Sun DZ, Yang XR, Huang CS, Bai ZJ, Shen P, Ni ZX, Huang-Fu CJ, Hu YY, Wang NN, Tang XL, Li YF, Gao Y, Zhou W. CPHNet: a novel pipeline for anti-HAPE drug screening via deep learning-based Cell Painting scoring. Respir Res 2025; 26:91. [PMID: 40057746 PMCID: PMC11890554 DOI: 10.1186/s12931-025-03173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND High altitude pulmonary edema (HAPE) poses a significant medical challenge to individuals ascending rapidly to high altitudes. Hypoxia-induced cellular morphological changes in the alveolar-capillary barrier such as mitochondrial structural alterations and cytoskeletal reorganization, play a crucial role in the pathogenesis of HAPE. These morphological changes are critical in understanding the cellular response to hypoxia and represent potential therapeutic targets. However, there is still a lack of effective and valid drug discovery strategies for anti-HAPE treatments based on these cellular morphological features. This study aims to develop a pipeline that focuses on morphological alterations in Cell Painting images to identify potential therapeutic agents for HAPE interventions. METHODS We generated over 100,000 full-field Cell Painting images of human alveolar adenocarcinoma basal epithelial cells (A549s) and human pulmonary microvascular endothelial cells (HPMECs) under different hypoxic conditions (1%~5% of oxygen content). These images were then submitted to our newly developed segmentation network (SegNet), which exhibited superior performance than traditional methods, to proceed to subcellular structure detection and segmentation. Subsequently, we created a hypoxia scoring network (HypoNet) using over 200,000 images of subcellular structures from A549s and HPMECs, demonstrating outstanding capacity in identifying cellular hypoxia status. RESULTS We proposed a deep neural network-based drug screening pipeline (CPHNet), which facilitated the identification of two promising natural products, ferulic acid (FA) and resveratrol (RES). Both compounds demonstrated satisfactory anti-HAPE effects in a 3D-alveolus chip model (ex vivo) and a mouse model (in vivo). CONCLUSION This work provides a brand-new and effective pipeline for screening anti-HAPE agents by integrating artificial intelligence (AI) tools and Cell Painting, offering a novel perspective for AI-driven phenotypic drug discovery.
Collapse
Affiliation(s)
- De-Zhi Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Xi-Ru Yang
- Department of Pharmacy, Medical College of Qinghai University, Xining, Qinghai, 810001, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Cong-Shu Huang
- Traditional Chinese Medicine School, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Zhi-Jie Bai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Zhe-Xin Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Chao-Ji Huang-Fu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Yang-Yi Hu
- Department of Pharmacy, Medical College of Qinghai University, Xining, Qinghai, 810001, China
| | - Ning-Ning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Xiang-Lin Tang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Yong-Fang Li
- Department of Pharmacy, Medical College of Qinghai University, Xining, Qinghai, 810001, China
| | - Yue Gao
- Department of Pharmacy, Medical College of Qinghai University, Xining, Qinghai, 810001, China.
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Wei Zhou
- Department of Pharmacy, Medical College of Qinghai University, Xining, Qinghai, 810001, China.
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, China.
| |
Collapse
|
9
|
Yao L, Chen Z, Gan S, Fu C, Xie Z, Zhang H, Yang C, Fu L, Liu Y, Luo M, Kuang D, Cao J, Hu G, Li S, Yang L, Li L, Chen X, Tang H. Soluble E-cadherin contributes to inflammation in acute lung injury via VEGF/VEGFR2 signaling. Cell Commun Signal 2025; 23:113. [PMID: 40011876 PMCID: PMC11866821 DOI: 10.1186/s12964-025-02110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/16/2025] [Indexed: 02/28/2025] Open
Abstract
As a gatekeeper of the airway epithelial cells, E-cadherin is not only a critical component for the maintenance of epithelial integrity, but also engaged in pathological processes through the release of a soluble form (sE-cadherin). This study was aimed to investigate the role of sE-cadherin in ALI/ARDS. Serum samples from patients with ARDS and healthy volunteers were collected for the detection of sE-cadherin. An LPS-induced mouse model was induced to analyze the expression of sE-cadherin, and a neutralizing antibody against sE-cadherin (DECMA-1) was given to the LPS-exposed mice. The effects of recombinant sE-cadherin were tested both in vitro and in vivo, and VEGFR2 inhibition was used to explore a possible mechanism for sE-cadherin-induced pulmonary inflammation. We observed an increased level of sE-cadherin in ARDS patients as well as in LPS-exposed mice. In vivo treatment of DECMA-1 significantly attenuated LPS-induced inflammation. In vitro, exogenous sE-cadherin can dramatically upregulate the expression of VEGF in THP1-derived macrophages and human primary macrophages. In addition, intratracheal instillation of recombinant sE-cadherin leads to significant increased infiltration of neutrophils as well as overproduction of IL-6 and IL1β, which could be attenuated by inhibition of VEGF/VEGFR2 signaling. While blockade of the VEGF/VEGFR2 pathway inhibited pulmonary inflammatory responses in LPS-exposed mice. Taken together, our data demonstrated that sE-cadherin contributes to lung inflammation in ALI/ARDS, which is related to activation of the VEGF/VEGFR2 pathway.
Collapse
Affiliation(s)
- Lihong Yao
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zemin Chen
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Sudan Gan
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunlai Fu
- Department of Emergency Medicine, Department of Respiratory and Critical Care Medicine, Dongguan People's Hospital, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Zhefan Xie
- Department of Emergency Medicine, Department of Respiratory and Critical Care Medicine, Dongguan People's Hospital, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Hailing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changyun Yang
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lin Fu
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ye Liu
- Department of Emergency Medicine, Department of Respiratory and Critical Care Medicine, Dongguan People's Hospital, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Ming Luo
- Department of Emergency Medicine, Department of Respiratory and Critical Care Medicine, Dongguan People's Hospital, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Daibin Kuang
- Department of Emergency Medicine, Department of Respiratory and Critical Care Medicine, Dongguan People's Hospital, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Jingjing Cao
- Department of Emergency Medicine, Department of Respiratory and Critical Care Medicine, Dongguan People's Hospital, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Guodong Hu
- Department of Emergency Medicine, Department of Respiratory and Critical Care Medicine, Dongguan People's Hospital, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Shiyue Li
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liping Yang
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingfeng Li
- Department of Emergency Medicine, Department of Respiratory and Critical Care Medicine, Dongguan People's Hospital, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China.
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Haixiong Tang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Deng X, Que Q, Zhang K, Li B, Yang N, Hu Q, Lv S, Liu Y. Mechanistic insights into the role of EGLN3 in pulmonary vascular remodeling and endothelial dysfunction. Respir Res 2025; 26:61. [PMID: 39985019 PMCID: PMC11844033 DOI: 10.1186/s12931-025-03144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/09/2025] [Indexed: 02/23/2025] Open
Abstract
Endothelial dysfunction is a pivotal initiating factor in vascular remodeling in pulmonary hypertension. EGLN3, a hypoxia response factor, plays a significant role in cell proliferation and angiogenesis, which are closely related to the pathophysiological conditions of pulmonary hypertension. This study investigates the potential involvement of EGLN3 in the injury response of pulmonary vascular endothelial cells and its contribution to the development of pulmonary arterial hypertension. Research has demonstrated that in patients with pulmonary arterial hypertension and various animal models of the condition, EGLN3 expression is upregulated in the remodeled pulmonary artery endothelium. Notably, the endothelial cell-specific knockout of EGLN3 can decelerate the progression of pulmonary arterial hypertension, whereas its overexpression has the opposite effect. Mechanistic analyses reveal that under hypoxic conditions, JUN initiates the transcription of EGLN3 by binding to its promoter region. Subsequently, EGLN3 interacts with HUR to enhance the stability of EGFR mRNA, thereby activating the PI3K/AKT and MAPK signaling pathways, which ultimately results in endothelial cell damage, proliferation, and migration. These findings suggest that EGLN3 is a critical gene for maintaining endothelial function and vascular homeostasis and holds promise as a novel therapeutic target for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Xiaodong Deng
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, 61700, China
| | - Qing Que
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, 61700, China
| | - Kunchi Zhang
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, 61700, China
| | - Bo Li
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, 61700, China
| | - Nianlong Yang
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, 61700, China
| | - Qiang Hu
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, 61700, China
| | - Sheng Lv
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, 61700, China
| | - Yi Liu
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, 61700, China.
