1
|
Wang MQ, Wang B, Yang X, Zhang QC, Wang XY, Dong YF. ClC-3-depedent polarization of microglia protects against cerebral ischemic injury in mice. Int Immunopharmacol 2025; 155:114618. [PMID: 40209312 DOI: 10.1016/j.intimp.2025.114618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Polarization of microglia has attracted great attention in ischemic stroke. Emerging evidence suggests that chloride channel 3 (ClC-3) is involved in inflammatory responses and stroke. However, the link between ClC-3 and polarization of microglia in ischemic stroke remains unclear. Herein, we found both cerebral ischemia and oxygen-glucose deprivation (OGD) induced a significant upregulation of ClC-3 in microglia. While knockdown of ClC-3 markedly increased nuclear factor kappa B (NF-κB) and CD86, and decreased CD206 in BV-2 cells under OGD conditions, facilitating them to shift into a M1-like phenotype. Furthermore, ClC-3 knockout significantly aggravated infarct volume and neurological deficits, accompanied by increased activated microglia in the peri-infarct area 1 day after cerebral ischemia. By contrast, ClC-3 overexpression obviously suppressed nuclear translocation of NF-κB, decreased OGD-induced elevated mRNA levels of TNF-α, IL-1β and IL-10, and enhanced M2-like markers (Arg1, CD206, and TREM2) in microglia, leading to alleviated infarct volume and neurological deficits. While ClC-3 overexpression could not reverse a transformation from M1-like phenotype to M2-like polarization in presence of lipopolysaccharide (LPS) and interferon gamma (IFNγ) treatment for 24 h. Collectively, our findings indicate that ClC-3-dependent polarization of microglia is critically important for protecting against cerebral ischemia injury, suggesting ClC-3 is a promising therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Meng-Qing Wang
- Department of Pathology and Pathophysiology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bin Wang
- Department of Radiotherapy, Nanjing Chest Hospital, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Xu Yang
- Department of Pathology and Pathophysiology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi-Chun Zhang
- Department of Clinical Pharmacy and Toxicity, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xu-Yang Wang
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Yin-Feng Dong
- Department of Pathology and Pathophysiology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Kulkarni GC, Saha R, Peters CJ. Ion channel expression and function in glioblastoma multiforme (GBM): pathophysiological mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119982. [PMID: 40328081 DOI: 10.1016/j.bbamcr.2025.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
Glioblastoma Multiforme (GBM) is a highly malignant and diffusely invasive WHO Grade IV brain tumor arising from glial and neural stem cells. GBM is characterized by rapid proliferation and migration, aggressive invasion of local brain parenchyma, a hypoxic microenvironment, resistance to apoptosis and high vascular remodeling and angiogenesis. These hallmarks contribute to a near universal tumor recurrence after treatment or resection and poor patient prognosis. Ion channels, a superfamily of proteins responsible for permitting ion flux across otherwise impermeant membranes, show extensive remodeling in GBM with aberrant function mechanistically linked to manipulation of each of these hallmarks. In this review, we will discuss the known links between ion channel expression and activity and cellular processes that are enhanced or perturbed during GBM formation or progression. We will also discuss the extent to which basic or translational findings on ion channels in GBM samples or cell lines have shown preclinical promise towards the development of improved therapeutics against GBMs.
Collapse
Affiliation(s)
- Gauri C Kulkarni
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Rayna Saha
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Christian J Peters
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Ruan X, Gao Y, Lai X, Wang B, Wu J, Yu X. Trimatch comparison of the prognosis of hypochloremia, normolchloremia and hyperchloremia in patients with septic shock. J Formos Med Assoc 2025; 124:426-431. [PMID: 38763858 DOI: 10.1016/j.jfma.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/20/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Septic shock is a lethal disease, and identifying high-risk patients through noninvasive and widely available biomarkers can help improve global outcomes. While the clinical impact of chloride levels on critically ill patients remains unclear, this study aims to investigate the association between hypochloremia and mortality following ICU admission among septic shock patients. METHODS This is an analysis of data stored in the databases of Medical Information Mart for Intensive Care IV (MIMIC-IV). The initial chloride levels were classified ashypochloremia, normal chloraemia, and hyperchloraemia. A multivariate logistic regression model was applied, adjusting for age, lactate, pH, PO2, urine volume, RDW, creatinine, and liver disease, to assess the association between the three categories of chloride levels and mortality. RESULTS Of 3726 patients included in the study, 470 patients (12.6%) had hypochloremia on ICU admission. During the follow-up period, 1120 (33.5%) patients died. Hypochloremia was significantly associated with increased mortality and the incidence of AKI after adjusting for several variables. CONCLUSION Hypochloremia is independently associated with higher hospital mortality, AKI incidence among septic shock patients. However, further high-quality research is necessary to establish the precise relationship between hypochloremia and septic shock prognosis.
