1
|
Ao X, Ji G, Zhang B, Ding W, Wang J, Liu Y, Xue J. Role of apoptosis repressor with caspase recruitment domain in human health and chronic diseases. Ann Med 2024; 56:2409958. [PMID: 39351758 PMCID: PMC11445919 DOI: 10.1080/07853890.2024.2409958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a highly potent and multifunctional suppressor of various types of programmed cell death (PCD) (e.g. apoptosis, necroptosis, and pyroptosis) and plays a key role in determining cell fate. Under physiological conditions, ARC is predominantly expressed in terminally differentiated cells, such as cardiomyocytes and skeletal muscle cells. Its expression and activity are tightly controlled by a complicated system consisting of transcription factor (TF), non-coding RNA (ncRNA), and post-translational modification (PTM). ARC dysregulation has been shown to be closely associated with many chronic diseases, including cardiovascular disease, cancer, diabetes, and neurodegenerative disease. However, the detailed mechanisms of ARC involved in the progression of these diseases remain unclear to a large extent. In this review, we mainly focus on the regulatory mechanisms of ARC expression and activity and its role in PCD. We also discuss the underlying mechanisms of ARC in health and disease and highlight the potential implications of ARC in the clinical treatment of patients with chronic diseases. This information may assist in developing ARC-based therapeutic strategies for patients with chronic diseases and expand researchers' understanding of ARC.
Collapse
Affiliation(s)
- Xiang Ao
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, P.R. China
| | - Guoqiang Ji
- Clinical Laboratory, Linqu People's Hospital, Linqu, Shandong, P.R. China
| | - Bingqiang Zhang
- Institute for Restore Biotechnology, Qingdao Restore Biotechnology Co., Ltd, Qingdao, Shandong, P.R. China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao Restore Biotechnology Co., Ltd, Qingdao, P.R. China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, P.R. China
| | - Ying Liu
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, Shandong, P.R. China
| | - Junqiang Xue
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| |
Collapse
|
2
|
Li L, Sun JY, Li YL, Zhu SW, Duan SZ. The Gut Microbiota Mediates the Protective Effects of Spironolactone on Myocardial Infarction. J Microbiol 2024; 62:883-895. [PMID: 39225943 DOI: 10.1007/s12275-024-00164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/06/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Myocardial infarction (MI) is a type of cardiovascular disease that influences millions of human beings worldwide and has a great rate of mortality and morbidity. Spironolactone has been used as a critical drug for the treatment of cardiac failure and it ameliorates cardiac dysfunction post-MI. Despite these findings, whether there is a relationship between the therapeutic effects of spironolactone and the gut microorganism after MI has not been determined. In our research, we used male C57BL/6 J mice to explore whether the gut microbiota mediates the beneficial function of spironolactone after myocardial infarction. We demonstrated that deletion of the gut microbiota eliminated the beneficial function of spironolactone in MI mice, displaying exacerbated cardiac dysfunction, cardiac infarct size. In addition, the gut microbiota was altered by spironolactone after sham or MI operation in mice. We also used male C57BL/6 J mice to investigate the function of a probiotic in the myocardial infarction. In summary, our findings reveal a precious role of the gut flora in the therapeutic function of spironolactone on MI.
Collapse
Affiliation(s)
- Lu Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, People's Republic of China
| | - Jian-Yong Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, People's Republic of China
| | - Yu-Lin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, People's Republic of China
| | - Shi-Wei Zhu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China.
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
3
|
Pei X, Tian M, Wang Y, Xin Y, Jiang J, Wang Y, Gong Y. Advances in the knowledge on the role of apoptosis repressor with caspase recruitment domain in hemorrhagic stroke. JOURNAL OF INTENSIVE MEDICINE 2023; 3:138-143. [PMID: 37188117 PMCID: PMC10175730 DOI: 10.1016/j.jointm.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/03/2022] [Accepted: 11/23/2022] [Indexed: 05/17/2023]
Abstract
The apoptosis repressor with caspase recruitment domain (ARC) plays a critical role in extrinsic apoptosis initiation via death receptor ligands, physiological stress, infection response in a tissue-dependent manner, endoplasmic reticulum (ER) stress, genotoxic drugs, ionizing radiation, oxidative stress, and hypoxia. Recent studies have suggested that regulating apoptosis-related pathways can improve outcomes for patients with neurological diseases, such as hemorrhagic stroke. ARC expression is significantly correlated with acute cerebral hemorrhage. However, the mechanism by which it mediates the anti-apoptosis pathway remains poorly known. Here, we discuss the function of ARC in hemorrhagic stroke and argue that it could serve as an effective target for the treatment of hemorrhagic stroke.
Collapse
Affiliation(s)
- Xu Pei
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mi Tian
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yao Wang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuewen Xin
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Junliang Jiang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yunyun Wang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Corresponding author: Ye Gong, Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China.
| |
Collapse
|
4
|
Javaheri A, Diab A, Zhao L, Qian C, Cohen JB, Zamani P, Kumar A, Wang Z, Ebert C, Maranville J, Kvikstad E, Basso M, van Empel V, Richards AM, Doughty R, Rietzschell E, Kammerhoff K, Gogain J, Schafer P, Seiffert DA, Gordon DA, Ramirez-Valle F, Mann DL, Cappola TP, Chirinos JA. Proteomic Analysis of Effects of Spironolactone in Heart Failure With Preserved Ejection Fraction. Circ Heart Fail 2022; 15:e009693. [PMID: 36126144 PMCID: PMC9504263 DOI: 10.1161/circheartfailure.121.009693] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The TOPCAT trial (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial) suggested clinical benefits of spironolactone treatment among patients with heart failure with preserved ejection fraction enrolled in the Americas. However, a comprehensive assessment of biologic pathways impacted by spironolactone therapy in heart failure with preserved ejection fraction has not been performed. METHODS We conducted aptamer-based proteomic analysis utilizing 5284 modified aptamers to 4928 unique proteins on plasma samples from TOPCAT participants from the Americas (n=164 subjects with paired samples at baseline and 1 year) to identify proteins and pathways impacted by spironolactone therapy in heart failure with preserved ejection fraction. Mean percentage change from baseline was calculated for each protein. Additionally, we conducted pathway analysis of proteins altered by spironolactone. RESULTS Spironolactone therapy was associated with proteome-wide significant changes in 7 proteins. Among these, CARD18 (caspase recruitment domain-containing protein 18), PKD2 (polycystin 2), and PSG2 (pregnancy-specific glycoprotein 2) were upregulated, whereas HGF (hepatic growth factor), PLTP (phospholipid transfer protein), IGF2R (insulin growth factor 2 receptor), and SWP70 (switch-associated protein 70) were downregulated. CARD18, a caspase-1 inhibitor, was the most upregulated protein by spironolactone (-0.5% with placebo versus +66.5% with spironolactone, P<0.0001). The top canonical pathways that were significantly associated with spironolactone were apelin signaling, stellate cell activation, glycoprotein 6 signaling, atherosclerosis signaling, liver X receptor activation, and farnesoid X receptor activation. Among the top pathways, collagens were a consistent theme that increased in patients receiving placebo but decreased in patients randomized to spironolactone. CONCLUSIONS Proteomic analysis in the TOPCAT trial revealed proteins and pathways altered by spironolactone, including the caspase inhibitor CARD18 and multiple pathways that involved collagens. In addition to effects on fibrosis, our studies suggest potential antiapoptotic effects of spironolactone in heart failure with preserved ejection fraction, a hypothesis that merits further exploration.
Collapse
Affiliation(s)
- Ali Javaheri
- Washington University School of Medicine, St. Louis, MO
| | - Ahmed Diab
- Washington University School of Medicine, St. Louis, MO
| | - Lei Zhao
- Bristol Myers Squibb Company, Lawrenceville, NJ
| | - Chenao Qian
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Jordana B. Cohen
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Payman Zamani
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Anupam Kumar
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | | | | | | | | | | | - Vanessa van Empel
- Department of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A. Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Rob Doughty
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Ernst Rietzschell
- Department of Cardiovascular Diseases, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | - Thomas P. Cappola
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Julio A. Chirinos
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| |
Collapse
|
5
|
Young MJ, Kanki M, Karthigan N, Konstandopoulos P. The Role of the Mineralocorticoid Receptor and Mineralocorticoid Receptor-Directed Therapies in Heart Failure. Endocrinology 2021; 162:6288445. [PMID: 34050730 DOI: 10.1210/endocr/bqab105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mineralocorticoid receptor (MR) antagonists (MRA), also referred to as aldosterone blockers, are now well-recognized for their clinical benefit in patients who have heart failure (HF) with reduced ejection fraction (HFrEF). Recent studies have also shown MRA can improve outcomes in patients with HFpEF, where the ejection fraction is preserved but left ventricular filling is reduced. While the MR is a steroid hormone receptor best known for antinatriuretic actions on electrolyte homeostasis in the distal nephron, it is now established that the MR has many physiological and pathophysiological roles in the heart, vasculature, and other nonepithelial tissue types. It is the impact of MR activation on these tissues that underpins the use of MRA in cardiovascular disease, in particular HF. This mini-review will discuss the origins and the development of MRA and highlight how their use has evolved from the "potassium-sparing diuretics" spironolactone and canrenone over 60 years ago, to the more receptor-selective eplerenone and most recently the emergence of new nonsteroidal receptor antagonists esaxerenone and finerenone.
