1
|
Gokula V, Terrero D, Joe B. Six Decades of History of Hypertension Research at the University of Toledo: Highlighting Pioneering Contributions in Biochemistry, Genetics, and Host-Microbiota Interactions. Curr Hypertens Rep 2022; 24:669-685. [PMID: 36301488 PMCID: PMC9708772 DOI: 10.1007/s11906-022-01226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The study aims to capture the history and lineage of hypertension researchers from the University of Toledo in Ohio and showcase their collective scientific contributions dating from their initial discoveries of the physiology of adrenal and renal systems and genetics regulating blood pressure (BP) to its more contemporary contributions including microbiota and metabolomic links to BP regulation. RECENT FINDINGS The University of Toledo College of Medicine and Life Sciences (UTCOMLS), previously known as the Medical College of Ohio, has contributed significantly to our understanding of the etiology of hypertension. Two of the scientists, Patrick Mulrow and John Rapp from UTCOMLS, have been recognized with the highest honor, the Excellence in Hypertension award from the American Heart Association for their pioneering work on the physiology and genetics of hypertension, respectively. More recently, Bina Joe has continued their legacy in the basic sciences by uncovering previously unknown novel links between microbiota and metabolites to the etiology of hypertension, work that has been recognized by the American Heart Association with multiple awards. On the clinical research front, Christopher Cooper and colleagues lead the CORAL trials and contributed importantly to the investigations on renal artery stenosis treatment paradigms. Hypertension research at this institution has not only provided these pioneering insights, but also grown careers of scientists as leaders in academia as University Presidents and Deans of Medical Schools. Through the last decade, the university has expanded its commitment to Hypertension research as evident through the development of the Center for Hypertension and Precision Medicine led by Bina Joe as its founding Director. Hypertension being the top risk factor for cardiovascular diseases, which is the leading cause of human mortality, is an important area of research in multiple international universities. The UTCOMLS is one such university which, for the last 6 decades, has made significant contributions to our current understanding of hypertension. This review is a synthesis of this rich history. Additionally, it also serves as a collection of audio archives by more recent faculty who are also prominent leaders in the field of hypertension research, including John Rapp, Bina Joe, and Christopher Cooper, which are cataloged at Interviews .
Collapse
Affiliation(s)
- Veda Gokula
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA.
| |
Collapse
|
2
|
Cheng X, Mell B, Alimadadi A, Galla S, McCarthy CG, Chakraborty S, Basrur V, Joe B. Genetic predisposition for increased red blood cell distribution width is an early risk factor for cardiovascular and renal comorbidities. Dis Model Mech 2020; 13:dmm044081. [PMID: 32238420 PMCID: PMC7325433 DOI: 10.1242/dmm.044081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Red blood cell distribution width (RDW) is a measurement of the variation in size and volume of red blood cells (RBCs). Increased RDW, indicating a high heterogeneity of RBCs, is prominently associated with a variety of illnesses, especially cardiovascular diseases. However, the significance of this association to the onset and progression of cardiovascular and renal diseases is unknown. We hypothesized that a genetic predisposition for increased RDW is an early risk factor for cardiovascular and renal comorbidities. Since there is no known animal model of increased RDW, we examined a CRISPR/Cas9 gene-edited rat model (RfflTD) that presented with features of hematologic abnormalities as well as severe cardiac and renal comorbidities. A mass spectrometry-based quantitative proteomic analysis indicated anemia of these rats, which presented with significant downregulation of hemoglobin and haptoglobin. Decreased hemoglobin and increased RDW were further observed in RfflTD through complete blood count. Next, a systematic temporal assessment detected an early increased RDW in RfflTD, which was prior to the development of other comorbidities. The primary mutation of RfflTD is a 50 bp deletion in a non-coding region, and our study has serendipitously identified this locus as a novel quantitative trait locus (QTL) for RDW. To our knowledge, our study is the first to experimentally pinpoint a QTL for RDW and provides a novel genetic rat model mimicking the clinical association of increased RDW with poor cardio-renal outcome.
Collapse
Affiliation(s)
- Xi Cheng
- Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Blair Mell
- Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Ahmad Alimadadi
- Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Sarah Galla
- Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Cameron G McCarthy
- Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Saroj Chakraborty
- Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
3
|
Rapp JP, Joe B. Dissecting Epistatic QTL for Blood Pressure in Rats: Congenic Strains versus Heterogeneous Stocks, a Reality Check. Compr Physiol 2019; 9:1305-1337. [PMID: 31688958 DOI: 10.1002/cphy.c180038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Advances in molecular genetics have provided well-defined physical genetic maps and large numbers of genetic markers for both model organisms and humans. It is now possible to gain a fundamental understanding of the genetic architecture underlying quantitative traits, of which blood pressure (BP) is an important example. This review emphasizes analytical techniques and results obtained using the Dahl salt-sensitive (S) rat as a model of hypertension by presenting results in detail for three specific chromosomal regions harboring genetic elements of increasing complexity controlling BP. These results highlight the critical importance of genetic interactions (epistasis) on BP at all levels of structure, intragenic, intergenic, intrachromosomal, interchromosomal, and across whole genomes. In two of the three examples presented, specific DNA structural variations leading to biochemical, physiological, and pathological mechanisms are well defined. This proves the usefulness of the techniques involving interval mapping followed by substitution mapping using congenic strains. These classic techniques are compared to newer approaches using sophisticated statistical analysis on various segregating or outbred model-organism populations, which in some cases are uniquely useful in demonstrating the existence of higher-order interactions. It is speculated that hypertension as an outlier quantitative phenotype is dependent on higher-order genetic interactions. The obstacle to the identification of genetic elements and the biochemical/physiological mechanisms involved in higher-order interactions is not theoretical or technical but the lack of future resources to finish the job of identifying the individual genetic elements underlying the quantitative trait loci for BP and ascertaining their molecular functions. © 2019 American Physiological Society. Compr Physiol 9:1305-1337, 2019.
