1
|
Belczyk ME, Knapik-Czajka ME, Drag JM, Gawedzka A, Bal A. Atorvastatin ameliorates α-KGDH and GDH functions in rats with diet-induced hypercholesterolemia. Fundam Clin Pharmacol 2025; 39:e70009. [PMID: 40192264 DOI: 10.1111/fcp.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/27/2025] [Accepted: 03/27/2025] [Indexed: 05/17/2025]
Abstract
BACKGROUND α-ketoglutarate dehydrogenase complex (α-KGDH) belongs to mitochondrial 2-oxoacid dehydrogenases family and is the key regulatory enzyme of cell metabolism. It is functionally interconnected with glutamate dehydrogenase (GDH) which is a source of α-KG, a substrate for α-KGDH. Our previous studies demonstrated that simvastatin had an influence on 2-oxoacid dehydrogenases, including α-KGDH. Hence, we hypothesised that atorvastatin, one of the most commonly prescribed lipid-lowering drugs, may modify liver α-KGDH and GDH. OBJECTIVES The purpose of the present study was to evaluate the effect of atorvastatin on liver α-KGDH and GDH in rats with diet-induced hypercholesterolemia. METHODS Atorvastatin at dose 20 mg/kg b.wt. (HC + A group, n = 10) or vehicle (HC group, hypercholesterolemic control, n = 10) were administered to rats with hypercholesterolemia for 21 days. The normal control group was fed a standard diet (ST group, normal control, n = 10). α-KGDH and GDH activities as well as their protein levels were determined. Moreover, serum parameters of lipid profile and liver function were measured. RESULTS Liver α-KGDH and GDH activities were lower in HC than in ST rats. Atorvastatin enhanced the inhibited activities of α-KGDH and GDH. Stimulation of α-KGDH and GDH by atorvastatin did not correspond with the increase in protein levels of these enzymes indicating that atorvastatin activated α-KGDH and GDH most likely via post-translational mechanism. Atorvastatin had a beneficial effect on serum lipid profile and did not change the parameters of liver function. CONCLUSION The present study demonstrated that atorvastatin ameliorated liver α-KGDH and GDH functions in rats with diet-induced hypercholesterolemia.
Collapse
Affiliation(s)
- Malgorzata Ewa Belczyk
- Department of Biochemical Analytics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | | | - Jagoda Maria Drag
- Department of Biochemical Analytics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Gawedzka
- Department of Biochemical Analytics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Angelika Bal
- 5th Military Clinical Hospital with Polyclinic, Krakow, Poland
| |
Collapse
|
2
|
Yang Y, Shen H, Guan H, Wang B, Qing M, Liu J, Liu A. Effect of Statin on Clinical Outcomes in Critically Ill Patients with Non-traumatic Subarachnoid Hemorrhage: A Retrospective Analysis Based on MIMIC Database. World Neurosurg 2025; 197:123855. [PMID: 40054847 DOI: 10.1016/j.wneu.2025.123855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Nontraumatic subarachnoid hemorrhage (NSAH) is a type of hemorrhagic stroke with high mortality and low recovery rates. Although statins are commonly used in cardiovascular diseases, their impact on subarachnoid hemorrhage prognosis remains unclear. This study aimed to explore the relationship between statin use and short-term and long-term all-cause mortality in critically ill patients with NSAH. METHODS Data from the Medical Information Mart for Intensive Care IV database were used to categorize critically ill patients with NSAH into statin and nonstatin groups. A Cox proportional hazards model assessed the association between statin use and all-cause mortality. Subgroup analyses were conducted to examine the consistency of statin effects on mortality. RESULTS The study included 750 patients, with 43% male. One-month mortality was 21%, and intensive care unit mortality was 17%. Cox regression analysis showed that statin use was independently associated with reduced intensive care unit mortality (hazard ratio [HR = 0.52; P = 0.010), 1-month mortality (HR = 0.49; P < 0.001), 3-month mortality (HR = 0.62; P = 0.012), and 1-year mortality (HR = 0.70; P = 0.040). Subgroup analyses showed no significant interactions. Simvastatin and atorvastatin both significantly reduced 1-month mortality. CONCLUSIONS Statin use may improve mortality outcomes in critically ill patients with NSAH, suggesting their potential benefit in this population.
Collapse
Affiliation(s)
- Yibo Yang
- People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China; The Second Affiliated Hospital, Department of Neurosurgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hui Shen
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Cerebrovascular Disease Department, Neurological Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hao Guan
- People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Bing Wang
- The Second Affiliated Hospital, Department of Neurosurgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mei Qing
- Department of Neurology, Beijing Pinggu Hospital, Beijing, China
| | - Jiachun Liu
- Cerebrovascular Disease Department, Neurological Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Hospital, Beijing, China
| | - Aihua Liu
- People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China; The Second Affiliated Hospital, Department of Neurosurgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Akiyama Y, Katsuki S, Koga Y, Yamamoto M, Hironaga K, Suematsu N, Miyata K, Mukai Y, Inoue S, Nishi JI, Tashiro H, Nakano Y, Funakoshi K, Tagawa K, Ichi I, Tsutsui H, Abe K, Matoba T. Effect of PCSK9 inhibitor usage on coronary endothelial dysfunction in patients with hypercholesterolemia after coronary stenting: The CuVIC-2 trial. J Cardiol 2025:S0914-5087(25)00101-7. [PMID: 40221085 DOI: 10.1016/j.jjcc.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND The effects of evolocumab on coronary endothelial dysfunction (CED), a hallmark of atherogenesis, are unknown. The aim of this study was to investigate whether evolocumab, in combination with high-dose statins, could ameliorate CED in patients who underwent coronary stenting. METHODS The CuVIC-2 trial was a multicenter randomized controlled trial. CED was defined as intracoronary acetylcholine (ACh)-induced contractile responses with signs of myocardial ischemia. We originally intended to enroll 160 participants but altered the study design due to the COVID-19 pandemic and then recruited 41 participants. The revised primary endpoint was the coronary contraction rate in response to ACh assessed in a core laboratory, ensuring a statistical power of over 80 % using the mixed model for repeated measures. RESULTS The evolocumab in combination with high-dose statins with or without ezetimibe (EV + S) group included 19 males and 4 females aged 62 ± 13 years. The high-dose statins with or without ezetimibe (S) group included 13 males and 5 females aged 64 ± 11 years. Compared with the S group, the EV + S group presented a significantly greater decrease in low-density lipoprotein cholesterol at 28 weeks; 83 ± 17 to 20 ± 16 mg/dL (-76 % from the baseline) in the EV + S group and 88 ± 16 to 81 ± 20 mg/dL (-7 % from the baseline) in the S group (p < 0.0001). At 28 weeks, there was no difference between the two groups in terms of the coronary artery constriction rate across all doses [mean difference: 4.8 % (95 % CI: -13.6 to 23.2); p = 0.6]. CONCLUSIONS Amelioration of CED by evolocumab was not observed in this trial with several limitations.
Collapse
Affiliation(s)
- Yusuke Akiyama
- Department of Cardiovascular Medicine, Oita Prefectural Hospital, Oita, Japan; Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shunsuke Katsuki
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasuaki Koga
- Department of Cardiovascular Medicine, Oita Prefectural Hospital, Oita, Japan
| | - Mitsutaka Yamamoto
- Department of Cardiovascular Medicine, Harasanshin Hospital, Fukuoka, Japan
| | - Kiyoshi Hironaga
- Department of Cardiovascular Medicine, Fukuoka City Hospital, Fukuoka, Japan
| | - Nobuhiro Suematsu
- Department of Cardiovascular Medicine, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Kenji Miyata
- Department of Cardiovascular Medicine, Japan Community Health Care Organization, Kyushu Hospital, Fukuoka, Japan
| | - Yasushi Mukai
- Department of Cardiovascular Medicine, Japanese Red Cross Fukuoka Hospital, Fukuoka, Japan
| | - Shujiro Inoue
- Department of Cardiovascular Medicine, National Hospital Organization Kyushu Medical Centre, Fukuoka, Japan
| | - Jun-Ichiro Nishi
- Department of Cardiovascular Medicine, Iizuka Hospital, Fukuoka, Japan
| | - Hideki Tashiro
- Department of Cardiovascular Medicine, St. Mary's Hospital, Fukuoka, Japan
| | - Yasuhiro Nakano
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kouta Funakoshi
- Center for Clinical and Translational Research of Kyushu University Hospital, Fukuoka, Japan
| | - Koshiro Tagawa
- Center for Clinical and Translational Research of Kyushu University Hospital, Fukuoka, Japan
| | - Ikuyo Ichi
- Graduate School of Humanities and Science, Ochanomizu University, Tokyo, Japan
| | - Hiroyuki Tsutsui
- School of Medicine and Graduate School, International University of Health and Welfare, Fukuoka, Japan
| | - Kohtaro Abe
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| |
Collapse
|
4
|
Savulescu-Fiedler I, Baz RO, Baz RA, Scheau C, Gegiu A. Coronary Artery Spasm: From Physiopathology to Diagnosis. Life (Basel) 2025; 15:597. [PMID: 40283152 PMCID: PMC12029111 DOI: 10.3390/life15040597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Coronary artery spasm (CAS) is a reversible vasoconstriction of normal or atherosclerotic epicardial coronary arteries with a subsequent reduction in myocardial blood flow, leading to myocardial ischemia, myocardial infarction, severe arrhythmias, or even sudden death. It is an entity that should be recognized based on a particular clinical presentation. Numerous differences exist between CAS and obstructive coronary disease in terms of mechanisms, risk factors, and therapeutic solutions. The gold standard for CAS diagnosis is represented by transitory and reversible occlusion of the coronary arteries at spasm provocation test, which consists of an intracoronary administration of Ach, ergonovine, or methylergonovine during angiography. The pathophysiology of CAS is not fully understood. However, the core of CAS is represented by vascular smooth muscle cell contraction, with a circadian pattern. The initiating event of this contraction may be represented by endothelial dysfunction, inflammation, or autonomic nervous system unbalance. Our study explores the intricate balance of these factors and their clinical relevance in the management of CAS.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Radu Octavian Baz
- Clinical Laboratory of Radiology and Medical Imaging, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania
- Department of Radiology and Medical Imaging, Faculty of Medicine, “Ovidius” University, 900527 Constanta, Romania
| | - Radu Andrei Baz
- Clinical Laboratory of Radiology and Medical Imaging, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Andrei Gegiu
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| |
Collapse
|
5
|
Jhilta A, Jadhav K, Sharma R, Singh R, Negi S, Sharma N, Singh AK, Verma RK. Host-Directed Therapy with Inhalable Lovastatin Microspheres for Matrix Metalloproteinase Inhibition in Tuberculosis. ACS APPLIED BIO MATERIALS 2025; 8:1533-1546. [PMID: 39832798 DOI: 10.1021/acsabm.4c01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Tuberculosis (TB) triggers a robust immune response, which leads to significant destruction of the lung tissue at the site of infection, aiding in the transmission of Mycobacterium tuberculosis (Mtb) to the hosts. The excessive inflammatory response contributes heavily to extracellular matrix (ECM) damage, which is linked to high mortality rates among TB patients. Matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, are pivotal in the breakdown of the ECM, worsening tissue destruction. In the context of host-directed therapy (HDT), a strategy aimed at modulating the immune response rather than directly targeting the pathogen, we evaluated the potential of lovastatin (LOV). LOV has shown promise in reducing MMP activity and inflammation, which could alleviate the immune-mediated pathology in TB. However, its clinical use has been limited due to poor solubility and biocompatibility, reducing its therapeutic efficacy. To overcome these limitations, we designed inhalable gelatin microspheres (GA-MS) loaded with LOV using the spray-drying technology. This approach improved the solubility and allowed for the controlled release of the drug. The resulting LOV-loaded gelatin microspheres (LOV/GA-MS) had an optimal particle size of 2.395 ± 0.67 μm, facilitating macrophage uptake due to their aerodynamic properties. In in vitro studies using Mtb-infected macrophages, LOV/GA-MS effectively suppressed MMP expression and reduced levels of pro-inflammatory cytokines at a concentration of 20 μg/mL, demonstrating substantial anti-inflammatory potential. Moreover, these microspheres showed a synergistic effect when combined with standard anti-TB drugs, enhancing the overall therapeutic efficacy in in vitro experiments. The findings suggest that inhalable LOV/GA-MS microspheres represent a promising adjunctive host-directed therapy for TB. By modulating the host's immune response and targeting key inflammatory mediators such as MMPs, this approach could mitigate lung tissue damage, improve clinical outcomes, and provide a more holistic treatment option for TB.
Collapse
Affiliation(s)
- Agrim Jhilta
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India
| | - Krishna Jadhav
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India
| | - Rahul Sharma
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Raghuraj Singh
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Swarnima Negi
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu ,J&K 180009, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
6
|
Askarizadeh F, Karav S, Jamialahmadi T, Sahebkar A. Impact of statin therapy on CD40:CD40L signaling: mechanistic insights and therapeutic opportunities. Pharmacol Rep 2025; 77:43-71. [PMID: 39680334 DOI: 10.1007/s43440-024-00678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024]
Abstract
Statins are widely utilized to reduce cholesterol levels, particularly in cardiovascular diseases. They interface with cholesterol synthesis by inhibiting the 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase enzyme. Besides their primary effect, statins demonstrate anti-inflammatory and immune-modulating properties in various diseases, highlighting the pleiotropic effect of these drugs. The CD40:CD40L signaling pathway is considered a prominent inflammatory pathway in multiple diseases, including autoimmune, inflammatory, and cardiovascular diseases. The findings from clinical trials and in vitro and in vivo studies suggest the potential anti-inflammatory effect of statins in modulating the CD40 signaling pathway and downstream inflammatory mediator. Accordingly, as its classic ligand, statins can suppress immune responses in autoimmune diseases by inhibiting CD40 expression and blocking its interaction with CD40L. Additionally, statins affect intracellular signaling and inhibit inflammatory mediator secretion in chronic inflammatory diseases like asthma and autoimmune disorders such as myasthenia gravis, multiple sclerosis, systemic lupus erymanthus, and cardiovascular diseases like atherosclerosis. However, it is essential to note that the anti-inflammatory effect of statins may vary depending on the specific type of statin used. In this study, we aim to explore the potential anti-inflammatory effects of statins in treating inflammatory diseases by examining their role in regulating immune responses, particularly their impact on the CD40:CD40L signaling pathway, through a comprehensive review of existing literature.
Collapse
Affiliation(s)
- Fatemeh Askarizadeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Seiffge DJ, Fandler-Höfler S, Du Y, Goeldlin MB, Jolink WMT, Klijn CJM, Werring DJ. Intracerebral haemorrhage - mechanisms, diagnosis and prospects for treatment and prevention. Nat Rev Neurol 2024; 20:708-723. [PMID: 39548285 DOI: 10.1038/s41582-024-01035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 11/17/2024]
Abstract
Intracerebral haemorrhage (ICH) is a devastating condition associated with high mortality and substantial residual disability among survivors. Effective treatments for the acute stages of ICH are limited. However, promising findings from randomized trials of therapeutic strategies, including acute care bundles that target anticoagulation therapies, blood pressure control and other physiological parameters, and trials of minimally invasive neurosurgical procedures have led to renewed optimism that patient outcomes can be improved. Currently ongoing areas of research for acute treatment include anti-inflammatory and haemostatic treatments. The implementation of effective secondary prevention strategies requires an understanding of the aetiology of ICH, which involves vascular and brain parenchymal imaging; the use of neuroimaging markers of cerebral small vessel disease improves classification with prognostic relevance. Other data underline the importance of preventing not only recurrent ICH but also ischaemic stroke and cardiovascular events in survivors of ICH. Ongoing and planned randomized controlled trials will assess the efficacy of prevention strategies, including antiplatelet agents, oral anticoagulants or left atrial appendage occlusion (in patients with concomitant atrial fibrillation), and optimal management of long-term blood pressure and statin use. Together, these advances herald a new era of improved understanding and effective interventions to reduce the burden of ICH.
