1
|
α 2-Adrenoceptors: Challenges and Opportunities-Enlightenment from the Kidney. Cardiovasc Ther 2020; 2020:2478781. [PMID: 32426035 PMCID: PMC7211234 DOI: 10.1155/2020/2478781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/03/2020] [Indexed: 12/29/2022] Open
Abstract
It was indeed a Don Quixote-like pursuit of the mechanism of essential hypertension when we serendipitously discovered α2-adrenoceptors (α2-ARs) in skin-lightening experiments in the frog. Now α2-ARs lurk on the horizon involving hypertension causality, renal denervation for hypertension, injury from falling in the elderly and prazosin's mechanism of action in anxiety states such as posttraumatic stress disorder (PTSD). Our goal here is to focus on this horizon and bring into clear view the role of α2-AR-mediated mechanisms in these seemingly unrelated conditions. Our narrative begins with an explanation of how experiments in isolated perfused kidneys led to the discovery of a sodium-retaining process, a fundamental mechanism of hypertension, mediated by α2-ARs. In this model system and in the setting of furosemide-induced sodium excretion, α2-AR activation inhibited adenylate cyclase, suppressed cAMP formation, and caused sodium retention. Further investigations led to the realization that renal α2-AR expression in hypertensive animals is elevated, thus supporting a key role for kidney α2-ARs in the pathophysiology of essential hypertension. Subsequent studies clarified the molecular pathways by which α2-ARs activate prohypertensive biochemical systems. While investigating the role of α1-adrenoceptors (α1-ARs) versus α2-ARs in renal sympathetic neurotransmission, we noted an astonishing result: in the kidney α1-ARs suppress the postjunctional expression of α2-ARs. Here, we describe how this finding relates to a broader understanding of the role of α2-ARs in diverse disease states. Because of the capacity for qualitative and quantitative monitoring of α2-AR-induced regulatory mechanisms in the kidney, we looked to the kidney and found enlightenment.
Collapse
|
2
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|
3
|
Renal denervation and hypertension - The need to investigate unintended effects and neural control of the human kidney. Auton Neurosci 2017; 204:119-125. [DOI: 10.1016/j.autneu.2016.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 01/22/2023]
|
4
|
Zhu X, Jackson EK. RACK1 regulates angiotensin II-induced contractions of SHR preglomerular vascular smooth muscle cells. Am J Physiol Renal Physiol 2017; 312:F565-F576. [PMID: 28100502 PMCID: PMC5407068 DOI: 10.1152/ajprenal.00547.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 11/22/2022] Open
Abstract
The preglomerular microcirculation of spontaneously hypertensive rats (SHR) is hypersensitive to angiotensin (ANG) II, and studies have shown that this is likely due to enhanced coincident signaling between G protein subunits αq (Gαq; released by ANG II) and βγ (Gβγ; released by Gi-coupled receptors) to active phospholipase C (PLC). Here we investigated the molecular basis for the enhanced coincident signaling between Gβγ and Gαq in SHR preglomerular vascular smooth muscle cells (PGVSMCs). Because receptor for activated C kinase 1 (RACK1; a scaffolding protein) organizes interactions between Gβγ, Gαq, and PLC, we included RACK1 in this investigation. Cell fractionation studies demonstrated increased levels of membrane (but not cytosolic) Gβ, Gαq, PLCβ3, and RACK1 in SHR PGVSMCs compared with Wistar-Kyoto rat PGVSMCs. In SHR PGVSMCs, coimmunoprecipitation demonstrated RACK1 binding to Gβ and PLCβ3, but only at cell membranes. Pertussis toxin (which blocks Gβγ) and U73122 (which blocks PLC) reduced membrane RACK1; however, RACK1 knockdown (shRNA) did not affect membrane levels of Gβ, Gαq, or PLCβ3 In a novel gel contraction assay, RACK1 knockdown in SHR PGVSMCs attenuated contractions to ANG II and abrogated the ability of neuropeptide Y (which signals via Gβγ) to enhance ANG II-induced contractions. We conclude that in SHR PGVSMCs the enlarged pool of Gβγ and PLCβ3 recruits RACK1 to membranes and RACK1 then organizes signaling. Consequently, knockdown of RACK1 prevents coincident signaling between ANG II and the Gi pathway. This is the first study to implicate RACK1 in vascular smooth muscle cell contraction and suggests that RACK1 inhibitors could be effective cardiovascular drugs.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Cell Membrane/drug effects
- Cell Membrane/enzymology
- Cells, Cultured
- Disease Models, Animal
- GTP-Binding Protein beta Subunits/metabolism
- GTP-Binding Protein gamma Subunits/metabolism
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Hypertension/enzymology
- Hypertension/physiopathology
- Juxtaglomerular Apparatus/blood supply
- Male
- Microvessels/enzymology
- Microvessels/physiopathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Neuropeptide Y/metabolism
- Phospholipase C beta/metabolism
- Protein Binding
- Protein Transport
- RNA Interference
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors for Activated C Kinase
- Signal Transduction/drug effects
- Transfection
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Lu W, Kang J, Hu K, Tang S, Zhou X, Xu L, Li Y, Yu S. The role of the Nox4-derived ROS-mediated RhoA/Rho kinase pathway in rat hypertension induced by chronic intermittent hypoxia. Sleep Breath 2017; 21:667-677. [PMID: 28078487 DOI: 10.1007/s11325-016-1449-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 11/23/2016] [Accepted: 12/22/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Obstructive sleep apnea syndrome, which is a risk factor for resistant hypertension, is characterized by chronic intermittent hypoxia (CIH) and is associated with many cardiovascular diseases. CIH elicits systemic oxidative stress and sympathetic hyperactivity, which lead to hypertension. Rho kinases (ROCKs) are considered to be major effectors of the small GTPase RhoA and have been extensively studied in the cardiovascular field. Upregulation of the RhoA/ROCK signaling cascade is observed in various cardiovascular disorders, such as