Collapse
Affiliation(s)
- John P Rapp
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Bina Joe
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
4
|
QTL mapping of rat blood pressure loci on RNO1 within a homologous region linked to human hypertension on HSA15. PLoS One 2019; 14:e0221658. [PMID: 31442284 PMCID: PMC6707578 DOI: 10.1371/journal.pone.0221658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/12/2019] [Indexed: 11/21/2022] Open
Abstract
Fine-mapping of regions linked to the inheritance of hypertension is accomplished by genetic dissection of blood pressure quantitative trait loci (BP QTLs) in rats. The goal of the current study was to further fine-map two genomic regions on rat chromosome 1 with opposing blood pressure effects (BP QTL1b1 and BP QTL1b1a), the homologous region of which on human chromosome 15 harbors BP QTLs. Two new substrains were constructed and studied from the previously reported BP QTL1b1, one having significantly lower systolic BP by 17 mmHg than that of the salt-sensitive (S) rat (P = 0.007). The new limits of BP QTL1b1 were between 134.09 Mb and 135.40 Mb with a 43% improvement from the previous 2.31 Mb to the current 1.31 Mb interval containing 4 protein-coding genes (Rgma, Chd2, Fam174b, and St8sia2), 2 predicted miRNAs, and 4 lncRNAs. One new substrain was constructed and studied from the previously reported BPQTL1b1a having a significantly higher systolic BP by 22 mmHg (P = 0.006) than that of the S rat. The new limits of BPQTL1b1a were between 133.53 Mb and 134.52 Mb with a 32% improvement from the previous1.45 Mb to the current 990.21 Kb interval containing 1 protein-coding gene, Mctp2, and a lncRNA. The congenic segments of these two BP QTLs overlapped between 134.09 Mb and 134.52 Mb. No exonic variants were detected in any of the genes. These findings reiterate complexity of genetic regulation of BP within QTL regions, where elements beyond protein-coding sequences could be factors in controlling BP.
Collapse
|
5
|
Teixeira SK, Pereira AC, Krieger JE. Genetics of Resistant Hypertension: the Missing Heritability and Opportunities. Curr Hypertens Rep 2018; 20:48. [PMID: 29779058 DOI: 10.1007/s11906-018-0852-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF THE REVIEW Blood pressure regulation in humans has long been known to be a genetically determined trait. The identification of causal genetic modulators for this trait has been unfulfilling at the least. Despite the recent advances of genome-wide genetic studies, loci associated with hypertension or blood pressure still explain a very low percentage of the overall variation of blood pressure in the general population. This has precluded the translation of discoveries in the genetics of human hypertension to clinical use. Here, we propose the combined use of resistant hypertension as a trait for mapping genetic determinants in humans and the integration of new large-scale technologies to approach in model systems the multidimensional nature of the problem. RECENT FINDINGS New large-scale efforts in the genetic and genomic arenas are paving the way for an increased and granular understanding of genetic determinants of hypertension. New technologies for whole genome sequence and large-scale forward genetic screens can help prioritize gene and gene-pathways for downstream characterization and large-scale population studies, and guided pharmacological design can be used to drive discoveries to the translational application through better risk stratification and new therapeutic approaches. Although significant challenges remain in the mapping and identification of genetic determinants of hypertension, new large-scale technological approaches have been proposed to surpass some of the shortcomings that have limited progress in the area for the last three decades. The incorporation of these technologies to hypertension research may significantly help in the understanding of inter-individual blood pressure variation and the deployment of new phenotyping and treatment approaches for the condition.
Collapse
Affiliation(s)
- Samantha K Teixeira
- Laboratorio de Genetica e Cardiologia Molecular, Faculdade Medicina da Universidade de São Paulo, Instituto do Coracao (InCor) HC.FMUSP, Av Dr Eneas C Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Alexandre C Pereira
- Laboratorio de Genetica e Cardiologia Molecular, Faculdade Medicina da Universidade de São Paulo, Instituto do Coracao (InCor) HC.FMUSP, Av Dr Eneas C Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Jose E Krieger
- Laboratorio de Genetica e Cardiologia Molecular, Faculdade Medicina da Universidade de São Paulo, Instituto do Coracao (InCor) HC.FMUSP, Av Dr Eneas C Aguiar 44, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
6
|
Abstract
BACKGROUND Previously, using linkage analysis and substitution mapping, two closely-linked interactive blood pressure quantitative trait loci (QTLs), BP QTL1 and BP QTL2, were located within a 13.96 Mb region from 117894038 to 131853815 bp (RGSC 3.4 version) on rat chromosome 5 (RNO5). This was done by using a series of congenic strains consisting of genomic segments of the Dahl salt-sensitive (S) rat substituted with that of the normotensive Lewis (LEW) rat. The interactive nature of the two loci was further confirmed by the construction and characterization of a panel of S.LEW bicongenic strains and corresponding S.LEW monocongenic strains, which provided definitive evidence of epistasis (genetic interaction) between BP QTL1 (7.77 Mb) and BP QTL2 (4.18 Mb). The purpose of this work was to further map these interacting QTLs. METHOD A new panel of seven new S.LEW bicongenic strains was constructed and characterized for BP. RESULTS The data obtained from these new strains further resolved BP QTL1 from 7.77 to 2.93 Mb. Further, BP QTL2 was traceable as not being a single QTL, but a composite of at least three QTLs, LEW alleles at two of which located within 2.26 Mb and 175 kb lowered BP but the third one located within 1.31 Mb increased BP. CONCLUSION Lack of coding variation within any of the regions further mapped within the previous QTL2 suggests noncoding variation as likely responsible for the observed epistasis.
Collapse
|
7
|
Padmanabhan S, Joe B. Towards Precision Medicine for Hypertension: A Review of Genomic, Epigenomic, and Microbiomic Effects on Blood Pressure in Experimental Rat Models and Humans. Physiol Rev 2017; 97:1469-1528. [PMID: 28931564 PMCID: PMC6347103 DOI: 10.1152/physrev.00035.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
8
|
Cheng X, Waghulde H, Mell B, Morgan EE, Pruett-Miller SM, Joe B. Positional cloning of quantitative trait nucleotides for blood pressure and cardiac QT-interval by targeted CRISPR/Cas9 editing of a novel long non-coding RNA. PLoS Genet 2017; 13:e1006961. [PMID: 28827789 PMCID: PMC5578691 DOI: 10.1371/journal.pgen.1006961] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/31/2017] [Accepted: 08/07/2017] [Indexed: 01/11/2023] Open
Abstract
Multiple GWAS studies have reported strong association of cardiac QT-interval to a region on HSA17. Interestingly, a rat locus homologous to this region is also linked to QT-intervals. The high resolution positional mapping study located the rat QT-interval locus to a <42.5kb region on RNO10. This region contained no variants in protein-coding sequences, but a prominent contiguous 19bp indel polymorphism was noted within a novel predicted long non-coding RNA (lncRNA), which we named as Rffl-lnc1. To assess the candidacy of this novel lncRNA on QT-interval, targeted CRISPR/Cas9 based genome-engineering approaches were applied on the rat strains used to map this locus. Targeted disruption of the rat Rffl-lnc1 locus caused aberrant, short QT-intervals and elevated blood pressure. Further, to specifically examine the significance of the 19bp polymorphism within the Rffl-lnc1 locus, a CRISPR/Cas9 based targeted knock-in rescue model was constructed by inserting the 19bp into the strain which contained the deletion polymorphism. The knock-in alleles successfully rescued the aberrant QT-interval and blood pressure phenotypes. Further studies revealed that the 19bp polymorphism was necessary and sufficient to recapitulate the phenotypic effect of the previously mapped <42.5kb rat locus. To our knowledge, this study is the first demonstration of a combination of both CRISPR/Cas9 based targeted disruption as well as CRISPR/Cas9 based targeted knock-in rescue approaches applied for a mammalian positional cloning study, which defines the quantitative trait nucleotides (QTNs) within a rat long non-coding RNA as being important for the pleiotropic regulation of both cardiac QT-intervals and blood pressure. Diseases of the cardiovascular system such as essential hypertension do not have a clear cause, but are known to run in families. The inheritance patterns of essential hypertension and other cardiac diseases suggest that they are not due to a single defective gene but instead are caused by multiple genetic defects that are inherited together in a patient. This complex inheritance makes it difficult to pinpoint the underlying defects. Here, we describe a panel of genetically-engineered rats, using which we have discovered a novel gene, which does not code for any protein, as a gene required for maintenance of normal blood pressure. Structural defects within this non-coding RNA cause hypertension and cardiac short-QT interval. Further, by performing genome surgery to correct the gene defect, we demonstrate the precise error in nucleotides that was inherited and caused hypertension and cardiac short-QT interval syndrome.