Collapse
Affiliation(s)
- Morag J Young
- Baker Heart and Diabetes Institute, Cardiovascular Endocrinology Laboratory, Prahran 3181, Australia
| | - Monica Kanki
- Baker Heart and Diabetes Institute, Cardiovascular Endocrinology Laboratory, Prahran 3181, Australia
- Hudson Institute of Medical Research, Victoria 3168, Australia
| | - Nikshay Karthigan
- Baker Heart and Diabetes Institute, Cardiovascular Endocrinology Laboratory, Prahran 3181, Australia
- Hudson Institute of Medical Research, Victoria 3168, Australia
| | - Penny Konstandopoulos
- Baker Heart and Diabetes Institute, Cardiovascular Endocrinology Laboratory, Prahran 3181, Australia
| |
Collapse
|
6
|
Upregulation of microRNA-532 enhances cardiomyocyte apoptosis in the diabetic heart. Apoptosis 2021; 25:388-399. [PMID: 32418060 DOI: 10.1007/s10495-020-01609-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes has a strong association with the development of cardiovascular disease, which is grouped as diabetic heart disease (DHD). DHD is associated with the progressive loss of cardiovascular cells through the alteration of molecular signalling pathways associated with cell death. In this study, we sought to determine whether diabetes induces dysregulation of miR-532 and if this is associated with accentuated apoptosis. RT-PCR analysis showed a significant increase in miR-532 expression in the right atrial appendage tissue of type 2 diabetic patients undergoing coronary artery bypass graft surgery. This was associated with marked downregulation of its anti-apoptotic target protein apoptosis repressor with caspase recruitment domain (ARC) and increased TUNEL positive cardiomyocytes. Further analysis showed a positive correlation between apoptosis and miR-532 levels. Time-course experiments in a mouse model of type 2 diabetes showed that diabetes-induced activation of miR-532 occurs in the later stage of the disease. Importantly, the upregulation of miR-532 preceded the activation of pro-apoptotic caspase-3/7 activity. Finally, inhibition of miR-532 activity in high glucose cultured human cardiomyocytes prevented the downregulation of ARC and attenuated apoptotic cell death. Diabetes induced activation of miR-532 plays a critical role in accelerating cardiomyocytes apoptosis. Therefore, miR-532 may serve as a promising therapeutic agent to overcome the diabetes-induced loss of cardiomyocytes.
Collapse
|
7
|
Zhang J, Zheng X, Wang P, Wang J, Ding W. Role of apoptosis repressor with caspase recruitment domain (ARC) in cell death and cardiovascular disease. Apoptosis 2021; 26:24-37. [PMID: 33604728 DOI: 10.1007/s10495-020-01653-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a highly effective and multifunctional inhibitor of apoptosis that is mainly expressed in postmitotic cells such as cardiomyocytes and skeletal muscle cells. ARC contains a C-terminal region rich in proline and glutamic acid residues and an N-terminal caspase recruitment domain (CARD). The CARD is originally described as a protein-binding motif that interacts with caspase through a CARD-CARD interaction. Initially, the inhibitory effect of ARC was only found in apoptosis, however, it was later found that ARC also played a regulatory role in other types of cell death. As a powerful cardioprotective factor, ARC can protect the heart by inhibiting the death of cardiomyocytes in various ways. ARC can reduce the cardiomyocyte apoptotic response to various stresses and injuries, including extrinsic apoptosis induced by death receptor ligands, cellular Ca2+ homeostasis and the dysregulation of endoplasmic reticulum (ER) stress, oxidative stress and hypoxia. In addition, changes in ARC transcription and translation levels in the heart can cause a series of physiological and pathological changes, and ARC can also perform corresponding functions through interactions with other molecules. Although there has been much research on ARC, the functional redundancy among proteins shows that ARC still has much research value. This review summarizes the molecular characteristics of ARC, its roles in the various death modes in cardiomyocytes and the roles of ARC in cardiac pathophysiology. This article also describes the potential therapeutic effect and research prospects of ARC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao, 266000, China
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Xianxin Zheng
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Peiyan Wang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China.
| | - Wei Ding
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
8
|
Biyashev D, Onay UV, Dalal P, Demczuk M, Evans S, Techner JM, Lu KQ. A novel treatment for skin repair using a combination of spironolactone and vitamin D3. Ann N Y Acad Sci 2020; 1480:170-182. [PMID: 32892377 PMCID: PMC7754145 DOI: 10.1111/nyas.14485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/10/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Injury of the skin from exposure to toxic chemicals leads to the release of inflammatory mediators and the recruitment of immune cells. Nitrogen mustard (NM) and other alkylating agents cause severe cutaneous damage for which there are limited treatment options. Here, we show that combined treatment of vitamin D3 (VD3) and spironolactone (SP), a mineralocorticoid receptor antagonist, significantly improves the resolution of inflammation and accelerates wound healing after NM exposure. SP enhanced the inhibitory effect of VD3 on nuclear factor-kB activity. Combined treatment of NM-exposed mice with VD3 and SP synergistically inhibited the expression of iNOS in the skin and decreased the expression of matrix metallopeptidase-9, C-C motif chemokine ligand 2, interleukin (IL)-1α, and IL-1β. The combined treatment decreased the number of local proinflammatory M1 macrophages resulting in an increase in the M2/M1 ratio in the wound microenvironment. Apoptosis was also decreased in the skin after combined treatment. Together, this creates a proresolution state, resulting in more rapid wound closure. Combined VD3 and SP treatment is effective in modulating the immune response and activating anti-inflammatory pathways in macrophages to facilitate tissue repair. Altogether, these data demonstrate that VD3 and SP may constitute an effective treatment regimen to improve wound healing after NM or other skin chemical injury.
Collapse
Affiliation(s)
- Dauren Biyashev
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ummiye V Onay
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Prarthana Dalal
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Michael Demczuk
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Spencer Evans
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - José-Marc Techner
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kurt Q Lu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
9
|
Dragasevic N, Jakovljevic V, Zivkovic V, Draginic N, Andjic M, Bolevich S, Jovic S. The role of aldosterone inhibitors in cardiac ischemia-reperfusion injury. Can J Physiol Pharmacol 2020; 99:18-29. [PMID: 32799671 DOI: 10.1139/cjpp-2020-0276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Myocardial ischaemia-reperfusion (I/R) injury is a well-known term for exacerbation of cellular destruction and dysfunction after the restoration of blood flow to a previously ischaemic heart. A vast number of studies that have demonstrated that the role of mineralocorticoids in cardiovascular diseases is based on the use of pharmacological mineralocorticoid receptor (MR) antagonists. This review paper aimed to summarize current knowledge on the effects of MR antagonists on myocardial I/R injury as well as postinfarction remodeling. Animal models, predominantly the Langendorff technique and left anterior descending coronary artery occlusion, have confirmed the potency of MR antagonists as preconditioning and postconditioning agents in limiting infarct size and postinfarction remodeling. Several preclinical studies in rodents have established and proved possible mechanisms of cardioprotection by MR antagonists, such as reduction of oxidative stress, reduction of inflammation, and apoptosis, therefore limiting the infarct zone. However, the results of some clinical trials are inconsistent, since they reported no benefit of MR antagonists in acute myocardial infarction. Due to this, further studies and the results of ongoing clinical trials regarding MR antagonist administration in patients with acute myocardial infarction are being awaited with great interest.
Collapse
Affiliation(s)
- Nevena Dragasevic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Vladimir Jakovljevic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34 000 Kragujevac, Serbia.,1st Moscow State Medical University IM Sechenov, Department of Human Pathology, Trubetskaya street 8, 119991 Moscow, Russia
| | - Vladimir Zivkovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Nevena Draginic
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Marijana Andjic
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Sergey Bolevich
- 1 Moscow State Medical University IM Sechenov, Department of Human Pathology, Trubetskaya street 8, 119991 Moscow, Russia
| | - Slavoljub Jovic
- University of Belgrade, Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, Bul. Oslobodjenja 18, Belgrade, Serbia
| |
Collapse
|
10
|
Yu Z, Li Q, An Y, Chen X, Liu Z, Li Z, Gao J, Aung LHH, Li P. Role of apoptosis repressor with caspase recruitment domain (ARC) in cancer. Oncol Lett 2019; 18:5691-5698. [PMID: 31788041 PMCID: PMC6865693 DOI: 10.3892/ol.2019.10981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/11/2019] [Indexed: 11/06/2022] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a potent inhibitor of apoptosis. Under physiological conditions, ARC is abundantly expressed in terminally differentiated cells, including cardiomyocytes, skeletal muscles and neurons. ARC serves a key role in determining cell fate, and abnormal ARC expression has been demonstrated to be associated with abnormal cell growth. Previous studies have revealed that ARC was upregulated in several different types of solid tumor, where it suppressed tumor cell apoptosis. Furthermore, the increased expression levels of ARC in cancer cells contributed to the development of therapeutic resistance and adverse clinical outcomes in patients with leukemia. However, the exact role of ARC, as well as the underlying molecular mechanisms involved, remain poorly understood. The present review summarizes the characteristics of ARC and its cytoprotective role under different conditions and describes the potential ARC as a new target for cancer therapy.