atherosclerosis, pulmonary hypertension, and stroke. However, the exact molecular function of RhoA/ROCK in CIH remains unclear and requires further study. OBJECTIVE This study aimed to investigate the role of the NADPH oxidase 4 (Nox4)-induced ROS/RhoA/ROCK pathway in CIH-induced hypertension in rats. METHODS Male Sprague-Dawley rats were exposed to CIH for 21 days (intermittent hypoxia of 21% O2 for 60 s and 5% O2 for 30 s, cyclically repeated for 8 h/day). We randomly assigned 56 male rats to groups of normoxia (RA) or vertically implemented CIH together with vehicle (CIH-V), GKT137831 (CIH-G), N-acetyl cysteine (NAC) (CIH-N), or Y27632 (CIH-Y). The rats in the RA group were continuously exposed to room air, whereas the rats in the other groups were exposed to CIH. Systolic blood pressure (BP) was monitored at the beginning of each week. After the experiment, renal sympathetic nerve activity (RSNA) was recorded, and serum and renal tissues were subjected to molecular biological and biochemical analyses. RESULTS Compared with the BP of RA rats, the BP of CIH-V rats started to increase 2 weeks after the beginning of the experiment, subsequently stabilizing at a high level at the end of the third week. CIH increased both RSNA and oxidative stress. This response was attenuated by treatment of the rats with GKT137831 or NAC. Inhibiting Nox4 activity or ROS production reduced RhoA/ROCK expression. Treatment with Y27632 reduced both BP and RSNA in rats exposed to CIH. CONCLUSION Hypertension can be induced by CIH in SD rats. The CIH-induced elevation of BP is at least partially mediated via the Nox4-induced ROS/RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Wen Lu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Jing Kang
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Ke Hu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China.
| | - Si Tang
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Xiufang Zhou
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Lifang Xu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Yuanyuan Li
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Shuhui Yu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| |
Collapse
|
6
|
Tan Y, Ko J, Liu X, Lu C, Li J, Xiao C, Li L, Niu X, Jiang M, He X, Zhao H, Zhang Z, Bian Z, Yang Z, Zhang G, Zhang W, Lu A. Serum metabolomics reveals betaine and phosphatidylcholine as potential biomarkers for the toxic responses of processed Aconitum carmichaelii Debx. MOLECULAR BIOSYSTEMS 2015; 10:2305-16. [PMID: 24949573 DOI: 10.1039/c4mb00072b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We recently reported that processed Aconitum carmichaelii Debx (Bai-Fu-Pian in Chinese, BFP) elicits differential toxic responses in rats under various health conditions. The present study aimed to determine the graded toxicity of BFP so as to derive a safe therapeutic rationale in clinical practice. Sensitive and reliable biomarkers of toxicity were also identified, with the corresponding metabolic pathways being unveiled. Thirty male Sprague-Dawley rats were divided into five groups (n = 6) and received oral administration of BFP extract (0.32, 0.64, 1.28 or 2.56 g kg(-1) per day) or an equal volume of drinking water (control) for 15 days. The metabolomic profiles of rat serum were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry (LC-Q-TOF-MS). Linear regression analysis and Ingenuity Pathway Analysis (IPA) were used to elucidate the differentiated altered metabolites and associated network relationships. Results from biochemical and histopathological examinations revealed that BFP could induce prominent toxicity in the heart, liver and kidneys at a dose of 2.56 g kg(-1) per day. Betaine up-regulation and phosphatidylcholine down-regulation were detected in the serum samples of drug-treated groups in a dose-dependent manner. In summary, betaine and phosphatidylcholine could be regarded as sensitive biomarkers for the toxic responses of BFP. Perturbations of RhoA signaling, choline metabolism and free radical scavenging were found to be partly responsible for the toxic effects of the herbal drug. Based on the metabolomics findings, we could establish a safe therapeutic range in the clinical use of BFP, with promising predictions of possible drug toxicity.
Collapse
Affiliation(s)
- Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Khayrullina G, Bermudez S, Byrnes KR. Inhibition of NOX2 reduces locomotor impairment, inflammation, and oxidative stress after spinal cord injury. J Neuroinflammation 2015; 12:172. [PMID: 26377802 PMCID: PMC4574142 DOI: 10.1186/s12974-015-0391-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/03/2015] [Indexed: 12/12/2022] Open
Abstract
Background Spinal cord injury (SCI) results in the activation of the NADPH oxidase (NOX) enzyme, inducing production of reactive oxygen species (ROS). We hypothesized that the NOX2 isoform plays an integral role in post-SCI inflammation and functional deficits. Methods Moderate spinal cord contusion injury was performed in adult male mice, and flow cytometry, western blot, and immunohistochemistry were used to assess NOX2 activity and expression, inflammation, and M1/M2 microglia/macrophage polarization from 1 to 28 days after injury. The NOX2-specific inhibitor, gp91ds-tat, was injected into the intrathecal space immediately after impact. The Basso Mouse Scale (BMS) was used to assess locomotor function at 24 h post-injury and weekly thereafter. Results Our findings show that gp91ds-tat treatment significantly improved functional recovery through 28 days post-injury and reduced inflammatory cell concentrations in the injured spinal cord at 24 h and 7 days post-injury. In addition, a number of oxidative stress markers were reduced in expression at 24 h after gp91ds-tat treatment, which was accompanied by a reduction in M1 polarization marker expression. Conclusion Based on our findings, we now conclude that inhibition of NOX2 significantly improves outcome after SCI, most likely via acute reductions in oxidative stress and inflammation. NOX2 inhibition may therefore have true potential as a therapy after SCI.