Collapse
Affiliation(s)
- Xi Cheng
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Harshal Waghulde
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Blair Mell
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Eric E. Morgan
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
- Department of Radiology, University of Toledo Medical Center, Toledo, OH, United States of America
| | - Shondra M. Pruett-Miller
- Department of Cell & Molecular Biology, Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Bina Joe
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
9
|
Elijovich F, Weinberger MH, Anderson CAM, Appel LJ, Bursztyn M, Cook NR, Dart RA, Newton-Cheh CH, Sacks FM, Laffer CL. Salt Sensitivity of Blood Pressure: A Scientific Statement From the American Heart Association. Hypertension 2016; 68:e7-e46. [PMID: 27443572 DOI: 10.1161/hyp.0000000000000047] [Citation(s) in RCA: 361] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Nie Y, Kumarasamy S, Waghulde H, Cheng X, Mell B, Czernik PJ, Lecka-Czernik B, Joe B. High-resolution mapping of a novel rat blood pressure locus on chromosome 9 to a region containing the Spp2 gene and colocalization of a QTL for bone mass. Physiol Genomics 2016; 48:409-19. [PMID: 27113531 DOI: 10.1152/physiolgenomics.00004.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/20/2016] [Indexed: 01/11/2023] Open
Abstract
Through linkage analysis of the Dahl salt-sensitive (S) rat and the spontaneously hypertensive rat (SHR), a blood pressure (BP) quantitative trait locus (QTL) was previously located on rat chromosome 9. Subsequent substitution mapping studies of this QTL revealed multiple BP QTLs within the originally identified logarithm of odds plot by linkage analysis. The focus of this study was on a 14.39 Mb region, the distal portion of which remained unmapped in our previous studies. High-resolution substitution mapping for a BP QTL in the setting of a high-salt diet indicated that an SHR-derived congenic segment of 787.9 kb containing the gene secreted phosphoprotein-2 (Spp2) lowered BP and urinary protein excretion. A nonsynonymous G/T polymorphism in the Spp2 gene was detected between the S and S.SHR congenic rats. A survey of 45 strains showed that the T allele was rare, being detected only in some substrains of SHR and WKY. Protein modeling prediction through SWISSPROT indicated that the predicted protein product of this variant was significantly altered. Importantly, in addition to improved cardiovascular and renal function, high salt-fed congenic animals carrying the SHR T variant of Spp2 had significantly lower bone mass and altered bone microarchitecture. Total bone volume and volume of trabecular bone, cortical thickness, and degree of mineralization of cortical bone were all significantly reduced in congenic rats. Our study points to opposing effects of a congenic segment containing the prioritized candidate gene Spp2 on BP and bone mass.
Collapse
Affiliation(s)
- Ying Nie
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Sivarajan Kumarasamy
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Harshal Waghulde
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Xi Cheng
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Blair Mell
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Piotr J Czernik
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio; and Department of Orthopedics, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Beata Lecka-Czernik
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio; and Department of Orthopedics, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio;
| |
Collapse
|
11
|
Pleiotropic Effect of a High Resolution Mapped Blood Pressure QTL on Tumorigenesis. PLoS One 2016; 11:e0153519. [PMID: 27073989 PMCID: PMC4830557 DOI: 10.1371/journal.pone.0153519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/30/2016] [Indexed: 11/19/2022] Open
Abstract
This study is focused on a translationally significant, genome-wide-association-study (GWAS) locus for cardiovascular disease (QT-interval) on human chromosome 17. We have previously validated and high resolution mapped the homologous genomic segment of this human locus to <42.5 kb on rat chromosome 10. This <42.5 kb segment in rats regulates both QT-interval and blood pressure and contains a single protein-coding gene, rififylin (Rffl). The expression of Rffl in the hearts and kidneys is differential between Dahl S and S.LEW congenic rats, which are the strains used for mapping this locus. Our previous study points to altered rate of endocytic recycling as the underlying mechanism, through which Rffl operates to control both QT-interval and blood pressure. Interestingly, Rffl also contributes to tumorigenesis by repressing caspases and tumor suppressor genes. Moreover, the expression of Methyl-CpG Binding Domain Protein 2 (Mbd2) in the hearts and kidneys is also higher in the S.LEW congenic strain than the background (control) Dahl S strain. Mbd2 can repress methylated tumor suppressor genes. These data suggest that the S.LEW congenic strain could be more susceptible to tumorigenesis. To test this hypothesis, the S and S.LEW strains were compared for susceptibility to azoxymethane-induced colon tumors. The number of colon tumors was significantly higher in the S.LEW congenic strain compared with the S rat. Transcriptomic analysis confirmed that the chemical carcinogenesis pathway was significantly up-regulated in the congenic strain. These studies provide evidence for a GWAS-validated genomic segment on rat chromosome 10 as being important for the regulation of cardiovascular function and tumorigenesis.