Collapse
Affiliation(s)
- David J Seiffge
- Department of Neurology, Inselspital University Hospital Bern and University of Bern, Bern, Switzerland
| | - Simon Fandler-Höfler
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Yang Du
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Martina B Goeldlin
- Department of Neurology, Inselspital University Hospital Bern and University of Bern, Bern, Switzerland
| | | | - Catharina J M Klijn
- Department of Neurology, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
8
|
Siniscalchi C, Imbalzano E, Meschi T, Ticinesi A, Prati B, Basaglia M, Camporese G, Perrella A, Viorica A, Eletto E, Russo V, Simioni P. Statins during Anticoagulation for Emergency Life-Threatening Venous Thromboembolism: A Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1240. [PMID: 39202521 PMCID: PMC11356097 DOI: 10.3390/medicina60081240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024]
Abstract
Venous thromboembolism (VTE) is the leading cause of morbidity and death worldwide, after cancer and cardiovascular diseases. VTE is defined to include pulmonary embolism (PE) and/or deep vein thrombosis (DVT). Approximately 25% of PE patients experience sudden death as an initial symptom of VTE, and between 10% and 30% of patients die within the first month after diagnosis. Currently, the only drugs approved for the treatment of both acute and chronic VTE are vitamin K antagonists (VKAs) and direct oral anticoagulants (DOACs). However, their effectiveness is limited due to their associated risk of bleeding. Ideally, therapy should be able to treat VTE and limit the risk of VTE recurrence without increasing the risk of bleeding. Several studies have shown that the use of statins during anticoagulation for VTE reduces the risk of death and VTE recurrence. However, to date, there are conflicting data on the impact of statins during anticoagulation for VTE. A biological protective function of statins during anticoagulation has also been reported. Statins affect D-dimer levels; tissue factor (TF) gene expression; and VIII, VII, and Von Willebrand clotting factors-the major clotting factors they are able to affect. However, the usefulness of statins for the treatment and prevention of VTE is currently under debate, and they should not be substituted for guideline-recommended VTE prophylaxis or anticoagulation treatment. In this review of the literature, we illustrate the advances on this topic, including data on the role of statins in primary VTE prevention and secondary VTE prevention, related biological mechanisms, the risk of bleeding during their use, and their ability to reduce the risk of death.
Collapse
Affiliation(s)
- Carmine Siniscalchi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy; (T.M.); (A.T.); (B.P.); (M.B.); (A.V.); (E.E.)
- Parma University Hospital-Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy; (T.M.); (A.T.); (B.P.); (M.B.); (A.V.); (E.E.)
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy; (T.M.); (A.T.); (B.P.); (M.B.); (A.V.); (E.E.)
| | - Beatrice Prati
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy; (T.M.); (A.T.); (B.P.); (M.B.); (A.V.); (E.E.)
| | - Manuela Basaglia
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy; (T.M.); (A.T.); (B.P.); (M.B.); (A.V.); (E.E.)
| | - Giuseppe Camporese
- Department of Medicine-DIMED, Clinica Medica 1, Padua University Hospital, 35128 Padua, Italy; (G.C.); (P.S.)
| | | | - Andreev Viorica
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy; (T.M.); (A.T.); (B.P.); (M.B.); (A.V.); (E.E.)
| | - Elisa Eletto
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy; (T.M.); (A.T.); (B.P.); (M.B.); (A.V.); (E.E.)
| | - Vincenzo Russo
- Department of Cardiology, Vanvitelli University of Naples, 80138 Naples, Italy;
| | - Paolo Simioni
- Department of Medicine-DIMED, Clinica Medica 1, Padua University Hospital, 35128 Padua, Italy; (G.C.); (P.S.)
| |
Collapse
|
9
|
Yoshihara F, Matsuzawa Y, Nakatsuka K, Kirigaya J, Takeuchi I, Kimura K, Konishi M, Tamura K, Fukui K, Tsukahara K, Shimizu H, Iwabuchi K, Yamada Y, Saka K, Sato Y, Ogawa M, Hayakawa K, Ohmagari N, Ikeda S, Akao M, Shimomura H, Kihara Y, Yoshimoto A, Morita M, Kumada N, Ogata S, Nishimura K, Arisato T, Matsuo M, Kishida M, Yasuda S, Ogawa H. Relationship between 2nd-generation angiotensin receptor blockers and the risk of hypotension in COVID-19 patients admitted to hospital. Hypertens Res 2024; 47:1943-1951. [PMID: 38664510 DOI: 10.1038/s41440-024-01682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/04/2024] [Accepted: 03/31/2024] [Indexed: 07/03/2024]
Abstract
It has not yet been established whether angiotensin II receptor blockers (ARB), statins, and multiple drugs affect the severity of COVID-19. Therefore, we herein performed an observational study on the effects of 1st- and 2nd-generation ARB, statins, and multiple drugs, on COVID-19 in patients admitted to 15 Japanese medical facilities. The results obtained showed that ARB, statins, and multiple drugs were not associated with the primary outcome (odds ratio: 1.040, 95% confidence interval: 0.688-0.571; 0.696, 0.439-1.103; 1.056, 0.941-1.185, respectively), each component of the primary outcome (in-hospital death, ventilator support, extracorporeal membrane oxygenation support, and admission to the intensive care unit), or the secondary outcomes (oxygen administration, disturbed consciousness, and hypotension, defined as systolic blood pressure ≤90 mmHg). ARB were divided into 1st- and 2nd-generations based on their approval for use (before 2000 and after 2001), with the former consisting of losartan, candesartan, and valsartan, and the latter of telmisartan, olmesartan, irbesartan, and azilsartan. The difference of ARB generation was not associated with the primary outcome (odds ratio with 2nd-generation ARB relative to 1st-generation ARB: 1.257, 95% confidence interval: 0.613-2.574). The odd ratio for a hypotension as one of the secondary outcomes with 2nd-generation ARB was 1.754 (95% confidence interval: 1.745-1.763) relative to 1st-generation ARB. These results suggest that patients taking 2nd-generation ARB may be at a higher risk of hypotension than those taking 1st-generation ARB and also that careful observations are needed. Further studies are continuously needed to support decisions to adjust medications for co-morbidities.
Collapse
Affiliation(s)
- Fumiki Yoshihara
- Division of Nephrology and Hypertension, National Cerebral and Cardiovascular Center, Osaka, Japan.
| | - Yasushi Matsuzawa
- Division of Cardiology, Yokohama City University Medical Center, Yokohama city, Japan
- Department of Cardiovascular Medicine, Kumamoto University Hospital, Kumamoto, Japan
| | - Kiyomasa Nakatsuka
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Jin Kirigaya
- Division of Cardiology, Yokohama City University Medical Center, Yokohama city, Japan
| | - Ichiro Takeuchi
- Advanced Critical Care and Emergency Center, Yokohama City University Medical Center, Yokohama City, Japan
| | - Kazuo Kimura
- Division of Cardiology, Yokohama City University Medical Center, Yokohama city, Japan
| | - Masaaki Konishi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuki Fukui
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Kengo Tsukahara
- Division of Cardiology, Fujisawa City Hospital, Fujisawa, Japan
| | - Hiroyuki Shimizu
- Department of Clinical Laboratory Medicine, Fujisawa City Hospital, Fujisawa, Japan
| | - Keisuke Iwabuchi
- Department of General Medicine, Kanagawa Prefectural Ashigarakami Hospital, Ashigara, Japan
| | - Yu Yamada
- Division of Cardiology, Kanagawa Prefectural Ashigarakami Hospital, Ashigara, Japan
| | - Kenichiro Saka
- Division of Cardiology, Yokosuka City Hospital, Yokosuka, Japan
| | - Yukihito Sato
- Department of Cardiology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Masahiro Ogawa
- Department of Cardiology, Fukuoka University Hospital, Fukuoka, Japan
| | - Kayoko Hayakawa
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Syuhei Ikeda
- Department of Cardiology, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, Japan
| | - Masaharu Akao
- Department of Cardiology, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, Japan
| | - Hideki Shimomura
- Division of Cardiology, Fukuoka Tokushukai Hospital, Fukuoka, Japan
| | - Yasuki Kihara
- Kobe City Medical Center General Hospital, 2-1-1, Minamimachi, Minatojima, Chuoku, Kobe, Hyogo, Japan
| | - Akihiro Yoshimoto
- Department of Nephrology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Masanori Morita
- Critical Care Medical Center Sakai City Medical Center, Sakai, Japan
| | - Norihiko Kumada
- Department of Urology, Suita Municipal Hospital, Suita, Japan
| | - Soshiro Ogata
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kunihiro Nishimura
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Tetsuya Arisato
- Division of Nephrology and Hypertension, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Miki Matsuo
- Division of Nephrology and Hypertension, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masatsugu Kishida
- Division of Nephrology and Hypertension, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
10
|
Niezgoda A, Winnicki A, Krysiński J, Niezgoda P, Nowowiejska L, Czajkowski R. Topical application of simvastatin acid sodium salt and atorvastatin calcium salt in vitiligo patients. Results of the randomized, double-blind EVRAAS pilot study. Sci Rep 2024; 14:14612. [PMID: 38918590 PMCID: PMC11199485 DOI: 10.1038/s41598-024-65722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/24/2024] [Indexed: 06/27/2024] Open
Abstract
Contemporary treatment of vitiligo remains a great challenge to practitioners. The vast majority of currently conducted clinical trials of modern therapeutic methods are focused on systemic medications, while there is only a very limited number of reports on new topical treatment in vitiligo. With their pleiotropic activities statins turned out to be efficient in the treatment of various autoimmune/autoinflammatory disorders. The randomized, double-blind placebo-controlled study of topical administration of the active forms of simvastatin and atorvastatin has been designed to evaluate their efficacy in patients with vitiligo. The study was registered in clinicaltrials.gov (registration number NCT03247400, date of registration: 11th August 2017). A total of 24 patients with the active form of non-segmental vitiligo were enrolled in the study. The change of absolute area of skin lesions, body surface area and vitiligo area scoring index were evaluated throughout the 12 week application of ointments containing simvastatin and atorvastatin. Measurements were performed with planimetry and processed using digital software. Use of active forms of simvastatin and atorvastatin did not result in a significant repigmentation of the skin lesions throughout the study period. Within the limbs treated with topical simvastatin, inhibition of disease progression was significantly more frequent than in the case of placebo (p = 0.004), while the difference was not statistically significant for atorvastatin (p = 0.082). Further studies of topical simvastatin in vitiligo patients should be considered.
Collapse
Affiliation(s)
- Anna Niezgoda
- T. Browicz Provincial Observation and Infectious Diseases Hospital Anna Niezgoda, Gajowa 78/17, 85-087, Bydgoszcz, Poland.
| | - Andrzej Winnicki
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Jerzy Krysiński
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Piotr Niezgoda
- Department of Cardiology and Internal Medicine, Faculty of Medicine, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Laura Nowowiejska
- Department of Cosmetology and Aesthetic Dermatology, Faculty of Pharmacy, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Rafał Czajkowski
- Department of Dermatology and Venerology, Faculty of Medicine, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Bydgoszcz, Cuiavian-Pomeranian, Poland
| |
Collapse
|
11
|
Hou Q, Chen Y, Zhang Y, Pang C. Comparative Muscle Tolerability of Different Types and Intensities of Statins: A Network Meta-Analysis of Double-Blind Randomized Controlled Trials. Cardiovasc Drugs Ther 2024; 38:459-469. [PMID: 36447018 DOI: 10.1007/s10557-022-07405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE The benefits of statins for ischemic cardio-cerebrovascular diseases are well known. However, concerns around muscle adverse events still exist. We therefore aimed to compare the muscle safety of individual statins in adults. METHODS PubMed, Embase, Cochrane Central Register of Controlled Trials and Web of Science were searched to include double-blind randomized controlled trials (RCTs) comparing one statin with another or with control treatment. Pairwise meta-analyses and network meta-analyses were undertaken with Stata 14.0 software. Relative risk (RR) with 95% confidence intervals (CIs) was adopted for each outcome. RESULTS A total of 83 RCTs were included. In the pairwise meta-analysis, statins were significantly associated with only a slight increase in muscle symptoms compared with control (RR=1.05; 95% CI=1.01-1.09). In the drug-level network meta-analyses, no statistically significant difference was found between individual statins in the incidence of muscle symptoms, myalgia, myopathy, rhabdomyolysis, creatine kinase (CK) >10 times the upper limit of normal (ULN) or discontinuation due to muscle adverse events. In the dose-level network meta-analyses, there were no statistically significant dose-dependent effects on any outcomes except that moderate-intensity statins had a higher incidence of muscle symptoms than control (RR=1.13; 95% CI=1.01-1.27). Moderate simvastatin (RR=6.57; 95% CI=1.26-34.41) and moderate pravastatin (RR=5.96; 95% CI=1.00-35.44) had a statistically significantly higher incidence of CK >10×ULN compared with moderate atorvastatin. Lipophilic statins and statins metabolized by liver cytochrome P450 3A4 were not associated with an increased risk of muscle adverse events. CONCLUSION Statins may be generally safe on muscle. Moderate atorvastatin may be superior to equivalent simvastatin and pravastatin in muscle tolerability.
Collapse
Affiliation(s)
- Qingtao Hou
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1# Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
| | - Yuqin Chen
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yingxiao Zhang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1# Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Caishuang Pang
- Chongqing Medical University, Chongqing, 400016, People's Republic of China
| |
Collapse
|
12
|
Xie S, Galimberti F, Olmastroni E, Luscher TF, Carugo S, Catapano AL, Casula M. Effect of lipid-lowering therapies on C-reactive protein levels: a comprehensive meta-analysis of randomized controlled trials. Cardiovasc Res 2024; 120:333-344. [PMID: 38373008 PMCID: PMC10981526 DOI: 10.1093/cvr/cvae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 12/14/2023] [Indexed: 02/20/2024] Open
Abstract
Chronic low-degree inflammation is a hallmark of atherosclerotic cardiovascular (CV) disease. To assess the effect of lipid-lowering therapies on C-reactive protein (CRP), a biomarker of inflammation, we conducted a meta-analysis according to the PRISMA guidelines. Databases were searched from inception to July 2023. Inclusion criteria were: (i) randomized controlled trials (RCTs) in human, Phase II, III, or IV; (ii) English language; (iii) comparing the effect of lipid-lowering drugs vs. placebo; (iv) reporting the effects on CRP levels; (v) with intervention duration of more than 3 weeks; (vi) and sample size (for both intervention and control group) over than 100 subjects. The between-group (treatment-placebo) CRP absolute mean differences and 95% confidence intervals were calculated for each drug class separately. A total of 171 668 subjects from 53 RCTs were included. CRP levels (mg/L) were significantly decreased by statins [-0.65 (-0.87 to -0.43), bempedoic acid; -0.43 (-0.67 to -0.20), ezetimibe; -0.28 (-0.48 to -0.08)], and omega-3 fatty acids [omega3FAs, -0.27 (-0.52 to -0.01)]. CRP was reduced by -0.40 (-1.17 to 0.38) with fibrates, although not statistically significant. A slight increase of CRP concentration was observed for proprotein convertase subtilisin/kexin type 9 inhibitors [0.11 (0.07-0.14)] and cholesteryl-ester transfer protein inhibitors [0.10 (0.00-0.21)], the latter being not statistically significant. Meta-regression analysis did not show a significant correlation between changes in CRP and LDL cholesterol (LDL-C) or triglycerides. Statins, bempedoic acid, ezetimibe, and omega3FAs significantly reduce serum CRP concentration, independently of LDL-C reductions. The impact of this anti-inflammatory effect in terms of CV prevention needs further investigation.