Collapse
Affiliation(s)
- Zhongjie Yu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qi Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiatian Chen
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Ziqian Liu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhe Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jinning Gao
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Peifeng Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
11
|
Yu Z, Li Q, An Y, Chen X, Liu Z, Li Z, Gao J, Aung LHH, Li P. Role of apoptosis repressor with caspase recruitment domain (ARC) in cancer. Oncol Lett 2019. [PMID: 31788041 DOI: 10.3892/ol.2019.10981/abstract] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a potent inhibitor of apoptosis. Under physiological conditions, ARC is abundantly expressed in terminally differentiated cells, including cardiomyocytes, skeletal muscles and neurons. ARC serves a key role in determining cell fate, and abnormal ARC expression has been demonstrated to be associated with abnormal cell growth. Previous studies have revealed that ARC was upregulated in several different types of solid tumor, where it suppressed tumor cell apoptosis. Furthermore, the increased expression levels of ARC in cancer cells contributed to the development of therapeutic resistance and adverse clinical outcomes in patients with leukemia. However, the exact role of ARC, as well as the underlying molecular mechanisms involved, remain poorly understood. The present review summarizes the characteristics of ARC and its cytoprotective role under different conditions and describes the potential ARC as a new target for cancer therapy.
Collapse
Affiliation(s)
- Zhongjie Yu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qi Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiatian Chen
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Ziqian Liu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhe Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jinning Gao
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Peifeng Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
12
|
De Angelis E, Pecoraro M, Rusciano MR, Ciccarelli M, Popolo A. Cross-Talk between Neurohormonal Pathways and the Immune System in Heart Failure: A Review of the Literature. Int J Mol Sci 2019; 20:ijms20071698. [PMID: 30959745 PMCID: PMC6480265 DOI: 10.3390/ijms20071698] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023] Open
Abstract
Heart failure is a complex clinical syndrome involving a multitude of neurohormonal pathways including the renin-angiotensin-aldosterone system, sympathetic nervous system, and natriuretic peptides system. It is now emerging that neurohumoral mechanisms activated during heart failure, with both preserved and reduced ejection fraction, modulate cells of the immune system. Indeed, these cells express angiotensin I receptors, adrenoceptors, and natriuretic peptides receptors. Ang II modulates macrophage polarization, promoting M2 macrophages phenotype, and this stimulation can influence lymphocytes Th1/Th2 balance. β-AR activation in monocytes is responsible for inhibition of free oxygen radicals production, and together with α2-AR can modulate TNF-α receptor expression and TNF-α release. In dendritic cells, activation of β2-AR inhibits IL-12 production, resulting in the inhibition of Th1 and promotion of Th2 differentiation. ANP induces the activation of secretion of superoxide anion in polymorphonucleated cells; reduces TNF-α and nitric oxide secretion in macrophages; and attenuates the exacerbated TH1 responses. BNP in macrophages can stimulate ROS production, up-regulates IL-10, and inhibits IL-12 and TNF-α release by dendritic cells, suggesting an anti-inflammatory cytokines profile induction. Therefore, different neurohormonal-immune cross-talks can determine the phenotype of cardiac remodeling, promoting either favorable or maladaptive responses. This review aims to summarize the available knowledge on neurohormonal modulation of immune responses, providing supportive rational background for further research.
Collapse
Affiliation(s)
- Elena De Angelis
- Department of Medicine, Surgery and Odontology, University of Salerno, via S.Allende 1, 84081 Baronissi (SA), Italy.
| | - Michela Pecoraro
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy.
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Odontology, University of Salerno, via S.Allende 1, 84081 Baronissi (SA), Italy.
- Casa di Cura Montevergine, 83013 Mercogliano (AV), Italy.
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Odontology, University of Salerno, via S.Allende 1, 84081 Baronissi (SA), Italy.
| | - Ada Popolo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy.
| |
Collapse
|
13
|
Xin YG, Chen X, Zhao YN, Hu J, Sun Y, Hu WY. Outcomes of spironolactone treatment in patients in Northeast China suffering from heart failure with mid-range ejection fraction. Curr Med Res Opin 2019; 35:561-568. [PMID: 30183419 DOI: 10.1080/03007995.2018.1520695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIM The treatment effects of spironolactone on heart failure with reduced (HFrEF LVEF <40%) and preserved (HFpEF LVEF ≥50%) ejection fraction are well characterized. It is not clear whether heart failure patients with mid-range ejection fraction (HFmrEF, LVEF 40-49%) benefit from spironolactone. The present study aims to evaluate the efficacy of spironolactone in HFmrEF patients. METHOD This study compared a high dosage of spironolactone (50 mg daily), a low dosage of spironolactone (25 mg daily), and an untreated group for the prevention of major adverse cardiovascular events (MACE) in 279 patients admitted to hospital diagnosed with HFmrEF. RESULTS With a mean follow-up duration of 1 year, the death and HF-rehospitalization rate demonstrated significantly lower incidence in those taking spironolactone, compared with the untreated group (21.3% vs 34.5%, p = .014, respectively). Further analysis showed no difference between two spironolactone groups (21.8% vs 20.7%, p = .861). Kaplan-Meier analysis of outcome-free survival illustrated a significant difference in survival rate among three groups (log-rank testing, p = .045). Compared with the baseline level, patients receiving 25 mg spironolactone had a lower physical score (p < .05) at 1-year follow-up. MLHFQ total scores in the two spironolactone groups markedly improved compared with the untreated group (p < .001); similar results were observed in the MLHFQ physical scores (p = .025, .001, respectively) and emotional sub-scale (p = .023, .011, respectively); however, paired comparison between the two spironolactone groups showed no difference. CONCLUSIONS In patients with HFmrEF, treatment with spironolactone significantly reduced the incidence of the primary composite outcomes of all-cause death, and rehospitalization for the management of heart failure compared with placebo, and a high dosage of spironolactone did not show trends of reduction in MACE.
Collapse
Affiliation(s)
- Yan-Guo Xin
- a Department of Cardiology , The First Affiliated Hospital, China Medical University , Shenyang , PR China
- b Department of Cardiology , West China Hospital, Sichuan University , Chengdu , PR China
| | - Xin Chen
- a Department of Cardiology , The First Affiliated Hospital, China Medical University , Shenyang , PR China
- c Department of Cardiology , Fuling Central Hospital , Chongqing , PR China
| | - Yi-Nan Zhao
- d Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, PR China
| | - Jian Hu
- a Department of Cardiology , The First Affiliated Hospital, China Medical University , Shenyang , PR China
| | - Yingxian Sun
- a Department of Cardiology , The First Affiliated Hospital, China Medical University , Shenyang , PR China
| | - Wen-Yu Hu
- a Department of Cardiology , The First Affiliated Hospital, China Medical University , Shenyang , PR China
| |
Collapse
|
14
|
Xie X, Shen Y, Chen J, Huang Z, Ge J. Mineralocorticoid receptor deficiency improves the therapeutic effects of mesenchymal stem cells for myocardial infarction via enhanced cell survival. J Cell Mol Med 2018; 23:1246-1256. [PMID: 30549184 PMCID: PMC6349200 DOI: 10.1111/jcmm.14026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/31/2022] Open
Abstract
The poor survival of stem cells seriously limits their therapeutic efficacy for myocardial infarction (MI). Mineralocorticoid receptor (MR) activation plays an important role in the pathogenesis of multiple cardiovascular diseases. Here, we examined whether MR silencing in bone marrow derived mesenchymal stem cells (MSCs) could improve MSCs’ survival and enhance their cardioprotective effects in MI. MSCs from male Sprague‐Dawley rats were transfected with adenoviral small interfering RNA to silence MR (siRNA‐MR). MR silencing decreased hypoxia‐induced MSCs’ apoptosis, as demonstrated by Annexin V/7‐AAD staining. The mechanisms contributing to the beneficial effects of MR depletion were associated with inhibiting intracellular reactive oxygen species production and increased Bcl‐2/Bax ratio. In vivo study, 1 × 106 of MSCs with or without siRNA‐MR were injected into rat hearts immediately after MI. Depletion of MR could improve the MSCs’ survival significantly in infarcted myocardium, associated with more cardiac function improvement and smaller infarct size. Capillary density were also significantly higher in siRNA group with increased expression of vascular endothelial growth factor. Our study demonstrated that silencing MR promoted MSCs’ survival and repair efficacy in ischaemic hearts. MR might be a potential target for enhancing the efficacy of cell therapy in ischaemic heart disease.
