1
|
Chalifoux N, Ko T, Slovis J, Spelde A, Kilbaugh T, Mavroudis CD. Cerebral Autoregulation: A Target for Improving Neurological Outcomes in Extracorporeal Life Support. Neurocrit Care 2024; 41:1055-1072. [PMID: 38811513 PMCID: PMC11599328 DOI: 10.1007/s12028-024-02002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Despite improvements in survival after illnesses requiring extracorporeal life support, cerebral injury continues to hinder successful outcomes. Cerebral autoregulation (CA) is an innate protective mechanism that maintains constant cerebral blood flow in the face of varying systemic blood pressure. However, it is impaired in certain disease states and, potentially, following initiation of extracorporeal circulatory support. In this review, we first discuss patient-related factors pertaining to venovenous and venoarterial extracorporeal membrane oxygenation (ECMO) and their potential role in CA impairment. Next, we examine factors intrinsic to ECMO that may affect CA, such as cannulation, changes in pulsatility, the inflammatory and adaptive immune response, intracranial hemorrhage, and ischemic stroke, in addition to ECMO management factors, such as oxygenation, ventilation, flow rates, and blood pressure management. We highlight potential mechanisms that lead to disruption of CA in both pediatric and adult populations, the challenges of measuring CA in these patients, and potential associations with neurological outcome. Altogether, we discuss individualized CA monitoring as a potential target for improving neurological outcomes in extracorporeal life support.
Collapse
Affiliation(s)
- Nolan Chalifoux
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Tiffany Ko
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia Slovis
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Audrey Spelde
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Todd Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantine D Mavroudis
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Hao G, Conzen-Dilger C, Schmidt TP, Harder E, Schöps M, Clauser JC, Schubert GA, Lindauer U. Effect of isolated intracranial hypertension on cerebral perfusion within the phase of primary disturbances after subarachnoid hemorrhage in rats. Front Cell Neurosci 2023; 17:1115385. [PMID: 37502465 PMCID: PMC10368889 DOI: 10.3389/fncel.2023.1115385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/05/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction Elevated intracranial pressure (ICP) and blood components are the main trigger factors starting the complex pathophysiological cascade following subarachnoid hemorrhage (SAH). It is not clear whether they independently contribute to tissue damage or whether their impact cannot be differentiated from each other. We here aimed to establish a rat intracranial hypertension model that allows distinguishing the effects of these two factors and investigating the relationship between elevated ICP and hypoperfusion very early after SAH. Methods Blood or four different types of fluids [gelofusine, silicone oil, artificial cerebrospinal fluid (aCSF), aCSF plus xanthan (CX)] were injected into the cisterna magna in anesthetized rats, respectively. Arterial blood pressure, ICP and cerebral blood flow (CBF) were continuously measured up to 6 h after injection. Enzyme-linked immunosorbent assays were performed to measure the pro-inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in brain cortex and peripheral blood. Results Silicone oil injection caused deaths of almost all animals. Compared to blood, gelofusine resulted in lower peak ICP and lower plateau phase. Artificial CSF reached a comparable ICP peak value but failed to reach the ICP plateau of blood injection. Injection of CX with comparable viscosity as blood reproduced the ICP course of the blood injection group. Compared with the CBF course after blood injection, CX induced a comparable early global ischemia within the first minutes which was followed by a prompt return to baseline level with no further hypoperfusion despite an equal ICP course. The inflammatory response within the tissue did not differ between blood or blood-substitute injection. The systemic inflammation was significantly more pronounced in the CX injection group compared with the other fluids including blood. Discussion By cisterna magna injection of blood substitution fluids, we established a subarachnoid space occupying rat model that exactly mimicked the course of ICP in the first 6 h following blood injection. Fluids lacking blood components did not induce the typical prolonged hypoperfusion occurring after blood-injection in this very early phase. Our study strongly suggests that blood components rather than elevated ICP play an important role for early hypoperfusion events in SAH.
Collapse
Affiliation(s)
- Guangshan Hao
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Catharina Conzen-Dilger
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Tobias Philip Schmidt
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ekaterina Harder
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Malte Schöps
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Johanna Charlotte Clauser
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Gerrit Alexander Schubert
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Ute Lindauer
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Csecsei P, Olah C, Varnai R, Simon D, Erdo-Bonyar S, Berki T, Czabajszki M, Zavori L, Schwarcz A, Molnar T. Different Kinetics of Serum ADAMTS13, GDF-15, and Neutrophil Gelatinase-Associated Lipocalin in the Early Phase of Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:11005. [PMID: 37446186 DOI: 10.3390/ijms241311005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Growth differentiation factor 15 (GDF-15), neutrophil gelatinase-associated lipocalin (NGAL), and ADAMTS13 have previously been implicated in the pathophysiological processes of SAH. In the present study, we aim to examine their role in the early period of SAH and their relationship to primary and secondary outcomes. Serum samples were collected at five time periods after SAH (at 24 h (D1), at 72 h (D3), at 120 h (D5), at 168 h (D7) and at 216 h (D9), post-admission) and) were measured by using MILLIPLEX Map Human Cardiovascular Disease (CVD) Magnetic Bead Panel 2. We included 150 patients with SAH and 30 healthy controls. GDF-15 levels at D1 to D9 were significantly associated with a 3-month unfavorable outcome. Based on the ROC analysis, in patients with a good clinical grade at admission (WFNS I-III), the GDF-15 value measured at time point D3 predicted a 3-month unfavorable outcome (cut-off value: 3.97 ng/mL, AUC:0.833, 95%CI: 0.728-0.938, sensitivity:73.7%, specificity:82.6%, p < 0.001). Univariate binary logistic regression analysis showed that serum NGAL levels at D1-D5 and ADAMTS13 levels at D7-D9 were associated with MVS following SAH. GDF-15 is an early indicator of a poor 3-month functional outcome even in patients with mild clinical conditions at admission.
Collapse
Affiliation(s)
- Peter Csecsei
- Department of Neurosurgery, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Csaba Olah
- Neurosurgical Unit, B.A.Z. County Hospital, 3526 Miskolc, Hungary
| | - Reka Varnai
- Department of Primary Health Care, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Diana Simon
- Department of Immunology and Biotechnology, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Szabina Erdo-Bonyar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Timea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Mate Czabajszki
- Neurosurgical Unit, B.A.Z. County Hospital, 3526 Miskolc, Hungary
| | - Laszlo Zavori
- Emergency Department, Saudi German Hospital, Dubai 391093, United Arab Emirates
| | - Attila Schwarcz
- Department of Neurosurgery, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Tihamer Molnar
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, 7624 Pecs, Hungary
| |
Collapse
|
4
|
Romoli M, Giammello F, Mosconi MG, De Mase A, De Marco G, Digiovanni A, Ciacciarelli A, Ornello R, Storti B. Immunological Profile of Vasospasm after Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:ijms24108856. [PMID: 37240207 DOI: 10.3390/ijms24108856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) carries high mortality and disability rates, which are substantially driven by complications. Early brain injury and vasospasm can happen after SAH and are crucial events to prevent and treat to improve prognosis. In recent decades, immunological mechanisms have been implicated in SAH complications, with both innate and adaptive immunity involved in mechanisms of damage after SAH. The purpose of this review is to summarize the immunological profile of vasospasm, highlighting the potential implementation of biomarkers for its prediction and management. Overall, the kinetics of central nervous system (CNS) immune invasion and soluble factors' production critically differs between patients developing vasospasm compared to those not experiencing this complication. In particular, in people developing vasospasm, a neutrophil increase develops in the first minutes to days and pairs with a mild depletion of CD45+ lymphocytes. Cytokine production is boosted early on after SAH, and a steep increase in interleukin-6, metalloproteinase-9 and vascular endothelial growth factor (VEGF) anticipates the development of vasospasm after SAH. We also highlight the role of microglia and the potential influence of genetic polymorphism in the development of vasospasm and SAH-related complications.
Collapse
Affiliation(s)
- Michele Romoli
- Neurology and Stroke Unit, Department of Neuroscience, Bufalini Hospital, 47521 Cesena, Italy
| | - Fabrizio Giammello
- Translational Molecular Medicine and Surgery, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98122 Messina, Italy
| | - Maria Giulia Mosconi
- Emergency and Vascular Medicine, University of Perugia-Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| | - Antonio De Mase
- Neurology and Stroke Unit, AORN Cardarelli, 80131 Napoli, Italy
| | - Giovanna De Marco
- Department of Biomedical and NeuroMotor Sciences of Bologna, University of Bologna, 40126 Bologna, Italy
| | - Anna Digiovanni
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66013 Chieti, Italy
| | - Antonio Ciacciarelli
- Stroke Unit, Department of Emergency Medicine, University of Roma La Sapienza-Umberto I Hospital, 00161 Rome, Italy
| | - Raffaele Ornello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Benedetta Storti
- Cerebrovascular Diseases Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| |
Collapse
|
5
|
Zeineddine HA, Honarpisheh P, McBride D, Pandit PKT, Dienel A, Hong SH, Grotta J, Blackburn S. Targeting Hemoglobin to Reduce Delayed Cerebral Ischemia After Subarachnoid Hemorrhage. Transl Stroke Res 2022; 13:725-735. [PMID: 35157256 PMCID: PMC9375776 DOI: 10.1007/s12975-022-00995-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
Abstract
Delayed cerebral ischemia (DCI) continues to be a sequela of aneurysmal subarachnoid hemorrhage (aSAH) that carries significant morbidity and mortality. Aside from nimodipine, no therapeutic agents are available to reduce the incidence of DCI. Pathophysiologic mechanisms contributing to DCI are poorly understood, but accumulating evidence over the years implicates several factors. Those have included microvessel vasoconstriction, microthrombosis, oxidative tissue damage, and cortical spreading depolarization as well as large vessel vasospasm. Common to these processes is red blood cell leakage into the cerebrospinal fluids (CSF) and subsequent lysis which releases hemoglobin, a central instigator in these events. This has led to the hypothesis that early blood removal may improve clinical outcome and reduce DCI. This paper will provide a narrative review of the evidence of hemoglobin as an instigator of DCI. It will also elaborate on available human data that discuss blood clearance and CSF drainage as a treatment of DCI. Finally, we will address a recent novel device that is currently being tested, the Neurapheresis CSF Management System™. This is an automated dual-lumen lumbar drainage system that has an option to filter CSF and return it to the patient.
Collapse
Affiliation(s)
- Hussein A Zeineddine
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, 6400 Fannin Street, Suite 2800, Houston, TX, 77030, USA
| | - Pedram Honarpisheh
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, 6400 Fannin Street, Suite 2800, Houston, TX, 77030, USA
| | - Devin McBride
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, 6400 Fannin Street, Suite 2800, Houston, TX, 77030, USA
| | - Peeyush Kumar Thankamani Pandit
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, 6400 Fannin Street, Suite 2800, Houston, TX, 77030, USA
| | - Ari Dienel
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, 6400 Fannin Street, Suite 2800, Houston, TX, 77030, USA
| | - Sung-Ha Hong
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, 6400 Fannin Street, Suite 2800, Houston, TX, 77030, USA
| | - James Grotta
- Clinical Innovation and Research Institute, Memorial Hermann Hospital-Texas Medical Center, Houston, TX, USA
| | - Spiros Blackburn
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, 6400 Fannin Street, Suite 2800, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Díaz-García E, Nanwani-Nanwani K, García-Tovar S, Alfaro E, López-Collazo E, Quintana-Díaz M, García-Rio F, Cubillos-Zapata C. NLRP3 Inflammasome Overactivation in Patients with Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res 2022; 14:334-346. [PMID: 35819747 PMCID: PMC10160181 DOI: 10.1007/s12975-022-01064-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is an uncommon and severe subtype of stroke leading to the loss of many years of productive life. We analyzed NLRP3 activity as well as key components of the inflammasome cascade in monocytes and plasma from 28 patients with aSAH and 14 normal controls using flow cytometry, western blot, ELISA, and qPCR technologies. Our data reveal that monocytes from patients with aSAH present an overactivation of the NLRP3 inflammasome, which results in the presence of high plasma levels of interleukin (IL)-1β, IL-18, gasdermin D, and tissue factor. Although further research is needed, we propose that serum tissue factor concentration might be a useful prognosis biomarker for clinical outcome, and for Tako-Tsubo cardiomyopathy and cerebral vasospasm prediction. Remarkably, MCC-950 inhibitor effectively blocks NLRP3 activation in aSAH monocyte culture and supresses tissue factor release to the extracellular space. Finally, our findings suggest that NLRP3 activation could be due to the release of erythrocyte breakdown products to the subarachnoid space during aSAH event. These data define NLRP3 activation in monocytes from aSAH patients, indicating systemic inflammation that results in serum TF upregulation which in turns correlates with aSAH severity and might serve as a prognosis biomarker for aSAH clinical outcome and for cerebral vasospasm and Tako-Tsubo cardiomyopathy prediction.