Collapse
|
12
|
Joe B. Dr Lewis Kitchener Dahl, the Dahl rats, and the "inconvenient truth" about the genetics of hypertension. Hypertension 2015; 65:963-9. [PMID: 25646295 PMCID: PMC4393342 DOI: 10.1161/hypertensionaha.114.04368] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/29/2014] [Indexed: 12/28/2022]
Abstract
Lewis K. Dahl is regarded as an iconic figure in the field of hypertension research. During the 1960s and 1970s he published several seminal articles in the field that shed light on the relationship between salt and hypertension. Further, the Dahl rat models of hypertension that he developed by a selective breeding strategy are among the most widely used models for hypertension research. To this day, genetic studies using this model are ongoing in our laboratory. While Dr. Dahl is known for his contributions to the field of hypertension, very little, if any, of his personal history is documented. This article details a short biography of Dr. Lewis Dahl, the history behind the development of the Dahl rats and presents an overview of the results obtained through the genetic analysis of the Dahl rat as an experimental model to study the inheritance of hypertension.
Collapse
Affiliation(s)
- Bina Joe
- From the Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine and Program in Physiological Genomics, University of Toledo College of Medicine and Life Sciences, OH.
| |
Collapse
|
13
|
Multiple blood pressure loci with opposing blood pressure effects on rat chromosome 1 in a homologous region linked to hypertension on human chromosome 15. Hypertens Res 2014; 38:61-7. [PMID: 25231251 DOI: 10.1038/hr.2014.134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 11/09/2022]
Abstract
Genetic dissection of blood pressure (BP) quantitative trait loci (QTLs) in rats has facilitated the fine-mapping of regions linked to the inheritance of hypertension. The goal of the current study was to further fine-map one such genomic region on rat chromosome 1 (BPQTL1b1), the homologous region of which on human chromosome 15 harbors BP QTLs, as reported by four independent studies. Of the six substrains constructed and studied, the systolic BP of two of the congenic strains were significantly lower by 36 and 27 mm Hg than that of the salt-sensitive (S) rat (P < 0.0001, P = 0.0003, respectively). The congenic segments of these two strains overlapped between 135.12 and 138.78 Mb and contained eight genes and two predicted miRNAs. None of the annotations had variants within expressed sequences. These data taken together with the previous localization resolved QTL1b1 with a 70% improvement from the original 7.39 Mb to the current 2.247 Mb interval. Furthermore, the systolic BP of one of the congenic substrains was significantly higher by 20 mm Hg (P < 0.0001) than the BP of the S rat. The limits of this newly identified QTL with a BP increasing effect (QTL1b1a) were between 134.12 and 135.76 Mb, spanning 1.64 Mb, containing two protein-coding genes, Mctp2 and Rgma, and a predicted miRNA. There were four synonymous variants within Mctp2. These data provide evidence for two independent BP QTLs with opposing BP effects within the previously identified BP QTL1b1 region. Additionally, these findings illustrate the complexity underlying the genetic mechanisms of BP regulation, wherein inherited elements beyond protein-coding sequences or known regulatory regions could be operational.
Collapse
|
14
|
Rapp JP. Theoretical model for gene-gene, gene-environment, and gene-sex interactions based on congenic-strain analysis of blood pressure in Dahl salt-sensitive rats. Physiol Genomics 2013; 45:737-50. [PMID: 23757391 DOI: 10.1152/physiolgenomics.00046.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There is a significant literature describing quantitative trait loci (QTL) controlling blood pressure (BP) in the Dahl salt-sensitive (S) rat. In studies to identify the genes underlying BP QTL it has been common practice to place chromosomal segments from low BP strains on the genetic background of the S rat and then reduce the congenic segments by substitution mapping. The present work suggests a model to simulate genetic interactions found using such congenic strains. The QTL are considered to be switches that can be either in series or in parallel represented by the logic operators AND or OR, respectively. The QTL switches can be on/off switches but are also allowed specific leak properties. The QTL switches are represented by a "universal" switch consisting of two molecules binding to form a complex. Genetic inputs enter the model as allelic products of one of the binding molecules and environmental variation (including dietary salt- and sex-related differences) enters as an influence on the concentration of the other binding molecule. The pairwise interactions of QTL are very well simulated and fall into recognizable patterns. There is, however, often more than one assumed model to predict a given pattern so that all patterns do not necessarily have a unique solution. Nevertheless, the models obtained provide a framework for placing the QTL in pathways relative to one another. Moreover, based on their leak properties pairs of QTL could be identified in which one QTL may alter the properties of the other QTL.
Collapse
Affiliation(s)
- John P Rapp
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, USA. )
| |
Collapse
|
15
|
Pillai R, Waghulde H, Nie Y, Gopalakrishnan K, Kumarasamy S, Farms P, Garrett MR, Atanur SS, Maratou K, Aitman TJ, Joe B. Isolation and high-throughput sequencing of two closely linked epistatic hypertension susceptibility loci with a panel of bicongenic strains. Physiol Genomics 2013; 45:729-36. [PMID: 23757393 DOI: 10.1152/physiolgenomics.00077.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interactions or epistasis between genetic factors may contribute to "missing heritability." While linkage analyses detect epistasis, defining the limits of the interacting segments poses a significant challenge especially when the interactions are between loci in close proximity. The goal of the present study was to isolate two such epistatic blood pressure (BP) loci on rat chromosome 5. A panel of S.LEW bicongenic strains along with the corresponding monocongenic strains was constructed. BP of each set comprising of one bicongenic and two corresponding monocongenic strains were determined along with the parental Salt-sensitive (S) strain. Epistasis was observed in one out of four sets of congenic strains, wherein systolic blood pressures (SBP) of the two monocongenic strains S.LEW(5)x6Bx9x5a and S.LEW(5)x6Bx9x5b were comparable to that of S, but the SBP of the bicongenic strain S.LEW(5)x6Bx9x5 (157 ± 4.3 mmHg) was significantly lower than that of S (196 ± 6.8 mmHg, P < 0.001). A two-way ANOVA indicated significant interactions between the LEW alleles at the two loci. The interacting loci were 2.02 Mb apart and located within genomic segments spanning 7.77 and 4.18 Mb containing 7,360 and 2,753 candidate variants, respectively. The current study demonstrates definitive evidence for epistasis and provides genetic tools for further dissection of the isolated epistatic BP loci.
Collapse
Affiliation(s)
- Resmi Pillai
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Genetic analysis of polygenic traits in rats and mice has been very useful for finding the approximate chromosomal locations of the genes causing quantitative phenotypic variation, so-called quantitative trait loci (QTL). Further localization of the causative genes and their ultimate identification has, however, proven to be slow and frustrating. A major technique for gene identification in such models utilizes series of congenic strains with progressively smaller chromosomal segments introgressed from one inbred strain into another inbred strain. Under the assumption that a single causative locus underlies a QTL, nested series of congenic strains were earlier suggested as an appropriate configuration for the congenic strains. It is now known that most QTL are compound, that is, the QTL signal is caused by clusters of loci where alleles exert positive, negative, and interactive effects on the trait in a given strain comparison. It is argued that in this situation an initial series of nonoverlapping contiguous congenic strains over a relatively large chromosomal region will lead to a better appreciation of the underlying complexity of the QTL and therefore more rapid gene identification. Examples from the literature where this strategy would be helpful, as well as a case where it would be potentially counterproductive, are given.