Collapse
Affiliation(s)
- Guzal Khayrullina
- Anatomy, Physiology and Genetics Department, Uniformed Services University, Room B2048, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Sara Bermudez
- Anatomy, Physiology and Genetics Department, Uniformed Services University, Room B2048, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Kimberly R Byrnes
- Anatomy, Physiology and Genetics Department, Uniformed Services University, Room B2048, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
8
|
Bouvier G, Learn DB, Nonne C, Feraille G, Vial E, Ruty B. Protective Effect of Dermal Brimonidine Applications Against UV Radiation-induced Skin Tumors, Epidermal Hyperplasia and Cell Proliferation in the Skin of Hairless Mice. Photochem Photobiol 2015; 91:1479-87. [PMID: 26333507 DOI: 10.1111/php.12528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/16/2015] [Indexed: 11/28/2022]
Abstract
Brimonidine at 0.18%, 1% and 2% concentrations applied topically in hairless mice significantly decreased tumor burden and incidences of erythema, flaking, wrinkling and skin thickening induced by UVR. The unbiased median week to tumor ≥1 mm was increased by the 1% and 2% concentrations. The tumor yield was reduced by all concentrations at week 40 for all tumor sizes but the ≥4 mm tumors with the 0.18% concentration. At week 52, the tumor yield was reduced for all tumor sizes and all brimonidine concentrations. The tumor incidence was reduced by all concentrations at week 40 for all tumor sizes, but the ≥4 mm tumor with the 0.18% concentration and at week 52 for all tumor sizes with the 1% and 2% concentrations and with the 0.18% concentration only for the ≥4 mm tumors. Reductions in ≥4 mm tumor incidences compared to the vehicle control group were 54%, 91% and 86% by week 52 for the 0.18%, 1% and 2% concentrations, respectively. Brimonidine at 2% applied 1 h before or just after UVB irradiation on hairless mice decreased epidermal hyperplasia by 23% and 32% and epithelial cell proliferation by 59% and 64%, respectively, similar to an epidermal growth factor receptor (EGFR) inhibitor.
Collapse
Affiliation(s)
| | - Douglas B Learn
- Charles River Laboratories Preclinical Services, Horsham, PA
| | | | | | | | | |
Collapse
|
9
|
Jackson EK, Mi Z, Tofovic SP, Gillespie DG. Effect of dipeptidyl peptidase 4 inhibition on arterial blood pressure is context dependent. Hypertension 2015; 65:238-49. [PMID: 25368027 PMCID: PMC4268428 DOI: 10.1161/hypertensionaha.114.04631] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
UNLABELLED Because the effects of dipeptidyl peptidase 4 (DPP4) inhibitors on blood pressure are controversial, we examined the long-term effects of sitagliptin (80 mg/kg per day) on blood pressure (radiotelemetry) in spontaneously hypertensive rats (SHR), Wistar-Kyoto rats, and Zucker Diabetic-Sprague Dawley rats (metabolic syndrome model). In SHR, chronic (3 weeks) sitagliptin significantly increased systolic, mean, and diastolic blood pressures by 10.3, 9.2, and 7.9 mm Hg, respectively, a response abolished by coadministration of BIBP3226 (2 mg/kg per day; selective Y1-receptor antagonist). Sitagliptin also significantly increased blood pressure in SHR treated with hydralazine (vasodilator; 25 mg/kg per day) or enalapril (angiotensin-converting enzyme inhibitor; 10 mg/kg per day). In Wistar-Kyoto rats, chronic sitagliptin slightly decreased systolic, mean, and diastolic blood pressures (-1.8, -1.1, and -0.4 mm Hg, respectively). In Zucker Diabetic-Sprague Dawley rats, chronic sitagliptin decreased systolic, mean, and diastolic blood pressures by -7.7, -5.8, and -4.3 mm Hg, respectively, and did not alter the antihypertensive effects of chronic enalapril. Because DPP4 inhibitors impair the metabolism of neuropeptide Y1-36 (NPY1-36; Y1-receptor agonist) and glucagon-like peptide (GLP)-1(7-36)NH2 (GLP-1 receptor agonist), we examined renovascular responses to NPY1-36 and GLP-1(7-36)NH2 in isolated perfused SHR and Zucker Diabetic-Sprague Dawley kidneys pretreated with norepinephrine (to induce basal tone). In Zucker Diabetic-Sprague Dawley kidneys, NPY1-36 and GLP-1(7-36)NH2 exerted little, if any, effect on renovascular tone. In contrast, in SHR kidneys, both NPY1-36 and GLP-1(7-36)NH2 elicited potent and efficacious vasoconstriction. IN CONCLUSION (1) The effects of DPP4 inhibitors on blood pressure are context dependent; (2) The context-dependent effects of DPP4 inhibitors are due in part to differential renovascular responses to DPP4’s most important substrates (NPY1–36 and GLP-1(7–36)NH2) [corrected]; (3) Y1 receptor antagonists may prevent the prohypertensive and possibly augment the antihypertensive effects of DPP4 inhibitors.