Collapse
Affiliation(s)
- Sining Xie
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20033 Milan, Italy
| | - Federica Galimberti
- IRCCS MultiMedica, via Milanese 300, 20099 Sesto San Giovanni (Milan), Italy
| | - Elena Olmastroni
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20033 Milan, Italy
- IRCCS MultiMedica, via Milanese 300, 20099 Sesto San Giovanni (Milan), Italy
| | - Thomas F Luscher
- Center for Molecular Cardiology, University Zurich, Wagistrasse 12, 8952 Schlieren (Zurich), Switzerland
- Cardiac Unit, Royal Brompton and Harefield Hospitals GSTT, Imperial College and King’s College London, Sydney Street, SW3 6NP London, UK
| | - Stefano Carugo
- Department of Clinical Sciences and Community Health, University of Milan, via della Commenda 19, 20122 Milan, Italy
- Cardiology Unit, Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico of Milan, via Francesco Sforza 28, 20122 Milan, Italy
| | - Alberico L Catapano
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20033 Milan, Italy
- IRCCS MultiMedica, via Milanese 300, 20099 Sesto San Giovanni (Milan), Italy
| | - Manuela Casula
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20033 Milan, Italy
- IRCCS MultiMedica, via Milanese 300, 20099 Sesto San Giovanni (Milan), Italy
| |
Collapse
|
13
|
Stępień K, Żółciński M, Ząbczyk M, Zalewski J, Undas A. Effect of Three-Day Atorvastatin Administration on Coagulation Factors in Patients With Prior Venous Thromboembolism and Healthy Subjects: A Preliminary Study. J Cardiovasc Pharmacol 2024; 83:289-296. [PMID: 38117119 DOI: 10.1097/fjc.0000000000001529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/02/2023] [Indexed: 12/21/2023]
Abstract
ABSTRACT Statins exert antithrombotic effects, which might contribute to reduced risk of venous thromboembolism (VTE). Rosuvastatin 20 mg/d administered for 4 weeks has been reported to decrease coagulation factors (F) VII, FVIII, and FXI in VTE patients. Moreover, in accordance with recent registry data in non-VTE subjects, statins usage was associated with lower FXI. We investigated whether 3 doses of a statin decrease coagulation factors activity and if such changes can alter fibrin clot properties in VTE patients and healthy subjects. We enrolled 28 consecutive first-ever prior VTE patients after 6 months of anticoagulation and 25 healthy controls well-matched for demographics and lipid profiles (aged 44 [interquartile range 34-51] years) in an interventional nonrandomized study. Before and after 3 doses of atorvastatin 40 mg/d, activity of FVII, FVIII, FIX, and FXI was measured, along with fibrin clot properties, including permeability (Ks) and clot lysis using 3 various assays. After a 3-day statin administration, we observed the decrease of FVII (by 6.2%, P = 0.046) and FXI (by 8.6%, P = 0.044), irrespective of low-density lipoprotein cholesterol reduction (by 24%, P < 0.001), whereas other coagulation factors remained unaltered. Reduction of FVII and FXI activity was inversely correlated with Ks alterations (R = -0.292, P = 0.034 and R = -0.335, P = 0.014, respectively). After adjustment for age, studied group, and fibrinogen level, the reduction of FXI was independently associated with an increase of fibrin clot permeability (B = -0.084, P = 0.027). In conclusion, a 3-day 40 mg atorvastatin administration is sufficient to reduce FVII and FXI activity in our pilot study, which is associated with favorable fibrin clot properties modification.
Collapse
Affiliation(s)
- Konrad Stępień
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
- Department of Coronary Artery Disease and Heart Failure, John Paul II Hospital, Kraków, Poland
| | | | - Michał Ząbczyk
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
- Krakow Center for Medical Research and Technologies, John Paul II Hospital, Kraków, Poland ; and
| | - Jarosław Zalewski
- Department of Coronary Artery Disease and Heart Failure, John Paul II Hospital, Kraków, Poland
- Department of Coronary Artery Disease and Heart Failure, Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
- Krakow Center for Medical Research and Technologies, John Paul II Hospital, Kraków, Poland ; and
| |
Collapse
|
14
|
Lanzolla G, Comi S, Cosentino G, Pakdel F, Marinò M. Statins in Graves Orbitopathy: A New Therapeutic Tool. Ophthalmic Plast Reconstr Surg 2023; 39:S29-S39. [PMID: 38054983 DOI: 10.1097/iop.0000000000002525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
PURPOSE Graves orbitopathy (GO) is the most common extrathyroidal manifestation of Graves disease. Although its pathogenesis is not fully elucidated, GO is commonly considered an autoimmune disease due to loss of self-tolerance against autoantigens shared by thyroid epithelial cells and orbital fibroblasts. High-dose intravenous glucocorticoids (ivGCs) are the most used treatment for moderate-to-severe, active GO, but the addition of other immunomodulating treatments can improve the efficacy of ivGCs. Among the various risk factors that can affect the occurrence of GO, cholesterol may be worthy of interest. Since 2015 the role of cholesterol and cholesterol-lowering medications has been investigated. The purpose of this review is to discuss this topic, thereby offering new therapeutic opportunities for patients with GO. METHODS We searched PubMed for studies published between January 1, 1980 and June 1, 2023, using the search terms "Graves orbitopathy," "thyroid eye disease," "Graves ophthalmopathy," "thyroid ophthalmopathy," "thyroid-associated ophthalmopathy," "endocrine ophthalmopathy," "cholesterol," "lipids," "statins," "low-density lipoprotein," "atorvastatin," and "cholesterol-lowering drugs." Only English-language articles were included. RESULTS A correlation between low-density lipoprotein cholesterol and the risk of GO development has been reported. Furthermore, low-density lipoprotein cholesterol has been proposed as a risk factor that can affect the course of GO and the response to ivGCs. The protective role of cholesterol-lowering medications in preventing GO has been also investigated. Statin treatment was found to have potential benefits in reducing the risk of GO in patients with Graves disease. Given these findings, measurement of low-density lipoprotein cholesterol and treatment of hypercholesterolemia in patients with moderate-to-severe, active GO may be considered before starting ivGCs administration. Recently, a randomized clinical trial aimed at investigating the effects of statins in GO suggested that the addition of oral atorvastatin to ivGCs improves the overall outcome of moderate-to-severe, active GO in hypercholesterolemic patients given ivGCs. CONCLUSIONS Overall, statins seem to have a preventive and therapeutic role in moderate-to-severe active GO. Their efficacy can be related to cholesterol-lowering activity, pleiotropic actions, and interaction with methylprednisolone.
Collapse
Affiliation(s)
- Giulia Lanzolla
- Department of Clinical and Experimental Medicine, Endocrinology Unit II, University of Pisa and University Hospital of Pisa, Pisa, Italy
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Simone Comi
- Department of Clinical and Experimental Medicine, Endocrinology Unit II, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Giada Cosentino
- Department of Clinical and Experimental Medicine, Endocrinology Unit II, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Farzad Pakdel
- Department of Ophthalmic Plastic and Reconstructive Surgery, Farabi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Michele Marinò
- Department of Clinical and Experimental Medicine, Endocrinology Unit II, University of Pisa and University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Funaki D, Kaneda H, Miyakoshi A, Saito K, Sasaki H, Nakatani E. Identification of subgroups within a Japanese older adult population for whom statin therapy is effective in reducing mortality. PLoS One 2023; 18:e0295052. [PMID: 38039298 PMCID: PMC10691679 DOI: 10.1371/journal.pone.0295052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
Use of statins for primary prevention can reduce all-cause mortality in Asian elderly populations, but their effect and the specific effective subgroups in the elderly Japanese population remain unclear. This study examined the relationship between statin therapy for primary prevention and mortality reduction in older Japanese adults, and investigated the effective subgroups. The cohort study was conducted using the Shizuoka Kokuho Database (SKDB). Data were compared between the statin-treated group and a non-statin-treated (control) group using the inverse probability of treatment weighting (IPTW) method. In the SKDB cohort aged ≥65 years, new statin use was associated with a decreased risk of all-cause mortality (hazard ratio, 0.40; 95% confidence interval [CI], 0.33-0.48) after IPTW adjustment. The risk difference for mortality at 5 years in the statin-treated group compared with that in the control group was 0.05 (95% CI, 0.04-0.06), and the number needed to treat was 21.20 (95% CI, 18.10-24.70). In conclusion, statin use for primary prevention in older adults may reduce the risk of all-cause mortality in the population without atherosclerotic disease. Furthermore, statin use for primary prevention is feasible in patients aged 75 to <85 years and in patients with comorbidities such as diabetes, or dementia.
Collapse
Affiliation(s)
- Daito Funaki
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Hideaki Kaneda
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Akinori Miyakoshi
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Shizuoka General Hospital, Shizuoka, Japan
| | - Kohei Saito
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Shizuoka General Hospital, Shizuoka, Japan
| | - Hatoko Sasaki
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Eiji Nakatani
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Shizuoka General Hospital, Shizuoka, Japan
| |
Collapse
|
16
|
Siniscalchi C, Basaglia M, Riva M, Meschi M, Meschi T, Castaldo G, Di Micco P. Statins Effects on Blood Clotting: A Review. Cells 2023; 12:2719. [PMID: 38067146 PMCID: PMC10706238 DOI: 10.3390/cells12232719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Statins are powerful lipid-lowering drugs that inhibit cholesterol biosynthesis via downregulation of hydroxymethylglutaryl coenzyme-A reductase, which are largely used in patients with or at risk of cardiovascular disease. Available data on thromboembolic disease include primary and secondary prevention as well as bleeding and mortality rates in statin users during anticoagulation for VTE. Experimental studies indicate that statins alter blood clotting at various levels. Statins produce anticoagulant effects via downregulation of tissue factor expression and enhanced endothelial thrombomodulin expression resulting in reduced thrombin generation. Statins impair fibrinogen cleavage and reduce thrombin generation. A reduction of factor V and factor XIII activation has been observed in patients treated with statins. It is postulated that the mechanisms involved are downregulation of factor V and activated factor V, modulation of the protein C pathway and alteration of the tissue factor pathway inhibitor. Clinical and experimental studies have shown that statins exert antiplatelet effects through early and delayed inhibition of platelet activation, adhesion and aggregation. It has been postulated that statin-induced anticoagulant effects can explain, at least partially, a reduction in primary and secondary VTE and death. Evidence supporting the use of statins for prevention of arterial thrombosis-related cardiovascular events is robust, but their role in VTE remains to be further elucidated. In this review, we present biological evidence and experimental data supporting the ability of statins to directly interfere with the clotting system.
Collapse
Affiliation(s)
- Carmine Siniscalchi
- Angiology Unit, Department of Internal Medicine, Parma University Hospital, 43121 Parma, Italy
| | - Manuela Basaglia
- Department of Internal Medicine, Parma University Hospital, 43121 Parma, Italy
| | - Michele Riva
- Department of Internal Medicine, Parma University Hospital, 43121 Parma, Italy
| | - Michele Meschi
- UOC Internal Medicine, Fidenza Hospital, 43036 Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, Parma University Hospital, 43121 Parma, Italy
| | - Giampiero Castaldo
- Department of Medicine and Surgery, Parma University Hospital, 43121 Parma, Italy
| | - Pierpaolo Di Micco
- AFO Medicina PO Santa Maria delle Grazie, Pozzuoli Naples Hospital 2 Nord, 80078 Naples, Italy
| |
Collapse
|
17
|
Almramhi MM, Finan C, Storm CS, Schmidt AF, Kia DA, Coneys R, Chopade S, Hingorani AD, Wood NW. Exploring the Role of Plasma Lipids and Statin Interventions on Multiple Sclerosis Risk and Severity: A Mendelian Randomization Study. Neurology 2023; 101:e1729-e1740. [PMID: 37657941 PMCID: PMC10624499 DOI: 10.1212/wnl.0000000000207777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/29/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND AND OBJECTIVES There has been considerable interest in statins because of their pleiotropic effects beyond their lipid-lowering properties. Many of these pleiotropic effects are predominantly ascribed to Rho small guanosine triphosphatases (Rho GTPases) proteins. We aimed to genetically investigate the role of lipids and statin interventions on multiple sclerosis (MS) risk and severity. METHOD We used two-sample Mendelian randomization (MR) to investigate (1) the causal role of genetically mimic both cholesterol-dependent (through low-density lipoprotein cholesterol (LDL-C) and cholesterol biosynthesis pathway) and cholesterol-independent (through Rho GTPases) effects of statins on MS risk and MS severity, (2) the causal link between lipids (high-density lipoprotein cholesterol [HDL-C] and triglycerides [TG]) levels and MS risk and severity, and (3) the reverse causation between lipid fractions and MS risk. We used summary statistics from the Global Lipids Genetics Consortium (GLGC), eQTLGen Consortium, and the International MS Genetics Consortium (IMSGC) for lipids, expression quantitative trait loci, and MS, respectively (GLGC: n = 188,577; eQTLGen: n = 31,684; IMSGC (MS risk): n = 41,505; IMSGC (MS severity): n = 7,069). RESULTS The results of MR using the inverse-variance weighted method show that genetically predicted RAC2, a member of cholesterol-independent pathway (OR 0.86 [95% CI 0.78-0.95], p-value 3.80E-03), is implicated causally in reducing MS risk. We found no evidence for the causal role of LDL-C and the member of cholesterol biosynthesis pathway on MS risk. The MR results also show that lifelong higher HDL-C (OR 1.14 [95% CI 1.04-1.26], p-value 7.94E-03) increases MS risk but TG was not. Furthermore, we found no evidence for the causal role of lipids and genetically mimicked statins on MS severity. There is no evidence of reverse causation between MS risk and lipids. DISCUSSION Evidence from this study suggests that RAC2 is a genetic modifier of MS risk. Because RAC2 has been reported to mediate some of the pleiotropic effects of statins, we suggest that statins may reduce MS risk through a cholesterol-independent pathway (that is, RAC2-related mechanism(s)). MR analyses also support a causal effect of HDL-C on MS risk.