Collapse
Affiliation(s)
- John P Rapp
- Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | | |
Collapse
|
17
|
Kumarasamy S, Gopalakrishnan K, Toland EJ, Yerga-Woolwine S, Farms P, Morgan EE, Joe B. Refined mapping of blood pressure quantitative trait loci using congenic strains developed from two genetically hypertensive rat models. Hypertens Res 2011; 34:1263-70. [PMID: 21814219 DOI: 10.1038/hr.2011.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Previously linkage and substitution mapping were conducted between the Dahl Salt-sensitive (S) rat and the Spontaneously Hypertensive Rat (SHR) to address the hypothesis that genetic contributions to blood pressure (BP) in two genetically hypertensive rat strains are different. Among the BP quantitative trait loci (QTLs) detected, two are located on chromosome 9 within large genomic segments. The goal of the current study was to develop new iterations of congenic substrains, to further resolve both of these BP QTLs on chromosome 9 as independent congenic segments. A total of 10 new congenic substrains were developed and characterized. The newly developed congenic substrains S.SHR(9)x8Ax11A and S.SHR(9)x10Ax1, with introgressed segments of 2.05 and 6.14 Mb, represented the shortest genomic segments. Both of these congenic substrains, S.SHR(9)x8Ax11A and S.SHR(9)x10Ax1 lowered BP of the S rat by 56 mm Hg (P<0.001) and 15 mm Hg (P<0.039), respectively. The BP measurements were corroborated by radiotelemetry. Urinary protein excretion was significantly lowered by SHR alleles within S.SHR(9)x10Ax1 but not by S.SHR(9)x8Ax11A. The shorter of the two congenic segments, 2.05 Mb was further characterized and found to contain a single differentially expressed protein-coding gene, Tomoregulin-2 (Tmeff2). The protein expression of Tmeff2 was higher in the S rat compared with S.SHR(9)x8Ax11A, which also had lower cardiac hypertrophy as measured by echocardiography. Tmeff2 is known to be upregulated in patients from multiple cohorts with cardiac hypertrophy. Taken together, Tmeff2 can be prioritized as a candidate gene for hypertension and associated cardiac hypertrophy in both rats and in humans.
Collapse
Affiliation(s)
- Sivarajan Kumarasamy
- Physiological Genomics Laboratory, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Gopalakrishnan K, Morgan EE, Yerga-Woolwine S, Farms P, Kumarasamy S, Kalinoski A, Liu X, Wu J, Liu L, Joe B. Augmented rififylin is a risk factor linked to aberrant cardiomyocyte function, short-QT interval and hypertension. Hypertension 2011; 57:764-71. [PMID: 21357277 PMCID: PMC3060303 DOI: 10.1161/hypertensionaha.110.165803] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 01/27/2011] [Indexed: 01/14/2023]
Abstract
Using congenic strains of the Dahl salt-sensitive (S) rat introgressed with genomic segments from the normotensive Lewis rat, a blood pressure quantitative trait locus was previously mapped within 104 kb on chromosome 10. The goal of the current study was to conduct extensive phenotypic studies and to further fine-map this locus. At 14 weeks of age, the blood pressure of the congenic rats fed a low-salt diet was significantly higher by 47 mm Hg (P<0.001) compared with that of the S rat. A time-course study showed that the blood pressure effect was significant from very young ages of 50 to 52 days (13 mm Hg; P<0.01). The congenic strain implanted with electrocardiography transmitters demonstrated shorter-QT intervals and increased heart rate compared with S rats (P<0.01). The average survival of the congenic strain was shorter (134 days) compared with the S rat (175 days; P<0.0007). The critical region was narrowed to <42.5 kb containing 171 variants and a single gene, rififylin. Both the mRNA and protein levels of rififylin were significantly higher in the hearts of the congenic strain. Overexpression of rififylin is known to delay endocytic recycling. Endocytic recycling of fluorescently labeled holotransferrin from cardiomyocytes of the congenic strain was slower than that of S rats (P<0.01). Frequency of cardiomyocyte beats in the congenic strain (62±9 bpm) was significantly higher than that of the S rat (24±6 bpm; P<0.001). Taken together, our study provides evidence to suggest that early perturbations in endocytic recycling caused by the overexpression of Rffl is a novel physiological mechanism potentially underlying the development of hypertension.
Collapse
Affiliation(s)
- Kathirvel Gopalakrishnan
- Physiological Genomics Laboratory, University of Toledo College of Medicine, Toledo, OH, 43614, USA
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - Eric E. Morgan
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - Shane Yerga-Woolwine
- Physiological Genomics Laboratory, University of Toledo College of Medicine, Toledo, OH, 43614, USA
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - Phyllis Farms
- Physiological Genomics Laboratory, University of Toledo College of Medicine, Toledo, OH, 43614, USA
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - Sivarajan Kumarasamy
- Physiological Genomics Laboratory, University of Toledo College of Medicine, Toledo, OH, 43614, USA
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - Andrea Kalinoski
- Department of Surgery, University of Toledo College of Medicine, Toledo, OH, 43614, USA
- University of Toledo Advanced Microscopy Imaging Center, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - Xiaochen Liu
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - Jian Wu
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - Lijun Liu
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - Bina Joe
- Physiological Genomics Laboratory, University of Toledo College of Medicine, Toledo, OH, 43614, USA
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| |
Collapse
|
19
|
Gopalakrishnan K, Kumarasamy S, Rapp JP, Joe B. Reply to “Letter to the Editor: ‘Mapping genes for hypertension using experimental models: a challenging and unanticipated very long journey’”. Physiol Genomics 2011. [DOI: 10.1152/physiolgenomics.00230.2010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- K. Gopalakrishnan
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - S. Kumarasamy
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - J. P. Rapp
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - B. Joe
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| |
Collapse
|
20
|
Gopalakrishnan K, Saikumar J, Peters CG, Kumarasamy S, Farms P, Yerga-Woolwine S, Toland EJ, Schnackel W, Giovannucci DR, Joe B. Defining a rat blood pressure quantitative trait locus to a <81.8 kb congenic segment: comprehensive sequencing and renal transcriptome analysis. Physiol Genomics 2010; 42A:153-61. [PMID: 20716646 PMCID: PMC2957796 DOI: 10.1152/physiolgenomics.00122.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/12/2010] [Indexed: 01/11/2023] Open
Abstract
Evidence from multiple linkage and genome-wide association studies suggest that human chromosome 2 (HSA2) contains alleles that influence blood pressure (BP). Homologous to a large segment of HSA2 is rat chromosome 9 (RNO9), to which a BP quantitative trait locus (QTL) was previously mapped. The objective of the current study was to further resolve this BP QTL. Eleven congenic strains with introgressed segments spanning <81.8 kb to <1.33 Mb were developed by introgressing genomic segments of RNO9 from the Dahl salt-resistant (R) rat onto the genome of the Dahl salt-sensitive (S) rat and tested for BP. The congenic strain with the shortest introgressed segment spanning <81.8 kb significantly lowered BP of the hypertensive S rat by 25 mmHg and significantly increased its mean survival by 45 days. In contrast, two other congenic strains had increased BP compared with the S. We focused on the <81.8 kb congenic strain, which represents the shortest genomic segment to which a BP QTL has been mapped to date in any species. Sequencing of this entire region in both S and R rats detected 563 variants. The region did not contain any known or predicted rat protein coding genes. Furthermore, a whole genome renal transcriptome analysis between S and the <81.8 kb S.R congenic strain revealed alterations in several critical genes implicated in renal homeostasis. Taken together, our results provide the basis for future studies to examine the relationship between the candidate variants within the QTL region and the renal differentially expressed genes as potential causal mechanisms for BP regulation.