Collapse
Affiliation(s)
- Xiangyuan Ruan
- Department of Intensive Care Unit, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yifan Gao
- Department of Intensive Care Unit, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaojuan Lai
- Department of Intensive Care Unit, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Baoxin Wang
- Department of Intensive Care Unit, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jinmei Wu
- Department of Intensive Care Unit, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xueshu Yu
- Department of Intensive Care Unit, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
4
|
Bennis Nechba R, Belayachi J, Agrou M, El Fahime E, Meknassi N, Louriz M, Madani N, Abouqal R. Prevalence and Prognostic Significance of Chloride Levels in Patients with Acute Medical Conditions: A Prospective Observational Study. Life (Basel) 2025; 15:676. [PMID: 40283229 PMCID: PMC12029041 DOI: 10.3390/life15040676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/29/2025] Open
Abstract
Chloride plays a considerable role in physiology. This study aimed to assess the association between serum chloride and prognosis in the population of adults with acute medical conditions. A prospective cohort study was conducted in an acute medical unit. Chloride levels at admission were the main exposure factor, categorized into hypochloremia, normochloremia, and hyperchloremia. The outcomes were in-hospital mortality and length of hospital stay (LOHS). A total of 798 patients were included. The mean age was 57.3 ± 18.3 years. The prevalence of dyschloremia was 40.9%. Restricted cubic splines revealed a linear association between hypochloremia and in-hospital mortality, as well as between hypochloremia and LOHS. After adjusting for age, sex, heart failure, diabetes, sodium, bicarbonates, creatinine, and diuretic use, hypochloremia was significantly associated with in-hospital mortality (OR = 2.23; 95% CI: 1.29, 3.86, p = 0.006), but not hyperchloremia (p = 0.57). Similarly, it was associated with a longer LOHS (β = 2.19; 95% CI: 0.01, 4.39, p = 0.05), but not hyperchloremia (p = 0.8). The interaction between chloride and sodium levels was not significant (p = 0.61). Subgroup analysis showed that the effect of hypochloremia on in-hospital mortality was consistent across subgroups. The prevalence of dyschloremia in this study was high at 40.9%. Hypochloremia increased the risk of in-hospital mortality and extended the LOHS. Differentiating the effects of chloride levels from those of sodium can enhance clinical risk stratification and enable a more targeted management approach for acutely ill patients. Recognizing this distinction is essential for optimizing prognostic assessment and tailoring treatment strategies accordingly.
Collapse
Affiliation(s)
- Rhita Bennis Nechba
- Acute Medical Unit, Ibn Sina University Hospital, Rabat 10000, Morocco; (R.B.N.); (J.B.); (M.A.); (N.M.); (M.L.); (N.M.)
- Laboratory of Biostatistics, Clinicial, and Epidemiological Research, Faculty of Medecine and Pharmacy, Mohammed V University of Rabat, Rabat 10000, Morocco
| | - Jihane Belayachi
- Acute Medical Unit, Ibn Sina University Hospital, Rabat 10000, Morocco; (R.B.N.); (J.B.); (M.A.); (N.M.); (M.L.); (N.M.)
- Laboratory of Biostatistics, Clinicial, and Epidemiological Research, Faculty of Medecine and Pharmacy, Mohammed V University of Rabat, Rabat 10000, Morocco
| | - Mina Agrou
- Acute Medical Unit, Ibn Sina University Hospital, Rabat 10000, Morocco; (R.B.N.); (J.B.); (M.A.); (N.M.); (M.L.); (N.M.)