Collapse
Affiliation(s)
- Edwin K Jackson
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, PA.
| | - Zaichuan Mi
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, PA
| | - Stevan P Tofovic
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, PA
| | - Delbert G Gillespie
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, PA
| |
Collapse
|
10
|
Chen W, Liu DJ, Huo YM, Wu ZY, Sun YW. Reactive oxygen species are involved in regulating hypocontractility of mesenteric artery to norepinephrine in cirrhotic rats with portal hypertension. Int J Biol Sci 2014; 10:386-95. [PMID: 24719556 PMCID: PMC3979991 DOI: 10.7150/ijbs.8081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/18/2014] [Indexed: 12/19/2022] Open
Abstract
Background: Oxidative stress is involved in the hypocontractility of visceral artery to vasoconstrictors and formation of hyperdynamic circulation in cirrhosis with portal hypertension. In the present study, we investigated the effect of reactive oxygen species (ROS) on the mesenteric artery contractility in CCl4-induced cirrhotic rats, and the roles of G protein-coupled receptors (GPCRs) desensitization and RhoA /Rho associated coiled-coil forming protein kinase (ROCK) pathways. Methods: The mesenteric artery contraction to norepinephrine (NE) was determined by vessel perfusion system following treatments with apocynin, tempol or PEG-catalase. The protein expression of α1 adrenergic receptor, β-arrestin-2, ROCK-1, moesin and p-moesin was measured by western blot. The interaction between α1 adrenergic receptor and β-arrestin-2 was assessed by co-immunoprecipitation. Results: Pretreatment with apocynin or PEG-catalase in cirrhotic rats, the hydrogen peroxide level in the mesenteric arteriole was significantly decreased, and the dose-response curve of mesenteric arteriole to NE moved to the left with EC50 decreased. There was no significant change for the expression of α1 adrenergic receptor. However, the protein expression of β-arrestin-2 and its affinity with α1 adrenergic receptor were significantly decreased. The ROCK-1 activity and anti- Y-27632 inhibition in cirrhotic rats increased significantly with the protein expression unchanged. Such effects were not observed in tempol-treated group. Conclusion: The H2O2 decrease in mesenteric artery from rats with cirrhosis resulted in down regulation of the β-arrestin-2 expression and its binding ability with α1 adrenergic receptor, thereby affecting the agonist-induced ROCK activation and improving the contractile response in blood vessels.
Collapse
Affiliation(s)
- Wei Chen
- Department of Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - De-Jun Liu
- Department of Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yan-Miao Huo
- Department of Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhi-Yong Wu
- Department of Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yong-Wei Sun
- Department of Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
11
|
Nguyen Dinh Cat A, Montezano AC, Burger D, Touyz RM. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal 2013; 19:1110-20. [PMID: 22530599 PMCID: PMC3771549 DOI: 10.1089/ars.2012.4641] [Citation(s) in RCA: 325] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Angiotensin II (Ang II) influences the function of many cell types and regulates many organ systems, in large part through redox-sensitive processes. In the vascular system, Ang II is a potent vasoconstrictor and also promotes inflammation, hypertrophy, and fibrosis, which are important in vascular damage and remodeling in cardiovascular diseases. The diverse actions of Ang II are mediated via Ang II type 1 and Ang II type 2 receptors, which couple to various signaling molecules, including NADPH oxidase (Nox), which generates reactive oxygen species (ROS). ROS are now recognized as signaling molecules, critically placed in pathways activated by Ang II. Mechanisms linking Nox and Ang II are complex and not fully understood. RECENT ADVANCES Ang II regulates vascular cell production of ROS through various recently characterized Noxs, including Nox1, Nox2, Nox4, and Nox5. Activation of these Noxs leads to ROS generation, which in turn influences many downstream signaling targets of Ang II, including MAP kinases, RhoA/Rho kinase, transcription factors, protein tyrosine phosphatases, and tyrosine kinases. Activation of these redox-sensitive pathways regulates vascular cell growth, inflammation, contraction, and senescence. CRITICAL ISSUES Although there is much evidence indicating a role for Nox/ROS in Ang II function, there is still a paucity of information on how Ang II exerts cell-specific effects through ROS and how Nox isoforms are differentially regulated by Ang II. Moreover, exact mechanisms whereby ROS induce oxidative modifications of signaling molecules mediating Ang II actions remain elusive. FUTURE DIRECTIONS Future research should elucidate these issues to better understand the significance of Ang II and ROS in vascular (patho) biology.