Collapse
Affiliation(s)
- Xinxing Xie
- Department of Cardiology, Rizhao Heart Hospital, Shandong, China
| | - Yunli Shen
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Jing Chen
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zheyong Huang
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Wu F, Lin Y, Liu Q. The emerging role of aldosterone/mineralocorticoid receptors in the pathogenesis of erectile dysfunction. Endocrine 2018; 61:372-382. [PMID: 29721801 DOI: 10.1007/s12020-018-1610-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/17/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE Aldosterone is an old hormone that has been discovered for more than fifty years. The clinical application of its receptors' inhibitors, especially spirolactone, has benifited patients for decades worldwide. In this review, we briefly summarized the molecular mechanism of aldosterone/mineralocorticoid receptors (Ald-MRs) signaling in cardiovascular diseases and its emerging role in erectile dysfunction. METHODS We searched PubMed, Web of Science, and Scopus for manuscripts published prior to December 2017 using key words " aldosterone " AND " erectile dysfunction " OR " cardiovascular disease " OR " mineralocorticoid receptors ". Related literature and clinical perspectives were collated, summarized and discussed in this review. RESULTS The increase of reactive oxygen species production, inhibition of endothelial nitric oxide synthase system, and induction of inflammation are ubiquitous in vascular endothelial cells or vascular smooth muscle cells after the activation of Ald-MRs pathway. In addition, in cardiovascular diseases with over-active Ald-MRs signaling, MRs blockade could reverse the injury and improve the prognosis. Notably, multiple studies have correlated aldosterone and MRs to the pathogenesis of erectile function, while the mechanism is largely unperfectly identified. CONCLUSION In conclusion, we summarize the current evidence to highlight the potential role of aldosterone in erectile dysfunction and provide critical insights into the treatment of the disease.
Collapse
Affiliation(s)
- Fei Wu
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, China.
| | - Yun Lin
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, China
| | - Qingyong Liu
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, China.
| |
Collapse
|
16
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
17
|
Park D, Lee HS, Kang JH, Kim SM, Gong JR, Cho KH. Attractor landscape analysis of the cardiac signaling network reveals mechanism-based therapeutic strategies for heart failure. J Mol Cell Biol 2018; 10:180-194. [PMID: 29579284 DOI: 10.1093/jmcb/mjy019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/19/2018] [Indexed: 01/03/2025] Open
Abstract
Apoptosis and hypertrophy of cardiomyocytes are the primary causes of heart failure (HF), a global leading cause of death, and are regulated through the complicated intracellular signaling network, limiting the development of effective treatments due to its complexity. To identify effective therapeutic strategies for HF at a system level, we develop a large-scale comprehensive mathematical model of the cardiac signaling network by integrating all available experimental evidence. Attractor landscape analysis of the network model identifies distinct sets of control nodes that effectively suppress apoptosis and hypertrophy of cardiomyocytes under ischemic or pressure overload-induced HF, the two major types of HF. Intriguingly, our system-level analysis suggests that intervention of these control nodes may increase the efficacy of clinical drugs for HF and, of most importance, different combinations of control nodes are suggested as potentially effective candidate drug targets depending on the types of HF. Our study provides a systematic way of developing mechanism-based therapeutic strategies for HF.
Collapse
Affiliation(s)
- Daebeom Park
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ho-Sung Lee
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Jun Hyuk Kang
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Seon-Myeong Kim
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jeong-Ryeol Gong
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
18
|
Abstract
BACKGROUND The incidence of cardiovascular events is higher in patients with primary aldosteronism than in patients with essential hypertension (EHT), despite similar blood pressure levels. This suggests detrimental cardiovascular effects of aldosterone. Amongst others, it has been suggested that galectin-3 (Gal-3) is a key mediator in aldosterone-induced myocardial fibrosis. OBJECTIVE We studied whether patients with primary aldosteronism have higher plasma Gal-3 concentrations than patients with EHT and evaluated its reversibility after adrenalectomy. METHODS In a retrospective cohort from our tertiary referral centre, we measured plasma Gal-3 concentrations in 78 patients with primary aldosteronism, 39 cured primary aldosteronism patients after adrenalectomy and 56 patients with EHT. Paired samples were available in 11 patients (preadrenalectomy and postadrenalectomy). We compared plasma Gal-3 levels by univariate analysis of covariance with correction for cardiovascular risk factors, plasma creatinine concentration, plasma potassium levels and alcohol intake. RESULTS Adjusted plasma Gal-3 concentrations in patients with primary aldosteronism, patients after adrenalectomy and patients with EHT were 11.39 ± 0.60, 11.64 ± 0.81 and 11.41 ± 0.73 ng/ml, respectively (mean ± SD; P = 0.95). In 11 patients of whom paired samples were available, mean Gal-3 concentrations increased from 10.03 ± 1.67 ng/ml preadrenalectomy to 14.36 ± 2.07 ng/ml postadrenalectomy (P < 0.01). CONCLUSION In patients with primary aldosteronism, plasma Gal-3 concentrations are not elevated when compared with patients with EHT, and levels do not decrease after adrenalectomy. These results are in contrast to previous studies and do not support a pathophysiological role of plasma Gal-3 in the increased cardiovascular risk in patients with primary aldosteronism.
Collapse
|
19
|
Preoperative plasma aldosterone and the risk of atrial fibrillation after coronary artery bypass surgery: a prospective cohort study. J Hypertens 2017; 34:2449-2457. [PMID: 27584972 DOI: 10.1097/hjh.0000000000001105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Postoperative atrial fibrillation (POAF) is associated with poor outcomes after coronary artery bypass graft (CABG) surgery. We aimed to assess the additional value of preoperative plasma aldosterone levels, a biomarker promoting proarrhythmic and profibrotic pathways, for predicting POAF after CABG. METHODS We conducted a prospective cohort study involving consecutive patients with left ventricular ejection fraction (LVEF) more than 50% requiring elective CABG in our university hospital. Plasma aldosterone levels, two-dimensional echocardiography including left atrial strain analysis and galectin-3 (Gal-3) examination were assessed before cardiac surgery. The primary endpoint was the occurrence of POAF within 30 days after surgery. RESULTS POAF occurred in 34 (24.8%) out of the 137 included patients. Compared with controls, patients experiencing POAF were significantly older (73 years old ± 8 vs 65 ± 11, P < 0.001) and had higher preoperative plasma aldosterone levels [183 pmol/l (interquartile range 138-300) vs 143 pmol/l (interquartile range 96.5-216.5), P < 0.01]. Age [odds ratio (OR), 1.088; 95% confidence interval (CI) (1.038-1.140); P = 0.0004] and plasma aldosterone levels [OR, 1.007; 95% CI (1.003-1.012); P = 0.0013] were independently associated with POAF in multivariate analysis and could therefore be combined to predict the occurrence of POAF ['Aldoscore', OR, 2.7; 95% CI (1.7-4.3); P < 0.0001]. Reverse transcriptase PCR analysis performed on right atrial appendage and plasma examination revealed that Gal-3 was activated in POAF patients. CONCLUSION We developed the preoperative 'Aldoscore' for POAF risk stratification among patients with preserved LVEF requiring elective CABG. This new tool may be helpful to identify good responders to interventions targeting the proarrhythmic and profibrotic pathways of aldosterone.
Collapse
|
20
|
Aghajani M, Faghihi M, Imani A, Vaez Mahdavi MR, Shakoori A, Rastegar T, Parsa H, Mehrabi S, Moradi F, Kazemi Moghaddam E. Post-infarct sleep disruption and its relation to cardiac remodeling in a rat model of myocardial infarction. Chronobiol Int 2017; 34:587-600. [PMID: 28156163 DOI: 10.1080/07420528.2017.1281823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sleep disruption after myocardial infarction (MI) by affecting ubiquitin-proteasome system (UPS) is thought to contribute to myocardial remodeling and progressive worsening of cardiac function. The aim of current study was to test the hypothesis about the increased risk of developing heart failure due to experience of sleep restriction (SR) after MI. Male Wistar rats (n = 40) were randomly assigned to four experimental groups: (1) Sham, (2) MI, (3) MI and SR (MI + SR) (4) Sham and SR (Sham + SR). MI was induced by permanent ligation of left anterior descending coronary artery. Twenty-four hours after surgery, animals were subjected to chronic SR paradigm. Blood sampling was performed at days 1, 8 and 21 after MI for determination of serum levels of creatine kinase-MB (CK-MB), corticosterone, malondialdehyde (MDA) and nitric oxide (NO). Finally, at 21 days after MI, echocardiographic parameters and expression of MuRF1, MaFBx, A20, eNOS, iNOS and NF-kB in the heart were evaluated. We used H&E staining to detect myocardial hypertrophy. We found out that post infarct SR increased corticosterone levels. Our results highlighted deteriorating effects of post-MI SR on NO production, oxidative stress, and echocardiographic indexes (p < 0.05). Moreover, its detrimental effects on myocardial damage were confirmed by overexpression of MuRF1, MaFBx, iNOS and NF-kB (p < 0.001) in left ventricle and downregulation of A20 and eNOS (p < 0.05). Furthermore, histological examination revealed that experience of SR after MI increased myocardial diameter as compared to Sham subjects (p < 0.05). Our data suggest that SR after MI leads to an enlargement of the heart within 21 days, marked by an increase in oxidative stress and NO production as well as an imbalance in UPS that ultimately results in cardiac dysfunction and heart failure.