- Laboratory of Physiology, Faculty of Medecine and Pharmacy, Mohammed V University of Rabat, Rabat 10000, Morocco
| | - Elmostapha El Fahime
- Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research (CNRST), Rabat 10102, Morocco;
| | - Nawal Meknassi
- Acute Medical Unit, Ibn Sina University Hospital, Rabat 10000, Morocco; (R.B.N.); (J.B.); (M.A.); (N.M.); (M.L.); (N.M.)
| | - Maha Louriz
- Acute Medical Unit, Ibn Sina University Hospital, Rabat 10000, Morocco; (R.B.N.); (J.B.); (M.A.); (N.M.); (M.L.); (N.M.)
- Laboratory of Biostatistics, Clinicial, and Epidemiological Research, Faculty of Medecine and Pharmacy, Mohammed V University of Rabat, Rabat 10000, Morocco
| | - Naoufel Madani
- Acute Medical Unit, Ibn Sina University Hospital, Rabat 10000, Morocco; (R.B.N.); (J.B.); (M.A.); (N.M.); (M.L.); (N.M.)
- Laboratory of Biostatistics, Clinicial, and Epidemiological Research, Faculty of Medecine and Pharmacy, Mohammed V University of Rabat, Rabat 10000, Morocco
| | - Redouane Abouqal
- Acute Medical Unit, Ibn Sina University Hospital, Rabat 10000, Morocco; (R.B.N.); (J.B.); (M.A.); (N.M.); (M.L.); (N.M.)
- Laboratory of Biostatistics, Clinicial, and Epidemiological Research, Faculty of Medecine and Pharmacy, Mohammed V University of Rabat, Rabat 10000, Morocco
| |
Collapse
|
5
|
Zhang L, Liu H, Lv X, Zhou J, Zhou R, Xing W, Wu Q. Association between serum chloride and prevalence of metabolic syndrome in the general U.S. adult population: evidence from NHANES 2011-2018. BMC Endocr Disord 2025; 25:64. [PMID: 40059142 PMCID: PMC11892319 DOI: 10.1186/s12902-025-01847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/20/2025] [Indexed: 05/13/2025] Open
Abstract
AIM Numerous studies have revealed the decisive role of serum chloride in the outcome of specific patients. However, the potential role of serum chloride in general populations has been rarely investigated. This study aims to assess the association of serum chloride with MetS risk in the general population. METHODS A total of 13,290 adult participants were obtained from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2018. The association between serum chloride and MetS was investigated using weighted logistic regression analyses. The weighted restricted cubic spline (RCS) was constructed based on the fully adjusted model to explore its dose-response relationship. Further stratified analyses were also conducted. All data and analyses were conducted using the "Survey" package in R software (Version 4.4.1). RESULTS The average age of this population was 48.20 ± 0.35, the average BMI was 29.42 ± 0.12 kg/m2, included 48.54% males, and the weighted prevalence of MetS was 37.83%. After adjusting full covariates, serum chloride was negatively associated with MetS risk in overweight or obese participants who did not smoke or heavy drink. Meanwhile, serum chloride was significantly inversely correlated with the raised fast glucose (FG), total cholesterol (TG) and blood pressure (BP), and positively related with the reduced high density lipoprotein cholesterol (HDL-C). Consistent results were observed in the RCS analysis. CONCLUSION This study suggested a potential inverse relationship between serum chloride levels and MetS risk. Understanding this link may offer fresh perspectives on preventing and treating MetS, presenting new therapeutic targets and strategies for public health improvement.
Collapse
Affiliation(s)
- Lun Zhang
- Nutrition Department, Zhejiang Hospital, Hangzhou, China
| | - Hongpeng Liu
- Nutrition Department, Zhejiang Hospital, Hangzhou, China
| | - Xiaoling Lv
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Jianmei Zhou
- General Medicine Department, Zhejiang Hospital, Hangzhou, China
| | - Rongfang Zhou
- General Medicine Department, Zhejiang Hospital, Hangzhou, China
| | - Wenming Xing
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China.
| | - Qing Wu
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China.