Collapse
Affiliation(s)
- Mona M Almramhi
- From the Department of Clinical and Movement Neurosciences (M.M.A., C.S.S., D.A.K., R.R.C., N.W.W.), University College London Queen Square Institute of Neurology, United Kingdom; Department of Medical Technology (M.M.A.), Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Institute of Cardiovascular Science (C.F., A.F.S., S.C., A.D.H.), Faculty of Population Health, and Health Data Research UK London (A.D.H.), University College London; British Heart Foundation University College London Research Accelerator (C.F., A.F.S., S.C., A.D.H.), United Kingdom; and Department of Cardiology (C.F., A.F.S.), Division Heart and Lungs, University Medical Center Utrecht, the Netherlands
| | - Chris Finan
- From the Department of Clinical and Movement Neurosciences (M.M.A., C.S.S., D.A.K., R.R.C., N.W.W.), University College London Queen Square Institute of Neurology, United Kingdom; Department of Medical Technology (M.M.A.), Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Institute of Cardiovascular Science (C.F., A.F.S., S.C., A.D.H.), Faculty of Population Health, and Health Data Research UK London (A.D.H.), University College London; British Heart Foundation University College London Research Accelerator (C.F., A.F.S., S.C., A.D.H.), United Kingdom; and Department of Cardiology (C.F., A.F.S.), Division Heart and Lungs, University Medical Center Utrecht, the Netherlands
| | - Catherine S Storm
- From the Department of Clinical and Movement Neurosciences (M.M.A., C.S.S., D.A.K., R.R.C., N.W.W.), University College London Queen Square Institute of Neurology, United Kingdom; Department of Medical Technology (M.M.A.), Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Institute of Cardiovascular Science (C.F., A.F.S., S.C., A.D.H.), Faculty of Population Health, and Health Data Research UK London (A.D.H.), University College London; British Heart Foundation University College London Research Accelerator (C.F., A.F.S., S.C., A.D.H.), United Kingdom; and Department of Cardiology (C.F., A.F.S.), Division Heart and Lungs, University Medical Center Utrecht, the Netherlands
| | - Amand F Schmidt
- From the Department of Clinical and Movement Neurosciences (M.M.A., C.S.S., D.A.K., R.R.C., N.W.W.), University College London Queen Square Institute of Neurology, United Kingdom; Department of Medical Technology (M.M.A.), Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Institute of Cardiovascular Science (C.F., A.F.S., S.C., A.D.H.), Faculty of Population Health, and Health Data Research UK London (A.D.H.), University College London; British Heart Foundation University College London Research Accelerator (C.F., A.F.S., S.C., A.D.H.), United Kingdom; and Department of Cardiology (C.F., A.F.S.), Division Heart and Lungs, University Medical Center Utrecht, the Netherlands
| | - Demis A Kia
- From the Department of Clinical and Movement Neurosciences (M.M.A., C.S.S., D.A.K., R.R.C., N.W.W.), University College London Queen Square Institute of Neurology, United Kingdom; Department of Medical Technology (M.M.A.), Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Institute of Cardiovascular Science (C.F., A.F.S., S.C., A.D.H.), Faculty of Population Health, and Health Data Research UK London (A.D.H.), University College London; British Heart Foundation University College London Research Accelerator (C.F., A.F.S., S.C., A.D.H.), United Kingdom; and Department of Cardiology (C.F., A.F.S.), Division Heart and Lungs, University Medical Center Utrecht, the Netherlands
| | - Rachel Coneys
- From the Department of Clinical and Movement Neurosciences (M.M.A., C.S.S., D.A.K., R.R.C., N.W.W.), University College London Queen Square Institute of Neurology, United Kingdom; Department of Medical Technology (M.M.A.), Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Institute of Cardiovascular Science (C.F., A.F.S., S.C., A.D.H.), Faculty of Population Health, and Health Data Research UK London (A.D.H.), University College London; British Heart Foundation University College London Research Accelerator (C.F., A.F.S., S.C., A.D.H.), United Kingdom; and Department of Cardiology (C.F., A.F.S.), Division Heart and Lungs, University Medical Center Utrecht, the Netherlands
| | - Sandesh Chopade
- From the Department of Clinical and Movement Neurosciences (M.M.A., C.S.S., D.A.K., R.R.C., N.W.W.), University College London Queen Square Institute of Neurology, United Kingdom; Department of Medical Technology (M.M.A.), Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Institute of Cardiovascular Science (C.F., A.F.S., S.C., A.D.H.), Faculty of Population Health, and Health Data Research UK London (A.D.H.), University College London; British Heart Foundation University College London Research Accelerator (C.F., A.F.S., S.C., A.D.H.), United Kingdom; and Department of Cardiology (C.F., A.F.S.), Division Heart and Lungs, University Medical Center Utrecht, the Netherlands
| | - Aroon D Hingorani
- From the Department of Clinical and Movement Neurosciences (M.M.A., C.S.S., D.A.K., R.R.C., N.W.W.), University College London Queen Square Institute of Neurology, United Kingdom; Department of Medical Technology (M.M.A.), Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Institute of Cardiovascular Science (C.F., A.F.S., S.C., A.D.H.), Faculty of Population Health, and Health Data Research UK London (A.D.H.), University College London; British Heart Foundation University College London Research Accelerator (C.F., A.F.S., S.C., A.D.H.), United Kingdom; and Department of Cardiology (C.F., A.F.S.), Division Heart and Lungs, University Medical Center Utrecht, the Netherlands
| | - Nick W Wood
- From the Department of Clinical and Movement Neurosciences (M.M.A., C.S.S., D.A.K., R.R.C., N.W.W.), University College London Queen Square Institute of Neurology, United Kingdom; Department of Medical Technology (M.M.A.), Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Institute of Cardiovascular Science (C.F., A.F.S., S.C., A.D.H.), Faculty of Population Health, and Health Data Research UK London (A.D.H.), University College London; British Heart Foundation University College London Research Accelerator (C.F., A.F.S., S.C., A.D.H.), United Kingdom; and Department of Cardiology (C.F., A.F.S.), Division Heart and Lungs, University Medical Center Utrecht, the Netherlands.
| |
Collapse
|
18
|
Umebashi K, Yamamoto M, Tokito A, Sudou K, Takenoshita Y, Jougasaki M. Inhibitory Effects of Simvastatin on IL-33-Induced MCP-1 via the Suppression of the JNK Pathway in Human Vascular Endothelial Cells. Int J Mol Sci 2023; 24:13015. [PMID: 37629196 PMCID: PMC10456058 DOI: 10.3390/ijms241613015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
An alarmin, interleukin (IL)-33 is a danger signal that causes inflammation, inducing chemotactic proteins such as monocyte chemoattractant protein (MCP)-1 in various cells. As statins have pleiotropic actions including anti-inflammatory properties, we investigated the effects of simvastatin on IL-33-induced MCP-1 expression in human umbilical vein endothelial cells (HUVECs). HUVECs were stimulated with IL-33 in the presence or absence of simvastatin. Gene expression and protein secretion of MCP-1, phosphorylation of mitogen-activated protein kinase (MAPK), nuclear translocation of phosphorylated c-Jun, and human monocyte migration were investigated. Immunocytochemical staining and Western immunoblot analysis revealed that IL-33 augmented MCP-1 protein expression in HUVECs. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) showed that IL-33 significantly increased MCP-1 mRNA and protein secretion, which were suppressed by c-jun N-terminal kinase (JNK) inhibitor SP600125 and p38 MAPK inhibitor SB203580. Simvastatin inhibited IL-33-induced MCP-1 mRNA, protein secretion, phosphorylation of JNK and c-Jun. Additionally, the IL-33-induced nuclear translocation of phosphorylated c-Jun and THP-1 monocyte migration were also blocked by simvastatin. This study demonstrated that IL-33 induces MCP-1 expression via the JNK and p38 MAPK pathways in HUVECs, and that simvastatin inhibits MCP-1 production by selectively suppressing JNK. Simvastatin may inhibit the progression of IL-33-induced inflammation via suppressing JNK to prevent MCP-1 production.
Collapse
Affiliation(s)
| | | | | | | | | | - Michihisa Jougasaki
- Institute for Clinical Research, National Hospital Organization Kagoshima Medical Center, Kagoshima 892-0853, Japan; (K.U.); (M.Y.); (A.T.); (K.S.); (Y.T.)
| |
Collapse
|
19
|
Fularski P, Krzemińska J, Lewandowska N, Młynarska E, Saar M, Wronka M, Rysz J, Franczyk B. Statins in Chronic Kidney Disease-Effects on Atherosclerosis and Cellular Senescence. Cells 2023; 12:1679. [PMID: 37443712 PMCID: PMC10340582 DOI: 10.3390/cells12131679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Chronic kidney disease (CKD) is a serious health problem that can affect various systems in the human body. Renal failure promotes mechanisms of premature cellular aging and also features of generalized inflammation in the body, which translates into a close relationship between kidney dysfunction and cardiovascular disease (CVD). As kidney function deteriorates, cardiovascular risk and mortality increase in this group of patients. Oxidative stress and inflammation are two closely related processes that initiate a vicious cycle by activating each other. Together with aging, they represent the key factors that cause and exacerbate CVD in CKD. Patients with CKD are particularly vulnerable to the accumulation of aging endothelial cells, vascular smooth muscle and macrophages, increasing the risk of atherosclerosis. Several mechanisms are known that can lead to the progression of the aforementioned problems, such as the accumulation of uremic toxins, persistent inflammation, impaired lipid and electrolyte metabolism, nitric oxide (NO) deficiency, the increased production of reactive oxygen species (ROS) and damage to deoxyribonucleic acid (DNA) and mitochondria. According to research, we can distinguish a group of drugs that effectively counteract the negative effects of CKD-statins. This is a group of drugs that inhibit 3-hydroxy-3-methylglutaryl-coenzyme-A (HMG-CoA) reductase and affect a number of cellular processes and pathways, resulting in the overall slowing of atherosclerosis and cellular aging.
Collapse
Affiliation(s)
- Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (P.F.); (J.K.); (N.L.); (M.S.); (M.W.); (B.F.)
| | - Julia Krzemińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (P.F.); (J.K.); (N.L.); (M.S.); (M.W.); (B.F.)
| | - Natalia Lewandowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (P.F.); (J.K.); (N.L.); (M.S.); (M.W.); (B.F.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (P.F.); (J.K.); (N.L.); (M.S.); (M.W.); (B.F.)
| | - Maciej Saar
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (P.F.); (J.K.); (N.L.); (M.S.); (M.W.); (B.F.)
| | - Magdalena Wronka
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (P.F.); (J.K.); (N.L.); (M.S.); (M.W.); (B.F.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland;
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (P.F.); (J.K.); (N.L.); (M.S.); (M.W.); (B.F.)
| |
Collapse
|
20
|
Mooradian AD. Diabetes-related perturbations in the integrity of physiologic barriers. J Diabetes Complications 2023; 37:108552. [PMID: 37356233 DOI: 10.1016/j.jdiacomp.2023.108552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
One of the hallmarks of health is the integrity of barriers at the cellular and tissue levels. The two cardinal functions of barriers include preventing access of deleterious elements of the environment (barrier function) while facilitating the transport of essential ions, signaling molecules and nutrients needed to maintain the internal milieu (transport function). There are several cellular and subcellular barriers and some of these barriers can be interrelated. The principal physiologic barriers include blood-retinal barrier, blood-brain barrier, blood-testis barrier, renal glomerular/tubular barrier, intestinal barrier, pulmonary blood-alveolar barrier, blood-placental barrier and skin barrier. Tissue specific barriers are the result of the vasculature, cellular composition of the tissue and extracellular matrix within the tissue. Uncontrolled diabetes and acute hyperglycemia may disrupt the integrity of physiologic barriers, primarily through altering the vascular integrity of the tissues and may well contribute to the clinically recognized complications of diabetes. Although diabetes is a systemic disease, some of the organs display clinically significant deterioration in function while others undergo subclinical changes. The pathophysiology of the disruption of these barriers is not entirely clear but it may be related to diabetes-related cellular stress. Understanding the mechanisms of diabetes related dysfunction of various physiologic barriers might help identifying novel therapeutic targets for reducing clinically significant complications of diabetes.
Collapse
Affiliation(s)
- Arshag D Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, Jacksonville, FL, USA.
| |
Collapse
|
21
|
Batista PR, Silva ADA, de Sena Bastos CM, Rodrigues da Silva RE, Calixto GL, de Morais LP, Delmondes GDA, Kerntopf MR, de Menezes IRA, Barbosa R. Vasodilation promoted by ( E, E)-farnesol involving ion channels in human umbilical arteries. Heliyon 2023; 9:e17328. [PMID: 37441374 PMCID: PMC10333471 DOI: 10.1016/j.heliyon.2023.e17328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Background (E,E)-farnesol is a sesquiterpene alcohol derived from plants and animals that exhibits pharmacological properties in the cardiovascular system. However, its effects on human umbilical vessels remain unknown. Purpose Thus, this study aims to characterize the vasodilatory effect of (E,E)-farnesol in human umbilical arteries (HUA). Study design The tissue is obtained from pregnant women over 18 years of age, normotensive, and without prepartum complications. After collected, the tissue was segmented and dissected to remove Wharton's jelly and obtain the umbilical arteries segments. Methods HUA segments were isolated and sectioned into rings that were subjected to isometric tension recordings in an organ bath. Results (E,E)-farnesol (1 μmol/L to 1 mmol/L) promoted vasodilatory effect in HUA preparations, affecting basal tone, and inhibiting the electromechanical coupling induced by KCl 60 mmol/L with greater potency (EC50 225.3 μmol/L) than the pharmacomechanical coupling induced by 5-HT 10 μmol/L (EC50 363.5 μmol/L). In the absence of extracellular calcium, pharmacomechanical coupling was also abolished, and contractions induced by CaCl2 or BaCl2 were attenuated by (E,E)-farnesol indicating a possible direct inhibition of L-type VOCC as a mechanism of the vasodilatory effect. The vasodilator efficacy of (E,E)-farnesol on reduction of vasocontraction induced by the presence of tetraethylammonium (1 or 10 mmol/L), 4-aminopyridine (1 mmol/L) and glibenclamide (10 μmol/L) suggesting a possible influence of different potassium channels (BKCa, KV and KATP). Conclusion These results suggest that (E,E)-farnesol may be a promising pharmacological candidate for obstetric hypertensive disorders.
Collapse
Affiliation(s)
- Paulo Ricardo Batista
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Andressa de Alencar Silva
- Graduate Program in Physiological Sciences, Higher Institute of Biomedical Sciences, State University of Ceará, Fortaleza, 60714-903, Ceará, Brazil
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Carla Mikevely de Sena Bastos
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Renata Evaristo Rodrigues da Silva
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Gabriela Lucena Calixto
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Luís Pereira de Morais
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
- Biotechnology By the Northeastern Biotechnology Network (RENORBIO), State University of Ceará, Fortaleza, 60714-903, Ceará, Brazil
| | | | - Marta Regina Kerntopf
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | | | - Roseli Barbosa
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| |
Collapse
|
22
|
Zhou L, Hu X, Zhang H, Lu H, Lin Y, Wang W, Yu B, Liang W, Zhou Y, Li G, Dong H. Effects of atorvastatin and rosuvastatin on dysfunctional coronary circulation in patients with ST-segment elevation myocardial infarction. J Int Med Res 2023; 51:3000605231182547. [PMID: 37377087 DOI: 10.1177/03000605231182547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVE Evidence of therapy for dysfunctional coronary circulation in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (pPCI) is limited. This study was performed to compare the effects of atorvastatin and rosuvastatin on dysfunctional coronary circulation. METHODS This retrospective study enrolled 597 consecutive patients with STEMI who underwent pPCI in 3 centers from June 2016 to December 2019. Dysfunctional coronary circulation was defined by the thrombolysis in myocardial infarction (TIMI) grade and the TIMI myocardial perfusion grade (TMPG). Logistic regression analysis was used to evaluate the impact of different statin types on dysfunctional coronary circulation. RESULTS The incidence of TIMI no/slow reflow did not differ between the two groups, but the incidence of TMPG no/slow reflow was significantly lower in the atorvastatin than rosuvastatin group (44.58% vs. 57.69%, respectively). After multivariate adjustment, the odds ratio with 95% confidence interval of rosuvastatin was 1.72 (1.17-2.52) for after pretreatment TMPG no/slow reflow and 1.73 (1.16-2.58) for after stenting TMPG no/slow reflow. Atorvastatin and rosuvastatin showed no significant differences in clinical outcomes during hospitalization. CONCLUSIONS Compared with rosuvastatin, atorvastatin was associated with better coronary microcirculatory perfusion in patients with STEMI who underwent pPCI.