| |
Collapse
|
11
|
Jin Y, Liao L, Chen Q, Tang B, Jiang J, Zhu J, Bai M. Multi-omics analysis reveals that neutrophil extracellular traps related gene TIMP1 promotes CRC progression and influences ferroptosis. Cancer Cell Int 2025; 25:31. [PMID: 39891145 PMCID: PMC11786501 DOI: 10.1186/s12935-025-03643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Previous studies have found that neutrophil extracellular traps (NETs) are highly expressed in colorectal cancer (CRC) and are associated with poor prognosis. Currently, there are few studies on the relationship between NETs and CRC, so we tried to explore new markers based on NETs to assist in the treatment of CRC. METHOD We jointly screened three major NETs genes through machine learning. Large-sample RNA transcriptome and single-cell transcriptome analysis further confirmed that TIMP1 is a core gene in NETs. We used small interfering RNA to knockdown TIMP1, and verified the ability of TIMP1 in CRC proliferation, invasion and migration through western blot, transwell, cell scratch assay, cell clone formation and other experiments. RESULT We screened out three major NETs Genes: TIMP1, F3, and CRISPLD2 based on machine learning. The NETs score constructed based on this not only predicts the prognosis of CRC patients but also shows significant differences in MSI status, chenckpoints expression, and predicted efficacy of PD-L1 targeted therapy. Transcriptome and single-cell data reveal that TIMP1 is highly expressed in neutrophils and is associated with poor prognosis in colorectal cancer patients and the occurrence of ferroptosis. Biological experiments have proven that TIMP1 can promote the proliferation, invasion and migration of CRC. CONCLUDE Bioinformatics analysis combined with experimental verification showed that TIMP1 is related to ferroptosis and plays a promoting role in the invasion, migration and proliferation of CRC.
Collapse
Affiliation(s)
- Yuzhao Jin
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou, 310000, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Luyu Liao
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou, 310000, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Qianping Chen
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou, 310000, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Bufu Tang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jin Jiang
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 31400, China
| | - Ji Zhu
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou, 310000, China.
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China.
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China.
| | - Minghua Bai
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou, 310000, China.
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China.
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China.
| |
Collapse
|
12
|
Chatziantoniou A, Rorris FP, Samanidis G, Kanakis M. Keeping the Ductus Arteriosus Patent: Current Strategy and Perspectives. Diagnostics (Basel) 2025; 15:241. [PMID: 39941172 PMCID: PMC11817600 DOI: 10.3390/diagnostics15030241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Patent ductus arteriosus (PDA) continues to be a significant finding among infants, as well as adults. What is widely considered to be a problem though, in a group of patients with congenital heart disease, it is the only lifeline. We will initially study the anatomical and biochemical mechanisms affecting the PDA. The main focus of this review is on ductal-dependent congenital heart disease and biochemical and pharmacological approaches to maintaining ductus arteriosus patency, as well as surgical and interventional options for maintaining circulation. The present review aims to highlight gaps in the knowledge regarding the multifunctional role of ductus arteriosus endothelium and possibly propose a new approach to pharmacological maintenance of ductus arteriosus patency.
Collapse
Affiliation(s)
| | - Filippos-Paschalis Rorris
- Department of Pediatric and Congenital Heart Surgery, Onassis Hospital, 17674 Athens, Greece; (F.-P.R.); (M.K.)
| | - George Samanidis
- Department of Cardiac Surgery, Onassis Hospital, 17674 Athens, Greece
| | - Meletios Kanakis
- Department of Pediatric and Congenital Heart Surgery, Onassis Hospital, 17674 Athens, Greece; (F.-P.R.); (M.K.)
| |
Collapse
|
13
|
Dong F, Zhou P, Kong F, Cao S, Pan X, Cai S, Chen X, Wang S, Li N, He B, Zhao R, Zhang B, Bie Q. PCDH17 induces colorectal cancer metastasis by destroying the vascular endothelial barrier. Cell Death Dis 2025; 16:36. [PMID: 39837826 PMCID: PMC11750977 DOI: 10.1038/s41419-025-07355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/03/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Compromised vascular integrity facilitates the cancer cells extravasation and metastasis. However, the mechanisms leading to a disruption in vascular integrity in colorectal cancer (CRC) remain unclear. In this study, PCDH17 expression was higher in the vascular endothelial cells of colon cancer with distant metastasis, and the rates of PCDH17+ endothelial cells (ECs) was associated with the M stage in clinical pathological characteristics analysis and correlated with a poor survival prognosis. The liver and lung metastatic dissemination of MC-38 was significantly decreased in PCDH17-/-mice. The ubiquitination and degradation of VEGFR2 was prevented by the interaction between PCDH17 and the E3 ubiquitin ligase MARCH5, which causing the separation of internalized VE-cadherin, and increased the vascular permeability and metastasis of CRC. These results highlight the importance of PCDH17 in maintaining vascular integrity, which has emphasis for endothelial barrier function in metastatic cancer. PCDH17 has the potential to be a marker for predicting tumor metastasis as well as a viable treatment target for CRC.
Collapse
Affiliation(s)
- Fengyun Dong
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Postdoctoral Mobile Station of Shandong University, Jinan, Shandong, China
| | - Pinghui Zhou
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Feifei Kong
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Sijie Cao
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Xiaozao Pan
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Shujing Cai
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xinke Chen
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Sen Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Na Li
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Baoyu He
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Rou Zhao
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, Shandong, China.
| | - Qingli Bie
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
14
|
Micó-Carnero M, Rojano-Alfonso C, Maroto-Serrat C, Cutrin JC, Casillas-Ramírez A, Peralta C. Relevance of the GH-VEGFB/VEGFA axis in liver grafts from brain-dead donors with alcohol-associated liver disease. Front Cell Dev Biol 2025; 12:1455258. [PMID: 39839674 PMCID: PMC11747040 DOI: 10.3389/fcell.2024.1455258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Grafts with alcohol-associated liver disease (ALD) subjected to prolonged cold ischaemia from donors after brain death (DBD) are typically unsuitable for transplantation. Here, we investigated the role of growth hormone (GH) in livers with ALD from DBDs and its relationship with vascular endothelial growth factor A (VEGFA) and VEGFB. Methods Livers from rats fed ethanol for 6 weeks and with brain death (BD) were cold stored for 24 h and subjected to ex vivo reperfusion. Hepatic damage and proliferative and inflammatory parameters were analysed after BD, before graft retrieval, and after reperfusion. Survival was monitored using an in vivo transplantation model. Results In DBDs, the administration of GH, which increased the levels in the intestine but not in the liver, induced the generation of both VEGFA and VEGFB in the intestine and protected against hepatic damage caused by BD before retrieving liver grafts from donors. However, VEGFA was the only factor that protected against damage after cold ischemia and reperfusion, which also increased the survival of the recipients. Discussion In conclusion, the signalling pathway and beneficial properties of the GH-VEGFA/VEGFB pathway, in which the intestine-liver axis plays a key role, were disrupted when grafts with ALD from DBDs were retrieved from donors and subjected to cold ischemia and reperfusion.
Collapse
Affiliation(s)
- Marc Micó-Carnero
- Department of Liver, Digestive System and Metabolism, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Carlos Rojano-Alfonso
- Department of Liver, Digestive System and Metabolism, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Cristina Maroto-Serrat
- Department of Liver, Digestive System and Metabolism, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Juan Carlos Cutrin
- Molecular Biotechnology Center II “Guido Tarone”, Department of Molecular Biotechnologies and Science for the Health, University of Torino, Torino, Italy
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria, IMSS-BIENESTAR, Ciudad Victoria, Mexico
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros, Mexico
| | - Carmen Peralta
- Department of Liver, Digestive System and Metabolism, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
15
|
Zhang M, Li D, Sun L, He Y, Liu Q, He Y, Li F. Lactobacillus reuteri Alleviates Hyperoxia-Induced BPD by Activating IL-22/STAT3 Signaling Pathway in Neonatal Mice. Mediators Inflamm 2024; 2024:4965271. [PMID: 39687635 PMCID: PMC11649352 DOI: 10.1155/mi/4965271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic respiratory disease in preterm infants. Little is known about the regulatory effect of lung Lactobacillus and its mechanism in BPD. This study explored the effect of L. reuteri on hyperoxia-induced mice lung injuries and examined whether L. reuteri played a role via the IL-22/STAT3 pathway. We found that the intranasal administration of L. reuteri and its tryptophan metabolite indole-3-aldehyde (3-IAld) ameliorated hyperoxia-induced mice lung BPD-like changes, deceased proinflammatory cytokines (IL-1β, IL-6, and TNF-α), and increased the levels of surfactant-associated protein C (SPC), aquaporin 5 (AQP5), and vascular endothelial growth factor receptor 2 (VEGFR2, also known as FLK-1). Furthermore, L. reuteri and 3-IAld increased the expression of IL-22. IL-22 was also confirmed to ameliorate hyperoxia-induced mice lung pathological changes, and the protective effects of L. reuteri could be inhibited by anti-IL-22 neutralizing antibody. Finally, we confirmed STAT3 activation by IL-22 in MLE-12 cells. In summary, our study confirmed L. reuteri alleviated hyperoxia-induced lung BPD-like changes in mice by activating the IL-22/STAT3 signaling pathway via IL-22 production. Probiotics Lactobacillus is a potential treatment for hyperoxia-induced lung injury in newborns.