Collapse
Affiliation(s)
- K. Gopalakrishnan
- Physiological Genomics Laboratory, Departments of Physiology and Pharmacology and
| | - J. Saikumar
- Physiological Genomics Laboratory, Departments of Physiology and Pharmacology and
| | - C. G. Peters
- Neurosciences, University of Toledo College of Medicine, Toledo, Ohio
| | - S. Kumarasamy
- Physiological Genomics Laboratory, Departments of Physiology and Pharmacology and
| | - P. Farms
- Physiological Genomics Laboratory, Departments of Physiology and Pharmacology and
| | - S. Yerga-Woolwine
- Physiological Genomics Laboratory, Departments of Physiology and Pharmacology and
| | - E. J. Toland
- Physiological Genomics Laboratory, Departments of Physiology and Pharmacology and
| | - W. Schnackel
- Physiological Genomics Laboratory, Departments of Physiology and Pharmacology and
| | - D. R. Giovannucci
- Neurosciences, University of Toledo College of Medicine, Toledo, Ohio
| | - B. Joe
- Physiological Genomics Laboratory, Departments of Physiology and Pharmacology and
| |
Collapse
|
21
|
Kunert MP, Dwinell MR, Lombard JH. Vascular responses in aortic rings of a consomic rat panel derived from the Fawn Hooded Hypertensive strain. Physiol Genomics 2010; 42A:244-58. [PMID: 20841496 DOI: 10.1152/physiolgenomics.00124.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The present experiments, utilizing the high-throughput vascular protocol of PhysGen (Program for Genomic Applications) characterized the responses of aortic rings to vasoconstrictor (phenylephrine) and vasodilator (acetylcholine, sodium nitroprusside, and reduced tissue bath Po(2)) stimuli in consomic rat strains derived from a cross between the Fawn Hooded Hypertensive rat (FHH/EurMcwi) and the Brown Norway normotensive (BN/NHsdMcwi) rat. The effects of substituting individual BN chromosomes into the FHH genetic background were determined in animals that were maintained on a low-salt (0.4% NaCl) diet or switched to a high-salt (4% NaCl) diet for 3 wk. Sex-specific differences were evaluated in male and female consomic rats on similar dietary salt intake. Multiple chromosomes affected various vascular reactivity phenotypes in the FHH × BN consomic panel, and substantial salt-dependent changes in vascular reactivity and sex-specific differences in aortic reactivity were observed in individual consomic strains. However, compared with earlier studies of consomic rats derived from a cross between the BN rat and the Dahl salt-sensitive (SS) rat, only 3-7% of the vascular phenotypes were affected in a similar manner by substituting specific BN chromosomeschromosomes into the FHH genetic background versus the SS genetic background. The findings of the present study stress the potential value of consomic rat panels in gaining insight into genetic factors influencing vascular reactivity and suggest that the chromosomes that appear to be involved in the determination of aortic ring reactivity in different rodent models of hypertension are highly strain- and sex specific.
Collapse
Affiliation(s)
- Mary Pat Kunert
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | | | |
Collapse
|
22
|
Kumarasamy S, Gopalakrishnan K, Shafton A, Nixon J, Thangavel J, Farms P, Joe B. Mitochondrial polymorphisms in rat genetic models of hypertension. Mamm Genome 2010; 21:299-306. [PMID: 20443117 PMCID: PMC2890981 DOI: 10.1007/s00335-010-9259-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 04/09/2010] [Indexed: 12/04/2022]
Abstract
Hypertension is a complex trait that has been studied extensively for genetic contributions of the nuclear genome. We examined mitochondrial genomes of the hypertensive strains: the Dahl Salt-Sensitive (S) rat, the Spontaneously Hypertensive Rat (SHR), and the Albino Surgery (AS) rat, and the relatively normotensive strains: the Dahl Salt-Resistant (R) rat, the Milan Normotensive Strain (MNS), and the Lewis rat (LEW). These strains were used previously for linkage analysis for blood pressure (BP) in our laboratory. The results provide evidence to suggest that variations in the mitochondrial genome do not account for observed differences in blood pressure between the S and R rats. However, variants were detected among the mitochondrial genomes of the various hypertensive strains, S, SHR, and AS, and also among the normotensive strains R, MNS, and LEW. A total of 115, 114, 106, 106, and 16 variations in mtDNA were observed between the comparisons S versus LEW, S versus MNS, S versus SHR, S versus AS, and SHR versus AS, respectively. Among the 13 genes coding for proteins of the electron transport chain, 8 genes had nonsynonymous variations between S, LEW, MNS, SHR, and AS. The lack of any sequence variants between the mitochondrial genomes of S and R rats provides conclusive evidence that divergence in blood pressure between these two inbred strains is exclusively programmed through their nuclear genomes. The variations detected among the various hypertensive strains provides the basis to construct conplastic strains and further evaluate the effects of these variants on hypertension and associated phenotypes.