Collapse
Affiliation(s)
- Aurelie Nguyen Dinh Cat
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Augusto C. Montezano
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Dylan Burger
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Rhian M. Touyz
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
12
|
Abais JM, Zhang C, Xia M, Liu Q, Gehr TWB, Boini KM, Li PL. NADPH oxidase-mediated triggering of inflammasome activation in mouse podocytes and glomeruli during hyperhomocysteinemia. Antioxid Redox Signal 2013; 18:1537-48. [PMID: 23088210 PMCID: PMC3613176 DOI: 10.1089/ars.2012.4666] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIM Our previous studies have shown that NOD-like receptor protein (NALP3) inflammasome activation is importantly involved in podocyte dysfunction and glomerular sclerosis induced by hyperhomocysteinemia (hHcys). The present study was designed to test whether nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mediated redox signaling contributes to homocysteine (Hcys)-induced activation of NALP3 inflammasomes, an intracellular inflammatory machinery in podocytes in vitro and in vivo. RESULTS In vitro confocal microscopy and size-exclusion chromatography revealed that upon NADPH oxidase inhibition by gp91(phox) siRNA, gp91ds-tat peptide, diphenyleneiodonium, or apocynin, aggregation of inflammasome proteins NALP3, apoptosis-associated speck-like protein (ASC), and caspase-1 was significantly attenuated in mouse podocytes. This NADPH oxidase inhibition also resulted in diminished Hcys-induced inflammasome activation, evidenced by reduced caspase-1 activity and interleukin-1β production. Similar findings were observed in vivo where gp91(phox-/-) mice and mice receiving a gp91ds-tat treatment exhibited markedly reduced inflammasome formation and activation. Further, in vivo NADPH oxidase inhibition protected the glomeruli and podocytes from hHcys-induced injury as shown by attenuated proteinuria, albuminuria, and glomerular sclerotic changes. This might be attributed to the fact that gp91(phox-/-) and gp91ds-tat-treated mice had abolished infiltration of macrophages and T-cells into the glomeruli during hHcys. INNOVATION Our study for the first time links NADPH oxidase to the formation and activation of NALP3 inflammasomes in podocytes. CONCLUSION Hcys-induced NADPH oxidase activation is importantly involved in the switching on of NALP3 inflammasomes within podocytes, which leads to the downstream recruitment of immune cells, ultimately resulting in glomerular injury and sclerosis.
Collapse
Affiliation(s)
- Justine M Abais
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Jackson EK, Cheng D, Tofovic SP, Mi Z. Endogenous adenosine contributes to renal sympathetic neurotransmission via postjunctional A1 receptor-mediated coincident signaling. Am J Physiol Renal Physiol 2011; 302:F466-76. [PMID: 22114202 DOI: 10.1152/ajprenal.00495.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine A(1) receptor antagonists have diuretic/natriuretic activity and may be useful for treating sodium-retaining diseases, many of which are associated with increased renal sympathetic tone. Therefore, it is important to determine whether A(1) receptor antagonists alter renal sympathetic neurotransmission. In isolated, perfused rat kidneys, renal vasoconstriction induced by renal sympathetic nerve simulation was attenuated by 1) 1,3-dipropyl-8-p-sulfophenylxanthine (xanthine analog that is a nonselective adenosine receptor antagonist, but is cell membrane impermeable and thus does not block intracellular phosphodiesterases), 2) xanthine amine congener (xanthine analog that is a selective A(1) receptor antagonist), 3) 1,3-dipropyl-8-cyclopentylxanthine (xanthine analog that is a highly selective A(1) receptor antagonist), and 4) FK453 (nonxanthine analog that is a highly selective A(1) receptor antagonist). In contrast, FR113452 (enantiomer of FK453 that does not block A(1) receptors), MRS-1754 (selective A(2B) receptor antagonist), and VUF-5574 (selective A(3) receptor antagonist) did not alter responses to renal sympathetic nerve stimulation, and ZM-241385 (selective A(2A) receptor antagonist) enhanced responses. Antagonism of A(1) receptors did not alter renal spillover of norepinephrine. 2-Chloro-N(6)-cyclopentyladenosine (highly selective A(1) receptor agonist) increased renal vasoconstriction induced by exogenous norepinephrine, an effect that was blocked by 1,3-dipropyl-8-cyclopentylxanthine, U73122 (phospholipase C inhibitor), GF109203X (protein kinase C inhibitor), PP1 (c-src inhibitor), wortmannin (phosphatidylinositol 3-kinase inhibitor), and OSU-03012 (3-phosphoinositide-dependent protein kinase-1 inhibitor). These results indicate that adenosine formed during renal sympathetic nerve stimulation enhances the postjunctional effects of released norepinephrine via coincident signaling and contributes to renal sympathetic neurotransmission. Likely, the coincident signaling pathway is: phospholipase C → protein kinase C → c-src → phosphatidylinositol 3-kinase → 3-phosphoinositide-dependent protein kinase-1.
Collapse
Affiliation(s)
- Edwin K Jackson
- Dept. of Pharmacology and Chemical Biology, 100 Technology Dr., Rm. 514, Univ. of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | | | | | | |
Collapse
|
14
|
Bhimaraj A, Tang WHW. Role of oxidative stress in disease progression in Stage B, a pre-cursor of heart failure. Heart Fail Clin 2011; 8:101-11. [PMID: 22108730 DOI: 10.1016/j.hfc.2011.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress represents a persistent imbalance between the production and the compensation of reactive oxygen species. Though predominantly found in advanced heart failure, the most frequent "at-risk" condition has been associated with underlying oxidative stress. It is therefore conceivable that timely detection and early intervention to reduce oxidative stress processes provide an opportunity to prevent disease progression to overt heart failure. This article reviews the current understanding of the current evidence of oxidative stress involvement in the pathophysiology of human heart failure and its potential therapeutic interventions in patients with Stage A and B heart failure.