Collapse
Affiliation(s)
- Meiyu Zhang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Department of Neonatology Children's Hospital of Chongqing Medical University, Chongqing 400015, China
| | - Decai Li
- Department of Pediatrics Chongqing Health Center for Women and Children, Department of Pediatrics Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Liujuan Sun
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Department of Neonatology Children's Hospital of Chongqing Medical University, Chongqing 400015, China
| | - Yu He
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Department of Neonatology Children's Hospital of Chongqing Medical University, Chongqing 400015, China
| | - Qingqing Liu
- Department of Pediatrics Chongqing Health Center for Women and Children, Department of Pediatrics Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Yi He
- Department of Pediatrics Chongqing Health Center for Women and Children, Department of Pediatrics Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Fang Li
- Department of Pediatrics Chongqing Health Center for Women and Children, Department of Pediatrics Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| |
Collapse
|
16
|
Li K, Liu P, Zeng Y, Liu M, Ye J, Zhu L. Exploring the bidirectional causal association between Sleep Apnea Syndrome and Depression: A Mendelian randomization study involving gut microbiota, serum metabolites, and inflammatory factors. J Affect Disord 2024; 366:308-316. [PMID: 39216644 DOI: 10.1016/j.jad.2024.08.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE This study aimed to investigate the potential causal association between Sleep Apnea Syndrome (SAS) and Depression, focusing on the roles of gut microbiota, serum metabolites, and inflammatory factors in these conditions. METHODS Mendelian Randomization (MR) analysis was performed using data from genome-wide association studies to assess 211 types of gut microbiota, 1400 serum metabolites, and 91 inflammatory factors as potential contributing factors. Causal inference was conducted using the Inverse Variance Weighted (IVW) method, with additional robustness checks through Cochran's Q test, MR-Egger regression intercept test, MR-PRESSO global test, and leave-one-out analysis. RESULTS The MR analysis indicated a positive correlation between the risk of SAS and Depression (OR = 1.12, 95 % CI: 1.05-1.19, P < 0.001), with a reciprocal analysis showing a similar positive correlation between Depression and the risk of SAS (OR = 1.19, 95 % CI: 1.07-1.31, P = 0.001). Additionally, causal associations were identified between 15 types of gut microbiota, 36 serum metabolites, and 2 inflammatory factors with SAS, and between 11 types of gut microbiota, 23 serum metabolites, and 3 inflammatory factors with Depression (IVW, all P < 0.05). The robustness of these findings was confirmed through the MR-Egger regression intercept test and MR-PRESSO global test. CONCLUSION This study provides epidemiological evidence of a bidirectional causal association between SAS and Depression, emphasizing the potential roles of gut microbiota, serum metabolites, and inflammatory factors in the pathogenesis of these disorders. These findings may inform the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Kaiyuan Li
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China; Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Peng Liu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuhao Zeng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Miao Liu
- Department of Cardiology, Center Hospital of Shandong First Medical University, Jinan, China.
| | - Jun Ye
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China; Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| | - Li Zhu
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China; Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| |
Collapse
|
17
|
Liu S, Cao Y, Zhang Y. Regulatory roles of RNA methylation in vascular lesions in ocular and cardiopulmonary diseases. Crit Rev Clin Lab Sci 2024; 61:726-740. [PMID: 38957015 DOI: 10.1080/10408363.2024.2370267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
RNA methylation is a widespread regulatory mechanism that controls gene expression in physiological processes. In recent years, the mechanisms and functions of RNA methylation under diseased conditions have been increasingly unveiled by RNA sequencing technologies with large scale and high resolution. In this review, the fundamental concept of RNA methylation is introduced, and the common types of transcript methylation and their machineries are described. Then, the regulatory roles of RNA methylation, particularly N6-methyladenosine and 5-methylcytosine, in the vascular lesions of ocular and cardiopulmonary diseases are discussed and compared. The ocular diseases include corneal neovascularization, retinopathy of prematurity, diabetic retinopathy, and pathologic myopia; whereas the cardiopulmonary ailments involve atherosclerosis and pulmonary hypertension. This review hopes to shed light on the common regulatory mechanisms underlying the vascular lesions in these ocular and cardiopulmonary diseases, which may be conducive to developing therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Siyi Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yunshan Cao
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
18
|
Han J, Kang X, Su Y, Wang J, Cui X, Bian Y, Wu C. Plasma exosomes from patients with coronary artery disease promote atherosclerosis via impairing vascular endothelial junctions. Sci Rep 2024; 14:29813. [PMID: 39616226 PMCID: PMC11608243 DOI: 10.1038/s41598-024-81352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025] Open
Abstract
The underlying mechanism of vascular endothelial hyperpermeability caused by decrease of endothelial junctions occurring in atherosclerosis remains elusive. Our findings identified that plasma exosomes from patients with stable coronary artery disease (ExoSCAD) contain differentially expressed miRNAs that are clustered with genes related to cell junctions, prompting us to investigate the role of ExoSCAD in regulating vascular endothelial junctions and to elucidate the underlying mechanisms. Here, we show that ExoSCAD markedly impair vascular endothelial junctions via suppressing VE-Cadherin and ZO-1 in endothelial cells in vitro and in vivo, consequently increases endothelial permeability. Critically, exosomal miR-140-3p plays a crucial role in ExoSCAD-induced inhibition of ZO-1, and may be an important causative factor in the development of endothelial hyperpermeability during atherosclerosis. Additionally, exosomal miR-140-3p level coordinates with severity of SCAD. Targeting miR-140-3p in circulating exosomes might open novel options for treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jian Han
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Xiaoyan Kang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Yazhen Su
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Jing Wang
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Xiaogang Cui
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yunfei Bian
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
19
|
Jasińska-Stroschein M, Glajzner P. Searching for Old and New Small-Molecule Protein Kinase Inhibitors as Effective Treatments in Pulmonary Hypertension-A Systematic Review. Int J Mol Sci 2024; 25:12858. [PMID: 39684570 DOI: 10.3390/ijms252312858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Treatment options for pulmonary arterial hypertension (PAH) have improved substantially in the last 30 years, but there is still a need for novel molecules that can regulate the excessive accumulation of pulmonary artery smooth muscle cells (PASMCs) and consequent vascular remodeling. One set of possible candidates are protein kinases. The study provides an overview of existing preclinical and clinical data regarding small-molecule protein kinase inhibitors in PAH. Online databases were searched from 2001 to 2023 according to PRISMA. The corpus included preclinical studies demonstrating alterations in at least one PH-related parameter following chronic exposure to an individual protein kinase inhibitor, as well as prospective clinical reports including healthy adults or those with PAH, with primary outcomes defined as safety or efficacy of an individual small-molecule protein kinase inhibitor. Several models in preclinical protocols (93 papers) have been proposed for studying small-molecule protein kinase inhibitors in PAH. In total, 51 kinase inhibitors were tested. Meta-analysis of preclinical results demonstrated seralutinib, sorafenib, fasudil hydrochloride, and imatinib had the most comprehensive effects on PH with anti-inflammatory, anti-oxidant, and anti-proliferative potential. Fasudil demonstrated more than 70% animal survival with the longest experimental period, while dasatinib, nintedanib, and (R)-crizotinib could deteriorate PAH. The substances targeting the same kinases often varied considerably in their activity, and such heterogeneity may be due to the variety of causes. Recent studies have addressed the molecules that affect multiple networks such as PDG-FRα/β/CSF1R/c-KIT/BMPR2 or FKBP12/mTOR. They also focus on achieving a satisfactory safety profile using innovative inhalation formulations Many small-molecule protein kinase inhibitors are able to control migration, proliferation and survival in PASMCs in preclinical observations. Standardized animal models can successfully reduce inter-study heterogeneity and thereby facilitate successful identification of candidate drugs for further evaluations.