Collapse
Affiliation(s)
- Elena Díaz-García
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain. .,Biomedical Research Networking Center On Respiratory Diseases (CIBERES), Madrid, Spain.
| | | | - Sara García-Tovar
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Enrique Alfaro
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | | | - Manuel Quintana-Díaz
- Department of Intensive Care Medicine, La Paz University Hospital, Madrid, Spain.,Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Francisco García-Rio
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain.,Biomedical Research Networking Center On Respiratory Diseases (CIBERES), Madrid, Spain.,Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Carolina Cubillos-Zapata
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain. .,Biomedical Research Networking Center On Respiratory Diseases (CIBERES), Madrid, Spain.
| |
Collapse
|
7
|
Lin F, Li R, Tu WJ, Chen Y, Wang K, Chen X, Zhao J. An Update on Antioxidative Stress Therapy Research for Early Brain Injury After Subarachnoid Hemorrhage. Front Aging Neurosci 2021; 13:772036. [PMID: 34938172 PMCID: PMC8686680 DOI: 10.3389/fnagi.2021.772036] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
Abstract
The main reasons for disability and death in aneurysmal subarachnoid hemorrhage (aSAH) may be early brain injury (EBI) and delayed cerebral ischemia (DCI). Despite studies reporting and progressing when DCI is well-treated clinically, the prognosis is not well-improved. According to the present situation, we regard EBI as the main target of future studies, and one of the key phenotype-oxidative stresses may be called for attention in EBI after laboratory subarachnoid hemorrhage (SAH). We summarized the research progress and updated the literature that has been published about the relationship between experimental and clinical SAH-induced EBI and oxidative stress (OS) in PubMed from January 2016 to June 2021. Many signaling pathways are related to the mechanism of OS in EBI after SAH. Several antioxidative stress drugs were studied and showed a protective response against EBI after SAH. The systematical study of antioxidative stress in EBI after laboratory and clinical SAH may supply us with new therapies about SAH.
Collapse
Affiliation(s)
- Fa Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Runting Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Wen-Jun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- The General Office of Stroke Prevention Project Committee, National Health Commission of the People’s Republic of China, Beijing, China
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Lidington D, Wan H, Bolz SS. Cerebral Autoregulation in Subarachnoid Hemorrhage. Front Neurol 2021; 12:688362. [PMID: 34367053 PMCID: PMC8342764 DOI: 10.3389/fneur.2021.688362] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a devastating stroke subtype with a high rate of mortality and morbidity. The poor clinical outcome can be attributed to the biphasic course of the disease: even if the patient survives the initial bleeding emergency, delayed cerebral ischemia (DCI) frequently follows within 2 weeks time and levies additional serious brain injury. Current therapeutic interventions do not specifically target the microvascular dysfunction underlying the ischemic event and as a consequence, provide only modest improvement in clinical outcome. SAH perturbs an extensive number of microvascular processes, including the “automated” control of cerebral perfusion, termed “cerebral autoregulation.” Recent evidence suggests that disrupted cerebral autoregulation is an important aspect of SAH-induced brain injury. This review presents the key clinical aspects of cerebral autoregulation and its disruption in SAH: it provides a mechanistic overview of cerebral autoregulation, describes current clinical methods for measuring autoregulation in SAH patients and reviews current and emerging therapeutic options for SAH patients. Recent advancements should fuel optimism that microvascular dysfunction and cerebral autoregulation can be rectified in SAH patients.
Collapse
Affiliation(s)
- Darcy Lidington
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | - Hoyee Wan
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada.,Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Süslü H, Tatarlı N, Ceylan D, Süslü H, Bozkurt S, Avsar T, Güçlü B. The effects of ozone oxidative preconditioning on subarachnoid hemorrhage via rat cerebral vasospasm model. NEUROL SCI NEUROPHYS 2021. [DOI: 10.4103/nsn.nsn_74_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Zeyu Zhang, Yuanjian Fang, Cameron Lenahan, Sheng Chen. The role of immune inflammation in aneurysmal subarachnoid hemorrhage. Exp Neurol 2020; 336:113535. [PMID: 33249033 DOI: 10.1016/j.expneurol.2020.113535] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating disease, which mainly caused by the rupture of an intracranial aneurysm. Clinical trials have demonstrated that cerebral vasospasm (CVS) is not the sole contributor to delayed cerebral ischemia (DCI) and poor outcomes in patients with aSAH. Currently, accumulating evidence suggests that early brain injury (EBI), which occurs within 72 h after the onset of aSAH, lays the foundation for subsequent pathophysiological changes and poor outcomes of patients. The pathological mechanisms of EBI mainly include increased intracranial pressure, oxidative stress, neuroinflammation, blood-brain barrier (BBB) disruption, cerebral edema and cell death. Among them, the brain immune inflammatory responses involve a variety of immune cells and active substances, which play an important role in EBI after aSAH and may be related to DCI and long-term outcomes. Thus, attention should be paid to strategies targeting cerebral immune inflammatory responses. In this review, we discuss the role of immune inflammatory responses in the occurrence and development of aSAH, as well as some inflammatory biomarkers related to CVS, DCI, and aSAH outcomes. In addition, we also summarize the potential therapeutic drugs that target cerebral immune inflammatory responses for patients with aSAH in current research.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Khey KMW, Huard A, Mahmoud SH. Inflammatory Pathways Following Subarachnoid Hemorrhage. Cell Mol Neurobiol 2020; 40:675-693. [PMID: 31808009 PMCID: PMC11448815 DOI: 10.1007/s10571-019-00767-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is an acute cerebrovascular emergency resulting from the rupture of a brain aneurysm. Despite only accounting for 5% of all strokes, SAH imposes a significant health burden on society due to its relatively young age at onset. Those who survive the initial bleed are often afflicted with severe disabilities thought to result from delayed cerebral ischemia (DCI). Consequently, elucidating the underlying mechanistic pathways implicated in DCI development following SAH remains a priority. Neuroinflammation has recently been implicated as a promising new theory for the development of SAH complications. However, despite this interest, clinical trials have failed to provide consistent evidence for the use of anti-inflammatory agents in SAH patients. This may be explained by the complexity of SAH as a plethora of inflammatory pathways have been shown to be activated in the disease. By determining how these pathways may overlap and interact, we hope to better understand the developmental processes of SAH complications and how to prevent them. The goal of this review is to provide insight into the available evidence regarding the molecular pathways involved in the development of inflammation following SAH and how SAH complications may arise as a result of these inflammatory pathways.
Collapse
Affiliation(s)
- Kevin Min Wei Khey
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Alec Huard
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Sherif Hanafy Mahmoud
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
12
|
Vanherle L, Matuskova H, Don-Doncow N, Uhl FE, Meissner A. Improving Cerebrovascular Function to Increase Neuronal Recovery in Neurodegeneration Associated to Cardiovascular Disease. Front Cell Dev Biol 2020; 8:53. [PMID: 32117979 PMCID: PMC7020256 DOI: 10.3389/fcell.2020.00053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Mounting evidence indicates that the presence of cardiovascular disease (CVD) and risk factors elevates the incidence of cognitive impairment (CI) and dementia. CVD and associated decline in cardiovascular function can impair cerebral blood flow (CBF) regulation, leading to the disruption of oxygen and nutrient supply in the brain where limited intracellular energy storage capacity critically depends on CBF to sustain proper neuronal functioning. During hypertension and acute as well as chronic CVD, cerebral hypoperfusion and impaired cerebrovascular function are often associated with neurodegeneration and can lead to CI and dementia. Currently, all forms of neurodegeneration associated to CVD lack effective treatments, which highlights the need to better understand specific mechanisms linking cerebrovascular dysfunction and CBF deficits to neurodegeneration. In this review, we discuss vascular targets that have already shown attenuation of neurodegeneration or CI associated to hypertension, heart failure (HF) and stroke by improving cerebrovascular function or CBF deficits.
Collapse
Affiliation(s)
- Lotte Vanherle
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Hana Matuskova
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,Department of Neurology, University Hospital Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Nicholas Don-Doncow
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Franziska E Uhl
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Anja Meissner
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
13
|
Okada T, Suzuki H. Mechanisms of neuroinflammation and inflammatory mediators involved in brain injury following subarachnoid hemorrhage. Histol Histopathol 2020; 35:623-636. [PMID: 32026458 DOI: 10.14670/hh-18-208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disorder. Neuroinflammation is a critical cause of brain injury following SAH in both acute and chronic phases. While accumulating evidence has shown that therapies targeting neuroinflammation exerted beneficial effects in experimental SAH, there is little clinical evidence. One of the factors making neuroinflammation complicated is that inflammatory signaling pathways and mediators act as protective or detrimental responses at different phases. In addition, biomarkers to detect neuroinflammation are little known in clinical settings. In this review, first, we discuss how the inflammatory signaling pathways contribute to brain injury and other secondary pathophysiological changes in SAH. Damage-associated molecular patterns arising from mechanical stress, transient global cerebral ischemia, red blood cell breakdown and delayed cerebral ischemia following SAH trigger to activate pattern recognition receptors (PRRs) such as Toll-like receptors, nucleotide-binding oligomerization domain-like receptors, and receptors for advanced glycation end products. Most of PRRs activate common downstream signaling transcriptional factor nuclear factor-κΒ and mitogen-activated protein kinases, releasing pro-inflammatory mediators and cytokines. Next, we focus on how pro-inflammatory substances play a role during the course of SAH. Finally, we highlight an important inducer of neuroinflammation, matricellular protein (MCP). MCPs are a component of extracellular matrix and exert beneficial and harmful effects through binding to receptors, other matrix proteins, growth factors, and cytokines. Treatment targeting MCPs is being proved efficacious in pre-clinical models for preventing brain injury including neuroinflammation in SAH. In addition, MCPs may be a candidate of biomarkers predicting brain injury following SAH in clinical settings.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|
14
|
Immune Characterization in Aneurysmal Subarachnoid Hemorrhage Reveals Distinct Monocytic Activation and Chemokine Patterns. Transl Stroke Res 2019; 11:1348-1361. [PMID: 31858408 DOI: 10.1007/s12975-019-00764-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/08/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
The pathophysiology of delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH) is incompletely understood. Intrathecal activation of inflammatory immune cells is suspected to play a major role for the induction of DCI. The aim of this study is to identify immune cell subsets and mediators involved in the pathogenesis of DCI. We prospectively collected blood and CSF from 25 patients with aSAH at early and late time points. We performed multicolor flow cytometry of peripheral blood and CSF, analyzing immune cell activation and pro-inflammatory cyto- and chemokines. In addition to the primary immune analysis, we retrospectively analyzed immune cell dynamics in the CSF of all our SAH patients. Our results show an increased monocyte infiltration secondary to aneurysm rupture in patients with DCI. Infiltrating monocytes are defined by a non-classical (CD14dim CD16+) phenotype at early stages. The infiltration is most likely triggered by the intrathecal immune activation. Here, high levels of pro-inflammatory chemokines, such as CXCL1, CXCL9, CXCL10, and CXCL11, are detected. The intrathecal cellular activation profile of monocytes was defined by upregulation of CD163 and CD86 on monocytes and a presumable later differentiation into antigen-presenting plasmacytoid dendritic cells (pDCs) and hemosiderophages. Peripheral immune activation was reflected by CD69 upregulation on T cells. Analysis of DCI prevalence, Hunt and Hess grade, and clinical outcome correlated with the degree of immune activation. We demonstrate that monocytes and T cells are activated intrathecally after aSAH and mediate a local inflammatory response which is presumably driven by chemokines. Our data shows that the distinct pattern of immune activation correlates with the prevalence of DCI, indicating a pathophysiological connection to the incidence of vasospasm.