Collapse
Affiliation(s)
- Langping Zhou
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiangming Hu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haotian Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Haoyu Lu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yan Lin
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Cardiology, Shantou University Medical College, Shantou, China
| | - Weimian Wang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Bingyan Yu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Wensheng Liang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yingling Zhou
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guang Li
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Haojian Dong
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Cardiology, Nyingchi People's Hospital, Nyingchi, China
| |
Collapse
|
23
|
Kitsugi K, Noritake H, Matsumoto M, Hanaoka T, Umemura M, Yamashita M, Takatori S, Ito J, Ohta K, Chida T, Suda T, Kawata K. Simvastatin inhibits hepatic stellate cells activation by regulating the ferroptosis signaling pathway. Biochim Biophys Acta Mol Basis Dis 2023:166750. [PMID: 37268254 DOI: 10.1016/j.bbadis.2023.166750] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND & AIMS Ferroptosis is a form of regulated cell death and its promotion in hepatic stellate cells (HSCs) attenuates liver fibrosis. Statins, which are 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, may induce ferroptosis via the downregulation of glutathione peroxidase 4 (GPX4) by inhibiting the mevalonate pathway. However, little evidence is available regarding the association between statins and ferroptosis. Therefore, we investigated the association between statins and ferroptosis in HSCs. METHODS Two human HSC cell lines, LX-2 and TWNT-1, were treated with simvastatin, an HMG-CoA reductase inhibitor. Mevalonic acid (MVA), farnesyl pyrophosphate (FPP), and geranylgeranyl pyrophosphate (GGPP) were used to determine the involvement of the mevalonate pathway. We performed a detailed analysis of the ferroptosis signaling pathway. We also investigated human liver tissue samples from patients with nonalcoholic steatohepatitis to clarify the effect of statins on GPX4 expression. RESULTS Simvastatin reduced cell mortality and inhibited HSCs activation, accompanied by iron accumulation, oxidative stress, lipid peroxidation, and reduced GPX4 protein expression. These results indicate that simvastatin inhibits HSCs activation by promoting ferroptosis. Furthermore, treatment with MVA, FPP, or GGPP attenuated simvastatin-induced ferroptosis. These results suggest that simvastatin promotes ferroptosis in HSCs by inhibiting the mevalonate pathway. In human liver tissue samples, statins downregulated the expression of GPX4 in HSCs without affecting hepatocytes. CONCLUSIONS Simvastatin inhibits the activation of HSCs by regulating the ferroptosis signaling pathway.
Collapse
Affiliation(s)
- Kensuke Kitsugi
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.
| | - Hidenao Noritake
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Moe Matsumoto
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomohiko Hanaoka
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masahiro Umemura
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Maho Yamashita
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shingo Takatori
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Jun Ito
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazuyoshi Ohta
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takeshi Chida
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takafumi Suda
- Division of Respiratory Medicine, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazuhito Kawata
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
24
|
Lu MC, Chen CC, Lu MY, Lin KJ, Chiu CC, Yang TY, Fang YA, Jian W, Chen MY, Hsu MH, Lai YH, Yang TL, Hao WR, Liu JC. The Association between Statins and Liver Cancer Risk in Patients with Heart Failure: A Nationwide Population-Based Cohort Study. Cancers (Basel) 2023; 15:cancers15112959. [PMID: 37296921 DOI: 10.3390/cancers15112959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Heart failure (HF) and cancer have similar risk factors. HMG-CoA reductase inhibitors, also known as statins, are chemoprotective agents against carcinogenesis. We aimed to evaluate the chemoprotective effects of statins against liver cancer in patients with HF. This cohort study enrolled patients with HF aged ≥20 years between 1 January 2001 and 31 December 2012 from the National Health Insurance Research Database in Taiwan. Each patient was followed to assess liver cancer risk. A total of 25,853 patients with HF were followed for a 12-year period; 7364 patients used statins and 18,489 did not. The liver cancer risk decreased in statin users versus non-users (adjusted hazard ratio (aHR) = 0.26, 95% confidence interval (CI): 0.20-0.33) in the entire cohort in the multivariate regression analysis. In addition, both lipophilic and hydrophilic statins reduced the liver cancer risk in patients with HF (aHR 0.34, 95% CI: 0.26-0.44 and aHR 0.42, 95% CI: 0.28-0.54, respectively). In the sensitivity analysis, statin users in all dose-stratified subgroups had a reduced liver cancer risk regardless of age, sex, comorbidity, or other concomitant drug use. In conclusion, statins may decrease liver cancer risk in patients with HF.
Collapse
Affiliation(s)
- Meng-Chuan Lu
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chun-Chao Chen
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Meng-Ying Lu
- Division of Cardiology, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taitung 95054, Taiwan
| | - Kuan-Jie Lin
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Chun-Chih Chiu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Yeh Yang
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Ann Fang
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - William Jian
- Department of Emergency, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Ming-Yao Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Min-Huei Hsu
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 11031, Taiwan
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yu-Hsin Lai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Tsung-Lin Yang
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Wen-Rui Hao
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
25
|
Lepore Signorile M, Grossi V, Fasano C, Simone C. Colorectal Cancer Chemoprevention: A Dream Coming True? Int J Mol Sci 2023; 24:7597. [PMID: 37108756 PMCID: PMC10140862 DOI: 10.3390/ijms24087597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest forms of cancer worldwide. CRC development occurs mainly through the adenoma-carcinoma sequence, which can last decades, giving the opportunity for primary prevention and early detection. CRC prevention involves different approaches, ranging from fecal occult blood testing and colonoscopy screening to chemoprevention. In this review, we discuss the main findings gathered in the field of CRC chemoprevention, focusing on different target populations and on various precancerous lesions that can be used as efficacy evaluation endpoints for chemoprevention. The ideal chemopreventive agent should be well tolerated and easy to administer, with low side effects. Moreover, it should be readily available at a low cost. These properties are crucial because these compounds are meant to be used for a long time in populations with different CRC risk profiles. Several agents have been investigated so far, some of which are currently used in clinical practice. However, further investigation is needed to devise a comprehensive and effective chemoprevention strategy for CRC.
Collapse
Affiliation(s)
- Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (M.L.S.); (C.F.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (M.L.S.); (C.F.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (M.L.S.); (C.F.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (M.L.S.); (C.F.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
26
|
Stępień K, Siudut J, Konieczyńska M, Nowak K, Zalewski J, Undas A. Effect of high-dose statin therapy on coagulation factors: Lowering of factor XI as a modifier of fibrin clot properties in coronary artery disease. Vascul Pharmacol 2023; 149:107153. [PMID: 36774992 DOI: 10.1016/j.vph.2023.107153] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Multiple pleiotropic effects of statins include antithrombotic properties with formation of looser fibrin networks more susceptible to lysis. Recently, rosuvastatin 20 mg/d has been reported to decrease coagulation factors (F) VII, FVIII and FXI in venous thrombosis patients. OBJECTIVES We investigated how high-dose statin therapy recommended in coronary artery disease (CAD) alters plasma levels of coagulation factors and if such changes might affect fibrin clot properties. METHODS We studied 130 advanced CAD patients, who initially did not achieve the target low-density lipoprotein cholesterol (LDL-C). Before high-dose statin therapy (rosuvastatin 40 mg/d or atorvastatin 80 mg/d) and 6-12 months after its initiation, FII, FV, FVII, FVIII, FIX, FX, FXI and fibrinogen were assessed. We evaluated the impact of statin-induced alterations to the factors on plasma fibrin clot permeability (Ks) reflecting a fibrin pore size, and clot lysis time (CLT) reflecting fibrinolytic potential. RESULTS At baseline LDL-C (median 3.2, interquartile range 2.7-3.7 mmol/L) was independently associated solely with FXI (β = 0.58, P < 0.001). Median LDL-C reduction by 25% (P < 0.001) on high-dose statin treatment was accompanied by lowering of FVII, FVIII, and FXI (for all P < 0.001). On high-dose statin treatment, Ks (R = 0.65, P < 0.001) inversely associated with CRP (β = -0.41, P < 0.001), LDL-C (β = -0.26, P = 0.001), and FXI (β = -0.18, P = 0.016). In turn, CLT (R = 0.45, P < 0.001) was positively associated with LDL-C (β = 0.19, P = 0.043) and FXI (β = 0.17, P = 0.049). CONCLUSIONS High-dose statin therapy in CAD patients decreases FVII, FVIII, and FXI. The statin-induced reduction in FXI may contribute to less prothrombotic fibrin clot phenotype, indicating additional antithrombotic effect of high-dose statins.
Collapse
Affiliation(s)
- Konrad Stępień
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Pradnicka 80 Street, 31-202 Krakow, Poland; Department of Coronary Artery Disease and Heart Failure, John Paul II Hospital, Pradnicka 80 Street, 31-202 Krakow, Poland.
| | - Jakub Siudut
- Krakow Center for Medical Research and Technologies, John Paul II Hospital, Pradnicka 80 Street, 31-202 Krakow, Poland.
| | - Małgorzata Konieczyńska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Pradnicka 80 Street, 31-202 Krakow, Poland; Department of Diagnostic Medicine, John Paul II Hospital, Pradnicka 80 Street, 31-202 Krakow, Poland.
| | - Karol Nowak
- Department of Coronary Artery Disease and Heart Failure, John Paul II Hospital, Pradnicka 80 Street, 31-202 Krakow, Poland.
| | - Jarosław Zalewski
- Department of Coronary Artery Disease and Heart Failure, John Paul II Hospital, Pradnicka 80 Street, 31-202 Krakow, Poland; Department of Coronary Artery Disease and Heart Failure, Institute of Cardiology, Jagiellonian University Medical College, Pradnicka 80 Street, 31-202 Krakow, Poland.
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Pradnicka 80 Street, 31-202 Krakow, Poland; Krakow Center for Medical Research and Technologies, John Paul II Hospital, Pradnicka 80 Street, 31-202 Krakow, Poland.
| |
Collapse
|
27
|
Claesen K, Sim Y, Basir S, De Belder S, van den Keybus T, Van Edom G, Stoffelen H, De Keulenaer GW, Bosmans J, Bringmans T, De Meester I, Hendriks D. Atorvastatin downregulates plasma procarboxypeptidase U concentrations and improves fibrinolytic potential dose-dependently in hyperlipidemic individuals. J Thromb Haemost 2023; 21:1266-1273. [PMID: 36740042 DOI: 10.1016/j.jtha.2023.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Statins efficiently lower cholesterol and also exert pleiotropic effects that extend beyond lipid lowering. In a recent pilot study, valuable information on the carboxypeptidase U (CPU) system in hyperlipidemia and the effect of statin therapy was collected. It was shown that proCPU levels are increased in hyperlipidemic patients. Statins significantly decreased proCPU levels and improved plasma fibrinolysis. Furthermore, it was suggested that patients with high baseline proCPU levels are most likely to benefit from statin therapy. OBJECTIVES We aimed to further substantiate the effect of hyperlipidemia and statin therapy on CPU-related parameters in a larger cohort of hyperlipidemic and statin-treated individuals. METHODS Blood was collected from 141 individuals treated with different dosages of atorvastatin (10-80 mg), 38 normolipidemic, and 37 hyperlipidemic controls. Lipid parameters and markers of fibrinolysis (proCPU and clot lysis time) were determined and compared between the groups. RESULTS Pilot study results of high proCPU concentrations in hyperlipidemic patients and the proCPU-reducing effect of atorvastatin were confirmed. Accordingly, an improvement in plasma fibrinolytic potential was seen under the influence of atorvastatin. High interindividual variation in proCPU concentrations was observed in the hyperlipidemic cohort, with up to 80% higher proCPU levels compared with normolipidemic controls. Furthermore, proCPU concentration and the dosage of atorvastatin were inversely correlated. CONCLUSIONS This study clearly shows that plasma proCPU concentrations and its expected effect on the fibrinolytic rate (as measured by clot lysis time) are increased in hyperlipidemic patients and that these effects can be normalized (and even further reduced compared with normolipidemic patients) by atorvastatin treatment.
Collapse
Affiliation(s)
- Karen Claesen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Yani Sim
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Shahir Basir
- Faculty of Medicine and Health, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium; Department of Cardiology ZNA Hospital, Antwerp, Belgium
| | - Johan Bosmans
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Tijs Bringmans
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Dirk Hendriks
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
28
|
Camilleri E, van Rein N, van Vlijmen BJM, Biedermann JS, Kruip MJHA, Leebeek FW, van der Meer FJ, Cobbaert CM, Cannegieter SC, Lijfering WM. Influence of rosuvastatin on apolipoproteins and coagulation factor levels: Results from the STAtin Reduce Thrombophilia trial. Res Pract Thromb Haemost 2023; 7:100063. [PMID: 36923709 PMCID: PMC10009537 DOI: 10.1016/j.rpth.2023.100063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023] Open
Abstract
Background The STAtins Reduce Thrombophilia trial showed that, in patients with prior venous thrombosis, rosuvastatin decreased various coagulation factor levels. Objectives Here, we investigated the hypothesis that statins decrease coagulation factor levels through shared mechanisms of synthesis or regulatory pathways with apolipoproteins. Methods We measured the levels of apolipoprotein (Apo)A-I, A-II, A-IV, (a), B-100, B-total, C-I, C-II, C-III, and E in patients (n = 126) randomized to 28 days of rosuvastatin use. We assessed the association between apolipoproteins and coagulation factors at baseline using linear regression. The mean difference in apolipoprotein levels between baseline and after 28 days of rosuvastatin use was determined through linear regression, adjusting for age, sex, and body mass index. Coagulation factors were added to this model to determine if the lowering of apolipoproteins by rosuvastatin was linked with coagulation factor levels. Results At baseline, levels of all apolipoproteins, except Apo(a), were positively associated with FVII, FIX, and FXI. Apolipoproteins levels, except for ApoA-I, A-IV, and Apo(a), were decreased after 28 days of rosuvastatin. ApoB-100 showed the largest mean decrease of -0.43 g/L (95% CI = -0.46 to -0.40). The decrease in ApoC-I and C-III levels was associated with a decrease in FVII, whereas the decrease in apoA-II, B-100, and B-total was associated with a decrease in FXI. The decrease in apolipoproteins was neither associated with FVIII or vWF decrease nor with endogenous thrombin potential changes. Conclusions Rosuvastatin decreases the level of several apolipoproteins, but this decrease was associated only with a decrease in FVII and XI and not with FVIII/vWF.
Collapse
Affiliation(s)
- Eleonora Camilleri
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Nienke van Rein
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Pharmacy, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart J M van Vlijmen
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands.,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Joseph S Biedermann
- Department of Hematology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marieke J H A Kruip
- Department of Hematology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands.,Thrombosis Service Star-shl, Rotterdam, the Netherlands
| | - Frank W Leebeek
- Department of Hematology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Felix J van der Meer
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Suzanne C Cannegieter
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands.,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Willem M Lijfering
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
29
|
González-Herrera F, Clayton NS, Guzmán-Rivera D, Carrillo I, Castillo C, Catalán M, Anfossi R, Quintero-Pertuz H, Quilaqueo ME, Olea-Azar C, Rivera-Meza M, Kemmerling U, Ridley AJ, Vivar R, Maya JD. Statins change the cytokine profile in Trypanosoma cruzi-infected U937 macrophages and murine cardiac tissue through Rho-associated kinases inhibition. Front Immunol 2023; 13:1035589. [PMID: 36713380 PMCID: PMC9874148 DOI: 10.3389/fimmu.2022.1035589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Chronic Chagasic cardiomyopathy (CCC), caused by the protozoan Trypanosoma cruzi, is the most severe manifestation of Chagas disease.CCC is characterized by cardiac inflammation and fibrosis caused by a persistent inflammatory response. Following infection, macrophages secrete inflammatory mediators such as IL-1β, IL-6, and TNF-α to control parasitemia. Although this response contains parasite infection, it causes damage to the heart tissue. Thus, the use of immunomodulators is a rational alternative to CCC. Rho-associated kinase (ROCK) 1 and 2 are RhoA-activated serine/threonine kinases that regulate the actomyosin cytoskeleton. Both ROCKs have been implicated in the polarization of macrophages towards an M1 (pro-inflammatory) phenotype. Statins are FDA-approved lipid-lowering drugs that reduce RhoA signaling by inhibiting geranylgeranyl pyrophosphate (GGPP) synthesis. This work aims to identify the effect of statins on U937 macrophage polarization and cardiac tissue inflammation and its relationship with ROCK activity during T. cruzi infection. Methods PMA-induced, wild-type, GFP-, CA-ROCK1- and CA-ROCK2-expressing U937 macrophages were incubated with atorvastatin, or the inhibitors Y-27632, JSH-23, TAK-242, or C3 exoenzyme incubated with or without T. cruzi trypomastigotes for 30 min to evaluate the activity of ROCK and the M1 and M2 cytokine expression and secretion profiling. Also, ROCK activity was determined in T. cruzi-infected, BALB/c mice hearts. Results In this study, we demonstrate for the first time in macrophages that incubation with T. cruzi leads to ROCK activation via the TLR4 pathway, which triggers NF-κB activation. Inhibition of ROCKs by Y-27632 prevents NF-κB activation and the expression and secretion of M1 markers, as does treatment with atorvastatin. Furthermore, we show that the effect of atorvastatin on the NF-kB pathway and cytokine secretion is mediated by ROCK. Finally, statin treatment decreased ROCK activation and expression, and the pro-inflammatory cytokine production, promoting anti-inflammatory cytokine expression in chronic chagasic mice hearts. Conclusion These results suggest that the statin modulation of the inflammatory response due to ROCK inhibition is a potential pharmacological strategy to prevent cardiac inflammation in CCC.