Collapse
Affiliation(s)
| | - Paulina Glajzner
- Department of Biopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
20
|
Yin H, Tang Y, Wang Y, Waheed YA, Wang D, Sun D. Correlation between pre-operative VE-cadherin and DLL4 and the maturation after primary arteriovenous fistula in uremic patients. PeerJ 2024; 12:e18356. [PMID: 39583102 PMCID: PMC11585290 DOI: 10.7717/peerj.18356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 11/26/2024] Open
Abstract
Aims Uremic patients require dialysis to replace the declined kidney function, and arteriovenous fistula (AVF) is a commonly used dialysis access route. Our study aimed to explore vascular endothelial cells cadherin (VE-cadherin) and Delta-like ligand 4 (DLL4) expression in uremic patients undergoing primary AVF surgery and their correlation with AVF maturation. Methods We conducted a prospective study that included n = 55 voluntary uremic patients receiving their initial AVF procedure for renal replacement therapy, subjects were divided into a mature group and a failure group based on whether the AVF matured within 3 months post-operatively. We analyzed the association of VE-cadherin and DLL4 with AVF maturation by examining their expression levels in serum and the endothelium of cephalic veins. Results Pre-operative serum VE-cadherin, in the mature group measured 125.07 (106.77-167.65) ng/L, and DLL4 was 92.78 (83.83-106.72) pg/mL, while the failure group had VE-cadherin at 95.40 (79.03-107.16) ng/L (P = 0.001), and DLL4 at 60.42 (43.98-80.15) pg/mL with a statistical significant; (P = 0.002), binary logistic regression analysis indicated a significant association between cephalic vein diameter, VE-cadherin, DLL4 levels, and AVF immaturity (P = 0.024, P = 0.014 respectively). Immunohistochemical staining showed slightly higher VE-cadherin levels in the mature group than in the failure group (P = 0.366). DLL4 was primarily located in the cell membrane and cytoplasm, concentrated in the inner membrane, with significantly higher levels in the mature group compared to the failure group (P = 0.027). Conclusion The failure group exhibited lower levels of VE-cadherin and DLL4 in serum and vascular tissue, these results suggest that VE-cadherin and DLL4 might play pivotal regulatory roles in the onset and the progression of fistula immaturity, potentially serving as promising targets for future interventions.
Collapse
Affiliation(s)
- Huanhuan Yin
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yifan Tang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yanping Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | | | - Disheng Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Internal Medicine and Diagnostics, Xuzhou Medical College, Xuzhou, China
- Clinical Research Center for Kidney Disease, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
21
|
Gao B, Hu G, Sun B, Li W, Yang H. BNIP3+ fibroblasts associated with hypoxia and inflammation predict prognosis and immunotherapy response in pancreatic ductal adenocarcinoma. J Transl Med 2024; 22:937. [PMID: 39402590 PMCID: PMC11476087 DOI: 10.1186/s12967-024-05674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors that lacks effective treatment options. Cancer-associated fibroblasts (CAFs), an important component of the tumor microenvironment, associated with tumor progression, prognosis, and treatment response. This work aimed to explore the novel CAFs-associated target to improve treatment strategies in PDAC. METHODS The PDAC single-cell sequencing data (CRA001160, n = 35) were downloaded and integrated based on GSA databases to classify fibroblasts into fine subtypes. Functional enrichment analysis and coexpression regulatory network analysis were used to identify the functional phenotypes and biological properties of the different fibroblast subtypes. Fibroblast differentiation trajectories were constructed using pseudochronological analysis to identify initial and terminally differentiated subtypes of fibroblasts. The changes in the proportions of different fibroblast subtypes before and after PDAC immunotherapy were compared in responsive and nonresponding patients, and the relationships between fibroblast subtypes and PDAC immunotherapy responsiveness were determined based on GSA and GEO database. Using molecular biology methods to confirm the effects of BNIP3 on hypoxia and inflammation in CAFs. CAFs were co cultured with pancreatic cancer cells to detect their effects on migration and invasion of pancreatic cancer. RESULTS Single-cell data analysis divided fibroblasts into six subtypes. The differentiation trajectory suggested that BNIP3+ Fibro subtype exhibited terminal differentiation, and the expression of genes related to hypoxia and the inflammatory response increased gradually with differentiation time. The specific overexpressed genes in the BNIP3+ Fibro subtype were significantly associated with overall and disease progression-free survival in the patients with PDAC. Interestingly, the greater the proportion of the BNIP3+ Fibro subtype was, the worse the response of PDAC patients to immunotherapy, and the CRTL treatment regimen effectively reduced the proportion of the BNIP3+ Fibro subtype. After knocking out BNIP3, the hypoxia markers and inflammatory factors of CAFs were inhibited. Co-culture of CAFs with pancreatic cancer cells can increase the migration and invasion of pancreatic cancer, but this could be reversed by knocking out BNIP3. CONCLUSIONS This study revealed the BNIP3+ Fibro subtype associated with hypoxia and inflammatory responses, which was closely related to the poor prognosis of patients with PDAC, and identified signature genes that predict the immunotherapy response in PDAC.
Collapse
Affiliation(s)
- Bo Gao
- Department of Hernia and Abdominal Wall, Peking University People's Hospital, Beijing, China
| | - Guohua Hu
- Department of Hernia and Abdominal Wall, Peking University People's Hospital, Beijing, China
| | - Boshi Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenqiang Li
- Department of General Surgery, Jinshan Hospital of Fudan University, Shanghai, China
| | - Hao Yang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
22
|
Wang X, Yang Y, Zhao S, Wu D, Li L, Zhao Z. Chitosan-based biomaterial delivery strategies for hepatocellular carcinoma. Front Pharmacol 2024; 15:1446030. [PMID: 39161903 PMCID: PMC11330802 DOI: 10.3389/fphar.2024.1446030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Background Hepatocellular carcinoma accounts for 80% of primary liver cancers, is the most common primary liver malignancy. Hepatocellular carcinoma is the third leading cause of tumor-related deaths worldwide, with a 5-year survival rate of approximately 18%. Chemotherapy, although commonly used for hepatocellular carcinoma treatment, is limited by systemic toxicity and drug resistance. Improving targeted delivery of chemotherapy drugs to tumor cells without causing systemic side effects is a current research focus. Chitosan, a biopolymer derived from chitin, possesses good biocompatibility and biodegradability, making it suitable for drug delivery. Enhanced chitosan formulations retain the anti-tumor properties while improving stability. Chitosan-based biomaterials promote hepatocellular carcinoma apoptosis, exhibit antioxidant and anti-inflammatory effects, inhibit tumor angiogenesis, and improve extracellular matrix remodeling for enhanced anti-tumor therapy. Methods We summarized published experimental papers by querying them. Results and Conclusions This review discusses the physicochemical properties of chitosan, its application in hepatocellular carcinoma treatment, and the challenges faced by chitosan-based biomaterials.
Collapse
Affiliation(s)
- Xianling Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Yang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuang Zhao
- Endoscopy Center, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Di Wu
- First Digestive Endoscopy Department, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Le Li
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhifeng Zhao
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Pu G, Liang Z, Shi J, Tao Y, Lu P, Qing H, Zhang J. Enhancing the Inhibition of Corneal Neovascularization Efficacy by Self-Assembled into Supramolecular Hydrogel of Anti-Angiogenic Peptide. Int J Nanomedicine 2024; 19:7605-7616. [PMID: 39081898 PMCID: PMC11287374 DOI: 10.2147/ijn.s465965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Background Corneal neovascularization (CNV) is a common eye disease that leads to blindness. New treatment strategies are urgently needed due to the limitations of current treatment methods. Methods We report the synthesis of peptide Nap-FFEEPCAIWF ( Comp.3 ) via chemical conjugation of Nap-FFEE ( Comp.2 ) to antiangiogenic peptide PCAIWF (Comp.1). Comp.3 self-assembled into a hydrogel ( gel of 3 ) composed of nanofibers, which enhanced the antiangiogenic function of the epitope. Results We developed a novel peptide with an amphiphilic framework, Comp.3 , which could self-assemble into a supramolecular hydrogel with a well-ordered nanofiber structure. The nanofibers exhibited good biocompatibility with corneal epithelial cells, presenting a promising strategy to enhance the efficacy of free peptide-based drugs in the treatment of ocular vascular diseases, such as CNV and other angiogenesis-related diseases. Conclusion Nap-FFEEPCAIWF nanofibers provide an alternative approach to enhancing the therapeutic efficiency of free peptide-based drugs against ocular vascular diseases.