Collapse
|
15
|
Ahn SH, Savarraj JPJ, Parsha K, Hergenroeder GW, Chang TR, Kim DH, Kitagawa RS, Blackburn SL, Choi HA. Inflammation in delayed ischemia and functional outcomes after subarachnoid hemorrhage. J Neuroinflammation 2019; 16:213. [PMID: 31711504 PMCID: PMC6849179 DOI: 10.1186/s12974-019-1578-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Inflammatory mechanism has been implicated in delayed cerebral ischemia (DCI) and poor functional outcomes after subarachnoid hemorrhage (SAH). Identification of cytokine patterns associated with inflammation in acute SAH will provide insights into underlying biological processes of DCI and poor outcomes that may be amenable to interventions. METHODS Serum samples were collected from a prospective cohort of 60 patients with acute non-traumatic SAH at four time periods (< 24 h, 24-48 h, 3-5 days, and 6-8 days after SAH) and concentration levels of 41 cytokines were measured by multiplex immunoassay. Logistic regression analysis was used to identify cytokines associated with DCI and poor functional outcomes. Correlation networks were constructed to identify cytokine clusters. RESULTS Of the 60 patients enrolled in the study, 14 (23.3%) developed DCI and 16 (26.7%) had poor functional outcomes at 3 months. DCI was associated with increased levels of PDGF-ABBB and CCL5 and decreased levels of IP-10 and MIP-1α. Poor functional outcome was associated with increased levels of IL-6 and MCP-1α. Network analysis identified distinct cytokine clusters associated with DCI and functional outcomes. CONCLUSIONS Serum cytokine patterns in early SAH are associated with poor functional outcomes and DCI. The significant cytokines primarily modulate the inflammatory response. This supports earlier SAH studies linking inflammation and poor outcomes. In particular, this study identifies novel cytokine patterns over time that may indicate impending DCI.
Collapse
Affiliation(s)
- Sung-Ho Ahn
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Busan, South Korea
| | - Jude P J Savarraj
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, USA
| | - Kaushik Parsha
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Georgene W Hergenroeder
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, USA
| | - Tiffany R Chang
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, USA
| | - Dong H Kim
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, USA
| | - Ryan S Kitagawa
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, USA
| | - Spiros L Blackburn
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, USA
| | - H Alex Choi
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, USA.
| |
Collapse
|
16
|
Akamatsu Y, Pagan VA, Hanafy KA. The role of TLR4 and HO-1 in neuroinflammation after subarachnoid hemorrhage. J Neurosci Res 2019; 98:549-556. [PMID: 31468571 PMCID: PMC6980436 DOI: 10.1002/jnr.24515] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
This review on the mechanisms of neuroinflammation following subarachnoid hemorrhage will focus mainly on toll-like receptor 4 (TLR4), Heme Oxygenase-1 (HO-1), and the role of microglia and macrophages in this process. Vasospasm has long been the focus of research in SAH; however, clinical trials have shown that amelioration of vasospasm does not lead to an improved clinical outcome. This necessitates the need for novel avenues of research. Our work has demonstrated that microglial TLR4 and microglial HO-1, not only affects cognitive dysfunction, but also circadian dysrhythmia in a mouse model of SAH. To attempt to translate these findings, we have also begun investigating macrophages in the cerebrospinal fluid of SAH patients. The goal of this review is to provide an update on the role of TLR4, HO-1, and other signal transduction pathways in SAH-induced neuroinflammation.
Collapse
Affiliation(s)
- Yosuke Akamatsu
- Department of Surgery, Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Vicente A Pagan
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Khalid A Hanafy
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Division of Neurointensive Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Li G, Wang Q, Lin T, Liu C. Effect of thrombin injection on cerebral vascular in rats with subarachnoid hemorrhage. J Int Med Res 2019; 47:2819-2831. [PMID: 31179838 PMCID: PMC6683912 DOI: 10.1177/0300060519851353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective To evaluate the effect of thrombin (TM) injection via the cerebellomedullary cistern on cerebral vessels in rats with subarachnoid hemorrhage (SAH). Methods Eighteen rats were randomly divided into three groups. In the A1 group, physiological saline was injected via the cerebellomedullary cistern; in the A2 group, 3 U of TM was injected into the subarachnoid space; and in the A3 group, SAH models were established and 3 U of TM was injected with the first injection of whole blood. Three days later, basilar artery specimens were collected for pathological examination. Results The basilar arterial lumen cross-sectional area was significantly smaller in the A2 versus the A1 group, and proteinase-activated receptor (PAR)-1 and tumor necrosis factor (TNF)-α average optical densities were significantly higher (all P < 0.05). Basilar arterial lumen cross-sectional areas were significantly smaller in the A3 than the A2 group and average TNF-α optical densities were significantly lower (both P < 0.05), while those of PAR-1 did not differ significantly. Conclusions There was no significant difference in the extent of cerebral vasospasm between SAH and non-SAH model groups following TM injection into the subarachnoid space, so TM was considered to be an independent factor affecting cerebral vasospasm.
Collapse
Affiliation(s)
- Gang Li
- 1 Department of Neurosurgery, The Third People's Hospital of Hainan Province, SanYa, Hainan Province, China
| | - Qingsong Wang
- 2 Department of Neurosurgery, Haikou Municipal Hospital, Haikou, Hainan Province, China
| | - Tingting Lin
- 2 Department of Neurosurgery, Haikou Municipal Hospital, Haikou, Hainan Province, China
| | - Chengye Liu
- 1 Department of Neurosurgery, The Third People's Hospital of Hainan Province, SanYa, Hainan Province, China
| |
Collapse
|
18
|
Carrizzo A, Procaccini C, Lenzi P, Fusco C, Villa F, Migliarino S, De Lucia M, Fornai F, Matarese G, Puca AA, Vecchione C. PTX3: an inflammatory protein modulating ultrastructure and bioenergetics of human endothelial cells. IMMUNITY & AGEING 2019; 16:4. [PMID: 30733816 PMCID: PMC6359806 DOI: 10.1186/s12979-019-0144-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/30/2019] [Indexed: 12/04/2022]
Abstract
Background Pentraxin 3 (PTX3), an acute-phase inflammation protein produced by several cell types, has long been described as a possible biomarker for age-related cardiovascular and cerebrovascular diseases. Although several mechanisms of action have been identified to date in the vascular and immune systems, the direct effects of PTX3 on isolated endothelial cells at morphological and metabolic levels remain unknown. Findings PTX3 induced cytoplasmic vacuolization and dilution of mitochondrial matrix in isolated, human endothelial cells. Moreover, metabolic assays revealed that PTX3 increases respiratory capacity in support of mitochondrial function, and partially sustains the glycolytic pathway. Conclusions PTX3 has, per se, a direct action on ultrastructural and bioenergetic parameters of isolated endothelial cells. This finding can be associated with our previous demonstration of a deleterious effect of PTX3 on the endothelial layer. More studies are needed to clearly demonstrate any direct correlation between these ultrastructural and bioenergetic changes with endothelial dysfunction, especially with regard to age-related cerebro- and cardio-vascular diseases.
Collapse
Affiliation(s)
- Albino Carrizzo
- 1Vascular Pathophysiology Unit, IRCCS Neuromed, 86077 Pozzilli, IS Italy
| | - Claudio Procaccini
- 2Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy.,3IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Paola Lenzi
- 4Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Clorinda Fusco
- 5Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Francesco Villa
- 6Cardiovascular Research Unit, IRCCS MultiMedica, 20099 Sesto San Giovanni, MI Italy
| | - Serena Migliarino
- 7Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Francesco Fornai
- 1Vascular Pathophysiology Unit, IRCCS Neuromed, 86077 Pozzilli, IS Italy.,4Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Giuseppe Matarese
- 2Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy.,5Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Annibale A Puca
- 6Cardiovascular Research Unit, IRCCS MultiMedica, 20099 Sesto San Giovanni, MI Italy.,8Department of Medicine and Surgery, University of Salerno, Via S. Allende, 84081 Baronissi, SA Italy
| | - Carmine Vecchione
- 1Vascular Pathophysiology Unit, IRCCS Neuromed, 86077 Pozzilli, IS Italy.,8Department of Medicine and Surgery, University of Salerno, Via S. Allende, 84081 Baronissi, SA Italy
| |
Collapse
|
19
|
Feng SYS, Hollis JH, Samarasinghe T, Phillips DJ, Rao S, Yu VYH, Walker AM. Endotoxin-induced cerebral pathophysiology: differences between fetus and newborn. Physiol Rep 2019; 7:e13973. [PMID: 30785235 PMCID: PMC6381816 DOI: 10.14814/phy2.13973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023] Open
Abstract
As the comparative pathophysiology of perinatal infection in the fetus and newborn is uncertain, this study contrasted the cerebral effects of endotoxemia in conscious fetal sheep and newborn lambs. Responses to intravenous bacterial endotoxin (lipopolysaccharide, LPS) or normal saline were studied on three consecutive days in fetal sheep (LPS 1 μg/kg, n = 5; normal saline n = 5) and newborn lambs (LPS 2 μg/kg, n = 10; normal saline n = 5). Cerebro-vascular function was assessed by monitoring cerebral blood flow (CBF) and cerebral vascular resistance (CVR) over 12 h each day, and inflammatory responses were assessed by plasma TNF alpha (TNF-α), nitrate and nitrite concentrations. Brain injury was quantified by counting both resting and active macrophages in the caudate nucleus and periventricular white matter (PVWM). An acute cerebral vasoconstriction (within 1 h of LPS injection) occurred in both the fetus (ΔCVR +53%) and newborn (ΔCVR +63%); subsequently prolonged cerebral vasodilatation occurred in the fetus (ΔCVR -33%) in association with double plasma nitrate/nitrite concentrations, but not in the newborn. Abundant infiltration of activated macrophages was observed in both CN and PVWM at each age, with the extent being 2-3 times greater in the fetus (P < 0.001). In conclusion, while the fetus and newborn experience a similar acute disruption of the cerebral circulation after LPS, the fetus suffers a more prolonged circulatory disruption, a greater infiltration of activated macrophages, and an exaggerated susceptibility to brain injury.
Collapse
Affiliation(s)
- Susan Y. S. Feng
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Neonatal DirectorateKing Edward Memorial HospitalPerth Children's HospitalSubiacoWestern AustraliaAustralia
| | - Jacob H. Hollis
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia
| | | | - David J. Phillips
- Academic & Medical PortfolioEpworth HealthCareRichmondVictoriaAustralia
| | - Shripada Rao
- Neonatal DirectorateKing Edward Memorial HospitalPerth Children's HospitalSubiacoWestern AustraliaAustralia
| | - Victor Y. H. Yu
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Monash NewbornMonash Medical CentreClaytonVictoriaAustralia
| | - Adrian M. Walker
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
| |
Collapse
|
20
|
Ripoll JG, Blackshear JL, Díaz-Gómez JL. Acute Cardiac Complications in Critical Brain Disease. Neurosurg Clin N Am 2018; 29:281-297. [PMID: 29502718 DOI: 10.1016/j.nec.2017.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute cardiac complications in critical brain disease should be understood as a clinical condition representing an intense brain-heart crosstalk and might mimic ischemic heart disease. Two main entities (neurogenic stunned myocardium [NSM] and stress cardiomyopathy) have been better characterized in the neurocritically ill patients and they portend worse clinical outcomes in these cases. The pathophysiology of NSM remains elusive. However, significant progress has been made on the early identification of neurocardiac compromise following acute critical brain disease. Effective prevention and treatment interventions are yet to be determined.
Collapse
Affiliation(s)
- Juan G Ripoll
- Department of Critical Care Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Joseph L Blackshear
- Department of Cardiology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - José L Díaz-Gómez
- Departments of Critical Care Medicine, Anesthesiology and Neurologic Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
21
|
Ripoll JG, Blackshear JL, Díaz-Gómez JL. Acute Cardiac Complications in Critical Brain Disease. Neurol Clin 2018; 35:761-783. [PMID: 28962813 DOI: 10.1016/j.ncl.2017.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Acute cardiac complications in critical brain disease should be understood as a clinical condition representing an intense brain-heart crosstalk and might mimic ischemic heart disease. Two main entities (neurogenic stunned myocardium [NSM] and stress cardiomyopathy) have been better characterized in the neurocritically ill patients and they portend worse clinical outcomes in these cases. The pathophysiology of NSM remains elusive. However, significant progress has been made on the early identification of neurocardiac compromise following acute critical brain disease. Effective prevention and treatment interventions are yet to be determined.