Collapse
Affiliation(s)
- Fabiola González-Herrera
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Natasha S. Clayton
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Daniela Guzmán-Rivera
- Escuela de Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Ileana Carrillo
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Christian Castillo
- Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Mabel Catalán
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Renatto Anfossi
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Helena Quintero-Pertuz
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile
| | - María Elena Quilaqueo
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Claudio Olea-Azar
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Mario Rivera-Meza
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Ulrike Kemmerling
- Integrative Biology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Anne J. Ridley
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Raúl Vivar
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile,*Correspondence: Juan Diego Maya, ; Raúl Vivar,
| | - Juan Diego Maya
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile,*Correspondence: Juan Diego Maya, ; Raúl Vivar,
| |
Collapse
|
30
|
Bellosta S, Selmin F, Magri G, Castiglioni S, Procacci P, Sartori P, Scarpa E, Tolva V, Rossi C, Puoci F, Rizzello L, Cilurzo F. Caffeic Acid-Grafted PLGA as a Novel Material for the Design of Fluvastatin-Eluting Nanoparticles for the Prevention of Neointimal Hyperplasia. Mol Pharm 2022; 19:4333-4344. [PMID: 36250999 PMCID: PMC9937560 DOI: 10.1021/acs.molpharmaceut.2c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drug-eluting nanoparticles (NPs) administered by an eluting balloon represent a novel tool to prevent restenosis after angioplasty, even if the selection of the suitable drug and biodegradable material is still a matter of debate. Herein, we provide the proof of concept of the use of a novel material obtained by combining the grafting of caffeic acid or resveratrol on a poly(lactide-co-glycolide) backbone (g-CA-PLGA or g-RV-PLGA) and the pleiotropic effects of fluvastatin chosen because of its low lipophilic profile which is challenging for the encapsulation in NPs and delivery to the artery wall cells. NPs made of such materials are biocompatible with macrophages, human smooth muscle cells (SMCs), and endothelial cells (ECs). Their cellular uptake is demonstrated and quantified by confocal microscopy using fluorescent NPs, while their distribution in the cytoplasm is verified by TEM images using NPs stained with an Ag-PVP probe appositely synthetized. g-CA-PLGA assures the best control of the FLV release from NP sizing around 180 nm and the faster SMC uptake, as demonstrated by confocal analyses. Interestingly and surprisingly, g-CA-PLGA improves the FLV efficacy to inhibit the SMC migration, without altering its effects on EC proliferation and migration. The improved trophism of NPs toward SMCs, combined with the excellent biocompatibility and low modification of the microenvironment pH upon polymer degradation, makes g-CA-PLGA a suitable material for the design of drug-eluting balloons.
Collapse
Affiliation(s)
- Stefano Bellosta
- Dept.
Pharmacological and Biomolecular Sciences, Università Degli Studi di Milan, Via G. Balzaretti 9, Milan20133, Italy
| | - Francesca Selmin
- Dept
of Pharmaceutical Sciences, Università
Degli Studi di Milano, via G. Colombo, 71, Milan20133, Italy
| | - Giulia Magri
- Dept
of Pharmaceutical Sciences, Università
Degli Studi di Milano, via G. Colombo, 71, Milan20133, Italy
| | - Silvia Castiglioni
- Dept.
Pharmacological and Biomolecular Sciences, Università Degli Studi di Milan, Via G. Balzaretti 9, Milan20133, Italy
| | - Patrizia Procacci
- Dept
of Biomedical Sciences for Health, Università
Degli Studi di Milano, via G. Colombo, 71, Milan20133, Italy
| | - Patrizia Sartori
- Dept
of Biomedical Sciences for Health, Università
Degli Studi di Milano, via G. Colombo, 71, Milan20133, Italy
| | - Edoardo Scarpa
- Dept
of Pharmaceutical Sciences, Università
Degli Studi di Milano, via G. Colombo, 71, Milan20133, Italy,National
Institute of Molecular Genetics (INGM), via F. Sforza, 35, Milan20122, Italy
| | - Valerio Tolva
- Struttura
Complessa di Chirurgia Vascolare, Fondazione “A. De Gasperis”, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milan20162, Italy
| | - Clara Rossi
- Dept.
Pharmacological and Biomolecular Sciences, Università Degli Studi di Milan, Via G. Balzaretti 9, Milan20133, Italy
| | - Francesco Puoci
- Dept
of Pharmacy,
Health and Nutritional Sciences, University
of Calabria, Rende87036, Cosenza, Italy
| | - Loris Rizzello
- Dept
of Pharmaceutical Sciences, Università
Degli Studi di Milano, via G. Colombo, 71, Milan20133, Italy,National
Institute of Molecular Genetics (INGM), via F. Sforza, 35, Milan20122, Italy
| | - Francesco Cilurzo
- Dept
of Pharmaceutical Sciences, Università
Degli Studi di Milano, via G. Colombo, 71, Milan20133, Italy,. Phone: +39 02 503 24635. Fax: +39 02 503 24657
| |
Collapse
|
31
|
Comparison of the Treatment Efficacy of Rosuvastatin versus Atorvastatin Loading Prior to Percutaneous Coronary Intervention in ST-Segment Elevation Myocardial Infarction. J Clin Med 2022; 11:jcm11175142. [PMID: 36079090 PMCID: PMC9457390 DOI: 10.3390/jcm11175142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to compare the effect of a single high-dose rosuvastatin versus atorvastatin preloading in ST-elevation myocardial infarction (STEMI) patients receiving primary percutaneous coronary intervention (PCI.) Methods: A total of 99 patients presented with STEMI and were randomly divided into three groups—a control group (n = 33) with no statin treatment, an atorvastatin group (n = 33) with a single 80 mg atorvastatin dose and the rosuvastatin group (n = 33) with a single 40 mg rosuvastatin dose in the emergency room (ER) prior to PCI. Post-interventional thrombolysis in myocardial infarction (TIMI) flow grade and corrected TIMI frame count (CTFC) were recorded, and ST-segment resolution was measured. Results: CTFC was significantly lower for the atorvastatin group (p-value < 0.01) than in the control group. A final TIMI flow grade 3 was achieved in 32 (97.0%) patients in the rosuvastatin group and 28 (84.8%) patients in the atorvastatin group compared with only 25 (75.8%) patients in the control group (p = 0.014). Peak CK-MB in the rosuvastatin group (263.2 [207.2−315.6]) and the atorvastatin group (208 [151.0−314.1]) was lower compared to that in the control group (398.4 [303.9−459.3]); p < 0.001. Conclusions: A single extensive dose of lipophilic atorvastatin prior to primary PCI in STEMI patients showed better improvement in microvascular myocardial perfusion compared to hydrophilic rosuvastatin.
Collapse
|
32
|
ELKATTAWY HA, MAHMOUD ABDELMONEM ELSHERBINI D, ALI EBRAHIM H, ABDULLAH DM, AL-ZAHABY SA, NOSERY Y, EL-SAYED HASSAN A. Rho-kinase inhibition ameliorates non-alcoholic fatty liver disease in type 2 diabetic rats. Physiol Res 2022; 71:615-630. [PMID: 36047723 PMCID: PMC9841803 DOI: 10.33549/physiolres.934869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is linked to type 2 diabetes mellitus (T2DM), obesity, and insulin resistance. The Rho/ROCK pathway had been involved in the pathophysiology of diabetic complications. This study was designed to assess the possible protective impacts of the Rho/Rho-associated coiled-coil containing protein kinase (Rho/ROCK) inhibitor fasudil against NAFLD in T2DM rats trying to elucidate the underlying mechanisms. Animals were assigned into control rats, non-treated diabetic rats with NAFLD, and diabetic rats with NAFLD that received fasudil treatment (10 mg/kg per day) for 6 weeks. The anthropometric measures and biochemical analyses were performed to assess metabolic and liver function changes. The inflammatory and oxidative stress markers and the histopathology of rat liver tissues were also investigated. Groups with T2DM showed increased body weight, serum glucose, and insulin resistance. They exhibited disturbed lipid profile, enhancement of inflammatory cytokines, and deterioration of liver function. Fasudil administration reduced body weight, insulin resistance, and raised liver enzymes. It improved the disturbed lipid profile and attenuated liver inflammation. Moreover, it slowed down the progression of high fat diet (HFD)-induced liver injury and reduced the caspase-3 expression. The present study demonstrated beneficial amelioration effect of fasudil on NAFLD in T2DM. The mechanisms underlying these impacts are improving dyslipidemia, attenuating oxidative stress, downregulated inflammation, improving mitochondrial architecture, and inhibiting apoptosis.
Collapse
Affiliation(s)
- Hany A. ELKATTAWY
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyadh, Kingdom of Saudi Arabia,Medical Physiology Department, College of Medicine, Zagazig University, Egypt
| | - Dalia MAHMOUD ABDELMONEM ELSHERBINI
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Kingdom of Saudi Arabia,Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hasnaa ALI EBRAHIM
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Doaa M. ABDULLAH
- Clinical Pharmacology Department, College of Medicine, Zagazig University, Egypt
| | | | - Yousef NOSERY
- Pathology Department, College of Medicine, Zagazig University, Egypt
| | - Ahmed EL-SAYED HASSAN
- Medical Physiology Department, College of Medicine, Zagazig University, Egypt,Department of Basic Medical Sciences, College of Medicine, Sulaiman AlRajhi University, Kingdom of Saudi Arabia
| |
Collapse
|
33
|
Abstract
Thrombosis is a common disorder with a relevant burden of morbidity and mortality worldwide, particularly among elderly patients. Growing evidence demonstrated a direct role of oxidative stress in thrombosis, with various cell types contributing to this process. Among them, erythrocytes produce high quantities of intracellular reactive oxygen species (ROS) by NADPH oxidase activation and haemoglobin autoxidation. Concomitantly, extracellular ROS released by other cells in the blood flow can be uptaken and accumulate within erythrocytes. This oxidative milieu can alter erythrocyte membrane structure, leading to an impaired erythrocyte function, and promoting erythrocytes lysis, binding to endothelial cells, activation of platelet and of coagulation factors, phosphatidylserine exposure and release of microvesicles. Moreover, these abnormal erythrocytes are able to adhere to the vessel wall, contributing to thrombin generation within the thrombus. This process results in accelerated haemolysis and in a hypercoagulable state, in which structurally impaired erythrocytes contribute to increase thrombus size, to reduce its permeability and susceptibility to lysis. However, the wide plethora of mechanisms by which oxidised erythrocytes contribute to thrombosis is not completely elucidated. This review discusses the main biochemical aspects linking erythrocytes, oxidative stress and thrombosis, addressing their potential implication for clinical and therapeutic management.
Collapse
|
34
|
The effect of statin therapy in combination with ezetimibe on circulating C-reactive protein levels: a systematic review and meta-analysis of randomized controlled trials. Inflammopharmacology 2022; 30:1597-1615. [DOI: 10.1007/s10787-022-01053-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
|
35
|
Jiang H, Li L, Zhang L, Zang G, Sun Z, Wang Z. Role of endothelial cells in vascular calcification. Front Cardiovasc Med 2022; 9:895005. [PMID: 35928939 PMCID: PMC9343736 DOI: 10.3389/fcvm.2022.895005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular calcification (VC) is active and regulates extraosseous ossification progress, which is an independent predictor of cardiovascular disease (CVD) morbidity and mortality. Endothelial cells (ECs) line the innermost layer of blood vessels and directly respond to changes in flow shear stress and blood composition. Together with vascular smooth muscle cells, ECs maintain vascular homeostasis. Increased evidence shows that ECs have irreplaceable roles in VC due to their high plasticity. Endothelial progenitor cells, oxidative stress, inflammation, autocrine and paracrine functions, mechanotransduction, endothelial-to-mesenchymal transition (EndMT), and other factors prompt ECs to participate in VC. EndMT is a dedifferentiation process by which ECs lose their cell lineage and acquire other cell lineages; this progress coexists in both embryonic development and CVD. EndMT is regulated by several signaling molecules and transcription factors and ultimately mediates VC via osteogenic differentiation. The specific molecular mechanism of EndMT remains unclear. Can EndMT be reversed to treat VC? To address this and other questions, this study reviews the pathogenesis and research progress of VC, expounds the role of ECs in VC, and focuses on the regulatory factors underlying EndMT, with a view to providing new concepts for VC prevention and treatment.
Collapse
Affiliation(s)
- Han Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Zhongqun Wang,
| |
Collapse
|
36
|
Sagris M, Katsaros I, Giannopoulos S, Rosenberg RD, Altin SE, Rallidis L, Mena-Hurtado C, Armstrong EJ, Kokkinidis DG. Statins and statin intensity in peripheral artery disease. VASA 2022; 51:198-211. [PMID: 35673949 DOI: 10.1024/0301-1526/a001012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Peripheral artery disease (PAD) affects more than 202 million people worldwide. Several studies have shown that patients with PAD are often undertreated, and that statin utilization is suboptimal. European and American guidelines highlight statins as the first-line lipid-lowering therapy to treat patients with PAD. Our objective with this meta-analysis was to further explore the impact of statins on lower extremities PAD endpoints and examine whether statin dose (high vs. low intensity) impacts outcomes. Patients and methods: We performed a systematic review and meta-analysis according to the PRISMA guidelines. Any study that presented a comparison of use of statins vs. no statins for PAD patients or studies comparing high vs. low intensity statins were considered to be potentially eligible. We excluded studies with only critical limb threatening ischemia (CLTI) patients. The Medline (PubMed) database was searched up to January 31, 2021. A random effects meta-analysis was performed. Results: In total, 39 studies and 275,670 patients were included in this meta-analysis. In total, 136,025 (49.34%) patients were on statins vs. 139,645 (50.66%) who were not on statins. Statin use was associated with a reduction in all cause-mortality by 42% (HR: 0.58, 95% CI: 0.49-0.67, p<0.01) and cardiovascular death by 43% (HR: 0.57, 95% CI: 0.40-0.74, p<0.01). Statin use was associated with an increase in amputation-free survival by 56% (HR: 0.44, 95% CI: 0.30-0.58, p<0.01). The risk of amputation and loss of patency were reduced by 35% (HR: 0.65, 95% CI: 0.41-0.89, p<0.01) and 46% (HR: 0.54, 95% CI: 0.34-0.74, p<0.01), respectively. Statin use was also associated with a reduction in the risk of major adverse cardiovascular events (MACE) by 35% (HR: 0.65, 95% CI: 0.51-0.80, p<0.01) and myocardial infarction rates by 41% (HR: 0.59, 95% CI: 0.33-0.86, p<0.01). Among patients treated with statins, the high-intensity treatment group was associated with a reduction in all cause-mortality by 36% (HR: 0.64, 95% CI: 0.54-0.74, p<0.01) compared to patients treated with low intensity statins. Conclusions: Statin treatment among patients with PAD was associated with a statistically significant reduction in all-cause mortality, cardiovascular mortality, MACE, risk for amputation, or loss of patency. Higher statin dose seems to be associated with improved outcomes.