Collapse
Affiliation(s)
- Arvind Bhimaraj
- Methodist DeBakey Cardiology Associates, Smith Tower, 6550 Fannin, Suite 1901, Houston, TX 77030, USA
| | | |
Collapse
|
15
|
Knock GA, Ward JPT. Redox regulation of protein kinases as a modulator of vascular function. Antioxid Redox Signal 2011; 15:1531-47. [PMID: 20849377 DOI: 10.1089/ars.2010.3614] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species (ROS) are continuously generated in vascular tissues by various oxidoreductase enzymes. They contribute to normal cell signaling, and modulate vascular smooth muscle tone and endothelial permeability in response to physiological agonists and to various cellular stresses and environmental factors, such as hypoxia. While concentrations of ROS are normally tightly controlled by cellular redox buffer systems, if produced in excess they may contribute to vascular disease. Protein kinases are essential components of most cell signaling pathways, including those involving ROS. The functioning of several members of this highly diverse group of enzymes, which include receptor and nonreceptor tyrosine kinases, protein kinase C, mitogen-activated kinases, and Rho-kinase, are modified by ROS, either through direct oxidative modification or indirectly through modification of associated proteins such as tyrosine phosphatases and monomeric G proteins. In this review, we discuss the molecular mechanisms of redox modification of these proteins, the downstream pathways affected, the often complex interaction between major kinase pathways, and feedback to ROS production itself. We also discuss complicating factors such as differential actions of superoxide anion and hydrogen peroxide, questions concerning concentration dependence, and the significance of signaling microdomains.
Collapse
Affiliation(s)
- Greg A Knock
- Division of Asthma, Allergy, and Lung Biology, King's College London, Stamford Street, London, United Kingdom.
| | | |
Collapse
|
16
|
Worou ME, Belmokhtar K, Bonnet P, Vourc'h P, Machet MC, Khamis G, Eder V. Hemin decreases cardiac oxidative stress and fibrosis in a rat model of systemic hypertension via PI3K/Akt signalling. Cardiovasc Res 2011; 91:320-9. [DOI: 10.1093/cvr/cvr072] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
17
|
Gayen JR, Zhang K, RamachandraRao SP, Mahata M, Chen Y, Kim HS, Naviaux RK, Sharma K, Mahata SK, O'Connor DT. Role of reactive oxygen species in hyperadrenergic hypertension: biochemical, physiological, and pharmacological evidence from targeted ablation of the chromogranin a (Chga) gene. ACTA ACUST UNITED AC 2010; 3:414-25. [PMID: 20729505 DOI: 10.1161/circgenetics.109.924050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Oxidative stress, an excessive production of reactive oxygen species (ROS) outstripping antioxidant defense mechanisms, occurs in cardiovascular pathologies, including hypertension. In the present study, we used biochemical, physiological, and pharmacological approaches to explore the role of derangements of catecholamines, ROS, and the endothelium-derived relaxing factor nitric oxide (NO(•)) in the development of a hyperadrenergic model of hereditary hypertension: targeted ablation (knockout [KO]) of chromogranin A (Chga) in the mouse. METHODS AND RESULTS Homozygous ⁻(/)⁻ Chga gene knockout (KO) mice were compared with wild-type (WT, +/+) control mice. In the KO mouse, elevations of systolic and diastolic blood pressure were accompanied by not only elevated catecholamine (norepinephrine and epinephrine) concentrations but also increased ROS (H₂O₂) and isoprostane (an index of lipid peroxidation), as well as depletion of NO(•). Renal transcript analyses implicated changes in Nox1/2, Xo/Xdh, and Sod1,2 mRNAs in ROS elevation by the KO state. KO alterations in blood pressure, catecholamines, H₂O₂, isoprostane, and NO(•) could be abrogated or even normalized (rescued) by either sympathetic outflow inhibition (with clonidine) or NADPH oxidase inhibition (with apocynin). In cultured renal podocytes, H₂O₂ production was substantially augmented by epinephrine (probably through β₂-adrenergic receptors) and modestly diminished by norepinephrine (probably through α₁-adrenergic receptors). CONCLUSIONS ROS appear to play a necessary role in the development of hyperadrenergic hypertension in this model, in a process mechanistically linking elevated blood pressure with catecholamine excess, renal transcriptional responses, ROS elevation, lipid peroxidation, and NO(•) depletion. Some of the changes appear to be dependent on transcription, whereas others are immediate. The cycle could be disrupted by inhibition of either sympathetic outflow or NADPH oxidase. Because common genetic variation at the human CHGA locus alters BP, the results have implications for antihypertensive treatment as well as prevention of target-organ consequences of the disease. The results document novel pathophysiological links between the adrenergic system and oxidative stress and suggest new strategies to probe the role and actions of ROS within this setting.