Collapse
Affiliation(s)
- Marjan Aghajani
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Mahdieh Faghihi
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Imani
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran.,b Occupational Sleep Research Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Reza Vaez Mahdavi
- c Traditional Medicine Clinical Trial Research Center, Shahed University , Tehran , Iran.,d Department of Physiology , Medical Faculty, Shahed University , Tehran , Iran
| | - Abbas Shakoori
- e Genetic Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Tayebeh Rastegar
- f Anatomy Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Hoda Parsa
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Saman Mehrabi
- e Genetic Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Fatemeh Moradi
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Ehsan Kazemi Moghaddam
- g Shiraz Burn and Wound Healing Research Center, Amir-al-momenin Burn Hospital, Shiraz University of Medical Sciences , Iran.,h Department of Microbiology , Medical Faculty, Shahed University , Tehran , Iran
| |
Collapse
|
21
|
Sinha-Hikim I, Friedman TC, Falz M, Chalfant V, Hasan MK, Espinoza-Derout J, Lee DL, Sims C, Tran P, Mahata SK, Sinha-Hikim AP. Nicotine plus a high-fat diet triggers cardiomyocyte apoptosis. Cell Tissue Res 2016; 368:159-170. [PMID: 27917437 DOI: 10.1007/s00441-016-2536-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/11/2016] [Indexed: 12/29/2022]
Abstract
Cigarette smoking is an important risk factor for diabetes, cardiovascular disease and non-alcoholic fatty liver disease. The health risk associated with smoking can be aggravated by obesity. Smoking might also trigger cardiomyocyte (CM) apoptosis. Given that CM apoptosis has been implicated as a potential mechanism in the development of cardiomyopathy and heart failure, we characterize the key signaling pathways in nicotine plus high-fat diet (HFD)-induced CM apoptosis. Adult C57BL6 male mice were fed a normal diet (ND) or HFD and received twice-daily intraperitoneal (IP) injections of nicotine (0.75 mg/kg body weight [BW]) or saline for 16 weeks. An additional group of nicotine-treated mice on HFD received twice-daily IP injections of mecamylamine (1 mg/kg BW), a non-selective nicotinic acetylcholine receptor antagonist, for 16 weeks. Nicotine when combined with HFD led to a massive increase in CM apoptosis that was fully prevented by mecamylamine treatment. Induction of CM apoptosis was associated with increased oxidative stress and activation of caspase-2-mediated intrinsic pathway signaling coupled with inactivation of AMP-activated protein kinase (AMPK). Furthermore, nicotine treatment significantly (P < 0.05) attenuated the HFD-induced decrease in fibroblast growth factor 21 (FGF21) and silent information regulator 1 (SIRT1). We conclude that nicotine, when combined with HFD, triggers CM apoptosis through the generation of oxidative stress and inactivation of AMPK together with the activation of caspase-2-mediated intrinsic apoptotic signaling independently of FGF21 and SIRT1.
Collapse
Affiliation(s)
- Indrani Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA 90059, USA.,David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Theodore C Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA 90059, USA.,David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark Falz
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA 90059, USA
| | - Victor Chalfant
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA 90059, USA
| | - Mohammad Kamrul Hasan
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA 90059, USA
| | - Jorge Espinoza-Derout
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA 90059, USA
| | - Desean L Lee
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA 90059, USA
| | - Carl Sims
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA 90059, USA
| | - Peter Tran
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA 90059, USA
| | - Sushil K Mahata
- VA San Diego Health Care System and University of California, San Diego, Calif., USA
| | - Amiya P Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA 90059, USA. .,David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
van den Berg TNAD, van Swieten HA, Vos JC, Verweij V, Wouterse AC, Deinum J, Morshuis WJ, Rongen GA, Riksen NP. Eplerenone does not limit ischemia-reperfusion injury in human myocardial tissue. Int J Cardiol 2016; 216:110-3. [PMID: 27149239 DOI: 10.1016/j.ijcard.2016.04.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/16/2016] [Indexed: 12/11/2022]
Affiliation(s)
- T N A Daniëlle van den Berg
- Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands; Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - H A van Swieten
- Department of Cardiothoracic Surgery, Radboud university medical center, Nijmegen, The Netherlands
| | - J C Vos
- Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | - V Verweij
- Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | - A C Wouterse
- Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | - J Deinum
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - W J Morshuis
- Department of Cardiothoracic Surgery, Radboud university medical center, Nijmegen, The Netherlands
| | - G A Rongen
- Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands; Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - N P Riksen
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Bienvenu LA, Reichelt ME, Morgan J, Fletcher EK, Bell JR, Rickard AJ, Delbridge LM, Young MJ. Cardiomyocyte Mineralocorticoid Receptor Activation Impairs Acute Cardiac Functional Recovery After Ischemic Insult. Hypertension 2015; 66:970-7. [PMID: 26351032 DOI: 10.1161/hypertensionaha.115.05981] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/11/2015] [Indexed: 01/03/2023]
Abstract
Loss of mineralocorticoid receptor signaling selectively in cardiomyocytes can ameliorate cardiac fibrotic and inflammatory responses caused by excess mineralocorticoids. The aim of this study was to characterize the role of cardiomyocyte mineralocorticoid receptor signaling in ischemia-reperfusion injury and recovery and to identify a role of mineralocorticoid receptor modulation of cardiac function. Wild-type and cardiomyocyte mineralocorticoid receptor knockout mice (8 weeks) were uninephrectomized and maintained on (1) high salt (0.9% NaCl, 0.4% KCl) or (2) high salt plus deoxycorticosterone pellet (0.3 mg/d, 0.9% NaCl, 0.4% KCl). After 8 weeks of treatment, hearts were isolated and subjected to 20 minutes of global ischemia plus 45 minutes of reperfusion. Mineralocorticoid excess increased peak contracture during ischemia regardless of genotype. Recovery of left ventricular developed pressure and rates of contraction and relaxation post ischemia-reperfusion were greater in knockout versus wild-type hearts. The incidence of arrhythmic activity during early reperfusion was significantly higher in wild-type than in knockout hearts. Levels of autophosphorylated Ca(2+)/calmodulin protein kinase II (Thr287) were elevated in hearts from wild-type versus knockout mice and associated with increased sodium hydrogen exchanger-1 expression. These findings demonstrate that cardiomyocyte-specific mineralocorticoid receptor-dependent signaling contributes to electromechanical vulnerability in acute ischemia-reperfusion via a mechanism involving Ca(2+)/calmodulin protein kinase II activation in association with upstream alteration in expression regulation of the sodium hydrogen exchanger-1.
Collapse
Affiliation(s)
- Laura A Bienvenu
- From the Department of Cardiovascular Endocrinology, Hudson Institute of Medical Research, Clayton, Australia (L.A.B., J.M., E.K.F., A.J.R., M.J.Y.); and Department of Physiology, Melbourne University, Parkville, Australia (L.A.B., M.E.R., J.R.B., L.M.D.)
| | - Melissa E Reichelt
- From the Department of Cardiovascular Endocrinology, Hudson Institute of Medical Research, Clayton, Australia (L.A.B., J.M., E.K.F., A.J.R., M.J.Y.); and Department of Physiology, Melbourne University, Parkville, Australia (L.A.B., M.E.R., J.R.B., L.M.D.)
| | - James Morgan
- From the Department of Cardiovascular Endocrinology, Hudson Institute of Medical Research, Clayton, Australia (L.A.B., J.M., E.K.F., A.J.R., M.J.Y.); and Department of Physiology, Melbourne University, Parkville, Australia (L.A.B., M.E.R., J.R.B., L.M.D.)
| | - Elizabeth K Fletcher
- From the Department of Cardiovascular Endocrinology, Hudson Institute of Medical Research, Clayton, Australia (L.A.B., J.M., E.K.F., A.J.R., M.J.Y.); and Department of Physiology, Melbourne University, Parkville, Australia (L.A.B., M.E.R., J.R.B., L.M.D.)
| | - James R Bell
- From the Department of Cardiovascular Endocrinology, Hudson Institute of Medical Research, Clayton, Australia (L.A.B., J.M., E.K.F., A.J.R., M.J.Y.); and Department of Physiology, Melbourne University, Parkville, Australia (L.A.B., M.E.R., J.R.B., L.M.D.)
| | - Amanda J Rickard
- From the Department of Cardiovascular Endocrinology, Hudson Institute of Medical Research, Clayton, Australia (L.A.B., J.M., E.K.F., A.J.R., M.J.Y.); and Department of Physiology, Melbourne University, Parkville, Australia (L.A.B., M.E.R., J.R.B., L.M.D.)
| | - Lea M Delbridge
- From the Department of Cardiovascular Endocrinology, Hudson Institute of Medical Research, Clayton, Australia (L.A.B., J.M., E.K.F., A.J.R., M.J.Y.); and Department of Physiology, Melbourne University, Parkville, Australia (L.A.B., M.E.R., J.R.B., L.M.D.)
| | - Morag J Young
- From the Department of Cardiovascular Endocrinology, Hudson Institute of Medical Research, Clayton, Australia (L.A.B., J.M., E.K.F., A.J.R., M.J.Y.); and Department of Physiology, Melbourne University, Parkville, Australia (L.A.B., M.E.R., J.R.B., L.M.D.).
| |
Collapse
|
24
|
Dan H, Zhang L, Qin X, Peng X, Wong M, Tan X, Yu S, Fang N. Moutan cortex extract exerts protective effects in a rat model of cardiac ischemia/reperfusion. Can J Physiol Pharmacol 2015; 94:245-50. [PMID: 26610043 DOI: 10.1139/cjpp-2015-0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Moutan cortex (MC) is a traditional Chinese medicine with diverse biological effects. The present study was performed to investigate the effects of MC on myocardial ischemia/reperfusion (I/R) in rats and to explore its possible mechanisms. Sprague-Dawley rats were administered MC extract (1.98 g/kg, i.g.) for 14 days and underwent a subsequent open-chest procedure involving 30 min of myocardial ischemia and 60 min of reperfusion. The cardioprotective effect of MC was demonstrated by reduced infarct size and marked improvement in the histopathological examination. The increase in the activity of superoxide dismutase (SOD) and glutathione (GSH) as well as the reduction of malondialdehyde (MDA) indicated that MC effectively promoted the anti-oxidative defense system. Increased anti-oxidative defense was accompanied by decreased release of lactate dehydrogenase (LDH) and creatine kinase (CK). The reduction in TUNEL-positive myocytes demonstrated that MC decreased myocardial apoptosis. The mRNA expression of B cell leukemia-2 (Bcl-2) was upregulated by MC and the ratio of Bcl-2/Bcl-2-associated X protein (Bax) mRNA expression was increased. MC pretreatment decreased the mRNA expression of inducible nitric oxide synthase (iNOS). The data from this study suggest that MC exerted protective effects on acute myocardial I/R injury via anti-oxidative and anti-apoptotic activities.