Collapse
Affiliation(s)
- Guojuan Pu
- Henan Eye Hospital, Henan Eye Institute, Henan Provincial People’s Hospital, Zhengzhou, 450003, People’s Republic of China
- People’s Hospital of Zhengzhou University, Zhengzhou, 450003, People’s Republic of China
| | - Zhen Liang
- Henan Eye Hospital, Henan Eye Institute, Henan Provincial People’s Hospital, Zhengzhou, 450003, People’s Republic of China
- People’s Hospital of Zhengzhou University, Zhengzhou, 450003, People’s Republic of China
| | - Jieran Shi
- People’s Hospital of Zhengzhou University, Zhengzhou, 450003, People’s Republic of China
| | - Yuan Tao
- Henan Eye Hospital, Henan Eye Institute, Henan Provincial People’s Hospital, Zhengzhou, 450003, People’s Republic of China
- People’s Hospital of Zhengzhou University, Zhengzhou, 450003, People’s Republic of China
| | - Ping Lu
- Henan Eye Hospital, Henan Eye Institute, Henan Provincial People’s Hospital, Zhengzhou, 450003, People’s Republic of China
- People’s Hospital of Zhengzhou University, Zhengzhou, 450003, People’s Republic of China
| | - Huiling Qing
- Henan Eye Hospital, Henan Eye Institute, Henan Provincial People’s Hospital, Zhengzhou, 450003, People’s Republic of China
- People’s Hospital of Zhengzhou University, Zhengzhou, 450003, People’s Republic of China
| | - Junjie Zhang
- Henan Eye Hospital, Henan Eye Institute, Henan Provincial People’s Hospital, Zhengzhou, 450003, People’s Republic of China
- People’s Hospital of Zhengzhou University, Zhengzhou, 450003, People’s Republic of China
| |
Collapse
|
24
|
Li M, Zhou H, Pan Z, Shi M, Yang J, Guo J, Wan H. Synergistic promotion of angiogenesis after intracerebral hemorrhage by ginsenoside Rh2 and chrysophanol in rats. Bioorg Chem 2024; 147:107416. [PMID: 38705107 DOI: 10.1016/j.bioorg.2024.107416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a debilitating condition characterized by the rupture of cerebral blood vessels, resulting in profound neurological deficits. A significant challenge in the treatment of ICH lies in the brain's limited capacity to regenerate damaged blood vessels. This study explores the potential synergistic effects of Ginsenoside Rh2 and Chrysophanol in promoting angiogenesis following ICH in a rat model. METHODS Network pharmacology was employed to predict the potential targets and pathways of Ginsenoside Rh2 and Chrysophanol for ICH treatment. Molecular docking was utilized to assess the binding affinity between these compounds and their respective targets. Experimental ICH was induced in male Sprague-Dawley rats through stereotactic injection of type VII collagenase into the right caudate putamen (CPu). The study encompassed various methodologies, including administration protocols, assessments of neurological function, magnetic resonance imaging, histological examination, observation of brain tissue ultrastructure, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunofluorescence staining, Western blot analysis, and statistical analyses. RESULTS Network pharmacology analysis indicated that Ginsenoside Rh2 and Chrysophanol may exert their therapeutic effects in ICH by promoting angiogenesis. Results from animal experiments revealed that rats treated with Ginsenoside Rh2 and Chrysophanol exhibited significantly improved neurological function, reduced hematoma volume, and diminished pathological injury compared to the Model group. Immunofluorescence analysis demonstrated enhanced expression of vascular endothelial growth factor receptor 2 (VEGFR2) and CD31, signifying augmented angiogenesis in the peri-hematomal region following combination therapy. Importantly, the addition of a VEGFR2 inhibitor reversed the increased expression of VEGFR2 and CD31. Furthermore, Western blot analysis revealed upregulated expression of angiogenesis-related factors, including VEGFR2, SRC, AKT1, MAPK1, and MAPK14, in the combination therapy group, but this effect was abrogated upon VEGFR2 inhibitor administration. CONCLUSION The synergistic effect of Ginsenoside Rh2 and Chrysophanol demonstrated a notable protective impact on ICH injury in rats, specifically attributed to their facilitation of angiogenesis. Consequently, this research offers a foundation for the utilization of Ginsenosides Rh2 and Chrysophanol in medical settings and offers direction for the advancement of novel pharmaceuticals for the clinical management of ICH.
Collapse
Affiliation(s)
- Mengying Li
- School of Life Sciences, Zhejiang Chinese Medical University, 310053, China
| | - Huifen Zhou
- Academy of TCM Cardio-Cerebrovascular Diseases of Zhejiang Chinese Medical University, 310053, China
| | - Zhiyong Pan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, 310006, China
| | - Min Shi
- The Affiliated Rehabilitation Hospital of Zhejiang Chinese Medical University, 310052, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, 310053, China.
| | - Jianwen Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510120, China.
| | - Haitong Wan
- Academy of TCM Cardio-Cerebrovascular Diseases of Zhejiang Chinese Medical University, 310053, China.
| |
Collapse
|
25
|
Zhang J, Huang WQ, Zhang YR, Liang N, Li NP, Tan GK, Gong SX, Wang AP. Upregulation of eIF2α by m 6A modification accelerates the proliferation of pulmonary artery smooth muscle cells in MCT-induced pulmonary arterial hypertension rats. J Cardiovasc Transl Res 2024; 17:598-608. [PMID: 37973667 DOI: 10.1007/s12265-023-10458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a malignant cardiovascular disease. Eukaryotic initiation factor 2α (eIF2α) plays an important role in the proliferation of pulmonary artery smooth muscle cells (PASMCs) in hypoxia-induced pulmonary hypertension (HPH) rats. However, the regulatory mechanism of eIF2α remains poorly understood in PAH rats. Here, we discover eIF2α is markedly upregulated in monocrotaline (MCT)-induced PAH rats, eIF2α can be upregulated by mRNA methylation, and upregulated eIF2α can promote PASMC proliferation in MCT-PAH rats. GSK2606414, eIF2α inhibitor, can downregulate the expression of eIF2α and alleviate PASMC proliferation in MCT-PAH rats. And we further discover the mRNA of eIF2α has a common sequence with N 6-methyladenosine (m6A) modification by bioinformatics analysis, and the expression of METTL3, WTAP, and YTHDF1 is upregulated in MCT-PAH rats. These findings suggest a potentially novel mechanism by which eIF2α is upregulated by m6A modification in MCT-PAH rats, which is involved in the pathogenesis of PAH.
Collapse
MESH Headings
- Animals
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/drug effects
- Cell Proliferation/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Eukaryotic Initiation Factor-2/metabolism
- Eukaryotic Initiation Factor-2/genetics
- Up-Regulation
- Disease Models, Animal
- Rats, Sprague-Dawley
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Male
- Cells, Cultured
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/chemically induced
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Arterial Hypertension/genetics
- Monocrotaline/toxicity
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Methylation
- Signal Transduction
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Methyltransferases/metabolism
- Methyltransferases/genetics
Collapse
Affiliation(s)
- Jing Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Wen-Qian Huang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, People's Republic of China
- Department of Blood Transfusion, the First Affiliated of Hainan Medical University, Haikou, 570102, Hainan, People's Republic of China
| | - Yu-Rong Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Na Liang
- Department of Anesthesiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, People's Republic of China
| | - Nan-Ping Li
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Anesthesiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, People's Republic of China
| | - Gang-Kai Tan
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Anesthesiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, People's Republic of China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| | - Ai-Ping Wang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, People's Republic of China.