Collapse
Affiliation(s)
- Juan G Ripoll
- Department of Critical Care Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Joseph L Blackshear
- Department of Cardiology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - José L Díaz-Gómez
- Departments of Critical Care Medicine, Anesthesiology and Neurologic Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
22
|
Blackburn SL, Swisher CB, Grande AW, Rubi A, Verbick LZ, McCabe A, Lad SP. Novel Dual Lumen Catheter and Filtration Device for Removal of Subarachnoid hemorrhage: First Case Report. Oper Neurosurg (Hagerstown) 2018; 16:E148-E153. [DOI: 10.1093/ons/opy151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/16/2018] [Indexed: 11/13/2022] Open
Abstract
Abstract
BACKGROUND AND IMPORTANCE
The amount of subarachnoid blood and the presence of toxic blood breakdown products in the cerebrospinal fluid (CSF) have long been associated with poor outcomes in aneurysmal subarachnoid hemorrhage. The Neurapheresis™ system (Minnetronix Inc, St. Paul, Minnesota) has been developed to filter CSF and remove blood products, and is being investigated for safety and feasibility in the ExtracorPoreal FILtration of subarachnoid hemorrhage via SpinaL CAtheteR (PILLAR) study. We report the first case using this novel device.
CLINICAL PRESENTATION
A 65-yr-old female presented with a ruptured left posterior communicating artery aneurysm. Following placement of a ventriculostomy and coil embolization of her aneurysm, the patient underwent placement of a lumbar dual lumen catheter for CSF filtration as part of the PILLAR study. In this case, a total of 9 h of filtration during 31 h of catheter indwelling resulted in 309.47 mL of processed CSF without complication. Computed tomography images demonstrated an interval reduction of subarachnoid hemorrhage immediately after filtration. The patient was discharged home on postbleed day 11 and at 30 d showed good recovery.
CONCLUSION
Safety of the Neurapheresis procedure was confirmed in this first case, and we will continue to evaluate safety of the Neurapheresis system through the PILLAR trial.
Collapse
Affiliation(s)
- Spiros L Blackburn
- Department of Neurosurgery, University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Christa B Swisher
- Department of Neurology, Duke University Medical Center, Durham, North Carolina
| | - Andrew W Grande
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - Alba Rubi
- Department of Neurosurgery, University of Texas Health Sciences Center at Houston, Houston, Texas
| | | | | | - Shivanand P Lad
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
23
|
Blackburn SL, Kumar PT, McBride D, Zeineddine HA, Leclerc J, Choi HA, Dash PK, Grotta J, Aronowski J, Cardenas JC, Doré S. Unique Contribution of Haptoglobin and Haptoglobin Genotype in Aneurysmal Subarachnoid Hemorrhage. Front Physiol 2018; 9:592. [PMID: 29904350 PMCID: PMC5991135 DOI: 10.3389/fphys.2018.00592] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/02/2018] [Indexed: 01/12/2023] Open
Abstract
Survivors of cerebral aneurysm rupture are at risk for significant morbidity and neurological deficits. Much of this is related to the effects of blood in the subarachnoid space which induces an inflammatory cascade with numerous downstream consequences. Recent clinical trials have not been able to reduce the toxic effects of free hemoglobin or improve clinical outcome. One reason for this may be the inability to identify patients at high risk for neurologic decline. Recently, haptoglobin genotype has been identified as a pertinent factor in diabetes, sickle cell, and cardiovascular disease, with the Hp 2-2 genotype contributing to increased complications. Haptoglobin is a protein synthesized by the liver that binds free hemoglobin following red blood cell lysis, and in doing so, prevents hemoglobin induced toxicity and facilitates clearance. Clinical studies in patients with subarachnoid hemorrhage indicate that Hp 2-2 patients may be a high-risk group for hemorrhage related complications and poor outcome. We review the relevance of haptoglobin in subarachnoid hemorrhage and discuss the effects of genotype and expression levels on the known mechanisms of early brain injury (EBI) and cerebral ischemia after aneurysm rupture. A better understanding of haptoglobin and its role in preventing hemoglobin related toxicity should lead to novel therapeutic avenues.
Collapse
Affiliation(s)
- Spiros L Blackburn
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Peeyush T Kumar
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Devin McBride
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Hussein A Zeineddine
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Jenna Leclerc
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - H Alex Choi
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Pramod K Dash
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - James Grotta
- Department of Neurology, The University of Texas Health Sciences Center, Houston, TX, United States
| | - Jaroslaw Aronowski
- Department of Neurology, The University of Texas Health Sciences Center, Houston, TX, United States
| | - Jessica C Cardenas
- Department of Surgery, Division of Acute Care Surgery and Center for Translational Injury Research, The University of Texas Health Science Center, Houston, TX, United States
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL, United States
| |
Collapse
|
24
|
Yang SJ, Shao GF, Chen JL, Gong J. The NLRP3 Inflammasome: An Important Driver of Neuroinflammation in Hemorrhagic Stroke. Cell Mol Neurobiol 2018; 38:595-603. [PMID: 28752408 PMCID: PMC11481835 DOI: 10.1007/s10571-017-0526-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/24/2017] [Indexed: 01/10/2023]
Abstract
Hemorrhagic stroke is a devastating clinical event with no effective medical treatment. Neuroinflammation, which follows a hemorrhagic stroke, is an important element that involves both acute brain injury and subsequent brain rehabilitation. Therefore, delineating the key inflammatory mediators and deciphering their pathophysiological roles in hemorrhagic strokes is of great importance in the development of novel therapeutic targets for this disease. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a multi-protein complex that is localized within the cytoplasm. This NOD-like receptor orchestrates innate immune responses to pathogenic organisms and cell stress through the activation of caspase-1 and the maturation of the proinflammatory cytokines such as interleukin-1β (IL-1β) and IL-18. Mounting evidence has demonstrated that when the NLRP3 inflammasome is activated, it exerts harmful effects on brain tissue after a hemorrhagic stroke. This review article summarizes the current knowledge regarding the role and the underlying mechanisms of the NLRP3 inflammasome in the pathophysiological processes of hemorrhagic strokes. A better understanding of the function and regulation of the NLRP3 inflammasome in hemorrhagic strokes will provide clues for devising novel therapeutic strategies to fight this disease.
Collapse
Affiliation(s)
- Shao-Jun Yang
- Department of Neurosurgery, Zhuji People's Hospital of Zhejiang Province, Zhuji, 311800, Zhejiang, China
| | - Gao-Feng Shao
- Department of Neurosurgery, Zhuji People's Hospital of Zhejiang Province, Zhuji, 311800, Zhejiang, China
| | - Jiang-Li Chen
- Department of Neurosurgery, Zhuji People's Hospital of Zhejiang Province, Zhuji, 311800, Zhejiang, China
| | - Jie Gong
- Department of Neurosurgery, Zhejiang Hospital of Zhejiang Province, 12 Lingyin Road, Hangzhou, 310013, Zhejiang, China.
| |
Collapse
|
25
|
Lidington D, Kroetsch JT, Bolz SS. Cerebral artery myogenic reactivity: The next frontier in developing effective interventions for subarachnoid hemorrhage. J Cereb Blood Flow Metab 2018; 38:17-37. [PMID: 29135346 PMCID: PMC5757446 DOI: 10.1177/0271678x17742548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/26/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is a devastating cerebral event that kills or debilitates the majority of those afflicted. The blood that spills into the subarachnoid space stimulates profound cerebral artery vasoconstriction and consequently, cerebral ischemia. Thus, once the initial bleeding in SAH is appropriately managed, the clinical focus shifts to maintaining/improving cerebral perfusion. However, current therapeutic interventions largely fail to improve clinical outcome, because they do not effectively restore normal cerebral artery function. This review discusses emerging evidence that perturbed cerebrovascular "myogenic reactivity," a crucial microvascular process that potently dictates cerebral perfusion, is the critical element underlying cerebral ischemia in SAH. In fact, the myogenic mechanism could be the reason why many therapeutic interventions, including "Triple H" therapy, fail to deliver benefit to patients. Understanding the molecular basis for myogenic reactivity changes in SAH holds the key to develop more effective therapeutic interventions; indeed, promising recent advancements fuel optimism that vascular dysfunction in SAH can be corrected to improve outcome.
Collapse
Affiliation(s)
- Darcy Lidington
- Department of Physiology, University of Toronto, Toronto, Canada
- Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, Toronto, Canada
| | - Jeffrey T Kroetsch
- Department of Physiology, University of Toronto, Toronto, Canada
- Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, Toronto, Canada
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Toronto, Canada
- Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, Toronto, Canada
- Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
26
|
Changyaleket B, Chong ZZ, Dull RO, Nanegrungsunk D, Xu H. Heparanase promotes neuroinflammatory response during subarachnoid hemorrhage in rats. J Neuroinflammation 2017; 14:137. [PMID: 28720149 PMCID: PMC5516362 DOI: 10.1186/s12974-017-0912-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/10/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Heparanase, a mammalian endo-β-D-glucoronidase that specifically degrades heparan sulfate, has been implicated in inflammation and ischemic stroke. However, the role of heparanase in neuroinflammatory response in subarachnoid hemorrhage (SAH) has not yet been investigated. This study was designed to examine the association between heparanase expression and neuroinflammation during subarachnoid hemorrhage. METHODS Rats were subjected to SAH by endovascular perforation, and the expression of heparanase was determined by Western blot analysis and immunofluorescence in the ipsilateral brain cortex at 24 h post-SAH. Pial venule leukocyte trafficking was monitored by using intravital microscopy through cranial window. RESULTS Our results indicated that, compared to their sham-surgical controls, the rats subjected to SAH showed marked elevation of heparanase expression in the ipsilateral brain cortex. The SAH-induced elevation of heparanase was accompanied by increased leukocyte trafficking in pial venules and significant neurological deficiency. Intracerebroventricular application of a selective heparanase inhibitor, OGT2115, which was initiated at 3 h after SAH, significantly suppressed the leukocyte trafficking and improved the neurological function. CONCLUSIONS Our findings indicate that heparanase plays an important role in mediating the neuroinflammatory response after SAH and contributes to SAH-related neurological deficits and early brain injury following SAH.
Collapse
Affiliation(s)
| | - Zhao Zhong Chong
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Randal O Dull
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Danop Nanegrungsunk
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Haoliang Xu
- Department of Pathology, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
27
|
Li Y, Sun F, Jing Z, Wang X, Hua X, Wan L. Glycyrrhizic acid exerts anti-inflammatory effect to improve cerebral vasospasm secondary to subarachnoid hemorrhage in a rat model. Neurol Res 2017; 39:727-732. [PMID: 28415958 DOI: 10.1080/01616412.2017.1316903] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study aimed to investigate the therapeutic effect of glycyrrhizic acid (GA) on the cerebral vasospasm (CVS) in a rat subarachnoid hemorrhage (SAH) model and to explore the potential mechanism. A total of 44 healthy male rats were randomly assigned into 3 groups: control group (n = 12), SAH group (n = 16) and GA group (n = 16). No treatment was conducted in control group; in SAH group and GA group, experimental CVS was induced using a double-hemorrhage model and then rats were intraperitoneally injected with normal saline and GA at 10 mg/kg, respectively, once daily. Three days later, neurological function was evaluated. Then, animals were sacrificed, and the basilar artery was collected. The inner diameter and vascular wall thickness were determined. Western blotting was employed to detect high mobility group protein B1 (HMGB1) protein expression and RT-PCR to detect the mRNA expression of IL-1β, IL-6, TNF-α, and IL-10 in the basilar artery. GA treatment significantly improved the neurological function following SAH. In GA group, the basilar artery diameter increased markedly and vascular wall thickness reduced significantly when compared with SAH group (p < 0.05). HMGB1 protein expression and mRNA expression of IL-1β, IL-6, TNF-α, and IL-10 in SAH group were significantly higher than in control group (p < 0.05). However, GA dramatically reduced IL-1β, IL-6, and TNF-α, and further elevated IL-10 expression as compared to SAH group (p < 0.05). GA may inhibit HMGB1 expression and subsequent production of inflammatory cytokines to prevent CVS following SAH.