Collapse
Affiliation(s)
- Hong Dan
- a Key Laboratory of Chinese Medicine Resource and Compound Prescription (Hubei University of Chinese Medicine), Ministry of Education, 1 Huang-jia-hu, Wuhan, China
| | - Liping Zhang
- a Key Laboratory of Chinese Medicine Resource and Compound Prescription (Hubei University of Chinese Medicine), Ministry of Education, 1 Huang-jia-hu, Wuhan, China
| | - Xiaolin Qin
- a Key Laboratory of Chinese Medicine Resource and Compound Prescription (Hubei University of Chinese Medicine), Ministry of Education, 1 Huang-jia-hu, Wuhan, China
| | - Xiaohui Peng
- a Key Laboratory of Chinese Medicine Resource and Compound Prescription (Hubei University of Chinese Medicine), Ministry of Education, 1 Huang-jia-hu, Wuhan, China
| | - Mingyan Wong
- a Key Laboratory of Chinese Medicine Resource and Compound Prescription (Hubei University of Chinese Medicine), Ministry of Education, 1 Huang-jia-hu, Wuhan, China
| | - Xuan Tan
- b Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
| | - Shanggong Yu
- c Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA
| | - Nianbai Fang
- c Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA.,d Departments of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
25
|
Ashton AW, Le TYL, Gomez-Sanchez CE, Morel-Kopp MC, McWhinney B, Hudson A, Mihailidou AS. Role of Nongenomic Signaling Pathways Activated by Aldosterone During Cardiac Reperfusion Injury. Mol Endocrinol 2015; 29:1144-55. [PMID: 26121234 DOI: 10.1210/me.2014-1410] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aldosterone (Aldo) activates both genomic and nongenomic signaling pathways in the cardiovascular system. Activation of genomic signaling pathways contributes to the adverse cardiac actions of Aldo during reperfusion injury; however, the extent nongenomic signaling pathways contribute has been difficult to identify due to lack of a specific ligand that activates only nongenomic signaling pathways. Using a pegylated aldosterone analog, aldosterone-3-carboxymethoxylamine-TFP ester conjugated to methoxypegylated amine (Aldo-PEG), we are able for the first time to distinguish between nongenomic and genomic cardiac actions of Aldo. We confirm Aldo-PEG activates phosphorylation of ERK1/2 in rat cardiomyocyte H9c2 cells similar to Aldo and G protein-coupled receptor 30 (GPR30 or GPER) agonist G1. GPER antagonist, G36, but not mineralocorticoid receptor (MR) antagonist spironolactone, prevented ERK1/2 phosphorylation by Aldo, Aldo-PEG, and G1. The selective nongenomic actions of Aldo-PEG are confirmed, with Aldo-PEG increasing superoxide production in H9c2 cells to similar levels as Aldo but having no effect on subcellular localization of MR. Striatin serves as a scaffold for GPER and MR, with GPER antagonist G36, but not spironolactone, restoring MR-striatin complexes. Aldo-PEG had no effect on MR-dependent transcriptional activation, whereas Aldo increased transcript levels of serum-regulated kinase 1 and plasminogen activator inhibitor-1. Using our ex vivo experimental rat model of myocardial infarction, we found aggravated infarct size and apoptosis by Aldo but not Aldo-PEG. Our studies confirm that in the heart, activation of nongenomic signaling pathways alone are not sufficient to trigger the deleterious effects of aldosterone during myocardial reperfusion injury.
Collapse
Affiliation(s)
- Anthony W Ashton
- Cardiovascular and Hormonal Research Laboratory, Department of Cardiology (T.Y.L.L., A.S.M.), Division of Perinatal Research (A.W.A.), Northern Blood Research Centre and Department of Haematology and Transfusion Medicine (M.-C.M.-K.), Sydney Neuro-Oncology Group and Bill Walsh Translational Cancer Research Laboratory (A.H.), Royal North Shore Hospital and Kolling Institute (A.W.A., T.Y.L.L., M.-C.M.-K., A.H., A.S.M.), Royal North Shore Hospital and The University of Sydney, Sydney 2065, Australia; Division of Endocrinology, G. V. (Sonny) Montgomery Veterans Affairs Medical Center and University of Mississippi Medical Center (C.E.G.-S.), Jackson, Mississippi 39216; and Analytical Chemistry Unit (B.M.), Pathology Queensland, Health Services Support Agency, Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Thi Y L Le
- Cardiovascular and Hormonal Research Laboratory, Department of Cardiology (T.Y.L.L., A.S.M.), Division of Perinatal Research (A.W.A.), Northern Blood Research Centre and Department of Haematology and Transfusion Medicine (M.-C.M.-K.), Sydney Neuro-Oncology Group and Bill Walsh Translational Cancer Research Laboratory (A.H.), Royal North Shore Hospital and Kolling Institute (A.W.A., T.Y.L.L., M.-C.M.-K., A.H., A.S.M.), Royal North Shore Hospital and The University of Sydney, Sydney 2065, Australia; Division of Endocrinology, G. V. (Sonny) Montgomery Veterans Affairs Medical Center and University of Mississippi Medical Center (C.E.G.-S.), Jackson, Mississippi 39216; and Analytical Chemistry Unit (B.M.), Pathology Queensland, Health Services Support Agency, Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Celso E Gomez-Sanchez
- Cardiovascular and Hormonal Research Laboratory, Department of Cardiology (T.Y.L.L., A.S.M.), Division of Perinatal Research (A.W.A.), Northern Blood Research Centre and Department of Haematology and Transfusion Medicine (M.-C.M.-K.), Sydney Neuro-Oncology Group and Bill Walsh Translational Cancer Research Laboratory (A.H.), Royal North Shore Hospital and Kolling Institute (A.W.A., T.Y.L.L., M.-C.M.-K., A.H., A.S.M.), Royal North Shore Hospital and The University of Sydney, Sydney 2065, Australia; Division of Endocrinology, G. V. (Sonny) Montgomery Veterans Affairs Medical Center and University of Mississippi Medical Center (C.E.G.-S.), Jackson, Mississippi 39216; and Analytical Chemistry Unit (B.M.), Pathology Queensland, Health Services Support Agency, Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Marie-Christine Morel-Kopp
- Cardiovascular and Hormonal Research Laboratory, Department of Cardiology (T.Y.L.L., A.S.M.), Division of Perinatal Research (A.W.A.), Northern Blood Research Centre and Department of Haematology and Transfusion Medicine (M.-C.M.-K.), Sydney Neuro-Oncology Group and Bill Walsh Translational Cancer Research Laboratory (A.H.), Royal North Shore Hospital and Kolling Institute (A.W.A., T.Y.L.L., M.-C.M.-K., A.H., A.S.M.), Royal North Shore Hospital and The University of Sydney, Sydney 2065, Australia; Division of Endocrinology, G. V. (Sonny) Montgomery Veterans Affairs Medical Center and University of Mississippi Medical Center (C.E.G.-S.), Jackson, Mississippi 39216; and Analytical Chemistry Unit (B.M.), Pathology Queensland, Health Services Support Agency, Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Brett McWhinney
- Cardiovascular and Hormonal Research Laboratory, Department of Cardiology (T.Y.L.L., A.S.M.), Division of Perinatal Research (A.W.A.), Northern Blood Research Centre and Department of Haematology and Transfusion Medicine (M.-C.M.-K.), Sydney Neuro-Oncology Group and Bill Walsh Translational Cancer Research Laboratory (A.H.), Royal North Shore Hospital and Kolling Institute (A.W.A., T.Y.L.L., M.-C.M.-K., A.H., A.S.M.), Royal North Shore Hospital and The University of Sydney, Sydney 2065, Australia; Division of Endocrinology, G. V. (Sonny) Montgomery Veterans Affairs Medical Center and University of Mississippi Medical Center (C.E.G.-S.), Jackson, Mississippi 39216; and Analytical Chemistry Unit (B.M.), Pathology Queensland, Health Services Support Agency, Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Amanda Hudson
- Cardiovascular and Hormonal Research Laboratory, Department of Cardiology (T.Y.L.L., A.S.M.), Division of Perinatal Research (A.W.A.), Northern Blood Research Centre and Department of Haematology and Transfusion Medicine (M.-C.M.-K.), Sydney Neuro-Oncology Group and Bill Walsh Translational Cancer Research Laboratory (A.H.), Royal North Shore Hospital and Kolling Institute (A.W.A., T.Y.L.L., M.-C.M.-K., A.H., A.S.M.), Royal North Shore Hospital and The University of Sydney, Sydney 2065, Australia; Division of Endocrinology, G. V. (Sonny) Montgomery Veterans Affairs Medical Center and University of Mississippi Medical Center (C.E.G.-S.), Jackson, Mississippi 39216; and Analytical Chemistry Unit (B.M.), Pathology Queensland, Health Services Support Agency, Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Anastasia S Mihailidou