Collapse
Affiliation(s)
- Marios Sagris
- Department of Internal Medicine, General Hospital of Nikaia, Piraeus, Athens, Greece
| | | | - Stefanos Giannopoulos
- Division of Vascular and Endovascular Surgery, Department of Surgery, Stony Brook University Hospital, Stony Brook, New York, USA
| | - Russell D Rosenberg
- Section of Cardiovascular Medicine, Yale University School of Medicine/Yale New Haven Hospital, New Haven, CT, USA.,Vascular Medicine Outcomes Program, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - S Elissa Altin
- Section of Cardiovascular Medicine, Yale University School of Medicine/Yale New Haven Hospital, New Haven, CT, USA
| | - Loukianos Rallidis
- Department of Cardiology, University General Hospital Attikon, Medical School, National and Kapodistrian University of Athens, Greece
| | - Carlos Mena-Hurtado
- Vascular Medicine Outcomes Program, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ehrin J Armstrong
- Adventist Heart & Vascular Institute, Adventist Health St. Helena, CA, USA
| | - Damianos G Kokkinidis
- Section of Cardiovascular Medicine, Yale University School of Medicine/Yale New Haven Hospital, New Haven, CT, USA
| |
Collapse
|
37
|
Decoding microRNA drivers in Atherosclerosis. Biosci Rep 2022; 42:231479. [PMID: 35758143 PMCID: PMC9289798 DOI: 10.1042/bsr20212355] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/17/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022] Open
Abstract
An estimated 97% of the human genome consists of non-protein-coding sequences. As our understanding of genome regulation improves, this has led to the characterization of a diverse array of non-coding RNAs (ncRNA). Among these, micro-RNAs (miRNAs) belong to the short ncRNA class (22–25 nucleotides in length), with approximately 2500 miRNA genes encoded within the human genome. From a therapeutic perspective, there is interest in exploiting miRNA as biomarkers of disease progression and response to treatments, as well as miRNA mimics/repressors as novel medicines. miRNA have emerged as an important class of RNA master regulators with important roles identified in the pathogenesis of atherosclerotic cardiovascular disease. Atherosclerosis is characterized by a chronic inflammatory build-up, driven largely by low-density lipoprotein cholesterol accumulation within the artery wall and vascular injury, including endothelial dysfunction, leukocyte recruitment and vascular remodelling. Conventional therapy focuses on lifestyle interventions, blood pressure-lowering medications, high-intensity statin therapy and antiplatelet agents. However, a significant proportion of patients remain at increased risk of cardiovascular disease. This continued cardiovascular risk is referred to as residual risk. Hence, a new drug class targeting atherosclerosis could synergise with existing therapies to optimise outcomes. Here, we review our current understanding of the role of ncRNA, with a focus on miRNA, in the development and progression of atherosclerosis, highlighting novel biological mechanisms and therapeutic avenues.
Collapse
|
38
|
Nsaibia MJ, Devendran A, Goubaa E, Bouitbir J, Capoulade R, Bouchareb R. Implication of Lipids in Calcified Aortic Valve Pathogenesis: Why Did Statins Fail? J Clin Med 2022; 11:jcm11123331. [PMID: 35743402 PMCID: PMC9225514 DOI: 10.3390/jcm11123331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Calcific Aortic Valve Disease (CAVD) is a fibrocalcific disease. Lipoproteins and oxidized phospholipids play a substantial role in CAVD; the level of Lp(a) has been shown to accelerate the progression of valve calcification. Indeed, oxidized phospholipids carried by Lp(a) into the aortic valve stimulate endothelial dysfunction and promote inflammation. Inflammation and growth factors actively promote the synthesis of the extracellular matrix (ECM) and trigger an osteogenic program. The accumulation of ECM proteins promotes lipid adhesion to valve tissue, which could initiate the osteogenic program in interstitial valve cells. Statin treatment has been shown to have the ability to diminish the death rate in subjects with atherosclerotic impediments by decreasing the serum LDL cholesterol levels. However, the use of HMG-CoA inhibitors (statins) as cholesterol-lowering therapy did not significantly reduce the progression or the severity of aortic valve calcification. However, new clinical trials targeting Lp(a) or PCSK9 are showing promising results in reducing the severity of aortic stenosis. In this review, we discuss the implication of lipids in aortic valve calcification and the current findings on the effect of lipid-lowering therapy in aortic stenosis.
Collapse
Affiliation(s)
- Mohamed J. Nsaibia
- Department of Cell Biology and Molecular Medicine, Rutgers University, Newark, NJ 07103, USA;
| | - Anichavezhi Devendran
- Department of Medicine, Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Eshak Goubaa
- Thomas Jefferson University East Falls, Philadelphia, PA 19144, USA;
| | - Jamal Bouitbir
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, 4056 Basel, Switzerland;
| | - Romain Capoulade
- L’institut Du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France;
| | - Rihab Bouchareb
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: or ; Tel.: +1-(212)-241-8471
| |
Collapse
|
39
|
Matsumoto T, Yoshino S, Furuyama T, Morisaki K, Nakano K, Koga JI, Maehara Y, Komori K, Mori M, Egashira K. Pitavastatin-Incorporated Nanoparticles for Chronic Limb Threatening Ischemia: A Phase I/IIa Clinical Trial. J Atheroscler Thromb 2022; 29:731-746. [PMID: 33907060 PMCID: PMC9135659 DOI: 10.5551/jat.58941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/28/2021] [Indexed: 12/02/2022] Open
Abstract
AIM To assess the results of a phase I/IIa open-label dose-escalation clinical trial of 5-day repeated intramuscular administration of pitavastatin-incorporated poly (lactic-co-glycolic acid) nanoparticles (NK-104-NP) in patients with chronic limb threatening ischemia (CLTI). METHODS NK-104-NP was formulated using an emulsion solvent diffusion method. NK-104-NP at four doses (nanoparticles containing 0.5, 1, 2, and 4 mg of pitavastatin calcium, n=4 patients per dose) was investigated in a dose-escalation manner and administered intramuscularly into the ischemic limbs of 16 patients with CLTI. The safety and therapeutic efficacy of treatment were investigated over a 26-week follow-up period. RESULTS No cardiovascular or other serious adverse events caused by NK-104-NP were detected during the follow-up period. Improvements in Fontaine and Rutherford classifications were noted in five patients (one, three, and one in the 1-, 2-, and 4-mg dose groups, respectively). Pharmacokinetic parameters including the maximum serum concentration and the area under the blood concentration-time curve increased with pitavastatin treatment in a dose-dependent manner. The area under the curve was slightly increased at day 5 compared with that at day 1 of treatment, although the difference was not statistically significant. CONCLUSIONS This is the first clinical trial of pitavastatin-incorporated nanoparticles in patients with CLTI. Intramuscular administration of NK-104-NP to the ischemic limbs of patients with CLTI was safe and well tolerated and resulted in improvements in limb function.
Collapse
Affiliation(s)
- Takuya Matsumoto
- Department of Vascular Surgery, National Hospital Organization Fukuoka-higashi Medical Center, Fukuoka, Japan
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinichiro Yoshino
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tadashi Furuyama
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Morisaki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kaku Nakano
- Department of Cardiovascular Research, Development, and Translational Medicine, Center for Disruptive Cardiovascular Innovation, Kyushu University, Fukuoka, Japan
| | - Jun-ichiro Koga
- Department of Cardiovascular Research, Development, and Translational Medicine, Center for Disruptive Cardiovascular Innovation, Kyushu University, Fukuoka, Japan
- Department of Cardiovascular Medicine, Kyusyu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kimihiro Komori
- Division of Vascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kensuke Egashira
- Department of Cardiovascular Research, Development, and Translational Medicine, Center for Disruptive Cardiovascular Innovation, Kyushu University, Fukuoka, Japan
- Department of Translational Medicine, Kyushu University Graduate School of Pharmaceutical Sciences, Fukuoka, Japan
| |
Collapse
|
40
|
Borghi C, Levy BI. Synergistic actions between angiotensin-converting enzyme inhibitors and statins in atherosclerosis. Nutr Metab Cardiovasc Dis 2022; 32:815-826. [PMID: 35082055 DOI: 10.1016/j.numecd.2021.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/31/2021] [Accepted: 11/25/2021] [Indexed: 01/09/2023]
Abstract
AIMS Hypertension and hypercholesterolemia are independent risk factors for atherosclerotic cardiovascular disease (ASCVD) by acting directly on the endothelium and activating the renin-angiotensin aldosterone system (RAAS) and mevalonate pathways. This review examines how the severity and duration of these risk factors may influence the cardiovascular risk through a reciprocal interplay leading to oxidative stress and pro-inflammatory response. DATA SYNTHESIS The review highlights the clinical evidence supporting the benefits of statins and angiotensin-converting enzyme (ACE) inhibitors for hypertension, lipid disorders and ASCVD management, both individually and combined, at all stages of the cardiovascular continuum. CONCLUSION Drug strategies incorporating an ACE-inhibitor and a statin, and in particular perindopril and atorvastatin, have consistently demonstrated reductions in the rate of ASCVD events in patients with hypertension and lipid disorders, cementing their position as first-line therapies for the management of atherosclerosis complications.
Collapse
Affiliation(s)
- Claudio Borghi
- Department of Medical and Surgical Sciences, IRCCS-S.Orsola, University of Bologna, Italy.
| | - Bernard I Levy
- INSERM Unit 970, PARCC, 56 rue Leblanc, 75015 Paris, France
| |
Collapse
|
41
|
Tian Z, Li Z, Guo T, Li H, Mu Y. Atorvastatin suppresses lipopolysaccharide-induced inflammation in human coronary artery endothelial cells. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-979020200001181092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Zhen Tian
- Northeast Agricultural University, China; Harbin Medical University, China
| | | | - Tian Guo
- Harbin Medical University, China
| | - He Li
- Harbin Medical University, China
| | | |
Collapse
|
42
|
Steichen C, Hervé C, Hauet T, Bourmeyster N. Rho GTPases in kidney physiology and diseases. Small GTPases 2022; 13:141-161. [PMID: 34138686 PMCID: PMC9707548 DOI: 10.1080/21541248.2021.1932402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Rho family GTPases are molecular switches best known for their pivotal role in dynamic regulation of the actin cytoskeleton, but also of cellular morphology, motility, adhesion and proliferation. The prototypic members of this family (RhoA, Rac1 and Cdc42) also contribute to the normal kidney function and play important roles in the structure and function of various kidney cells including tubular epithelial cells, mesangial cells and podocytes. The kidney's vital filtration function depends on the structural integrity of the glomerulus, the proximal portion of the nephron. Within the glomerulus, the architecturally actin-based cytoskeleton podocyte forms the final cellular barrier to filtration. The glomerulus appears as a highly dynamic signalling hub that is capable of integrating intracellular cues from its individual structural components. Dynamic regulation of the podocyte cytoskeleton is required for efficient barrier function of the kidney. As master regulators of actin cytoskeletal dynamics, Rho GTPases are therefore of critical importance for sustained kidney barrier function. Dysregulated activities of the Rho GTPases and of their effectors are implicated in the pathogenesis of both hereditary and idiopathic forms of kidney diseases. Diabetic nephropathy is a progressive kidney disease that is caused by injury to kidney glomeruli. High glucose activates RhoA/Rho-kinase in mesangial cells, leading to excessive extracellular matrix production (glomerulosclerosis). This RhoA/Rho-kinase pathway also seems involved in the post-transplant hypertension frequently observed during treatment with calcineurin inhibitors, whereas Rac1 activation was observed in post-transplant ischaemic acute kidney injury.
Collapse
Affiliation(s)
- Clara Steichen
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
| | | | - Thierry Hauet
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
| | - Nicolas Bourmeyster
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
- Laboratoire STIM CNRS ERL 7003, Université de Poitiers, Poitiers Cédex, France
| |
Collapse
|
43
|
Gaitán-Duarte H, Álvarez-Moreno C, Rincón-Rodríguez C, Yomayusa-González N, Cortés J, Villar J, Bravo-Ojeda J, García-Peña A, Adarme-Jaimes W, Rodríguez-Romero V, Villate-Soto S, Buitrago G, Chacón-Sarmiento J, Macias-Quintero M, Vaca C, Gómez-Restrepo C, Rodríguez-Malagón N. Effectiveness of rosuvastatin plus colchicine, emtricitabine/tenofovir and combinations thereof in hospitalized patients with COVID-19: a pragmatic, open-label randomized trial. EClinicalMedicine 2022; 43:101242. [PMID: 34957385 PMCID: PMC8686571 DOI: 10.1016/j.eclinm.2021.101242] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The use of rosuvastatin plus colchicine and emtricitabine/tenofovir in hospitalized patients with SARS-CoV-2 disease (COVID-19) has not been assessed. The objective of this study was to assess the effectiveness and safety of rosuvastatin plus colchicine, emtricitabine/tenofovir, and their combined use in these patients. METHODS This was a randomized, controlled, open-label, multicentre, parallel, pragmatic study conducted in six referral hospitals in Bogotá, Colombia. The study enrolled hospitalized patients over 18 years of age with a confirmed diagnosis of COVID-19 complicated with pneumonia, not on chronic treatment with the study medications, and with no contraindications for their use. Patients were assigned 1:1:1:1. 1) emtricitabine with tenofovir disoproxil fumarate (FTC/TDF, 200/300 mg given orally for 10 days); 2) colchicine plus rosuvastatin (COLCH+ROSU, 0.5 mg and 40 mg given orally for 14 days); 3) emtricitabine with tenofovir disoproxil plus colchicine and rosuvastatin at the same doses and for the same period of time (FTC/TDF+COLCH+ROSU); or 4) the Colombian consensus standard of care, including a corticosteroid (SOC). The primary endpoint was 28-day all-cause mortality. A modified intention-to-treat analysis was used together with a usefulness analysis to determine which could be the best treatment. The trial was registered at ClinicalTrials.gov: NCT04359095. FINDINGS Out of 994 candidates considered between August 2020 and March 2021, 649 (65.3%) patients agreed to participate and were enrolled in this study; among them, 633 (97.5%) were included in the analysis. The mean age was 55.4 years (SD ± 12.8 years), and 428 (68%) were men; 28-day mortality was significantly lower in the FTC/TDF+COLCH+ROSUV group than in the SOC group, 10.7% (17/159) vs. 17.4% (28/161) (hazard ratio [HR] 0.53; 95% CI 0.29 to 0.96). Mortality in the FTC/TDF group was 13.8% (22/160, HR 0.68, 95% CI 0.39 to 1.20) and 14.4% in the COLCH+ROSU group (22/153) (HR 0.78, 95% CI 0.44 to 1.36). A lower need for invasive mechanical ventilation was observed in the FTC/TDF+COLCH+ROSUV group than in the SOC group (risk difference [RD] - 0.08, 95% CI 0.11 to 0.04). Three patients presented severe adverse events, one severe diarrhoea in the COLCH+ROSU and one in the FTC/TDF+COLCH+ROSU group and one general exanthema in the FTC/TDF group. INTERPRETATION The combined use of FTC/TDF+COLCH+ROSU reduces the risk of 28-day mortality and the need for invasive mechanical ventilation in hospitalized patients with pulmonary compromise from COVID-19. More randomized controlled trials are needed to compare the effectiveness and cost of treatment with this combination versus other drugs that have been shown to reduce mortality from SARS-CoV-2 infection and its usefulness in patients with chronic statin use.