| |
Collapse
|
26
|
Lawrence ES, Gu W, Bohlender RJ, Anza-Ramirez C, Cole AM, Yu JJ, Hu H, Heinrich EC, O’Brien KA, Vasquez CA, Cowan QT, Bruck PT, Mercader K, Alotaibi M, Long T, Hall JE, Moya EA, Bauk MA, Reeves JJ, Kong MC, Salem RM, Vizcardo-Galindo G, Macarlupu JL, Figueroa-Mujíca R, Bermudez D, Corante N, Gaio E, Fox KP, Salomaa V, Havulinna AS, Murray AJ, Malhotra A, Powel FL, Jain M, Komor AC, Cavalleri GL, Huff CD, Villafuerte FC, Simonson TS. Functional EPAS1/ HIF2A missense variant is associated with hematocrit in Andean highlanders. SCIENCE ADVANCES 2024; 10:eadj5661. [PMID: 38335297 PMCID: PMC10857371 DOI: 10.1126/sciadv.adj5661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Hypoxia-inducible factor pathway genes are linked to adaptation in both human and nonhuman highland species. EPAS1, a notable target of hypoxia adaptation, is associated with relatively lower hemoglobin concentration in Tibetans. We provide evidence for an association between an adaptive EPAS1 variant (rs570553380) and the same phenotype of relatively low hematocrit in Andean highlanders. This Andean-specific missense variant is present at a modest frequency in Andeans and absent in other human populations and vertebrate species except the coelacanth. CRISPR-base-edited human cells with this variant exhibit shifts in hypoxia-regulated gene expression, while metabolomic analyses reveal both genotype and phenotype associations and validation in a lowland population. Although this genocopy of relatively lower hematocrit in Andean highlanders parallels well-replicated findings in Tibetans, it likely involves distinct pathway responses based on a protein-coding versus noncoding variants, respectively. These findings illuminate how unique variants at EPAS1 contribute to the same phenotype in Tibetans and a subset of Andean highlanders despite distinct evolutionary trajectories.
Collapse
Affiliation(s)
- Elijah S. Lawrence
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wanjun Gu
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ryan J. Bohlender
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cecilia Anza-Ramirez
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Amy M. Cole
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James J. Yu
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hao Hu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erica C. Heinrich
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Katie A. O’Brien
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Carlos A. Vasquez
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Quinn T. Cowan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Patrick T. Bruck
- Department of Anthropology and Global Health, University of California, San Diego, La Jolla, CA, USA
| | - Kysha Mercader
- Department of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Mona Alotaibi
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Tao Long
- Department of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Sapient Bioanalytics, LLC, San Diego, CA, USA
| | - James E. Hall
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Marco A. Bauk
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer J. Reeves
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mitchell C. Kong
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Rany M. Salem
- Herbert Wertheim School of Public Health and Longevity Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Jose-Luis Macarlupu
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Rómulo Figueroa-Mujíca
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Daniela Bermudez
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Noemi Corante
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Eduardo Gaio
- Laboratório de Fisiologia Respiratória, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Keolu P. Fox
- Department of Anthropology and Global Health, University of California, San Diego, La Jolla, CA, USA
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Aki S. Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM-HiLIFE), Helsinki, Finland
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Frank L. Powel
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mohit Jain
- Department of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Sapient Bioanalytics, LLC, San Diego, CA, USA
| | - Alexis C. Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Gianpiero L. Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Chad D. Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francisco C. Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
27
|
Sun J, Zhang T, Tang C, Fan S, Wang Q, Liu D, Sai N, Ji Q, Guo W, Han W. Activation of Src Kinase Mediates the Disruption of Adherens Junction in the Blood-labyrinth Barrier after Acoustic Trauma. Curr Neurovasc Res 2024; 21:274-285. [PMID: 38918992 DOI: 10.2174/0115672026320884240620070951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Adherens junction in the blood-labyrinth barrier is largely unexplored because it is traditionally thought to be less important than the tight junction. Since increasing evidence indicates that it actually functions upstream of tight junction adherens junction may potentially be a better target for ameliorating the leakage of the blood-labyrinth barrier under pathological conditions such as acoustic trauma. AIMS This study was conducted to investigate the pathogenesis of the disruption of adherens junction after acoustic trauma and explore potential therapeutic targets. METHODS Critical targets that regulated the disruption of adherens junction were investigated by techniques such as immunofluorescence and Western blotting in C57BL/6J mice. RESULTS Upregulation of Vascular Endothelial Growth Factor (VEGF) and downregulation of Pigment Epithelium-derived Factor (PEDF) coactivated VEGF-PEDF/VEGF receptor 2 (VEGFR2) signaling pathway in the stria vascularis after noise exposure. Downstream effector Src kinase was then activated to degrade VE-cadherin and dissociate adherens junction, which led to the leakage of the blood-labyrinth barrier. By inhibiting VEGFR2 or Src kinase, VE-cadherin degradation and blood-labyrinth barrier leakage could be attenuated, but Src kinase represented a better target to ameliorate blood-labyrinth barrier leakage as inhibiting it would not interfere with vascular endothelium repair, neurotrophy and pericytes proliferation mediated by upstream VEGFR2. CONCLUSION Src kinase may represent a promising target to relieve noise-induced disruption of adherens junction and hyperpermeability of the blood-labyrinth barrier.
Collapse
Affiliation(s)
- Jianbin Sun
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Tong Zhang
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Chaoying Tang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shuhang Fan
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Qin Wang
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Da Liu
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Na Sai
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Qi Ji
- Liaoning Women and Children's Hospital, Shenyang, China
| | - Weiwei Guo
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Weiju Han
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| |
Collapse
|
28
|
Ma L, Wang Y, Li X, Wang Z, Zhang B, Luo Y, Wu Y, Li Z, Niu W. Tom70-regulated mitochondrial biogenesis via TFAM improves hypoxia-induced dysfunction of pulmonary vascular endothelial cells and alleviates hypoxic pulmonary hypertension. Respir Res 2023; 24:310. [PMID: 38093274 PMCID: PMC10717060 DOI: 10.1186/s12931-023-02631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Hypoxic pulmonary hypertension (HPH) is a common type of pulmonary hypertension and characterized by pulmonary vascular remodeling and constriction. A large number of studies have shown that pulmonary vascular endothelial cells (PVECs) dysfunction plays an important role in the initiation and development stages of HPH, but the mechanism of PVECs dysfunction after hypoxia remains unclear. In this study, we explored the exact mechanism of PVECs dysfunction after hypoxia. METHODS In vitro, we used primary cultured PVECs hypoxia model to mimic HPH injury. We detected the expressions of mitochondrial biogenesis markers, mitochondrial transcription factor A (TFAM) level inside mitochondria, mitochondrial quantity and function, and the components expressions of translocase of outer mitochondrial membrane (TOM) at 24 h after hypoxia. To explore the effects of Tom70 on mitochondrial biogenesis and functions of PVECs after hypoxia, Tom70 overexpression adenovirus was constructed, and the expressions of mitochondrial biogenesis markers, TFAM level inside mitochondria, mitochondrial quantity and function, and the functions of PVECs were detected. And in vivo, we used cre-dependent overexpression adenovirus of Tom70 in the Cdh5-CreERT2 mouse model of HPH to verify the role of upregulating PVECs Tom70 in improving HPH. RESULTS Hypoxia obviously increased the expressions of mitochondrial biogenesis markers for PGC-1α, NRF-1 and TFAM, but reduced the content of TFAM in mitochondria and the quantity and functions of mitochondria. In addition, only Tom70 expression among the TOM components was significantly decreased after hypoxia, and up-regulation of Tom70 significantly increased the content of TFAM in mitochondria of PVECs by transporting TFAM into mitochondria after hypoxia, enhanced the quantity and functions of mitochondria, improved the functions of PVECs, and ultimately alleviated HPH. CONCLUSION The findings of present study demonstrated that hypoxia induced the decreased expression of Tom70 in PVECs, reduced the mitochondrial biogenesis-associated TFAM protein transporting into mitochondria, inhibited mitochondrial biogenesis, caused PVECs injury, and prompted the formation of HPH. However, up-regulation of Tom70 abolished the hypoxia-induced injurious effects on PVECs and alleviated HPH.