Collapse
Affiliation(s)
- Yi Li
- a Department of Neurosurgery , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Fengbin Sun
- b Department of Neurosurgery , Tongren Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Zhaohui Jing
- a Department of Neurosurgery , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xuhui Wang
- a Department of Neurosurgery , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xuming Hua
- a Department of Neurosurgery , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Liang Wan
- a Department of Neurosurgery , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
28
|
Zheng VZ, Wong GKC. Neuroinflammation responses after subarachnoid hemorrhage: A review. J Clin Neurosci 2017; 42:7-11. [PMID: 28302352 DOI: 10.1016/j.jocn.2017.02.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022]
Abstract
Subarachnoid hemorrhage (SAH) is an important cause of stroke mortality and morbidity, especially in the young stroke population. Recent evidences indicate that neuroinflammation plays a critical role in both early brain injury and the delayed brain deterioration after SAH, including cellular and molecular components. Cerebral vasospasm (CV) can lead to death after SAH and independently correlated with poor outcome. Neuroinflammation is evidenced to contribute to the etiology of vasospasm. Besides, systemic inflammatory response syndrome (SIRS) commonly occurs in the SAH patients, with the presence of non-infectious fever and systematic complications. In this review, we summarize the evidences that indicate the prominent role of inflammation in the pathophysiology of SAH. That may provide the potential implications on diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Vera Zhiyuan Zheng
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Hong Kong, China
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Hong Kong, China.
| |
Collapse
|
29
|
Carrizzo A, Vecchione C, Damato A, di Nonno F, Ambrosio M, Pompeo F, Cappello E, Capocci L, Peruzzi M, Valenti V, Biondi-Zoccai G, Marullo AGM, Palmerio S, Carnevale R, Spinelli CC, Puca AA, Rubattu S, Volpe M, Sadoshima J, Frati G, Sciarretta S. Rac1 Pharmacological Inhibition Rescues Human Endothelial Dysfunction. J Am Heart Assoc 2017; 6:e004746. [PMID: 28246076 PMCID: PMC5524008 DOI: 10.1161/jaha.116.004746] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 01/06/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Endothelial dysfunction contributes significantly to the development of vascular diseases. However, a therapy able to reduce this derangement still needs to be identified. We evaluated the effects of pharmacological inhibition of Rac1, a small GTPase protein promoting oxidative stress, in human endothelial dysfunction. METHODS AND RESULTS We performed vascular reactivity studies to test the effects of NSC23766, a Rac1 inhibitor, on endothelium-dependent vasorelaxation of saphenous vein segments collected from 85 subjects who had undergone surgery for venous insufficiency and from 11 patients who had undergone peripheral vascular surgery. The endothelium-dependent vasorelaxation of the varicose segments of saphenous veins collected from patients with venous insufficiency was markedly impaired and was also significantly lower than that observed in control nonvaricose vein tracts from the same veins. Rac1 activity, reactive oxygen species levels, and reduced nicotine adenine dinucleotide phosphate (NADPH) oxidase activity were significantly increased in varicose veins, and NSC23766 was able to significantly improve endothelium-dependent vasorelaxation of dysfunctional saphenous vein portions in a nitric oxide-dependent manner. These effects were paralleled by a significant reduction of NADPH oxidase activity and activation of endothelial nitric oxide synthase. Finally, we further corroborated this data by demonstrating that Rac1 inhibition significantly improves venous endothelial function and reduces NADPH oxidase activity in saphenous vein grafts harvested from patients with vascular diseases undergoing peripheral bypass surgery. CONCLUSIONS Rac1 pharmacological inhibition rescues endothelial function and reduces oxidative stress in dysfunctional veins. Rac1 inhibition may represent a potential therapeutic intervention to reduce human endothelial dysfunction and subsequently vascular diseases in various clinical settings.
Collapse
Affiliation(s)
| | - Carmine Vecchione
- IRCCS Neuromed, Pozzilli (IS), Italy
- Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
| | | | | | | | | | | | | | - Mariangela Peruzzi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Valentina Valenti
- Department of Imaging, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Giuseppe Biondi-Zoccai
- IRCCS Neuromed, Pozzilli (IS), Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Antonino G M Marullo
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Silvia Palmerio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | | | - Annibale A Puca
- Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
- IRCCS Multimedica S.p.A, Milan, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli (IS), Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Italy
| | - Massimo Volpe
- IRCCS Neuromed, Pozzilli (IS), Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Italy
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Giacomo Frati
- IRCCS Neuromed, Pozzilli (IS), Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli (IS), Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| |
Collapse
|
30
|
Effect of Substituting 50% Isovue for Sterile Water as the Delivery Medium for SIR-Spheres: Improved Dose Delivery and Decreased Incidence of Stasis. Clin Nucl Med 2017; 42:176-179. [PMID: 28072623 DOI: 10.1097/rlu.0000000000001532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The objective of this study was to evaluate the effect of substituting 50% Isovue (Bracco Diagnostics Inc, Monroe Township, NJ) for sterile water on the delivery of Y resin microspheres (SIR-Spheres [Sirtex Medical Limited, Sydney, Australia]). MATERIALS AND METHODS The authors retrospectively reviewed all SIR-Spheres radioembolizations at the authors' institution from January 1, 2011, to February 10, 2014. From January 1, 2011, to April 30, 2013, all users performed SIR-Spheres radioembolization per the manufacturer's original instructions using sterile water in the B and D lines and intermittently checking the progress of the embolization by injecting contrast via the B line. Beginning May 1, 2013, a modified technique using Isovue diluted 50% with saline in place of sterile water in both the B and D lines of the infusion set. The authors compared the prepared versus administered activity of Y SIR-Spheres, fluoroscopy time, administration time, and frequency of radioembolizations terminated for stasis when using water versus dilute contrast in the B and D lines. RESULTS One hundred seventy-five radioembolizations were performed, 132 (75%) with water as the delivery medium and 43 (25%) with 50% contrast as delivery medium. The mean percentage of the Y activity administered was 98% with contrast versus 87% with water (P < 0.01). More than 95% of cases using contrast resulted in 90% or more delivery of the prepared Y activity versus 59% of cases with water (P < 0.01). For cases using water, 17% were terminated for stasis, whereas 2% (1 case) using contrast was terminated for stasis. The mean Y administration time was 7 minutes with contrast versus 22 minutes with water (P = 0.015). Excluding the 37 cases involving coil embolization, the mean fluoroscopy time was 8.3 minutes with contrast versus 11.5 minutes with water (P < 0.05). No complications occurred with the contrast method; however, there were 4 complications with water, including 1 nontarget gastric ulceration. CONCLUSIONS Using dilute contrast as the delivery medium for SIR-Spheres resulted in a significantly greater percentage of the prepared activity administered to the patient with substantially shorter administration time. Termination for stasis occurred less often with dilute contrast. No complications were observed when using dilute contrast, which allowed continuous real-time monitoring of the Y microsphere administration.
Collapse
|
31
|
Lv T, Miao YF, Jin YC, Yang SF, Wu H, Dai J, Zhang XH. Ethyl Pyruvate Attenuates Early Brain Injury Following Subarachnoid Hemorrhage in the Endovascular Perforation Rabbit Model Possibly Via Anti-inflammation and Inhibition of JNK Signaling Pathway. Neurochem Res 2017; 42:1044-1056. [PMID: 28236213 DOI: 10.1007/s11064-016-2138-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 11/30/2016] [Accepted: 12/08/2016] [Indexed: 12/16/2022]
Abstract
Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is the main cause to poor outcomes of SAH patients, and early inflammation plays an important role in the acute pathophysiological events. It has been demonstrated that ethyl pyruvate (EP) has anti-inflammatory and neuroprotective effects in various critical diseases, however, the role of EP on EBI following SAH remains to be elucidated. Our study aimed to evaluate the effects of EP on EBI following SAH in the endovascular perforation rabbit model. All rabbits were randomly divided into three groups: sham, SAH + Vehicle (equal volume) and SAH + EP (30 mg/kg/day). MRI was performed to estimate the reliability of the EBI at 24 and 72 h after SAH. Neurological scores were recorded to evaluate the neurological deficit, ELISA kit was used to measure the level of tumor necrosis factor-α (TNF-α), and western blot was used to detect the expression of TNF-α, tJNK, pJNK, bax and bcl-2 at 24 and 72 h after SAH. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and Fluoro-jade B (FJB) staining were used to detect neuronal apoptosis and neurodegeneration respectively, meanwhile hematoxylin and eosin (H&E) staining was used to assess the degree of vasospasm. Our results demonstrated that EP alleviated brain tissue injury (characterized by diffusion weighted imaging and T2 sequence in MRI scan), and significantly improved neurological scores at 72 h after SAH. EP decreased the level of TNF-α and downregulated pJNK/tJNK and bax/bcl-2 in cerebral cortex and hippocampus effectively both at 24 and 72 h after SAH. Furthermore, EP reduced TUNEL and FJB positive cells significantly. In conclusion, the present study supported that EP afforded neuroprotective effects possibly via reducing TNF-α expression and inhibition of the JNK signaling pathway. Therefore, EP may be a potent therapeutic agent to attenuate EBI following SAH.
Collapse
Affiliation(s)
- Tao Lv
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Yi-Feng Miao
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China
| | - Yi-Chao Jin
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China
| | - Shao-Feng Yang
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China
| | - Hui Wu
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China
| | - Jiong Dai
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China.
| | - Xiao-Hua Zhang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
32
|
Kamp MA, Lieshout JHV, Dibué-Adjei M, Weber JK, Schneider T, Restin T, Fischer I, Steiger HJ. A Systematic and Meta-Analysis of Mortality in Experimental Mouse Models Analyzing Delayed Cerebral Ischemia After Subarachnoid Hemorrhage. Transl Stroke Res 2017; 8:206-219. [DOI: 10.1007/s12975-016-0513-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 01/18/2023]
|
33
|
Li Z, Tang Y, Tang N, Feng Q, Zhong H, Liu YM, Wang LM, He F. High anti-human cytomegalovirus antibody levels are associated with the progression of essential hypertension and target organ damage in Han Chinese population. PLoS One 2017; 12:e0181440. [PMID: 28837559 PMCID: PMC5570371 DOI: 10.1371/journal.pone.0181440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 07/02/2017] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (CMV) infection is associated with hypertension and has been linked with the pathogenesis of increased arterial blood pressure (BP). Currently, whether CMV infection is associated with the progression of hypertension and hypertensive target organ damage (TOD) remains to be identified. We aimed to examine the relationship between CMV infection and the progression of hypertension and hypertensive TOD, which could provide clues on the possible mediating mechanisms, in the Han Chinese population. A total of 372 patients with hypertension and 191 healthy controls (Han participants from Xinjiang, China) were included in the study. Enzyme-linked immunosorbent assay (ELISA) and qPCR were used to detect CMV infection. C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) titers were also analyzed using an ELISA kit. Moreover, cardiovascular disease markers were evaluated by echocardiography, carotid ultrasonography, and tomographic scans. Essential hypertension (EH) patients exhibited a marked increase in CMV IgG antibody, CRP, TNF-α, and IL-6 levels. Higher grade of hypertension and hypertensive TOD had higher CMV IgG antibody and CRP levels. The CMV IgG antibody titers were positively correlated with arterial BP, greater grade of hypertension and hypertensive TOD, and CRP and IL-6 levels. The higher quartile of CMV IgG titer and CRP level were associated with the incidence of hypertension and the progression of hypertension and hypertensive TOD. In the Han Chinese population, high CMV IgG titers are associated with the progression of hypertension and hypertensive TOD. CMV IgG titer >4.25 U could be an independent predictor of hypertension and progression of hypertension, while that >4.85 U could be an independent risk factor for hypertensive TOD. The underlying mechanism may be largely mediated by chronic inflammation.
Collapse
Affiliation(s)
- Zhen Li
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
- Department of Emergency and critical care medicine, the First Affiliated Hospital of Medical College of Shihezi University, Shihezi, China
| | - Yan Tang
- Department of Geriatrics, the First Affiliated Hospital of Medical College of Shihezi University, Shihezi, China
| | - Na Tang
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Qian Feng
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Hua Zhong
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Yong-min Liu
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - La-mei Wang
- Centre of Medical Functional Experiments, Medical College of Shihezi University, Shihezi, China
| | - Fang He
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
- * E-mail:
| |
Collapse
|
34
|
S100B raises the alert in subarachnoid hemorrhage. Rev Neurosci 2016; 27:745-759. [DOI: 10.1515/revneuro-2016-0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022]
Abstract
AbstractSubarachnoid hemorrhage (SAH) is a devastating disease with high mortality and mobility, the novel therapeutic strategies of which are essentially required. The calcium binding protein S100B has emerged as a brain injury biomarker that is implicated in pathogenic process of SAH. S100B is mainly expressed in astrocytes of the central nervous system and functions through initiating intracellular signaling or via interacting with cell surface receptor, such as the receptor of advanced glycation end products. The biological roles of S100B in neurons have been closely associated with its concentrations, resulting in either neuroprotection or neurotoxicity. The levels of S100B in the blood have been suggested as a biomarker to predict the progress or the prognosis of SAH. The role of S100B in the development of cerebral vasospasm and brain damage may result from the induction of oxidative stress and neuroinflammation after SAH. To get further insight into mechanisms underlying the role of S100B in SAH based on this review might help us to find novel therapeutic targets for SAH.