Collapse
Affiliation(s)
- Sivarajan Kumarasamy
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614-5804, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Nestor Kalinoski AL, Ramdath RS, Langenderfer KM, Sikanderkhel S, Deraedt S, Welch M, Park JL, Pringle T, Joe B, Cicila GT, Allison DC. Neointimal hyperplasia and vasoreactivity are controlled by genetic elements on rat chromosome 3. Hypertension 2009; 55:555-61. [PMID: 20026763 DOI: 10.1161/hypertensionaha.109.142505] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neointimal hyperplasia (NIH) can lead to restenosis after clinical vascular interventions. NIH results from complex and poorly understood interactions between signaling cascades in the extracellular matrix and the disrupted endothelium, which lead to vessel occlusion. Quantitative trait loci (QTLs) were reported previously on rat chromosomes 3 and 6 through linkage analysis of postinjury NIH in midiliac arterial sections. In the current study, substitution mapping validated the RNO3 NIH QTL but not the RNO6 NIH QTL. The SHR.BN3 congenic strain had a 3-fold increase in the percentage of NIH compared with the parental spontaneously hypertensive rat strain. A double congenic study of RNO3+RNO6 NIH QTL segments suggested less than additive effects of these 2 genomic regions. To test the hypothesis that changes in vessel dynamics account for the differences in NIH formation, we performed vascular reactivity studies in the Brown Norway (BN), spontaneously hypertensive rat (SHR), SHR.BN3, and SHR.BN6 strains. De-endothelialized left common carotid artery rings of the SHR.BN3 showed an increased vascular responsiveness when treated with serotonin or prostaglandin F2(alpha), with significant differences in EC(50) and maximum effect (P<0.01) values compared with the spontaneously hypertensive rat parental strain. Because both vascular reactivity and percentage of NIH formation in the SHR.BN3 strain are significantly higher than the SHR strain, we postulate that these traits may be associated and are controlled by genetic elements on RNO3. In summary, these results confirm that the RNO3 NIH QTL carries the gene(s) contributing to postinjury NIH formation.
Collapse
Affiliation(s)
- Andrea L Nestor Kalinoski
- Department of Surgery and University of Toledo Advanced Microscopy and Imaging Center, University of Toledo, Toledo, Ohio 43614-5804, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fuller JM, Bogdani M, Tupling TD, Jensen RA, Pefley R, Manavi S, Cort L, Blankenhorn EP, Mordes JP, Lernmark A, Kwitek AE. Genetic dissection reveals diabetes loci proximal to the gimap5 lymphopenia gene. Physiol Genomics 2009; 38:89-97. [PMID: 19351909 PMCID: PMC2696149 DOI: 10.1152/physiolgenomics.00015.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 04/06/2009] [Indexed: 12/30/2022] Open
Abstract
Congenic DRF.(f/f) rats are protected from type 1 diabetes (T1D) by 34 Mb of F344 DNA introgressed proximal to the gimap5 lymphopenia gene. To dissect the genetic factor(s) that confer protection from T1D in the DRF.(f/f) rat line, DRF.(f/f) rats were crossed to inbred BBDR or DR.(lyp/lyp) rats to generate congenic sublines that were genotyped and monitored for T1D, and positional candidate genes were sequenced. All (100%) DR.(lyp/lyp) rats developed T1D by 83 days of age. Reduction of the DRF.(f/f) F344 DNA fragment by 26 Mb (42.52-68.51 Mb) retained complete T1D protection. Further dissection revealed that a 2 Mb interval of F344 DNA (67.41-70.17 Mb) (region 1) resulted in 47% protection and significantly delayed onset (P < 0.001 compared with DR.(lyp/lyp)). Retaining <1 Mb of F344 DNA at the distal end (76.49-76.83 Mb) (region 2) resulted in 28% protection and also delayed onset (P < 0.001 compared with DR.(lyp/lyp)). Comparative analysis of diabetes frequency in the DRF.(f/f) congenic sublines further refined the RNO4 region 1 interval to approximately 670 kb and region 2 to the 340 kb proximal to gimap5. All congenic DRF.(f/f) sublines were prone to low-grade pancreatic mononuclear cell infiltration around ducts and vessels, but <20% of islets in nondiabetic rats showed islet infiltration. Coding sequence analysis revealed TCR Vbeta 8E, 12, and 13 as candidate genes in region 1 and znf467 and atp6v0e2 as candidate genes in region 2. Our results show that spontaneous T1D is controlled by at least two genetic loci 7 Mb apart on rat chromosome 4.
Collapse
Affiliation(s)
- J M Fuller
- Department of Clinical Sciences, Lund University, Clinical Research Center, Malmö, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Packard M, Saad Y, Gunning WT, Gupta S, Shapiro J, Garrett MR. Investigating the effect of genetic background on proteinuria and renal injury using two hypertensive strains. Am J Physiol Renal Physiol 2009; 296:F839-46. [PMID: 19176703 PMCID: PMC3973645 DOI: 10.1152/ajprenal.90370.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 01/21/2009] [Indexed: 12/21/2022] Open
Abstract
An earlier linkage analysis conducted on a population derived from the Dahl salt-sensitive hypertensive (S) and the spontaneously hypertensive rat (SHR) identified 10 genomic regions linked to several renal and/or cardiovascular traits. In particular, loci on rat chromosomes (RNO) 8 and 13 were linked to proteinuria, albuminuria, and renal damage. At both loci, the S allele was associated with increased proteinuria and renal damage. The current study aimed to confirm the linkage analysis and to evaluate the effect of genetic background on the ability of each locus (either RNO8 or RNO13) to exert a phenotypic difference when placed on a genetic background either susceptible (S rat) or resistant (SHR) to the development of renal disease. Congenic strains developed to transfer genomic segments from either RNO8 or RNO13 from the SHR onto the S genetic background [S.SHR(8) or S.SHR(13)] demonstrated significantly reduced proteinuria and improved renal function. Both congenic strains demonstrated significantly reduced glomerular and tubular injury, with renal interstitial fibrosis as the predominant pathological difference compared with the S. In contrast, transfer of RNO8 or RNO13 genomic regions from the S onto the resistant SHR genetic background [SHR.S(8) or SHR.S(13)] yielded no significant difference in proteinuria or glomerular, tubular, or interstitial injury compared with SHR. These findings demonstrate that genetic context plays a significant and important role in the phenotypic expression of genes influencing proteinuria on RNO8 and RNO13.