- Cardiovascular and Hormonal Research Laboratory, Department of Cardiology (T.Y.L.L., A.S.M.), Division of Perinatal Research (A.W.A.), Northern Blood Research Centre and Department of Haematology and Transfusion Medicine (M.-C.M.-K.), Sydney Neuro-Oncology Group and Bill Walsh Translational Cancer Research Laboratory (A.H.), Royal North Shore Hospital and Kolling Institute (A.W.A., T.Y.L.L., M.-C.M.-K., A.H., A.S.M.), Royal North Shore Hospital and The University of Sydney, Sydney 2065, Australia; Division of Endocrinology, G. V. (Sonny) Montgomery Veterans Affairs Medical Center and University of Mississippi Medical Center (C.E.G.-S.), Jackson, Mississippi 39216; and Analytical Chemistry Unit (B.M.), Pathology Queensland, Health Services Support Agency, Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| |
Collapse
|
26
|
Yao T, Ying X, Zhao Y, Yuan A, He Q, Tong H, Ding S, Liu J, Peng X, Gao E, Pu J, He B. Vitamin D receptor activation protects against myocardial reperfusion injury through inhibition of apoptosis and modulation of autophagy. Antioxid Redox Signal 2015; 22:633-50. [PMID: 25365634 PMCID: PMC4346660 DOI: 10.1089/ars.2014.5887] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIMS To determine the roles of vitamin D receptor (VDR) in ischemia/reperfusion-induced myocardial injury and to investigate the underlying mechanisms involved. RESULTS The endogenous VDR expression was detected in the mouse heart, and myocardial ischemia/reperfusion (MI/R) upregulated VDR expression. Activation of VDR by natural and synthetic agonists reduced myocardial infarct size and improved cardiac function. Mechanistically, VDR activation inhibited endoplasmic reticulum (ER) stress (determined by the reduction of CCAAT/enhancer-binding protein homologous protein expression and caspase-12 activation), attenuated mitochondrial impairment (determined by the decrease of mitochondrial cytochrome c release and caspase-9 activation), and reduced cardiomyocyte apoptosis. Furthermore, VDR activation significantly inhibited MI/R-induced autophagy dysfunction (determined by the inhibition of Beclin 1 over-activation, the reduction of autophagosomes, the LC3-II/LC3-I ratio, p62 protein abundance, and the restoration of autophagy flux). Moreover, VDR activation inhibited MI/R-induced oxidative stress through a metallothionein-dependent mechanism. The cardioprotective effects of VDR agonists mentioned earlier were impaired in the setting of cardiac-specific VDR silencing. In contrast, adenovirus-mediated cardiac VDR overexpression decreased myocardial infarct size and improved cardiac function through attenuating oxidative stress, and inhibiting apoptosis and autophagy dysfunction. INNOVATION AND CONCLUSION Our data demonstrate that VDR is a novel endogenous self-defensive and cardioprotective receptor against MI/R injury, via mechanisms (at least in part) reducing oxidative stress, and inhibiting apoptosis and autophagy dysfunction-mediated cell death.
Collapse
Affiliation(s)
- Tianbao Yao
- 1 Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Funder JW. Primary aldosteronism and salt. Pflugers Arch 2014; 467:587-94. [DOI: 10.1007/s00424-014-1658-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
|
28
|
van den Berg TNA, Deinum J, Bilos A, Donders ART, Rongen GA, Riksen NP. The effect of eplerenone on adenosine formation in humans in vivo: a double-blinded randomised controlled study. PLoS One 2014; 9:e111248. [PMID: 25356826 PMCID: PMC4214740 DOI: 10.1371/journal.pone.0111248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/19/2014] [Indexed: 11/19/2022] Open
Abstract
Background It has been suggested that mineralocorticoid receptor antagonists have direct cardioprotective properties, because these drugs reduce mortality in patients with heart failure. In murine models of myocardial infarction, mineralocorticoid receptor antagonists reduce infarct size. Using gene deletion and pharmacological approaches, it has been shown that extracellular formation of the endogenous nucleoside adenosine is crucial for this protective effect. We now aim to translate this finding to humans, by investigating the effects of the selective mineralocorticoid receptor antagonist eplerenone on the vasodilator effect of the adenosine uptake inhibitor dipyridamole, which is a well-validated surrogate marker for extracellular adenosine formation. Methods and Results In a randomised, double-blinded, placebo-controlled, cross-over study we measured the forearm blood flow response to the intrabrachial administration of dipyridamole in 14 healthy male subjects before and after treatment with placebo or eplerenone (50 mg bid for 8 days). The forearm blood flow during administration of dipyridamole (10, 30 and 100 µg·min−1·dl−1) was 1.63 (0.60), 2.13 (1.51) and 2.71 (1.32) ml·dl−1·min−1 during placebo use, versus 2.00 (1.45), 2.68 (1.87) and 3.22 (1.94) ml·dl−1·min−1 during eplerenone treatment (median (interquartile range); P = 0.51). Concomitant administration of the adenosine receptor antagonist caffeine attenuated dipyridamole-induced vasodilation to a similar extent in both groups. The forearm blood flow response to forearm ischemia, as a stimulus for increased formation of adenosine, was similar during both conditions. Conclusion In a dosage of 50 mg bid, eplerenone does not augment extracellular adenosine formation in healthy human subjects. Therefore, it is unlikely that an increased extracellular adenosine formation contributes to the cardioprotective effect of mineralocorticoid receptor antagonists. Trial Registration ClinicalTrials.gov, NCT01837108
Collapse
Affiliation(s)
- T. N. A. van den Berg
- Department of Pharmacology-Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jaap Deinum
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Albert Bilos
- Department of Pharmacology-Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A. Rogier T. Donders
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gerard A. Rongen
- Department of Pharmacology-Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Niels P. Riksen
- Department of Pharmacology-Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- * E-mail:
| |
Collapse
|
29
|
Rafatian N, Westcott KV, White RA, Leenen FHH. Cardiac macrophages and apoptosis after myocardial infarction: effects of central MR blockade. Am J Physiol Regul Integr Comp Physiol 2014; 307:R879-87. [PMID: 25100076 DOI: 10.1152/ajpregu.00075.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
After myocardial infarction (post-MI), inflammation and apoptosis contribute to progressive cardiac remodeling and dysfunction. Cardiac mineralocorticoid receptor (MR) and β-adrenergic signaling promote apoptosis and inflammation. Post-MI, MR activation in the brain contributes to sympathetic hyperactivity and an increase in cardiac aldosterone. In the present study, we assessed the time course of macrophage infiltration and apoptosis in the heart as detected by both terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and active caspase-3 immunostaining in both myocytes and nonmyocytes, as well as the effects of central MR blockade by intracerebroventricular infusion of eplerenone at 5 μg/day on peak changes in macrophage infiltration and apoptosis post-MI. Macrophage numbers were markedly increased in the infarct and peri-infarct zones and to a minor extent in the noninfarct part of the left ventricle at 10 days post-MI and decreased over the 3-mo study period. Apoptosis of both myocytes and nonmyocytes was clearly apparent in the infarct and peri-infarct areas at 10 days post-MI. For TUNEL, the increases persisted at 4 and 12 wk, but the number of active caspase-3-positive cells markedly decreased. Central MR blockade significantly decreased CD80-positive proinflammatory M1 macrophages and increased CD163-positive anti-inflammatory M2 macrophages in the infarct. Central MR blockade also reduced apoptosis of myocytes by 40-50% in the peri-infarct and to a lesser extent of nonmyocytes in the peri-infarct and infarct zones. These findings indicate that MR activation in the brain enhances apoptosis both in myocytes and nonmyocytes in the peri-infarct and infarct area post-MI and contributes to the inflammatory response.