Collapse
|
35
|
Zhao X, Wen L, Dong M, Lu X. Sulforaphane activates the cerebral vascular Nrf2-ARE pathway and suppresses inflammation to attenuate cerebral vasospasm in rat with subarachnoid hemorrhage. Brain Res 2016; 1653:1-7. [PMID: 27693416 DOI: 10.1016/j.brainres.2016.09.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
Nrf2-ARE pathway reportedly plays a protective role in several central nervous system diseases. No study has explored the role of the Nrf2-ARE pathway in cerebral vasospasm(CVS) after subarachnoid hemorrhage(SAH). The purpose of the present study was to investigate the activation of the cerebral vascular Nrf2-ARE pathway and to determine the potential role of this pathway in the development of CVS following SAH. We investigated whether the administration of sulforaphane (SFN, a specific Nrf2 activator) modulated vascular caliber, Nrf2-ARE pathway activity, proinflammatory cytokine expression, and clinical behavior in a rat model of SAH. A two-hemorrhage protocol was used to generate an animal model of SAH in male Sprague-Dawley rats. Administration of SFN to these rats following SAH enhanced the activity of the Nrf2-ARE pathway and suppressed the release of proinflammatory cytokines. Vasospasm was markedly attenuated in the basilar arteries after SFN therapy. Additionally, SFN administration significantly ameliorated two behavioral functions disrupted by SAH. These results suggest that SFN has a therapeutic benefit in post-SAH, and this may be due to elevated Nrf2-ARE pathway activity and inhibition of cerebral vascular proinflammatory cytokine expression.
Collapse
Affiliation(s)
- Xudong Zhao
- Department of Neurosurgery, Wuxi Second Hospital Affiliated Nanjing Medical University, 68 Zhong Shan Road, Wuxi, Jiangsu, China
| | - Liting Wen
- Department of Operating Room, Wuxi Second Hospital Affiliated Nanjing Medical University, 68 Zhong Shan Road, Wuxi, Jiangsu, China
| | - Min Dong
- Department of Neurosurgery, Wuxi Second Hospital Affiliated Nanjing Medical University, 68 Zhong Shan Road, Wuxi, Jiangsu, China
| | - Xiaojie Lu
- Department of Neurosurgery, Wuxi Second Hospital Affiliated Nanjing Medical University, 68 Zhong Shan Road, Wuxi, Jiangsu, China.
| |
Collapse
|
36
|
Smoliński Ł, Członkowska A. Cerebral vasomotor reactivity in neurodegenerative diseases. Neurol Neurochir Pol 2016; 50:455-462. [PMID: 27553189 DOI: 10.1016/j.pjnns.2016.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 11/26/2022]
Abstract
Small-caliber cerebral vessels change their diameters in response to alterations of key metabolite concentrations such as carbon dioxide or oxygen. This phenomenon, termed the cerebral vasomotor reactivity (CVMR), is the basis for blood flow regulation in the brain in accordance with its metabolic status. Typically, CVMR is determined as the amount of change in cerebral blood flow in response to a vasodilating stimulus, which can be measured by various neuroimaging methods or by transcranial Doppler. It has been shown that CVMR is impaired in cerebrovascular diseases, but there is also evidence of a similar dysfunction in neurodegenerative disorders. Here, we review studies that have investigated CVMR in the common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and multiple sclerosis. Moreover, we discuss potential neurodegenerative mechanisms responsible for the impairment of CVMR.
Collapse
Affiliation(s)
- Łukasz Smoliński
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Członkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland; Department of Clinical and Experimental Pharmacology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
37
|
Benyó Z, Ruisanchez É, Leszl-Ishiguro M, Sándor P, Pacher P. Endocannabinoids in cerebrovascular regulation. Am J Physiol Heart Circ Physiol 2016; 310:H785-H801. [PMID: 26825517 PMCID: PMC4865067 DOI: 10.1152/ajpheart.00571.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/25/2016] [Indexed: 02/08/2023]
Abstract
The cerebral blood flow is tightly regulated by myogenic, endothelial, metabolic, and neural mechanisms under physiological conditions, and a large body of recent evidence indicates that inflammatory pathways have a major influence on the cerebral blood perfusion in certain central nervous system disorders, like hemorrhagic and ischemic stroke, traumatic brain injury, and vascular dementia. All major cell types involved in cerebrovascular control pathways (i.e., smooth muscle, endothelium, neurons, astrocytes, pericytes, microglia, and leukocytes) are capable of synthesizing endocannabinoids and/or express some or several of their target proteins [i.e., the cannabinoid 1 and 2 (CB1 and CB2) receptors and the transient receptor potential vanilloid type 1 ion channel]. Therefore, the endocannabinoid system may importantly modulate the regulation of cerebral circulation under physiological and pathophysiological conditions in a very complex manner. Experimental data accumulated since the late 1990s indicate that the direct effect of cannabinoids on cerebral vessels is vasodilation mediated, at least in part, by CB1 receptors. Cannabinoid-induced cerebrovascular relaxation involves both a direct inhibition of smooth muscle contractility and a release of vasodilator mediator(s) from the endothelium. However, under stress conditions (e.g., in conscious restrained animals or during hypoxia and hypercapnia), cannabinoid receptor activation was shown to induce a reduction of the cerebral blood flow, probably via inhibition of the electrical and/or metabolic activity of neurons. Finally, in certain cerebrovascular pathologies (e.g., subarachnoid hemorrhage, as well as traumatic and ischemic brain injury), activation of CB2 (and probably yet unidentified non-CB1/non-CB2) receptors appear to improve the blood perfusion of the brain via attenuating vascular inflammation.
Collapse
Affiliation(s)
- Zoltán Benyó
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Éva Ruisanchez
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Miriam Leszl-Ishiguro
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Péter Sándor
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
38
|
Hui J, Qu YY, Tang N, Liu YM, Zhong H, Wang LM, Feng Q, Li Z, He F. Association of cytomegalovirus infection with hypertension risk: a meta-analysis. Wien Klin Wochenschr 2016; 128:586-91. [PMID: 26980213 PMCID: PMC5010589 DOI: 10.1007/s00508-016-0977-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/15/2016] [Indexed: 01/01/2023]
Abstract
Background Information regarding association between cytomegalovirus (CMV) infection and essential hypertension (EH) risk is not consistent across studies. Therefore, we conducted a meta-analysis to investigate the association in detail. Methods We comprehensively searched the published literature from the PubMed and Embase databases for any study analyzing the association between CMV and EH risk. A random-effects model was used to calculate the pooled odds ratio (OR) with 95 % confidence interval (CI). Results Three studies involving 9657 patients were included in the meta-analysis, and the results showed a significantly increased risk of EH in patients with CMV infection. Overall, 79.3 % of the hypertension patients were CMV-positive, which was significantly higher than the percentage for controls (OR = 1.39, 95 % CI = 0.95–2.05, P = 0.017). There was significant heterogeneity among the studies included (I2 = 70.5 %). The funnel plot and Egger’s test also indicated no publication bias. Conclusions The results showed a significant association between CMV and EH, which indicates that CMV infection is a possible cause of EH.
Collapse
Affiliation(s)
- Jing Hui
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Yuan-Yuan Qu
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, China
| | - Na Tang
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Yong-Min Liu
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Hua Zhong
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - La-Mei Wang
- Centre of Medical Functional Experiments, Medical College of Shihezi University, Shihezi, China
| | - Qian Feng
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Zhen Li
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Fang He
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China.
| |
Collapse
|
39
|
Li G, Wang QS, Lin TT. Alterations in the expression of protease-activated receptor 1 and tumor necrosis factor-α in the basilar artery of rats following a subarachnoid hemorrhage. Exp Ther Med 2016; 11:717-722. [PMID: 26997984 PMCID: PMC4774309 DOI: 10.3892/etm.2016.3010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 10/22/2015] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the expression of protease-activated receptor 1 (PAR1) and tumor necrosis factor (TNF)-α in a rat model of subarachnoid hemorrhage (SAH)-induced cerebral vasospasm (CVS). The rat models were established by twice injecting blood into the cisterna magna, after which the following experimental groups were established: The normal group, the SAH3d group, the SAH5d group and the SAH7d group. The rats were perfused and the basilar artery was removed for histological examination. The cross-sectional area of the basilar artery lumen was measured using computer software; and the protein expression of PAR1 and TNF-α was detected by immunohistochemistry. The cross-sectional area of the basilar artery of the rats in the SAH model groups was significantly decreased in a time-dependent manner, as compared with the normal group. The protein expression of PAR1 and TNF-α in the SAH3d, SAH5d and SAH7d groups was significantly increased over time (P<0.05), as compared with the normal group. CVS was detected in the basilar artery, and was associated with wall thickening and significant narrowing of the lumen, thus suggesting that the present model may be used for investigating cerebrovascular disease following SAH. The immunohistochemical analyses demonstrated that the protein expression of PAR1 and TNF-α was significantly increased in the basilar artery of the SAH model rats, and were positively correlated with the degree of CVS.
Collapse
Affiliation(s)
- Gang Li
- Department of Neurosurgery, Hainan Branch of the China PLA General Hospital, Sanya, Hainan 572013, P.R. China
| | - Qing-Song Wang
- Department of Neurosurgery, Haikou Municipal Hospital, Haikou, Hainan 570208, P.R. China
| | - Ting-Ting Lin
- Department of Neurosurgery, Haikou Municipal Hospital, Haikou, Hainan 570208, P.R. China
| |
Collapse
|
40
|
Li X, Zhao L, Yue L, Liu H, Yang X, Wang X, Lin Y, Qu Y. Evidence for the protective effects of curcumin against oxyhemoglobin-induced injury in rat cortical neurons. Brain Res Bull 2015; 120:34-40. [PMID: 26551062 DOI: 10.1016/j.brainresbull.2015.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
Curcumin (CCM) is a natural polyphenolic compound in Curcuma longa that has been reported to exhibit neuroprotective effects. Subarachnoid hemorrhage (SAH) is a severe neurological disorder with an unsatisfactory prognosis. Oxyhemoglobin (OxyHb) plays an important role in mediating the neurological deficits following SAH. The present study, therefore, aimed to investigate the effect of CCM on primary cortical neurons exposed to OxyHb neurotoxicity. Cortical neurons were exposed to OxyHb at a concentration of 10 μM in the presence or absence of 5 μM (low dose) or 10 μM (high dose) CCM for 24 h. Morphological changes in the neurons were observed. Cell viability and lactate dehydrogenase (LDH) release were assayed to determine the extent of cell injury. Additionally, levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and reactive oxygen species (ROS) were measured. Neuronal apoptosis was assayed via TUNEL staining and protein levels of cleaved caspase-3, Bax, and Bcl-2 were measured by Western blot. Levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 were measured using ELISA kits. Our results suggested that CCM at both low and high doses markedly improved cell viability and decreased LDH release. CCM treatment decreased neuronal apoptosis. Additionally, oxidative stress and inflammation induced by OxyHb were alleviated by CCM treatment. In conclusion, CCM inhibits neuronal apoptosis, and alleviates oxidative stress and inflammation in neurons subjected to OxyHb, suggesting that it may be beneficial in the treatment of brain damage following SAH.