Collapse
Affiliation(s)
- Jiaur R Gayen
- University of California at San Diego, La Jolla, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Srinivasa Raju Datla
- Emory University, Division of Cardiology, 319 WMB, 1639 Pierce Dr, Atlanta, GA 30322, USA
| | | |
Collapse
|
19
|
Affiliation(s)
- Ralf P. Brandes
- From the Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Frankfurt, Germany
| |
Collapse
|
20
|
Auburn S, Fry AE, Clark TG, Campino S, Diakite M, Green A, Richardson A, Jallow M, Sisay-Joof F, Pinder M, Molyneux ME, Taylor TE, Haldar K, Rockett KA, Kwiatkowski DP. Further evidence supporting a role for gs signal transduction in severe malaria pathogenesis. PLoS One 2010; 5:e10017. [PMID: 20386734 PMCID: PMC2850389 DOI: 10.1371/journal.pone.0010017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Accepted: 02/11/2010] [Indexed: 11/25/2022] Open
Abstract
With the functional demonstration of a role in erythrocyte invasion by Plasmodium falciparum parasites, implications in the aetiology of common conditions that prevail in individuals of African origin, and a wealth of pharmacological knowledge, the stimulatory G protein (Gs) signal transduction pathway presents an exciting target for anti-malarial drug intervention. Having previously demonstrated a role for the G-alpha-s gene, GNAS, in severe malaria disease, we sought to identify other important components of the Gs pathway. Using meta-analysis across case-control and family trio (affected child and parental controls) studies of severe malaria from The Gambia and Malawi, we sought evidence of association in six Gs pathway candidate genes: adenosine receptor 2A (ADORA2A) and 2B (ADORA2B), beta-adrenergic receptor kinase 1 (ADRBK1), adenylyl cyclase 9 (ADCY9), G protein beta subunit 3 (GNB3), and regulator of G protein signalling 2 (RGS2). Our study amassed a total of 2278 cases and 2364 controls. Allele-based models of association were investigated in all genes, and genotype and haplotype-based models were investigated where significant allelic associations were identified. Although no significant associations were observed in the other genes, several were identified in ADORA2A. The most significant association was observed at the rs9624472 locus, where the G allele (∼20% frequency) appeared to confer enhanced risk to severe malaria [OR = 1.22 (1.09–1.37); P = 0.001]. Further investigation of the ADORA2A gene region is required to validate the associations identified here, and to identify and functionally characterize the responsible causal variant(s). Our results provide further evidence supporting a role of the Gs signal transduction pathway in the regulation of severe malaria, and request further exploration of this pathway in future studies.
Collapse
Affiliation(s)
- Sarah Auburn
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tofovic DS, Bilan VP, Jackson EK. Sitagliptin augments angiotensin II-induced renal vasoconstriction in kidneys from rats with metabolic syndrome. Clin Exp Pharmacol Physiol 2010; 37:689-91. [PMID: 20374254 DOI: 10.1111/j.1440-1681.2010.05389.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1. Dipeptidyl peptidase (DPP) IV inhibitors enhance renovascular responses to angiotensin (Ang) II in spontaneously hypertensive rats (SHR), but not Wistar-Kyoto rats. Because DPPIV inhibitors are often used in metabolic syndrome, it is important to determine whether DPPIV inhibition in this setting enhances renovascular responses to AngII. 2. Six-week-old Lean-ZSF1 rats (harbouring SHR genes, but without metabolic syndrome; n = 11) and Obese-ZSF1 rats (harbouring SHR genes and expressing metabolic syndrome; n = 10) were provided food and water ad libitum, and metabolic parameters and renovascular responses to AngII were assessed when the animals were 7 and 8 weeks of age, respectively. 3. At 7 weeks of age, compared with Lean-ZSF1, Obese-ZSF1 demonstrated significant (P < 0.05) increases in bodyweight (262 +/- 8 vs 310 +/- 13 g), plasma glucose (112 +/- 4 vs 153 +/- 9 mg/dL), haemoglobin A1c (4.7 +/- 0.1 vs 5.8 +/- 0.4%), urinary glucose excretion (0.021 +/- 0.003 vs 6.70 +/- 1.80 g/kg bodyweight per 24 h) and urinary protein excretion (100 +/- 7 vs 313 +/- 77 mg/kg bodyweight per 24 h). Mean blood pressure was high (133 +/- 7 mmHg) in both strains. 4. At 8 weeks of age, kidneys were isolated and perfused. In Lean-ZSF1 rats, renovascular responses (i.e. changes in perfusion pressure) to physiological levels of AngII (0.1 nmol/L) were 3.4 +/- 1.3 and 18.2 +/- 5.9 mmHg in untreated (n = 5) and 1 micromol/L sitagliptin-treated (n = 6) kidneys, respectively. In Obese-ZSF1 rats, renovascular responses to AngII were 5.5 +/- 1.3 and 17.8 +/- 8.2 mmHg in untreated (n = 4) and sitagliptin-treated (n = 6) kidneys, respectively. Analysis of variance revealed a significant (P = 0.0367) effect of sitagliptin on renovascular responses to AngII that was independent of strain. 5. In conclusion, sitagliptin enhances renovascular responses to AngII in rats harbouring SHR genes and this effect persists in rats with diabetic nephropathy and metabolic syndrome.
Collapse
Affiliation(s)
- David S Tofovic
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, USA
| | | | | |
Collapse
|
22
|
Abstract
Lai et al. provide important new information regarding the interaction between the sympathetic and renin-angiotensin systems in the regulation of glomerular afferent arteriolar contractility. Their study demonstrates a calcium-independent enhanced contractile response to angiotensin II following norepinephrine administration. The interplay between the norepinephrine- and angiotensin II-stimulated pathways could potentially be important in physiological as well as pathophysiological situations with increased sympathetic nervous system activity, such as hypertension.