Collapse
Affiliation(s)
- Lei Ma
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Street, Xi'an, 710004, People's Republic of China.
| | - Yanxia Wang
- Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, 169 Changle Western Street, Xi'an, 710032, People's Republic of China
| | - Xiaoqian Li
- Department of Cardiology, Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, People's Republic of China
| | - Zefang Wang
- Department of Basic Medicine, Graduate School, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, People's Republic of China
| | - Bo Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Air Force Medical University, 169 Changle Western Street, Xi'an, 710032, People's Republic of China
| | - Ying Luo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Air Force Medical University, 169 Changle Western Street, Xi'an, 710032, People's Republic of China
| | - Yousheng Wu
- National Demonstration Center for Experimental Preclinical Medicine Education, Air Force Medical University, 169 Changle Western Street, Xi'an, 710032, People's Republic of China
| | - Zhichao Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Street, Xi'an, 710069, People's Republic of China.
| | - Wen Niu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Air Force Medical University, 169 Changle Western Street, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
29
|
Yao B, Lu Y, Li Y, Bai Y, Wei X, Yang Y, Yao D. BCLAF1-induced HIF-1α accumulation under normoxia enhances PD-L1 treatment resistances via BCLAF1-CUL3 complex. Cancer Immunol Immunother 2023; 72:4279-4292. [PMID: 37906282 PMCID: PMC10700218 DOI: 10.1007/s00262-023-03563-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023]
Abstract
Bcl-2-associated transcription factor-1 (BCLAF1), an apoptosis-regulating protein of paramount significance, orchestrates the progression of various malignancies. This study reveals increased BCLAF1 expression in hepatocellular carcinoma (HCC) patients, in whom elevated BCLAF1 levels are linked to escalated tumor grades and diminished survival rates. Moreover, novel BCLAF1 expression is particularly increased in HCC patients who were not sensitive to the combined treatment of atezolizumab and bevacizumab, but not in patients who had tumors that responded to the combined regimen. Notably, overexpression of BCLAF1 increases HCC cell proliferation in vitro and in vivo, while the conditioned medium derived from cells overexpressing BCLAF1 strikingly enhances the tube-formation capacity of human umbilical vein endothelial cells. Furthermore, compelling evidence demonstrates that BCLAF1 attenuates the expression of prolyl hydroxylase domain protein 2 (PHD2) and governs the stability of hypoxia-inducible factor-1α (HIF-1α) under normoxic conditions without exerting any influence on transcription, as determined by Western blot and RT‒qPCR analyses. Subsequently, employing coimmunoprecipitation and immunofluorescence, we validated the reciprocal interaction between BCLAF1 and Cullin 3 (CUL3), through which BCLAF1 actively upregulates the ubiquitination and degradation of PHD2. The Western blot and RT‒qPCR results suggests that programmed death ligand-1 (PD-L1) is one of the downstream responders to HIF-1α in HCC. Thus, we reveal the pivotal role of BCLAF1 in promoting PD-L1 transcription and, through binding to CUL3, in promoting the accumulation of HIF-1α under normoxic conditions, thereby facilitating the ubiquitination and degradation of PHD2.
Collapse
Affiliation(s)
- Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ye Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yazhao Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yixue Bai
- Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinyu Wei
- Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yuanyuan Yang
- Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Demao Yao
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
30
|
Mutgan AC, Jandl K, Radic N, Valzano F, Kolb D, Hoffmann J, Foris V, Wilhelm J, Boehm PM, Hoetzenecker K, Olschewski A, Olschewski H, Heinemann A, Wygrecka M, Marsh LM, Kwapiszewska G. Pentastatin, a matrikine of the collagen IVα5, is a novel endogenous mediator of pulmonary endothelial dysfunction. Am J Physiol Cell Physiol 2023; 325:C1294-C1312. [PMID: 37694286 PMCID: PMC11550886 DOI: 10.1152/ajpcell.00391.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Deposition of basement membrane components, such as collagen IVα5, is associated with altered endothelial cell function in pulmonary hypertension. Collagen IVα5 harbors a functionally active fragment within its C-terminal noncollageneous (NC1) domain, called pentastatin, whose role in pulmonary endothelial cell behavior remains unknown. Here, we demonstrate that pentastatin serves as a mediator of pulmonary endothelial cell dysfunction, contributing to pulmonary hypertension. In vitro, treatment with pentastatin induced transcription of immediate early genes and proinflammatory cytokines and led to a functional loss of endothelial barrier integrity in pulmonary arterial endothelial cells. Mechanistically, pentastatin leads to β1-integrin subunit clustering and Rho/ROCK activation. Blockage of the β1-integrin subunit or the Rho/ROCK pathway partially attenuated the pentastatin-induced endothelial barrier disruption. Although pentastatin reduced the viability of endothelial cells, smooth muscle cell proliferation was induced. These effects on the pulmonary vascular cells were recapitulated ex vivo in the isolated-perfused lung model, where treatment with pentastatin-induced swelling of the endothelium accompanied by occasional endothelial cell apoptosis. This was reflected by increased vascular permeability and elevated pulmonary arterial pressure induced by pentastatin. This study identifies pentastatin as a mediator of endothelial cell dysfunction, which thus might contribute to the pathogenesis of pulmonary vascular disorders such as pulmonary hypertension.NEW & NOTEWORTHY This study is the first to show that pentastatin, the matrikine of the basement membrane (BM) collagen IVα5 polypeptide, triggers rapid pulmonary arterial endothelial cell barrier disruption, activation, and apoptosis in vitro and ex vivo. Mechanistically, pentastatin partially acts through binding to the β1-integrin subunit and the Rho/ROCK pathway. These findings are the first to link pentastatin to pulmonary endothelial dysfunction and, thus, suggest a major role for BM-matrikines in pulmonary vascular diseases such as pulmonary hypertension.
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Nemanja Radic
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Vasile Foris
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Jochen Wilhelm
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| | - Panja M Boehm
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Malgorzata Wygrecka
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
- Center for Infection and Genomics of the Lung, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Leigh M Marsh
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Grazyna Kwapiszewska
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
31
|
Lan Q, Wang K, Meng Z, Lin H, Zhou T, Lin Y, Jiang Z, Chen J, Liu X, Lin Y, Lin D. Roxadustat promotes hypoxia-inducible factor-1α/vascular endothelial growth factor signalling to enhance random skin flap survival in rats. Int Wound J 2023; 20:3586-3598. [PMID: 37225176 PMCID: PMC10588316 DOI: 10.1111/iwj.14235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Random skin flaps have limited clinical application as a broad surgical reconstruction treatment because of distal necrosis. The prolyl hydroxylase domain-containing protein inhibitor roxadustat (RXD) enhances angiogenesis and reduces oxidative stress and inflammation. This study explored the function of RXD in the survival of random skin flaps. Thirty-six male Sprague-Dawley rats were randomly divided into low-dose RXD group (L-RXD group, 10 mg/kg/2 day), high-dose RXD group (H-RXD group, 25 mg/kg/2 day), and control group (1 mL of solvent, 1:9 DMSO:corn oil). The proportion of surviving flaps was determined on day 7 after surgery. Angiogenesis was assessed by lead oxide/gelatin angiography, and microcirculation blood perfusion was evaluated by laser Doppler flow imaging. Specimens in zone II were obtained, and the contents of superoxide dismutase (SOD) and malondialdehyde (MDA) were measured as indicators of oxidative stress. Histopathological status was evaluated with haematoxylin and eosin staining. The levels of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and the inflammatory factors interleukin (IL)-1β, IL-6, and tumour necrosis factor-α (TNF-α) were detected by immunohistochemistry. RXD promoted flap survival and microcirculatory blood perfusion. Angiogenesis was detected distinctly in the experimental group. SOD activity increased and the MDA level decreased in the experimental group. Immunohistochemistry indicated that the expression levels of HIF-1α and VEGF were increased while the levels of IL-6, IL-1β, and TNF-α were decreased after RXD injection. RXD promoted random flap survival by reinforcing vascular hyperplasia and decreasing inflammation and ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Qicheng Lan
- Department of Hand and Plastic SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical UniversityWenzhouChina
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medical, Wenzhou Medical UniversityWenzhouChina
| | - Kaitao Wang
- Department of Hand and Plastic SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical UniversityWenzhouChina
| | - Zhefeng Meng
- Department of Hand and Plastic SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical UniversityWenzhouChina
| | - Hang Lin
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medical, Wenzhou Medical UniversityWenzhouChina
| | - Taotao Zhou
- Department of Hand and Plastic SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical UniversityWenzhouChina
| | - Yi Lin
- Department of Hand and Plastic SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical UniversityWenzhouChina
| | - Zhikai Jiang
- Department of Hand and Plastic SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical UniversityWenzhouChina
| | - Jianpeng Chen
- Department of Hand and Plastic SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical UniversityWenzhouChina
| | - Xuao Liu
- Department of Hand and Plastic SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical UniversityWenzhouChina
| | - Yuting Lin
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medical, Wenzhou Medical UniversityWenzhouChina
| | - Dingsheng Lin
- Department of Hand and Plastic SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
32
|
Wits M, Becher C, de Man F, Sanchez-Duffhues G, Goumans MJ. Sex-biased TGFβ signalling in pulmonary arterial hypertension. Cardiovasc Res 2023; 119:2262-2277. [PMID: 37595264 PMCID: PMC10597641 DOI: 10.1093/cvr/cvad129] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare cardiovascular disorder leading to pulmonary hypertension and, often fatal, right heart failure. Sex differences in PAH are evident, which primarily presents with a female predominance and increased male severity. Disturbed signalling of the transforming growth factor-β (TGFβ) family and gene mutations in the bone morphogenetic protein receptor 2 (BMPR2) are risk factors for PAH development, but how sex-specific cues affect the TGFβ family signalling in PAH remains poorly understood. In this review, we aim to explore the sex bias in PAH by examining sex differences in the TGFβ signalling family through mechanistical and translational evidence. Sex hormones including oestrogens, progestogens, and androgens, can determine the expression of receptors (including BMPR2), ligands, and soluble antagonists within the TGFβ family in a tissue-specific manner. Furthermore, sex-related genetic processes, i.e. Y-chromosome expression and X-chromosome inactivation, can influence the TGFβ signalling family at multiple levels. Given the clinical and mechanistical similarities, we expect that the conclusions arising from this review may apply also to hereditary haemorrhagic telangiectasia (HHT), a rare vascular disorder affecting the TGFβ signalling family pathway. In summary, we anticipate that investigating the TGFβ signalling family in a sex-specific manner will contribute to further understand the underlying processes leading to PAH and likely HHT.