Collapse
Affiliation(s)
- Xia Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lei Zhao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Liang Yue
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Haixiao Liu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiangmin Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xinchuan Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Lin
- Department of Scientific Research, The Fourth Military Medical University, Xi'an, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
41
|
Yagi K, Lidington D, Wan H, Fares JC, Meissner A, Sumiyoshi M, Ai J, Foltz WD, Nedospasov SA, Offermanns S, Nagahiro S, Macdonald RL, Bolz SS. Therapeutically Targeting Tumor Necrosis Factor-α/Sphingosine-1-Phosphate Signaling Corrects Myogenic Reactivity in Subarachnoid Hemorrhage. Stroke 2015; 46:2260-70. [PMID: 26138121 DOI: 10.1161/strokeaha.114.006365] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 06/01/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Subarachnoid hemorrhage (SAH) is a complex stroke subtype characterized by an initial brain injury, followed by delayed cerebrovascular constriction and ischemia. Current therapeutic strategies nonselectively curtail exacerbated cerebrovascular constriction, which necessarily disrupts the essential and protective process of cerebral blood flow autoregulation. This study identifies a smooth muscle cell autocrine/paracrine signaling network that augments myogenic tone in a murine model of experimental SAH: it links tumor necrosis factor-α (TNFα), the cystic fibrosis transmembrane conductance regulator, and sphingosine-1-phosphate signaling. METHODS Mouse olfactory cerebral resistance arteries were isolated, cannulated, and pressurized for in vitro vascular reactivity assessments. Cerebral blood flow was measured by speckle flowmetry and magnetic resonance imaging. Standard Western blot, immunohistochemical techniques, and neurobehavioral assessments were also used. RESULTS We demonstrate that targeting TNFα and sphingosine-1-phosphate signaling in vivo has potential therapeutic application in SAH. Both interventions (1) eliminate the SAH-induced myogenic tone enhancement, but otherwise leave vascular reactivity intact; (2) ameliorate SAH-induced neuronal degeneration and apoptosis; and (3) improve neurobehavioral performance in mice with SAH. Furthermore, TNFα sequestration with etanercept normalizes cerebral perfusion in SAH. CONCLUSIONS Vascular smooth muscle cell TNFα and sphingosine-1-phosphate signaling significantly enhance cerebral artery tone in SAH; anti-TNFα and anti-sphingosine-1-phosphate treatment may significantly improve clinical outcome.
Collapse
Affiliation(s)
- Kenji Yagi
- From the Department of Physiology (D.L., J.C.F., A.M., S.-S.B.), Physical Sciences, Sunnybrook Research Institute and Medical Biophysics (H.W.), and Heart and Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research (S.-S.B.), University of Toronto, Toronto, Canada; Department of Neurosurgery, St. Michael's Hospital, Toronto, Canada (K.Y., M.S., J.A., R.L.M.); Department of Neurosurgery, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan (K.Y., M.S., S.N.); Toronto Centre for Microvascular Medicine, University of Toronto at the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Canada (D.L., S.-S.B.); Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada (H.W., J.A., R.L.M., S.-S.B.); Department of Radiation Oncology, STTARR Innovation Centre, Princess Margaret Cancer Centre, Toronto, Canada (W.D.F.); Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia (S.A.N.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.O.)
| | - Darcy Lidington
- From the Department of Physiology (D.L., J.C.F., A.M., S.-S.B.), Physical Sciences, Sunnybrook Research Institute and Medical Biophysics (H.W.), and Heart and Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research (S.-S.B.), University of Toronto, Toronto, Canada; Department of Neurosurgery, St. Michael's Hospital, Toronto, Canada (K.Y., M.S., J.A., R.L.M.); Department of Neurosurgery, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan (K.Y., M.S., S.N.); Toronto Centre for Microvascular Medicine, University of Toronto at the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Canada (D.L., S.-S.B.); Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada (H.W., J.A., R.L.M., S.-S.B.); Department of Radiation Oncology, STTARR Innovation Centre, Princess Margaret Cancer Centre, Toronto, Canada (W.D.F.); Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia (S.A.N.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.O.)
| | - Hoyee Wan
- From the Department of Physiology (D.L., J.C.F., A.M., S.-S.B.), Physical Sciences, Sunnybrook Research Institute and Medical Biophysics (H.W.), and Heart and Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research (S.-S.B.), University of Toronto, Toronto, Canada; Department of Neurosurgery, St. Michael's Hospital, Toronto, Canada (K.Y., M.S., J.A., R.L.M.); Department of Neurosurgery, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan (K.Y., M.S., S.N.); Toronto Centre for Microvascular Medicine, University of Toronto at the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Canada (D.L., S.-S.B.); Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada (H.W., J.A., R.L.M., S.-S.B.); Department of Radiation Oncology, STTARR Innovation Centre, Princess Margaret Cancer Centre, Toronto, Canada (W.D.F.); Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia (S.A.N.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.O.)
| | - Jessica C Fares
- From the Department of Physiology (D.L., J.C.F., A.M., S.-S.B.), Physical Sciences, Sunnybrook Research Institute and Medical Biophysics (H.W.), and Heart and Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research (S.-S.B.), University of Toronto, Toronto, Canada; Department of Neurosurgery, St. Michael's Hospital, Toronto, Canada (K.Y., M.S., J.A., R.L.M.); Department of Neurosurgery, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan (K.Y., M.S., S.N.); Toronto Centre for Microvascular Medicine, University of Toronto at the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Canada (D.L., S.-S.B.); Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada (H.W., J.A., R.L.M., S.-S.B.); Department of Radiation Oncology, STTARR Innovation Centre, Princess Margaret Cancer Centre, Toronto, Canada (W.D.F.); Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia (S.A.N.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.O.)
| | - Anja Meissner
- From the Department of Physiology (D.L., J.C.F., A.M., S.-S.B.), Physical Sciences, Sunnybrook Research Institute and Medical Biophysics (H.W.), and Heart and Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research (S.-S.B.), University of Toronto, Toronto, Canada; Department of Neurosurgery, St. Michael's Hospital, Toronto, Canada (K.Y., M.S., J.A., R.L.M.); Department of Neurosurgery, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan (K.Y., M.S., S.N.); Toronto Centre for Microvascular Medicine, University of Toronto at the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Canada (D.L., S.-S.B.); Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada (H.W., J.A., R.L.M., S.-S.B.); Department of Radiation Oncology, STTARR Innovation Centre, Princess Margaret Cancer Centre, Toronto, Canada (W.D.F.); Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia (S.A.N.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.O.)
| | - Manabu Sumiyoshi
- From the Department of Physiology (D.L., J.C.F., A.M., S.-S.B.), Physical Sciences, Sunnybrook Research Institute and Medical Biophysics (H.W.), and Heart and Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research (S.-S.B.), University of Toronto, Toronto, Canada; Department of Neurosurgery, St. Michael's Hospital, Toronto, Canada (K.Y., M.S., J.A., R.L.M.); Department of Neurosurgery, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan (K.Y., M.S., S.N.); Toronto Centre for Microvascular Medicine, University of Toronto at the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Canada (D.L., S.-S.B.); Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada (H.W., J.A., R.L.M., S.-S.B.); Department of Radiation Oncology, STTARR Innovation Centre, Princess Margaret Cancer Centre, Toronto, Canada (W.D.F.); Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia (S.A.N.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.O.)
| | - Jinglu Ai
- From the Department of Physiology (D.L., J.C.F., A.M., S.-S.B.), Physical Sciences, Sunnybrook Research Institute and Medical Biophysics (H.W.), and Heart and Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research (S.-S.B.), University of Toronto, Toronto, Canada; Department of Neurosurgery, St. Michael's Hospital, Toronto, Canada (K.Y., M.S., J.A., R.L.M.); Department of Neurosurgery, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan (K.Y., M.S., S.N.); Toronto Centre for Microvascular Medicine, University of Toronto at the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Canada (D.L., S.-S.B.); Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada (H.W., J.A., R.L.M., S.-S.B.); Department of Radiation Oncology, STTARR Innovation Centre, Princess Margaret Cancer Centre, Toronto, Canada (W.D.F.); Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia (S.A.N.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.O.)
| | - Warren D Foltz
- From the Department of Physiology (D.L., J.C.F., A.M., S.-S.B.), Physical Sciences, Sunnybrook Research Institute and Medical Biophysics (H.W.), and Heart and Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research (S.-S.B.), University of Toronto, Toronto, Canada; Department of Neurosurgery, St. Michael's Hospital, Toronto, Canada (K.Y., M.S., J.A., R.L.M.); Department of Neurosurgery, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan (K.Y., M.S., S.N.); Toronto Centre for Microvascular Medicine, University of Toronto at the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Canada (D.L., S.-S.B.); Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada (H.W., J.A., R.L.M., S.-S.B.); Department of Radiation Oncology, STTARR Innovation Centre, Princess Margaret Cancer Centre, Toronto, Canada (W.D.F.); Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia (S.A.N.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.O.)
| | - Sergei A Nedospasov
- From the Department of Physiology (D.L., J.C.F., A.M., S.-S.B.), Physical Sciences, Sunnybrook Research Institute and Medical Biophysics (H.W.), and Heart and Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research (S.-S.B.), University of Toronto, Toronto, Canada; Department of Neurosurgery, St. Michael's Hospital, Toronto, Canada (K.Y., M.S., J.A., R.L.M.); Department of Neurosurgery, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan (K.Y., M.S., S.N.); Toronto Centre for Microvascular Medicine, University of Toronto at the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Canada (D.L., S.-S.B.); Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada (H.W., J.A., R.L.M., S.-S.B.); Department of Radiation Oncology, STTARR Innovation Centre, Princess Margaret Cancer Centre, Toronto, Canada (W.D.F.); Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia (S.A.N.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.O.)
| | - Stefan Offermanns
- From the Department of Physiology (D.L., J.C.F., A.M., S.-S.B.), Physical Sciences, Sunnybrook Research Institute and Medical Biophysics (H.W.), and Heart and Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research (S.-S.B.), University of Toronto, Toronto, Canada; Department of Neurosurgery, St. Michael's Hospital, Toronto, Canada (K.Y., M.S., J.A., R.L.M.); Department of Neurosurgery, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan (K.Y., M.S., S.N.); Toronto Centre for Microvascular Medicine, University of Toronto at the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Canada (D.L., S.-S.B.); Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada (H.W., J.A., R.L.M., S.-S.B.); Department of Radiation Oncology, STTARR Innovation Centre, Princess Margaret Cancer Centre, Toronto, Canada (W.D.F.); Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia (S.A.N.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.O.)
| | - Shinji Nagahiro
- From the Department of Physiology (D.L., J.C.F., A.M., S.-S.B.), Physical Sciences, Sunnybrook Research Institute and Medical Biophysics (H.W.), and Heart and Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research (S.-S.B.), University of Toronto, Toronto, Canada; Department of Neurosurgery, St. Michael's Hospital, Toronto, Canada (K.Y., M.S., J.A., R.L.M.); Department of Neurosurgery, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan (K.Y., M.S., S.N.); Toronto Centre for Microvascular Medicine, University of Toronto at the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Canada (D.L., S.-S.B.); Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada (H.W., J.A., R.L.M., S.-S.B.); Department of Radiation Oncology, STTARR Innovation Centre, Princess Margaret Cancer Centre, Toronto, Canada (W.D.F.); Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia (S.A.N.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.O.)
| | - R Loch Macdonald
- From the Department of Physiology (D.L., J.C.F., A.M., S.-S.B.), Physical Sciences, Sunnybrook Research Institute and Medical Biophysics (H.W.), and Heart and Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research (S.-S.B.), University of Toronto, Toronto, Canada; Department of Neurosurgery, St. Michael's Hospital, Toronto, Canada (K.Y., M.S., J.A., R.L.M.); Department of Neurosurgery, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan (K.Y., M.S., S.N.); Toronto Centre for Microvascular Medicine, University of Toronto at the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Canada (D.L., S.-S.B.); Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada (H.W., J.A., R.L.M., S.-S.B.); Department of Radiation Oncology, STTARR Innovation Centre, Princess Margaret Cancer Centre, Toronto, Canada (W.D.F.); Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia (S.A.N.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.O.)
| | - Steffen-Sebastian Bolz
- From the Department of Physiology (D.L., J.C.F., A.M., S.-S.B.), Physical Sciences, Sunnybrook Research Institute and Medical Biophysics (H.W.), and Heart and Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research (S.-S.B.), University of Toronto, Toronto, Canada; Department of Neurosurgery, St. Michael's Hospital, Toronto, Canada (K.Y., M.S., J.A., R.L.M.); Department of Neurosurgery, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan (K.Y., M.S., S.N.); Toronto Centre for Microvascular Medicine, University of Toronto at the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Canada (D.L., S.-S.B.); Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada (H.W., J.A., R.L.M., S.-S.B.); Department of Radiation Oncology, STTARR Innovation Centre, Princess Margaret Cancer Centre, Toronto, Canada (W.D.F.); Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia (S.A.N.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.O.).