Collapse
Affiliation(s)
- Matthew Packard
- Dept. of Medicine and Kidney Disease Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., HRC 4150, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
26
|
Blood pressure and proteinuria effects of multiple quantitative trait loci on rat chromosome 9 that differentiate the spontaneously hypertensive rat from the Dahl salt-sensitive rat. J Hypertens 2008; 26:2134-41. [PMID: 18854752 DOI: 10.1097/hjh.0b013e32830ef95c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A blood pressure (BP) quantitative trait locus (QTL) was previously located within 117 kb on rat chromosome 9 (RNO9) using hypertensive Dahl salt-sensitive and normotensive Dahl salt-resistant rats. An independent study between two hypertensive rat strains, the Dahl salt-sensitive rat and the spontaneously hypertensive rat (SHR), also detected a QTL encompassing this 117 kb region. Dahl salt-sensitive alleles in both of these studies were associated with increased BP. To map SHR alleles that decrease BP in the Dahl salt-sensitive rat, a panel of eight congenic strains introgressing SHR alleles onto the Dahl salt-sensitive genetic background were constructed and characterized. S.SHR(9)x3B, S.SHR(9)x3A and S.SHR(9)x2B, the congenic regions of which span a portion or all of the 1 logarithm of odds (LOD) interval identified by linkage analysis, did not significantly alter BP. However, S.SHR(9), S.SHR(9)x4A, S.SHR(9)x7A, S.SHR(9)x8A and S.SHR(9)x10A, the introgressed segments of which extend distal to the 1 LOD interval, significantly reduced BP. The shortest genomic segment, BP QTL1, to which this BP-lowering effect can be traced is the differential segment of S.SHR(9)x4A and S.SHR(9)x2B, to which an urinary protein excretion QTL also maps. However, the introgressed segment of S.SHR(9)x10A, located outside of this QTL1 region, represented a second BP QTL (BP QTL2) having no detectable effects on urinary protein excretion. In summary, the data suggest that there are multiple RNO9 alleles of the SHR that lower BP of the Dahl salt-sensitive rat with or without detectable effects on urinary protein excretion and that only one of these BP QTLs, QTL1, overlaps with the 117 kb BP QTL region identified using Dahl salt-sensitive and Dahl salt-resistant rats.
Collapse
|
27
|
Toland EJ, Saad Y, Yerga-Woolwine S, Ummel S, Farms P, Ramdath R, Frank BC, Lee NH, Joe B. Closely linked non-additive blood pressure quantitative trait loci. Mamm Genome 2008; 19:209-18. [PMID: 18324438 DOI: 10.1007/s00335-008-9093-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 01/04/2008] [Indexed: 11/30/2022]
Abstract
There is enough evidence through linkage and substitution mapping to indicate that rat chromosome 1 harbors multiple blood pressure (BP) quantitative trait loci (QTLs). Of these, BP QTL1b was previously reported from our laboratory using congenic strains derived by introgressing normotensive alleles from the LEW rat onto the genetic background of the hypertensive Dahl salt-sensitive (S) rat. The region spanned by QTL1b is quite large (20.92 Mb), thus requiring further mapping with improved resolution so as to facilitate systematic identification of the underlying genetic determinant(s). Using congenic strains containing the LEW rat chromosomal segments on the Dahl salt-sensitive (S) rat background, further iterations of congenic substrains were constructed and characterized. Collective data obtained from this new iteration of congenic substrains provided evidence for further fragmentation of QTL1b with improved resolution. At least two separate genetic determinants of blood pressure underlie QTL1b. These are within 7.40 Mb and 7.31 Mb and are known as the QTL1b1 region and the QTL1b2 region, respectively. A genetic interaction was detected between the two BP QTLs. Interestingly, five of the previously reported differentially expressed genes located within the newly mapped QTL1b1 region remained differentially expressed. The congenic strain S.LEW(D1Mco36-D1Mco101), which harbors the QTL1b1 region alone but not the QTL1b2 region, serves as a genetic tool for further dissection of the QTL1b1 region and validation of Nr2f2 as a positional candidate gene. Overall, this study represents an intermediary yet obligatory progression towards the identification of genetic elements controlling BP.
Collapse
Affiliation(s)
- Edward J Toland
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3035 Arlington Avenue, Toledo, OH 43614, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Saad Y, Toland EJ, Yerga-Woolwine S, Farms P, Joe B. Congenic mapping of a blood pressure QTL region on rat chromosome 10 using the Dahl salt-sensitive rat with introgressed alleles from the Milan normotensive strain. Mamm Genome 2008; 19:85-91. [PMID: 18175179 DOI: 10.1007/s00335-007-9084-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 11/26/2007] [Indexed: 10/22/2022]
Abstract
Multiple blood pressure (BP) quantitative trait loci (QTLs) are reported on rat chromosome 10 (RNO10). Of these, QTLs detected by contrasting the genome of the hypertensive Dahl salt-sensitive (S) rat with two different relatively normotensive strains, Lewis (LEW) and the Milan normotensive strain (MNS), are reported. Because the deduced QTL regions of both S vs. LEW and S vs. MNS comparisons are within large genomic segments encompassing more than 2 cM, there was a need to further localize these QTLs and determine whether the QTLs are unique to specific strain comparisons. Previously, the S.MNS QTL1 was mapped to less than 2.6 cM as a differential segment between two congenic strains. In this study, multiple congenic strains spanning the projected interval were studied. The BP effect of each strain was interpreted as the net effect of alleles introgressed within that congenic strain. The results suggest that the MNS alleles within the previously proposed differential segment (D10Rat27-D10Rat24) do not independently lower BP of the S rat. However, another congenic strain, S.MNS(10) x 9, containing introgressed MNS alleles that are outside of the previously proposed differential segment is of interest because (1) it demonstrated a BP-lowering effect, (2) it is contained within a single congenic strain and is not based on the observed effect of a differential segment, and, more importantly, (3) it overlaps with the previously identified S.LEW BP QTL region. Identification of the same QTL affecting BP in multiple rat strains will provide further support for the QTL's involvement and importance in human essential hypertension.
Collapse
Affiliation(s)
- Yasser Saad
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3035 Arlington Avenue, Toledo, Ohio, 43614-5804, USA
| | | | | | | | | |
Collapse
|
29
|
Lee NH, Haas BJ, Letwin NE, Frank BC, Luu TV, Sun Q, House CD, Yerga-Woolwine S, Farms P, Manickavasagam E, Joe B. Cross-Talk of Expression Quantitative Trait Loci Within 2 Interacting Blood Pressure Quantitative Trait Loci. Hypertension 2007; 50:1126-33. [DOI: 10.1161/hypertensionaha.107.093138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Norman H. Lee
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Brian J. Haas
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Noah E. Letwin
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Bryan C. Frank
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Truong V. Luu
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Qiang Sun
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Carrie D. House
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Shane Yerga-Woolwine
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Phyllis Farms
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Ezhilarasi Manickavasagam
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Bina Joe
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| |
Collapse
|