Collapse
|
23
|
Richens TR, Linderman DJ, Horstmann SA, Lambert C, Xiao YQ, Keith RL, Boé DM, Morimoto K, Bowler RP, Day BJ, Janssen WJ, Henson PM, Vandivier RW. Cigarette smoke impairs clearance of apoptotic cells through oxidant-dependent activation of RhoA. Am J Respir Crit Care Med 2009; 179:1011-21. [PMID: 19264974 PMCID: PMC2689911 DOI: 10.1164/rccm.200807-1148oc] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 02/27/2009] [Indexed: 12/22/2022] Open
Abstract
RATIONALE Cigarette smoke (CS) is the primary cause of chronic obstructive pulmonary disease (COPD), an effect that is, in part, due to intense oxidant stress. Clearance of apoptotic cells (efferocytosis) is a critical regulator of lung homeostasis, which is defective in smokers and in patients with COPD, suggesting a role in disease pathogenesis. OBJECTIVES We hypothesized that CS would impair efferocytosis through oxidant-dependent activation of RhoA, a known inhibitor of this process. METHODS We investigated the effect of CS on efferocytosis in vivo and ex vivo, using acute, subacute, and long-term mouse exposure models. MEASUREMENTS AND MAIN RESULTS Acute and subacute CS exposure suppressed efferocytosis by alveolar macrophages in a dose-dependent, reversible, and cell type-independent manner, whereas more intense CS exposure had an irreversible effect. In contrast, CS did not alter ingestion through the Fc gamma receptor. The inhibitory effect of CS on apoptotic cell clearance depended on oxidants, because the effect was blunted in oxidant-resistant ICR mice, and was prevented by either genetic or pharmacologic antioxidant strategies in vivo and ex vivo. CS inhibited efferocytosis through oxidant-dependent activation of the RhoA-Rho kinase pathway because (1) CS activated RhoA, (2) antioxidants prevented RhoA activation by CS, and (3) inhibitors of the RhoA-Rho kinase pathway reversed the suppressive effect of CS on apoptotic cell clearance in vivo and ex vivo. CONCLUSIONS These findings advance the hypothesis that impaired efferocytosis may contribute to the pathogenesis of COPD and suggest the therapeutic potential of drugs targeting the RhoA-Rho kinase pathway.
Collapse
Affiliation(s)
- Tiffany R Richens
- University of Colorado Denver, Chronic Obstructive Pulmonary Disease Center, Division of Pulmonary Sciences and Critical Care Medicine, 12700 E. 19th Avenue, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Current World Literature. Curr Opin Nephrol Hypertens 2009; 18:91-3. [DOI: 10.1097/mnh.0b013e32831fd875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Kinoshita H, Matsuda N, Kaba H, Hatakeyama N, Azma T, Nakahata K, Kuroda Y, Tange K, Iranami H, Hatano Y. Roles of Phosphatidylinositol 3-Kinase-Akt and NADPH Oxidase in Adenosine 5′-Triphosphate–Sensitive K
+
Channel Function Impaired by High Glucose in the Human Artery. Hypertension 2008; 52:507-13. [DOI: 10.1161/hypertensionaha.108.118216] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study was designed to examine roles of the phosphatidylinositol 3-kinase-Akt pathway and reduced nicotinamide-adenine dinucleotide phosphate oxidases in the reduced ATP-sensitive K
+
channel function via superoxide produced by high glucose in the human artery. We evaluated the activity of the phosphatidylinositol 3-kinase-Akt pathway, as well as reduced nicotinamide-adenine dinucleotide phosphate oxidases, the intracellular levels of superoxide and ATP-sensitive K
+
channel function in the human omental artery without endothelium. Levels of the p85-α subunit and reduced nicotinamide-adenine dinucleotide phosphate oxidase subunits, including p47phox, p22phox, and Rac-1, increased in the membrane fraction from arteries treated with
d
-glucose (20 mmol/L) accompanied by increased intracellular superoxide production. High glucose simultaneously augmented Akt phosphorylation at Ser 473, as well as Thr 308 in the human vascular smooth muscle cells. A phosphatidylinositol 3-kinase inhibitor LY294002, as well as tiron and apocynin, restored vasorelaxation and hyperpolarization in response to an ATP-sensitive K
+
channel opener levcromakalim. Therefore, it can be concluded that the activation of the phosphatidylinositol 3-kinase-Akt pathway, in combination with the translocation of p47phox, p22phox, and Rac-1, contributes to the superoxide production induced by high glucose, resulting in the impairment of ATP-sensitive K
+
channel function in the human visceral artery.
Collapse
Affiliation(s)
- Hiroyuki Kinoshita
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| | - Naoyuki Matsuda
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| | - Hikari Kaba
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| | - Noboru Hatakeyama
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| | - Toshiharu Azma
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| | - Katsutoshi Nakahata
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| | - Yasuhiro Kuroda
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| | - Kazuaki Tange
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| | - Hiroshi Iranami
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| | - Yoshio Hatano
- From the Department of Anesthesiology (H. Kinoshita, K.N., K.T., Y.H.), Wakayama Medical University, Wakayama; Departments of Primary Care and Emergency Medicine (N.M.), Graduate School of Medicine, Kyoto University, Kyoto; Departments of Molecular Medical Pharmacology (H. Kaba) and Anesthesiology (N.H.), Toyama University School of Medicine, Toyama; Department of Anesthesiology (T.A.), Saitama Medical University, Moroyama; Department of Emergency Medical Center (Y.K.), Kagawa University Hospital,
| |
Collapse
|