| |
Collapse
|
6
|
Sun L, Gao M, Yang GY, Lu FT, Liang ZJ, Guo KM, Lv XF, Du YH, Liang SJ, Tang YB, Zhou JG, Guan YY, Ma MM. ClC-5 knockout mitigates angiotensin II-induced hypertension and endothelial dysfunction. Life Sci 2025; 362:123342. [PMID: 39740756 DOI: 10.1016/j.lfs.2024.123342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
AIMS Impairment of nitric oxide (NO) production is a major cause of endothelial dysfunction and hypertension. ClC-5 Cl- channel is abundantly expressed in the vascular endothelium. However, it remains unclear how it regulates endothelial function. MATERIALS AND METHODS In this study, we used mice with a knockout of the Clcn5 gene encoding ClC-5 protein globally or specifically in vascular endothelium. KEY FINDINGS ClC-5 knockout globally or specifically in vascular endothelium mitigates the elevation of mean blood pressure and impairment of endothelial dysfunction induced by Angiotensin II. This effect is mediated by the reversal of the impairment of NO production after the stimulation of the Akt/endothelial nitric oxide synthase (eNOS) signal pathway. Application of a low Cl- extracellular solution onto endothelial cells stimulates a ClC-5-dependent current and lowered intracellular Cl- concentration, which activates with-no-lysine (K)-1 (WNK1), a Cl--sensitive kinase. Silencing ClC-5 or WNK1 expression rescues the impairment of endothelial NO production induced by a low Cl- solution. In contrast, overexpression of ClC-5 or WNK1 led to the opposite results. WNK1, found to be associated with Rho-specific guanine nucleotide dissociation inhibitor (RhoGDI), increases RhoA activity, and thereby inhibits the endothelial Akt/eNOS signaling pathway. SIGNIFICANCE ClC-5 knockout mitigates Ang II-induced hypertension and endothelial dysfunction by promoting NO production via regulating WNK1/RhoA/Akt/eNOS signaling pathway. The results may be useful for developing novel treatments of endothelial dysfunction associated-diseases.
Collapse
Affiliation(s)
- Lu Sun
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Min Gao
- Department of Pharmacy, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Gui-Yong Yang
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Feng-Ting Lu
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Department of Molecular Medicine, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhu-Jun Liang
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Kai-Min Guo
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiao-Fei Lv
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yan-Hua Du
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Jia Liang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yu-Bo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China
| | - Jia-Guo Zhou
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yong-Yuan Guan
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ming-Ming Ma
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
7
|
Huang LY, Liu YN, Chen J, Zhu HX, Li LL, Liang ZY, Song JX, Li YJ, Hu ZL, Demon D, Wullaert A, Wang W, Qi SH. Caspase-12 is Expressed in Purkinje Neurons and Prevents Psychiatric-Like Behavior in Mice. Mol Neurobiol 2025; 62:1705-1719. [PMID: 39023795 DOI: 10.1007/s12035-024-04356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Caspase-12 is a caspase family member for which functions in regulating cell death and inflammation have previously been suggested. In this study, we used caspase-12 lacZ reporter mice to elucidate the expression pattern of caspase-12 in order to obtain an idea about its possible in vivo function. Strikingly, these reporter mice showed that caspase-12 is expressed explicitly in Purkinje neurons of the cerebellum. As this observation suggested a function for caspase-12 in Purkinje neurons, we analyzed the brain and behavior of caspase-12 deficient mice in detail. Extensive histological analyses showed that caspase-12 was not crucial for establishing cerebellum structure or for maintaining Purkinje cell numbers. We then performed behavioral tests to investigate whether caspase-12 deficiency affects memory, motor, and psychiatric functions in mice. Interestingly, while the absence of caspase-12 did not affect memory and motor function, caspase-12 deficient mice showed depression and hyperactivity tendencies, together resembling manic behavior. Next, suggesting a possible molecular mechanistic explanation, we showed that caspase-12 deficient cerebella harbored diminished signaling through the brain-derived neurotrophic factor/tyrosine kinase receptor B/cyclic-AMP response binding protein axis, as well as strongly enhanced expression of the neuronal activity marker c-Fos. Thus, our study establishes caspase-12 expression in mouse Purkinje neurons and opens novel avenues of research to investigate the role of caspase-12 in regulating psychiatric behavior.