Collapse
Affiliation(s)
- H.G. Gaitán-Duarte
- Clinical Research Institute, Universidad Nacional de Colombia, Hospital Universitario Nacional de Colombia, Bogotá, Colombia
| | - C. Álvarez-Moreno
- Internal Medicine Department, Universidad Nacional de Colombia, Clínica Universitaria Colombia, Clínica Colsanitas, Bogotá, Colombia
| | - C.J. Rincón-Rodríguez
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - N. Yomayusa-González
- Global Institute of Clinical Excellence-Translational Research Group, Fundación Universitaria Sanitas, Clínica Reina Sofía, Clínica Colsanitas, Bogotá, Colombia
| | - J.A. Cortés
- Internal Medicine Department, Universidad Nacional de Colombia, Infectious Diseases Service, Hospital Universitario Nacional de Colombia, Bogotá, Colombia
| | - J.C. Villar
- Research Department, Fundación Cardioinfantil - Instituto de Cardiología, Bogotá, Colombia
| | - J.S. Bravo-Ojeda
- Clínica Santa María del Lago, Clínica Colsanitas, Bogotá, Colombia
| | - A. García-Peña
- Internal Medicine Department, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - W. Adarme-Jaimes
- SEPRO Group, School of Engineering, Universidad Nacional de Colombia, Bogotá, Colombia
| | - V.A. Rodríguez-Romero
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - S.L. Villate-Soto
- Clinical Research Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | - G. Buitrago
- Clinical Research Institute, Universidad Nacional de Colombia, Hospital Universitario Nacional de Colombia, Bogotá, Colombia
| | - J. Chacón-Sarmiento
- Clínica Reina Sofía, Clínica Colsanitas, Fundación Universitaria Sanitas, Bogotá, Colombia
| | | | - C.P. Vaca
- Pharmacy Department, Universidad Nacional de Colombia, Bogotá, Colombia
| | - C. Gómez-Restrepo
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - N. Rodríguez-Malagón
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
44
|
Nelson AJ, Bubb K, Nicholls SJ. An update on emerging drugs for the treatment of hypercholesterolemia. Expert Opin Emerg Drugs 2021; 26:363-369. [PMID: 34842495 DOI: 10.1080/14728214.2021.2009801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Elevated levels of low-density lipoprotein (LDL) cholesterol have been unequivocally demonstrated to play a causal role in atherosclerotic cardiovascular disease. The last thirty years have witnessed a generation of clinical trials that have demonstrated a reduction in cardiovascular risk with the use of increasing intensive lipid lowering regimens involving statin therapy in combination with other agents. However, many patients fail to achieve treatment mandated LDL cholesterol goals. This highlights the need to develop additional approaches to lower LDL cholesterol levels. AREAS COVERED (i) Contemporary data highlighting the atherogenicity of LDL cholesterol and cardiovascular benefits of current lipid lowering therapies. (ii) Importance of statin intolerance and inability to achieve LDL cholesterol goals in driving ongoing cardiovascular risk. (iii) Emergence of new therapeutic agents designed to achieve more effective lowering of LDL cholesterol. EXPERT OPINION Effective lowering of LDL cholesterol plays a critical role in approaches to the prevention of cardiovascular disease. A greater number of patients will require combinations of agents to achieve optimal lipid control. Accordingly, new agents will be required to provide sufficient choice for patients at high cardiovascular risk.
Collapse
Affiliation(s)
- Adam J Nelson
- Victorian Heart Institute, Monash University, Clayton, Australia
| | - Kristen Bubb
- Victorian Heart Institute, Monash University, Clayton, Australia.,Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | | |
Collapse
|
45
|
Bonilha I, Hajduch E, Luchiari B, Nadruz W, Le Goff W, Sposito AC. The Reciprocal Relationship between LDL Metabolism and Type 2 Diabetes Mellitus. Metabolites 2021; 11:metabo11120807. [PMID: 34940565 PMCID: PMC8708656 DOI: 10.3390/metabo11120807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus and insulin resistance feature substantial modifications of the lipoprotein profile, including a higher proportion of smaller and denser low-density lipoprotein (LDL) particles. In addition, qualitative changes occur in the composition and structure of LDL, including changes in electrophoretic mobility, enrichment of LDL with triglycerides and ceramides, prolonged retention of modified LDL in plasma, increased uptake by macrophages, and the formation of foam cells. These modifications affect LDL functions and favor an increased risk of cardiovascular disease in diabetic individuals. In this review, we discuss the main findings regarding the structural and functional changes in LDL particles in diabetes pathophysiology and therapeutic strategies targeting LDL in patients with diabetes.
Collapse
Affiliation(s)
- Isabella Bonilha
- Cardiology Division, Atherosclerosis and Vascular Biology Laboratory (AtheroLab), State University of Campinas (Unicamp), Campinas 13083-887, Brazil; (I.B.); (B.L.)
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France;
| | - Beatriz Luchiari
- Cardiology Division, Atherosclerosis and Vascular Biology Laboratory (AtheroLab), State University of Campinas (Unicamp), Campinas 13083-887, Brazil; (I.B.); (B.L.)
| | - Wilson Nadruz
- Cardiology Division, Cardiovascular Pathophysiology Laboratory, State University of Campinas (Unicamp), Campinas 13083-887, Brazil;
| | - Wilfried Le Goff
- Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, ICAN, Inserm, Sorbonne Université, F-75013 Paris, France;
| | - Andrei C. Sposito
- Cardiology Division, Atherosclerosis and Vascular Biology Laboratory (AtheroLab), State University of Campinas (Unicamp), Campinas 13083-887, Brazil; (I.B.); (B.L.)
- Correspondence: ; Tel.: +55-19-3521-7098; Fax: +55-19-3289-410
| |
Collapse
|
46
|
Mehta RM, Pandol SJ, Joshi PR. Idiopathic chronic pancreatitis: Beyond antioxidants. World J Gastroenterol 2021; 27:7423-7432. [PMID: 34887640 PMCID: PMC8613740 DOI: 10.3748/wjg.v27.i43.7423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/05/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic pancreatitis (CP) is a complex disease associated with gene-gene or gene-environment interactions. The incidence of idiopathic CP has shown an increasing trend, withits phenotypeshaving changed considerably in the last two decades. The diseaseitself can be regulated before it reaches the stage of established CP; however, the etiopathogenesis underlying idiopathic CP remains to be established, making the condition difficult to cure. Unfortunately, there also remains a lack of consensus regarding the beneficial effects of antioxidant therapiesfor CP. It is known that antioxidant therapy does not reduce inflammatory and fibrotic cytokines, making it unlikely that they could modulate the disease process. Although antioxidants are safe, very few studies to date have reported the long-term beneficial effects in patients with CP. Thus, studies are being performed to identify drugs that can improve symptoms and alter the natural history of CP. Statins, with their numerous pleiotropic effects, may play a role in the treatment of CP, butin 2006, their use was found to be associated with the undesirable side effect of promoting pancreatitis. Latter studies showed favourable effects of statins in CP, highlighting the particular benefits of lipophilic statins, such as lovastatin and simvastatin, over the hydrophilic statins, such as rosuvastatin. Ultimately, studies to repurpose N-acetylcysteine as a CP therapy areyielding very promising results.
Collapse
Affiliation(s)
- Rajiv M Mehta
- Department of Gastroenterology, Surat Institute of Digestive Science (SIDS) Hospital and Research Centre, Surat 395002, Gujarat, India
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Prachi R Joshi
- Department of Gastroenterology and Clinical Research, SIDS Hospital and Research Centre, Surat 395002, Gujarat, India
| |
Collapse
|
47
|
Buschmann K, Gramlich Y, Chaban R, Oelze M, Hink U, Münzel T, Treede H, Daiber A, Duerr GD. Disturbed Lipid Metabolism in Diabetic Patients with Manifest Coronary Artery Disease Is Associated with Enhanced Inflammation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010892. [PMID: 34682638 PMCID: PMC8535387 DOI: 10.3390/ijerph182010892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
Background: Diabetic vasculopathy plays an important role in the pathophysiology of coronary artery disease (CAD) with oxidative stress as a strong mediator. This study aims to elucidate the underlying pathomechanisms of diabetic cardiac vasculopathy leading to coronary disease with an emphasis on the role of oxidative stress. Therefore, novel insights into antioxidant pathways might contribute to new strategies in the treatment and prevention of diabetic CAD. Methods: In 20 patients with insulin-dependent or non-insulin dependent diabetes mellitus (IDDM/NIDDM) and 39 non-diabetic (CTR) patients, myocardial markers of oxidative stress, vasoactive proteins, endothelial nitric oxide synthase (eNOS), activated phosphorylated eNOS (p-eNOS), and antioxidant enzymes, e.g., tetrahydrobiopterin generating dihydrofolate reductase (DHFR), heme oxygenase (HO-1), as well as serum markers of inflammation, e.g., E-selectin, interleukin-6 (IL-6), and lipid metabolism, e.g., high- and low-density lipoptrotein (HDL- and LDL-cholesterol) were determined in specimens of right atrial tissue and in blood samples from type 2 diabetic and non-diabetic patients undergoing coronary artery bypass graft (CABG) surgery. Results: IDDM/NIDDM increased markers of inflammation (e.g., E-selectin, p = 0.005 and IL-6, p = 0.051), decreased the phosphorylated myocardial p-eNOS (p = 0.032), upregulated the myocardial stress response protein HO-1 (p = 0.018), and enhanced the serum LDL-/HDL-cholesterol ratio (p = 0.019). However, the oxidative stress markers in the myocardium and the expression of vasoactive proteins (eNOS, DHFR) showed only marginal adverse changes in patients with IDDM/NIDDM. Conclusion: Dyslipidemia and myocardial inflammation seem to be the major determinants of diabetic CAD complications. Dysregulation in pro-oxidative enzymes might be attributable to the severity of CAD and oxidative stress levels in all included patients undergoing CABG.
Collapse
Affiliation(s)
- Katja Buschmann
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (K.B.); (R.C.); (H.T.)
| | - Yves Gramlich
- Department for Cardiology I, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (Y.G.); (M.O.); (U.H.); (T.M.); (A.D.)
| | - Ryan Chaban
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (K.B.); (R.C.); (H.T.)
| | - Matthias Oelze
- Department for Cardiology I, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (Y.G.); (M.O.); (U.H.); (T.M.); (A.D.)
| | - Ulrich Hink
- Department for Cardiology I, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (Y.G.); (M.O.); (U.H.); (T.M.); (A.D.)
| | - Thomas Münzel
- Department for Cardiology I, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (Y.G.); (M.O.); (U.H.); (T.M.); (A.D.)
| | - Hendrik Treede
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (K.B.); (R.C.); (H.T.)
| | - Andreas Daiber
- Department for Cardiology I, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (Y.G.); (M.O.); (U.H.); (T.M.); (A.D.)
| | - Georg Daniel Duerr
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (K.B.); (R.C.); (H.T.)
- Correspondence: ; Tel.: +49-6131-17-0; Fax: +49-6131-17-3626
| |
Collapse
|
48
|
Leal K, Saavedra K, Rebolledo C, Salazar LA. MicroRNAs hsa-miR-618 and hsa-miR-297 Might Modulate the Pleiotropic Effects Exerted by Statins in Endothelial Cells Through the Inhibition of ROCK2 Kinase: in-silico Approach. Front Cardiovasc Med 2021; 8:704175. [PMID: 34485404 PMCID: PMC8415262 DOI: 10.3389/fcvm.2021.704175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/20/2021] [Indexed: 01/11/2023] Open
Abstract
Several studies show that statin therapy improves endothelial function by cholesterol-independent mechanisms called “pleiotropic effects.” These are due to the inhibition of the RhoA/ROCK kinase pathway, its inhibition being an attractive atheroprotective treatment. In addition, recent work has shown that microRNAs, posttranscriptional regulators of gene expression, can affect the response of statins and their efficacy. For this reason, the objective of this study was to identify by bioinformatic analysis possible new microRNAs that could modulate the pleiotropic effects exerted by statins through the inhibition of ROCK kinases. A bioinformatic study was performed in which the differential expression of miRNAs in endothelial cells was compared under two conditions: Control and treated with simvastatin at 10 μM for 24 h, using a microarray. Seven miRNAs were differentially expressed, three up and four down. Within the up group, the miRNAs hsa-miR-618 and hsa-miR-297 present as a predicted target to ROCK2 kinase. Also, functional and enriched pathway analysis showed an association with mechanisms associated with atheroprotective effects. This work shows an in-silico approach of how posttranscriptional regulation mediated by miRNAs could modulate the pleiotropic effects exerted by statins on endothelial cells, through the inhibition of ROCK2 kinase and its effects.
Collapse
Affiliation(s)
- Karla Leal
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Kathleen Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Camilo Rebolledo
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
49
|
Daugherty A, Fisher EA, Taubman MB, Heistad DD, Fogelman AM. Forty-Year Anniversary of Arteriosclerosis, Thrombosis, and Vascular Biology. Arterioscler Thromb Vasc Biol 2021; 41:2353-2356. [PMID: 34432483 DOI: 10.1161/atvbaha.121.316755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Alan Daugherty
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky (A.D.)
| | - Edward A Fisher
- Departments of Medicine and Cell Biology and the Cardiovascular Research Center, New York University Langone Medical Center (E.A.F.)
| | - Mark B Taubman
- School of Medicine and Dentistry, University of Rochester (M.B.T.)
| | - Donald D Heistad
- Departments of Internal Medicine, and Neurosciences and Pharmacology, University of Iowa (D.D.H.)
| | - Alan M Fogelman
- Department of Medicine, David Geffen School of Medicine at UCLA (A.M.F.)
| |
Collapse
|
50
|
Vitiello A, Ferrara F. Plausible Positive Effects of Statins in COVID-19 Patient. Cardiovasc Toxicol 2021; 21:781-789. [PMID: 34255300 PMCID: PMC8275916 DOI: 10.1007/s12012-021-09674-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023]
Abstract
Since the onset of the global COVID-19 pandemic, there has been much discussion about the advantages and disadvantages of ongoing chronic drug therapies in SARS-CoV-2-positive patients. These discussions include also statins treatment. The statins are among the most widely used drugs in the global population. Statins aim to lower cholesterol, which is essential for many biological processes but can lead to heart disease if levels are too high; however, also the pleiotropic effects of statins are well known. So could the anti-inflammatory or the potential antiviral effects of statins be helpful in avoiding extreme inflammation and severity in COVID-19? To date, there are conflicting opinions on the effects of statins in the course of COVID-19 infection. The aim of this article is to describe the molecular and pharmacological basis of the pleiotropic effects of statins that could be more involved in the fight against COVID-19 infection and to investigate the current epidemiological evidence in the literature on the current and important topic.
Collapse
Affiliation(s)
- Antonio Vitiello
- Clinical Pharmacologist, Pharmaceutical Department, Usl Umbria 1, A.Migliorati street, 06132, Perugia, Italy
| | - Francesco Ferrara
- Hospital Pharmacist Manager, Pharmaceutical Department, Usl Umbria 1, A.Migliorati street, 06132, Perugia, Italy.
| |
Collapse
|