Collapse
Affiliation(s)
- Marius Wits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Clarissa Becher
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Frances de Man
- Department of Pulmonary Medicine, Amsterdam University Medical Center (UMC) (Vrije Universiteit), 1081 HV Amsterdam, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
33
|
Liu X, Zhou H, Zhang H, Jin H, He Y. Advances in the research of sulfur dioxide and pulmonary hypertension. Front Pharmacol 2023; 14:1282403. [PMID: 37900169 PMCID: PMC10602757 DOI: 10.3389/fphar.2023.1282403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Pulmonary hypertension (PH) is a fatal disease caused by progressive pulmonary vascular remodeling (PVR). Currently, the mechanisms underlying the occurrence and progression of PVR remain unclear, and effective therapeutic approaches to reverse PVR and PH are lacking. Since the beginning of the 21st century, the endogenous sulfur dioxide (SO2)/aspartate transaminase system has emerged as a novel research focus in the fields of PH and PVR. As a gaseous signaling molecule, SO2 metabolism is tightly regulated in the pulmonary vasculature and is associated with the development of PH as it is involved in the regulation of pathological and physiological activities, such as pulmonary vascular cellular inflammation, proliferation and collagen metabolism, to exert a protective effect against PH. In this review, we present an overview of the studies conducted to date that have provided a theoretical basis for the development of SO2-related drug to inhibit or reverse PVR and effectively treat PH-related diseases.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pediatric Cardiac Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - He Zhou
- Departments of Medicine and Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hongsheng Zhang
- Department of Pediatric Cardiac Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yan He
- Department of Pediatric Cardiac Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Zhong (钟颖) Y, Yu (游博群) PB. Angiogenesis Redux: An Overall Protective Role of VEGF/KDR Signaling in the Microvasculature in Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2023; 43:1784-1787. [PMID: 37675636 PMCID: PMC10803133 DOI: 10.1161/atvbaha.123.319839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Affiliation(s)
- Ying Zhong (钟颖)
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul B. Yu (游博群)
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Luo YL, Li Y, Zhou W, Wang SY, Liu YQ. Inhibition of LPA-LPAR1 and VEGF-VEGFR2 Signaling in IPF Treatment. Drug Des Devel Ther 2023; 17:2679-2690. [PMID: 37680863 PMCID: PMC10482219 DOI: 10.2147/dddt.s415453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/25/2023] [Indexed: 09/09/2023] Open
Abstract
Due to the complex mechanism and limited treatments available for pulmonary fibrosis, the development of targeted drugs or inhibitors based on their molecular mechanisms remains an important strategy for prevention and treatment. In this paper, the downstream signaling pathways mediated by VEGFR and LPAR1 in pulmonary cells and the role of these pathways in pulmonary fibrosis, as well as the current status of drug research on the targets of LPAR1 and VEGFR2, are described. The mechanism by which these two pathways regulate vascular leakage and collagen deposition leading to the development of pulmonary fibrosis are analyzed, and the mutual promotion of the two pathways is discussed. Here we propose the development of drugs that simultaneously target LPAR1 and VEGFR2, and discuss the important considerations in targeting and safety.
Collapse
Affiliation(s)
- Ya-Li Luo
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yan Li
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Wen Zhou
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Si-Yu Wang
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yong-Qi Liu
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| |
Collapse
|
36
|
Tota M, Łacwik J, Laska J, Sędek Ł, Gomułka K. The Role of Eosinophil-Derived Neurotoxin and Vascular Endothelial Growth Factor in the Pathogenesis of Eosinophilic Asthma. Cells 2023; 12:cells12091326. [PMID: 37174726 PMCID: PMC10177218 DOI: 10.3390/cells12091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Asthma is a chronic complex pulmonary disease characterized by airway inflammation, remodeling, and hyperresponsiveness. Vascular endothelial growth factor (VEGF) and eosinophil-derived neurotoxin (EDN) are two significant mediators involved in the pathophysiology of asthma. In asthma, VEGF and EDN levels are elevated and correlate with disease severity and airway hyperresponsiveness. Diversity in VEGF polymorphisms results in the variability of responses to glucocorticosteroids and leukotriene antagonist treatment. Targeting VEGF and eosinophils is a promising therapeutic approach for asthma. We identified lichochalcone A, bevacizumab, azithromycin (AZT), vitamin D, diosmetin, epigallocatechin gallate, IGFBP-3, Neovastat (AE-941), endostatin, PEDF, and melatonin as putative add-on drugs in asthma with anti-VEGF properties. Further studies and clinical trials are needed to evaluate the efficacy of those drugs. AZT reduces the exacerbation rate and may be considered in adults with persistent symptomatic asthma. However, the long-term effects of AZT on community microbial resistance require further investigation. Vitamin D supplementation may enhance corticosteroid responsiveness. Herein, anti-eosinophil drugs are reviewed. Among them are, e.g., anti-IL-5 (mepolizumab, reslizumab, and benralizumab), anti-IL-13 (lebrikizumab and tralokinumab), anti-IL-4 and anti-IL-13 (dupilumab), and anti-IgE (omalizumab) drugs. EDN over peripheral blood eosinophil count is recommended to monitor the asthma control status and to assess the efficacy of anti-IL-5 therapy in asthma.
Collapse
Affiliation(s)
- Maciej Tota
- Student Scientific Group of Adult Allergology, Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Łacwik
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Julia Laska
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
37
|
Wang N, Hua J, Fu Y, An J, Chen X, Wang C, Zheng Y, Wang F, Ji Y, Li Q. Updated perspective of EPAS1 and the role in pulmonary hypertension. Front Cell Dev Biol 2023; 11:1125723. [PMID: 36923253 PMCID: PMC10008962 DOI: 10.3389/fcell.2023.1125723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Pulmonary hypertension (PH) is a group of syndromes characterized by irreversible vascular remodeling and persistent elevation of pulmonary vascular resistance and pressure, leading to ultimately right heart failure and even death. Current therapeutic strategies mainly focus on symptoms alleviation by stimulating pulmonary vessel dilation. Unfortunately, the mechanism and interventional management of vascular remodeling are still yet unrevealed. Hypoxia plays a central role in the pathogenesis of PH and numerous studies have shown the relationship between PH and hypoxia-inducible factors family. EPAS1, known as hypoxia-inducible factor-2 alpha (HIF-2α), functions as a transcription factor participating in various cellular pathways. However, the detailed mechanism of EPAS1 has not been fully and systematically described. This article exhibited a comprehensive summary of EPAS1 including the molecular structure, biological function and regulatory network in PH and other relevant cardiovascular diseases, and furthermore, provided theoretical reference for the potential novel target for future PH intervention.
Collapse
Affiliation(s)
- Na Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Jing Hua
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Yuhua Fu
- Department of Pulmonary and Critical Care Medicine, Central Hospital of Jiading District, Shanghai, China
| | - Jun An
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyu Chen
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Chuancui Wang
- Department of Pulmonary and Critical Care Medicine, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Yanghong Zheng
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Feilong Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Yingqun Ji
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| |
Collapse
|