Collapse
Affiliation(s)
- Naimeh Rafatian
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada; and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katherine V Westcott
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada; and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Roselyn A White
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada; and
| | - Frans H H Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada; and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
30
|
Schmitz B, Brand SM, Brand E. Aldosterone signaling and soluble adenylyl cyclase-a nexus for the kidney and vascular endothelium. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2601-9. [PMID: 24907563 DOI: 10.1016/j.bbadis.2014.05.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 12/14/2022]
Abstract
The steroid hormone aldosterone regulates the reabsorption of water and ions in the kidney and plays a central role in blood pressure regulation and homeostasis. In recent years, the vascular endothelium has been established as an important aldosterone target organ with major implications in renal and cardiovascular health and disease. Different lines of evidence suggest that the calcium- and bicarbonate-activated soluble adenylyl cyclase (sAC) is a novel mediator of aldosterone signaling in both the kidney and vascular endothelium. This review summarizes our current understanding of the molecular mechanisms of sAC gene expression regulation in the kidney and vascular endothelium and outlines the potential clinical implications of sAC in chronic kidney disease and cardiovascular disease. This review is part of a special issue entitled: The role of soluble adenylyl cyclase in health and disease. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
Affiliation(s)
- Boris Schmitz
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Horstmarer Landweg 39, 48149 Muenster, Germany; Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Stefan-Martin Brand
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Horstmarer Landweg 39, 48149 Muenster, Germany
| | - Eva Brand
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| |
Collapse
|
31
|
Le TYL, Ashton AW, Mardini M, Stanton PG, Funder JW, Handelsman DJ, Mihailidou AS. Role of androgens in sex differences in cardiac damage during myocardial infarction. Endocrinology 2014; 155:568-75. [PMID: 24424037 DOI: 10.1210/en.2013-1755] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Age-specific incidence of ischemic heart disease in men is higher than in women, although women die more frequently without previous symptoms; the molecular mechanism(s) are poorly understood. Most studies focus on protection by estrogen, with less attention on androgen receptor-mediated androgen actions. Our aim was to determine the role of androgens in the sex differences in cardiac damage during myocardial infarction. Mature age-matched male and female Sprague Dawley rats, intact or surgically gonadectomized (Gx), received testosterone (T) or 17β-estradiol (E2) via subdermal SILASTIC (Dow Corning Corp.) implants; a subset of male rats received dihydrotestosterone. After 21 days, animals were anesthetized, and hearts were excised and subjected to ex vivo regional ischemia-reperfusion (I-R). Hearts from intact males had larger infarcts than those from females following I-R; Gx produced the opposite effect, confirming a role for sex steroids. In Gx males, androgens (dihydrotestosterone, T) and E2 aggravated I-R-induced cardiac damage, whereas in Gx females, T had no effect and E2 reduced infarct area. Increased circulating T levels up-regulated androgen receptor and receptor for advanced glycation end products, which resulted in enhanced apoptosis aggravating cardiac damage in both males and females. In conclusion, our study demonstrates, for the first time, that sex steroids regulate autophagy during myocardial infarction and shows that a novel mechanism of action for androgens during I-R is down-regulation of antiapoptotic protein Bcl-xL (B cell lymphoma-extra large), a key controller for cross talk between autophagy and apoptosis, shifting the balance toward apoptosis and leading to aggravated cardiac damage.
Collapse
Affiliation(s)
- Thi Y L Le
- Kolling Institute of Medical Research (T.Y.L.L., A.W.A., M.M., A.S.M.), Royal North Shore Hospital and The University of Sydney; Department of Cardiology (T.Y.L.L., M.M., A.S.M.), Royal North Shore Hospital; Division of Perinatal Research (A.W.A.), Royal North Shore Hospital; Department of Cardiology (M.M.), Westmead Hospital, Sydney, New South Wales, Australia; Prince Henry's Institute (P.G.S., J.W.F.), Clayton, Victoria, Australia; and Anzac Research Institute (D.J.H.), University of Sydney, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
van den Berg TNA, Rongen GA, Fröhlich GM, Deinum J, Hausenloy DJ, Riksen NP. The cardioprotective effects of mineralocorticoid receptor antagonists. Pharmacol Ther 2013; 142:72-87. [PMID: 24275323 DOI: 10.1016/j.pharmthera.2013.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/04/2013] [Indexed: 01/14/2023]
Abstract
Despite state-of-the-art reperfusion therapy, morbidity and mortality remain significant in patients with an acute myocardial infarction. Therefore, novel strategies to limit myocardial ischemia-reperfusion injury are urgently needed. Mineralocorticoid receptor (MR) antagonists are attractive candidates for this purpose, since several clinical trials in patients with heart failure have reported a survival benefit with MR antagonist treatment. MRs are expressed by several cells of the cardiovascular system, including cardiomyocytes, cardiac fibroblasts, vascular smooth muscle cells, and endothelial cells. Experiments in animal models of myocardial infarction have demonstrated that acute administration of MR antagonists, either before ischemia or immediately at the moment of coronary reperfusion, limits infarct size. This action appears to be independent of the presence of aldosterone and cortisol, which are the endogenous ligands for the MR. The cardioprotective effect is mediated by a nongenomic intracellular signaling pathway, including adenosine receptor stimulation, and activation of several components of the Reperfusion Injury Salvage Kinase (RISK) pathway. In addition to limiting infarct size, MR antagonists can improve scar healing when administered shortly after reperfusion and can reduce cardiac remodeling post myocardial infarction. Clinical trials are currently being performed studying whether early administration of MR antagonists can indeed improve prognosis in patients with an acute myocardial infarction, independent of the presence of heart failure.
Collapse
Affiliation(s)
- T N A van den Berg
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of General Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of General Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Georg M Fröhlich
- The Hatter Cardiovascular Institute, University College London, United Kingdom
| | - Jaap Deinum
- Department of General Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, United Kingdom
| | - Niels P Riksen
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of General Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands.
| |
Collapse
|
33
|
Funder JW. Mineralocorticoid receptor antagonists: emerging roles in cardiovascular medicine. Integr Blood Press Control 2013; 6:129-38. [PMID: 24133375 PMCID: PMC3796852 DOI: 10.2147/ibpc.s13783] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Spironolactone was first developed over 50 years ago as a potent mineralocorticoid receptor (MR) antagonist with undesirable side effects; it was followed a decade ago by eplerenone, which is less potent but much more MR-specific. From a marginal role as a potassium-sparing diuretic, spironolactone was shown to be an extraordinarily effective adjunctive agent in the treatment of progressive heart failure, as was eplerenone in subsequent heart failure trials. Neither acts as an aldosterone antagonist in the heart as the cardiac MR are occupied by cortisol, which becomes an aldosterone mimic in conditions of tissue damage. The accepted term "MR antagonist", (as opposed to "aldosterone antagonist" or, worse, "aldosterone blocker"), should be retained, despite the demonstration that they act not to deny agonist access but as inverse agonists. The prevalence of primary aldosteronism is now recognized as accounting for about 10% of hypertension, with recent evidence suggesting that this figure may be considerably higher: in over two thirds of cases of primary aldosteronism therapy including MR antagonists is standard of care. MR antagonists are safe and vasoprotective in uncomplicated essential hypertension, even in diabetics, and at low doses they also specifically lower blood pressure in patients with so-called resistant hypertension. Nowhere are more than 1% of patients with primary aldosteronism ever diagnosed and specifically treated. Given the higher risk profile in patients with primary aldosteronism than that of age, sex, and blood pressure matched essential hypertension, on public health grounds alone the guidelines for first-line treatment of all hypertension should mandate inclusion of a low-dose MR antagonist.
Collapse
Affiliation(s)
- John W Funder
- Prince Henry's Institute, Clayton, Victoria, Australia
| |
Collapse
|
34
|
Mineralocorticoid receptors and the heart, multiple cell types and multiple mechanisms: a focus on the cardiomyocyte. Clin Sci (Lond) 2013; 125:409-21. [PMID: 23829554 DOI: 10.1042/cs20130050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MR (mineralocorticoid receptor) activation in the heart plays a central role in the development of cardiovascular disease, including heart failure. The MR is present in many cell types within the myocardium, including cardiomyocytes, macrophages and the coronary vasculature. The specific role of the MR in each of these cell types in the initiation and progression of cardiac pathophysiology is not fully understood. Cardiomyocyte MRs are increasingly recognized to play a role in regulating cardiac function, electrical conduction and fibrosis, through direct signal mediation and through paracrine MR-dependent activity. Although MR blockade in the heart is an attractive therapeutic option for the treatment of heart failure and other forms of heart disease, current antagonists are limited by side effects owing to MR inactivation in other tissues (including renal targets). This has led to increased efforts to develop therapeutics that are more selective for cardiac MRs and which may have reduced the occurrence of side effects in non-cardiac tissues. A major clinical consideration in the treatment of cardiovascular disease is of the differences between males and females in the incidence and outcomes of cardiac events. There is clinical evidence that female sensitivity to endogenous MRs is more pronounced, and experimentally that MR-targeted interventions may be more efficacious in females. Given that sex differences have been described in MR signalling in a range of experimental settings and that the MR and oestrogen receptor pathways share some common signalling intermediates, it is becoming increasingly apparent that the mechanisms of MRs need to be evaluated in a sex-selective manner. Further research targeted to identify sex differences in cardiomyocyte MR activation and signalling processes has the potential to provide the basis for the development of cardiac-specific MR therapies that may also be sex-specific.
Collapse
|
35
|
Affiliation(s)
| | | | - Joseph A. Hill
- Depts of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX
- Dept of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
36
|
Funder JW. Primary aldosteronism and low-renin hypertension: a continuum? Nephrol Dial Transplant 2013; 28:1625-7. [PMID: 23535225 DOI: 10.1093/ndt/gft052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- John W Funder
- Prince Henry's Institute, PO Box 5152, Clayton, VIC 3168, Australia.
| |
Collapse
|