Collapse
Affiliation(s)
- Lin-Yan Huang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Yi-Ning Liu
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Jie Chen
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Huaihai West Road 99, Xuzhou, 221002, China
| | - Hai-Xue Zhu
- Department of Ophthalmology, The Affiliated Huai'an Hospital of Xuzhou Medical University, No.62 Huaihai South Road, Huai'an, 223001, Jiangsu, People's Republic of China
| | - Li-Li Li
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Zhi-Yan Liang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Jin-Xiu Song
- Department of Pharmacology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Yu-Jie Li
- Department of Clinical Laboratory, Kunshan First People's Hospital, Kunshan, Jiangsu, 215300, People's Republic of China
| | - Zhao-Li Hu
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Dieter Demon
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Andy Wullaert
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
- Cell Death Signaling Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wan Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Su-Hua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Zook E, Pan YE, Wipplinger A, Kerschbaum HH, Clements RJ, Ritter M, Stauber T, Model MA. Delayed vacuolation in mammalian cells caused by hypotonicity and ion loss. Sci Rep 2024; 14:29354. [PMID: 39592718 PMCID: PMC11599563 DOI: 10.1038/s41598-024-79815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Prolonged exposure of mammalian cells to hypotonic environments stimulates the development of sometimes large and numerous vacuoles of unknown origin. Here, we investigate the nature and formation of these vacuoles, which we term LateVacs. Vacuolation starts after osmotic cell swelling has subsided and continues for many hours thereafter. Most of the vacuoles are positive for the lysosomal marker LAMP-1 but not for the autophagosomal marker LC3. Vacuoles do not appear to have acidic pH, as they exclude LysoTracker and acridine orange; inhibiting the V-ATPase with bafilomycin A1 has no effect on their formation. No LateVacs were formed in cells with a knockout of the essential LRRC8A subunit of the volume-regulated anion channel (VRAC). Since the main feature of cells recovered from hypotonic swelling should be reduced chloride concentration, we tested if chloride depletion can act as a signal for vacuolation. Indeed, four different low-chloride buffers resulted in the development of similar vacuoles. Moreover, vacuolation was suppressed in WNK1/WNK3 double knockouts or by the inhibition of WNK kinase, which is activated by low chloride; in hypotonic media, the WNK inhibitor had a similar effect. However, exposing cells to a low-sodium, high-potassium medium also resulted in vacuoles, which were insensitive to WNK. We conclude that vacuole development can be triggered either by the loss of chloride or by the loss of sodium.
Collapse
Affiliation(s)
- Emily Zook
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Yingzhou Edward Pan
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Anna Wipplinger
- Center for Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Hubert H Kerschbaum
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Robert J Clements
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany.
| | - Michael A Model
- Department of Biological Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
9
|
Zhou W, Li H, Song J, Suo F, Gu M, Qi S. Healthy Plasma Exosomes Exert Potential Neuroprotective Effects against Methylmalonic Acid-Induced Hippocampal Neuron Injury. ACS Chem Neurosci 2024; 15:3022-3033. [PMID: 39026168 DOI: 10.1021/acschemneuro.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Exosomes have shown good potential for alleviating neurological deficits and delaying memory deterioration, but the neuroprotective effects of exosomes remain unknown. Methylmalonic acidemia is a metabolic disorder characterized by the accumulation of methylmalonic acid (MMA) in various tissues that inhibits neuronal survival and function, leading to accelerated neurological deterioration. Effective therapies to mitigate these symptoms are lacking. The purpose of this study was to explore the neuroprotective effects of plasma exosomes on cells and a mouse model of MMA-induced injury. We evaluated the ability of plasma exosomes to reduce the neuronal apoptosis, cross the blood-brain barrier, and affect various parameters related to neuronal function. MMA promoted cell apoptosis, disrupted the metabolic balance, and altered the expression of B-cell lymphoma-2 (Bcl-2), Bcl2-associated X (Bax), and synaptophysin-1 (Syp-1), and these changes may be involved in MMA-induced neuronal apoptosis. Additionally, plasma exosomes normalized learning and memory and protected against MMA-induced neuronal apoptosis. Our findings indicate that neurological deficits are linked to the pathogenesis of methylmalonic acidemia, and healthy plasma exosomes may exert neuroprotective and therapeutic effects by altering the expression of exosomal microRNAs, facilitating neuronal functional recovery in the context of this inherited metabolic disease. Intravenous plasma-derived exosome treatment may be a novel clinical therapeutic strategy for methylmalonic acidemia.