| |
Collapse
|
42
|
Wu W, Guan Y, Zhao G, Fu XJ, Guo TZ, Liu YT, Ren XL, Wang W, Liu HR, Li YQ. Elevated IL-6 and TNF-α Levels in Cerebrospinal Fluid of Subarachnoid Hemorrhage Patients. Mol Neurobiol 2015; 53:3277-3285. [PMID: 26063595 DOI: 10.1007/s12035-015-9268-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/28/2015] [Indexed: 11/26/2022]
Abstract
The present study investigated the correlation between interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels in cerebrospinal fluid (CSF) and subarachnoid hemorrhage (SAH) progression. A meta-analysis was further conducted from pooled data to analyze the clinical value of IL-6 and TNF-α in SAH diagnosis. In our case-control study, a total of 57 SAH patients were assigned to two groups, CVS group (n = 27) and non-CVS group (n = 30), based on the presence of cerebral vasospasm (CVS). In addition, 65 healthy subjects were enrolled as controls. IL-6 and TNF-α levels in CSF were measured in all the study subjects by enzyme-linked immunosorbent assay (ELISA). For meta-analysis, an exhaustive literature search was conducted to identify relevant published articles and strict inclusion and exclusion criteria were applied to select studies for the present meta-analysis. Data extracted from these studies was analyzed using STATA 12.0 software. IL-6 and TNF-α levels in CSF of SAH patients were markedly higher than those of healthy controls (all P < 0.001). Further, CVS patients showed elevated IL-6 and TNF-α levels in CSF compared to non-CVS patients (all P < 0.001). The increase in IL-6 and TNF-α levels in CSF correlated with the increasing disease severity, based on Hunt-Hess grade, in SAH patients (all P < 0.05). Our meta-analysis also confirmed that IL-6 and TNF-α CSF levels were markedly higher in SAH patients compared to healthy controls (all P < 0.001). Ethnicity-stratified analysis showed that both IL-6 and TNF-α CSF levels were elevated in Asian SAH patients, compared to their healthy counterparts (all P < 0.05). The TNF-α CSF levels were significantly higher in Caucasian SAH patients (P < 0.001), but the IL-6 CSF levels showed no such differences compared to the healthy controls (P = 0.219). Subgroup analysis based on the presence of CVS showed that both IL-6 and TNF-α CSF levels were markedly higher in CVS patients than those in non-CVS patients (all P < 0.05). Our results provide strong evidence that IL-6 and TNF-α CSF levels are elevated in SAH patients and may participate in SAH development. Thus, these two cytokines could be important biomarkers for early diagnosis and disease monitoring in SAH patients.
Collapse
Affiliation(s)
- Wei Wu
- Department of Neurosurgery, The First Hospital of Jilin University, No 71 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Yi Guan
- Department of Neurosurgery, The First Hospital of Jilin University, No 71 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, No 71 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Xi-Jia Fu
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Tie-Zhu Guo
- Department of Neurosurgery, The First Hospital of Jilin University, No 71 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Yue-Ting Liu
- Department of Neurosurgery, The First Hospital of Jilin University, No 71 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Xin-Liang Ren
- Department of Neurosurgery, The First Hospital of Jilin University, No 71 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Wei Wang
- Department of Neurosurgery, The First Hospital of Jilin University, No 71 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Han-Rui Liu
- Department of Neurosurgery, The First Hospital of Jilin University, No 71 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Yun-Qian Li
- Department of Neurosurgery, The First Hospital of Jilin University, No 71 Xinmin Street, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
43
|
Baydin A, Amanvermez R, Tuncel ÖK, Ocak M, Meric M, Cokluk C. Ischemia-modified albumin is not better than creatine kinase-MB and cardiac troponin I in predicting a cardiac injury in nontraumatic subarachnoid hemorrhage. Am J Emerg Med 2015; 33:488-92. [DOI: 10.1016/j.ajem.2014.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/02/2014] [Accepted: 10/02/2014] [Indexed: 01/11/2023] Open
|
44
|
|
45
|
Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage. BIOMED RESEARCH INTERNATIONAL 2014; 2014:384342. [PMID: 25105123 PMCID: PMC4106062 DOI: 10.1155/2014/384342] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/14/2014] [Accepted: 05/26/2014] [Indexed: 12/15/2022]
Abstract
Subarachnoid hemorrhage (SAH) can lead to devastating neurological outcomes, and there are few pharmacologic treatments available for treating this condition. Both animal and human studies provide evidence of inflammation being a driving force behind the pathology of SAH, leading to both direct brain injury and vasospasm, which in turn leads to ischemic brain injury. Several inflammatory mediators that are elevated after SAH have been studied in detail. While there is promising data indicating that blocking these factors might benefit patients after SAH, there has been little success in clinical trials. One of the key factors that complicates clinical trials of SAH is the variability of the initial injury and subsequent inflammatory response. It is likely that both genetic and environmental factors contribute to the variability of patients' post-SAH inflammatory response and that this confounds trials of anti-inflammatory therapies. Additionally, systemic inflammation from other conditions that affect patients with SAH could contribute to brain injury and vasospasm after SAH. Continuing work on biomarkers of inflammation after SAH may lead to development of patient-specific anti-inflammatory therapies to improve outcome after SAH.
Collapse
|
46
|
Edvinsson L, Larsen SS, Maddahi A, Nielsen J. Plasticity of cerebrovascular smooth muscle cells after subarachnoid hemorrhage. Transl Stroke Res 2014; 5:365-76. [PMID: 24449486 DOI: 10.1007/s12975-014-0331-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/19/2013] [Accepted: 01/06/2014] [Indexed: 12/27/2022]
Abstract
Subarachnoid hemorrhage (SAH) is most often followed by a delayed phase of cerebral ischemia which is associated with high morbidity and mortality rates. The causes underlying this delayed phase are still unsettled, but are believed to include cerebral vasospasm, cortical spreading depression, inflammatory reactions, and microthrombosis. Additionally, a large body of evidence indicates that vascular plasticity plays an important role in SAH pathophysiology, and this review aims to summarize our current knowledge on the phenotypic changes of vascular smooth muscle cells of the cerebral vasculature following SAH. In light of the emerging view that the whole cerebral vasculature and the cells of the brain parenchyma should be viewed as one integrated neurovascular network, phenotypical changes are discussed both for the cerebral arteries and the microvasculature. Furthermore, the intracellular signaling involved in the vascular plasticity is discussed with a focus on the Raf-MEK1/2-ERK1/2 pathway which seems to play a crucial role in SAH pathology.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup University Hospital, Glostrup, Denmark,
| | | | | | | |
Collapse
|
47
|
Kooijman E, Nijboer CH, van Velthoven CTJ, Kavelaars A, Kesecioglu J, Heijnen CJ. The rodent endovascular puncture model of subarachnoid hemorrhage: mechanisms of brain damage and therapeutic strategies. J Neuroinflammation 2014; 11:2. [PMID: 24386932 PMCID: PMC3892045 DOI: 10.1186/1742-2094-11-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/17/2013] [Indexed: 01/05/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) represents a considerable health problem. To date, limited therapeutic options are available. In order to develop effective therapeutic strategies for SAH, the mechanisms involved in SAH brain damage should be fully explored. Here we review the mechanisms of SAH brain damage induced by the experimental endovascular puncture model. We have included a description of similarities and distinctions between experimental SAH in animals and human SAH pathology. Moreover, several novel treatment options to diminish SAH brain damage are discussed.SAH is accompanied by cerebral inflammation as demonstrated by an influx of inflammatory cells into the cerebral parenchyma, upregulation of inflammatory transcriptional pathways and increased expression of cytokines and chemokines. Additionally, various cell death pathways including cerebral apoptosis, necrosis, necroptosis and autophagy are involved in neuronal damage caused by SAH.Treatment strategies aiming at inhibition of inflammatory or cell death pathways demonstrate the importance of these mechanisms for survival after experimental SAH. Moreover, neuroregenerative therapies using stem cells are discussed as a possible strategy to repair the brain after SAH since this therapy may extend the window of treatment considerably. We propose the endovascular puncture model as a suitable animal model which resembles the human pathology of SAH and which could be applied to investigate novel therapeutic therapies to combat this debilitating insult.
Collapse
Affiliation(s)
- Elke Kooijman
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cindy TJ van Velthoven
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annemieke Kavelaars
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jozef Kesecioglu
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J Heijnen
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
48
|
Rozen TD, Beams JL. New daily persistent headache with a thunderclap headache onset and complete response to nimodipine (a new distinct subtype of NDPH). J Headache Pain 2013; 14:100. [PMID: 24364890 PMCID: PMC3878041 DOI: 10.1186/1129-2377-14-100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/20/2013] [Indexed: 11/21/2022] Open
Abstract
At present new daily persistent headache is just a group of conditions that are connected based on the temporal profile of their mode of onset. If new daily persistent headache is a true distinct syndrome like migraine then we need to start to define subtypes that have specific effective treatments such has been noted for migraine sub-forms. We present what we believe is the first recognized subtype of new daily persistent headache that which starts with a thunderclap headache onset. A patient presented with a 13 month history of a daily headache from onset which initiated as a thunderclap headache along with persistent acalculia. All neuroimaging studies for secondary causes were negative. Nimodipine rapidly and completely alleviated her headache and associated neurologic symptoms. We propose that this subtype of new daily persistent headache is caused by a very rapid increase in CSF tumor necrosis factor alpha levels leading to cerebral artery vasospasm with a subsequent thunderclap headache, then continuous or near continuous cerebral artery vasospasm leading to a persistent daily headache. Nimodipine which not only inhibits cerebral artery vasospasm but also tumor necrosis factor alpha production appears to be a specific treatment for this distinct subtype of new daily persistent headache.
Collapse
Affiliation(s)
- Todd D Rozen
- Department of Neurology, Geisinger Health System, Geisinger Headache Clinic, MC 37-32, 1000 East Mountain Blvd, Wilkes-Barre, PA 18711, USA
| | - Jennifer L Beams
- Department of Neurology, Geisinger Health System, Geisinger Headache Clinic, MC 37-32, 1000 East Mountain Blvd, Wilkes-Barre, PA 18711, USA
| |
Collapse
|
49
|
Wan H, AlHarbi BM, Macdonald RL. Mechanisms, treatment and prevention of cellular injury and death from delayed events after aneurysmal subarachnoid hemorrhage. Expert Opin Pharmacother 2013; 15:231-43. [PMID: 24283706 DOI: 10.1517/14656566.2014.865724] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Subarachnoid hemorrhage (SAH) patients often develop brain injury as a result of a number of delayed complications, resulting in significant morbidity and mortality. Many of these complications arise due to delayed cerebral ischemia, which occurs secondary to the hemorrhage. AREAS COVERED The mechanisms of the delayed injury are reviewed, including angiographic vasospasm, cortical spreading ischemia, small arteriolar constriction, microthromboemboli, free radical injury and inflammation. Some current and prospective therapies for SAH are discussed, in the context of these complications. Statins have been particularly promising in experimental studies. EXPERT OPINION Multiple mechanisms are involved in the pathogenesis of the delayed insult after SAH. New drugs may need to target multiple pathways to injury. Trials aiming to treat complications after SAH could benefit from taking into account the multifactorial pathogenesis of delayed insults.
Collapse
Affiliation(s)
- Hoyee Wan
- University of Toronto, St. Michael's Hospital, Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Division of Neurosurgery, Department of Surgery , Toronto, Ontario, M5B 1W8 , Canada
| | | | | |
Collapse
|
50
|
Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food Chem Toxicol 2013; 61:215-26. [PMID: 23872128 DOI: 10.1016/j.fct.2013.07.021] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/11/2013] [Accepted: 07/08/2013] [Indexed: 12/17/2022]
Abstract
Resveratrol-a natural polyphenolic compound-was first discovered in the 1940s. Although initially used for cancer therapy, it has shown beneficial effects against most cardiovascular and cerebrovascular diseases. A large part of these effects are related to its antioxidant properties. Here we review: (a) the sources, the metabolism, and the bioavailability of resveratrol; (b) the ability of resveratrol to modulate redox signalling and to interact with multiple molecular targets of diverse intracellular pathways; (c) its protective effects against oxidative damage in cardio-cerebro-vascular districts and metabolic disorders such as diabetes; and (d) the evidence for its efficacy and toxicity in humans. The overall aim of this review is to discuss the frontiers in the field of resveratrol's mechanisms, bioactivity, biology, and health-related use.
Collapse
|