Collapse
Affiliation(s)
- Wei Zhou
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221004, P.R China
- Newborn Screening Center, The Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou 221009, P.R China
| | - Huizhong Li
- Newborn Screening Center, The Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou 221009, P.R China
| | - Jinxiu Song
- Pharmacology College, Xuzhou Medical University, Xuzhou 221004, P.R China
| | - Feng Suo
- Newborn Screening Center, The Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou 221009, P.R China
| | - Maosheng Gu
- Newborn Screening Center, The Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou 221009, P.R China
| | - Suhua Qi
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221004, P.R China
- Pharmacology College, Xuzhou Medical University, Xuzhou 221004, P.R China
- Medical and Technology School, Xuzhou Medical University, Xuzhou 221004, P.R China
| |
Collapse
|
10
|
Petrova M, Lassanova M, Tisonova J, Liskova S. Ca 2+-Dependent Cl - Channels in Vascular Tone Regulation during Aging. Int J Mol Sci 2024; 25:5093. [PMID: 38791133 PMCID: PMC11121552 DOI: 10.3390/ijms25105093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Identifying alterations caused by aging could be an important tool for improving the diagnosis of cardiovascular diseases. Changes in vascular tone regulation involve various mechanisms, like NO synthase activity, activity of the sympathetic nervous system, production of prostaglandin, endothelium-dependent relaxing, and contracting factors, etc. Surprisingly, Ca2+-dependent Cl- channels (CaCCs) are involved in all alterations of the vascular tone regulation mentioned above. Furthermore, we discuss these mechanisms in the context of ontogenetic development and aging. The molecular and electrophysiological mechanisms of CaCCs activation on the cell membrane of the vascular smooth muscle cells (VSMC) and endothelium are explained, as well as the age-dependent changes that imply the activation or inhibition of CaCCs. In conclusion, due to the diverse intracellular concentration of chloride in VSMC and endothelial cells, the activation of CaCCs depends, in part, on intracellular Ca2+ concentration, and, in part, on voltage, leading to fine adjustments of vascular tone. The activation of CaCCs declines during ontogenetic development and aging. This decline in the activation of CaCCs involves a decrease in protein level, the impairment of Ca2+ influx, and probably other alterations in vascular tone regulation.
Collapse
Affiliation(s)
- Miriam Petrova
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.P.); (M.L.); (J.T.)
| | - Monika Lassanova
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.P.); (M.L.); (J.T.)
| | - Jana Tisonova
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.P.); (M.L.); (J.T.)
| | - Silvia Liskova
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.P.); (M.L.); (J.T.)
- Centre of Experimental Medicine, v.v.i., Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia
| |
Collapse
|
11
|
Li X, Wang Y, Zhang L, Yao S, Liu Q, Jin H, Tuo B. The role of anoctamin 1 in liver disease. J Cell Mol Med 2024; 28:e18320. [PMID: 38685684 PMCID: PMC11058335 DOI: 10.1111/jcmm.18320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Liver diseases include all types of viral hepatitis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), cirrhosis, liver failure (LF) and hepatocellular carcinoma (HCC). Liver disease is now one of the leading causes of disease and death worldwide, which compels us to better understand the mechanisms involved in the development of liver diseases. Anoctamin 1 (ANO1), a calcium-activated chloride channel (CaCC), plays an important role in epithelial cell secretion, proliferation and migration. ANO1 plays a key role in transcriptional regulation as well as in many signalling pathways. It is involved in the genesis, development, progression and/or metastasis of several tumours and other diseases including liver diseases. This paper reviews the role and molecular mechanisms of ANO1 in the development of various liver diseases, aiming to provide a reference for further research on the role of ANO1 in liver diseases and to contribute to the improvement of therapeutic strategies for liver diseases by regulating ANO1.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Qian Liu
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical UniversityZunyiChina
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
12
|
Xu JB, Guan WJ, Zhang YL, Qiu ZE, Chen L, Hou XC, Yue J, Zhou YY, Sheng J, Zhao L, Zhu YX, Sun J, Zhao J, Zhou WL, Zhong NS. SARS-CoV-2 envelope protein impairs airway epithelial barrier function and exacerbates airway inflammation via increased intracellular Cl - concentration. Signal Transduct Target Ther 2024; 9:74. [PMID: 38528022 DOI: 10.1038/s41392-024-01753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 03/27/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection disrupts the epithelial barrier and triggers airway inflammation. The envelope (E) protein, a core virulence structural component of coronaviruses, may play a role in this process. Pathogens could interfere with transepithelial Cl- transport via impairment of the cystic fibrosis transmembrane conductance regulator (CFTR), which modulates nuclear factor κB (NF-κB) signaling. However, the pathological effects of SARS-CoV-2 E protein on airway epithelial barrier function, Cl- transport and the robust inflammatory response remain to be elucidated. Here, we have demonstrated that E protein down-regulated the expression of tight junctional proteins, leading to the disruption of the airway epithelial barrier. In addition, E protein triggered the activation of Toll-like receptor (TLR) 2/4 and downstream c-Jun N-terminal kinase (JNK) signaling, resulting in an increased intracellular Cl- concentration ([Cl-]i) via up-regulating phosphodiesterase 4D (PDE4D) expression in airway epithelial cells. This elevated [Cl-]i contributed to the heightened airway inflammation through promoting the phosphorylation of serum/glucocorticoid regulated kinase 1 (SGK1). Moreover, blockade of SGK1 or PDE4 alleviated the robust inflammatory response induced by E protein. Overall, these findings provide novel insights into the pathogenic role of SARS-CoV-2 E protein in airway epithelial damage and the ongoing airway inflammation during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jian-Bang Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
- Department of Thoracic Surgery, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
- Guangzhou National Laboratory, Guangzhou, P. R. China.
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiao-Chun Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Junqing Yue
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangzhou National Laboratory, Guangzhou, P. R. China
| | - Yu-Yun Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jie Sheng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Lei Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, P. R. China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangzhou National Laboratory, Guangzhou, P. R. China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangzhou National Laboratory, Guangzhou, P. R. China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China.
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
- Guangzhou National Laboratory, Guangzhou, P. R. China.
| |
Collapse
|
13
|
Al-Hosni R, Kaye R, Choi CS, Tammaro P. The TMEM16A channel as a potential therapeutic target in vascular disease. Curr Opin Nephrol Hypertens 2024; 33:161-169. [PMID: 38193301 PMCID: PMC10842660 DOI: 10.1097/mnh.0000000000000967] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE OF REVIEW The transmembrane protein 16A (TMEM16A) Ca 2+ -activated Cl - channel constitutes a key depolarising mechanism in vascular smooth muscle and contractile pericytes, while in endothelial cells the channel is implicated in angiogenesis and in the response to vasoactive stimuli. Here, we offer a critical analysis of recent physiological investigations and consider the potential for targeting TMEM16A channels in vascular disease. RECENT FINDINGS Genetic deletion or pharmacological inhibition of TMEM16A channels in vascular smooth muscle decreases artery tone and lowers systemic blood pressure in rodent models. Inhibition of TMEM16A channels in cerebral cortical pericytes protects against ischemia-induced tissue damage and improves microvascular blood flow in rodent stroke models. In endothelial cells, the TMEM16A channel plays varied roles including modulation of cell division and control of vessel tone through spread of hyperpolarisation to the smooth muscle cells. Genetic studies implicate TMEM16A channels in human disease including systemic and pulmonary hypertension, stroke and Moyamoya disease. SUMMARY The TMEM16A channel regulates vascular function by controlling artery tone and capillary diameter as well as vessel formation and histology. Preclinical and clinical investigations are highlighting the potential for therapeutic exploitation of the channel in a range of maladaptive states of the (micro)circulation.
Collapse
Affiliation(s)
- Rumaitha Al-Hosni
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| | | | | | | |
Collapse
|
14
|
Ji JL, Li JY, Liang JX, Zhou Y, Liu CC, Zhang Y, Zhang AQ, Liu H, Ma RX, Li ZL. Tubular TMEM16A promotes tubulointerstitial fibrosis by suppressing PGC-1α-mediated mitochondrial homeostasis in diabetic kidney disease. Cell Mol Life Sci 2023; 80:347. [PMID: 37943391 PMCID: PMC11072291 DOI: 10.1007/s00018-023-05000-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023]
Abstract
Tubulointerstitial fibrosis (TIF) plays a crucial role in the progression of diabetic kidney disease (DKD). However, the underlying molecular mechanisms remain obscure. The present study aimed to examine whether transmembrane member 16A (TMEM16A), a Ca2+-activated chloride channel, contributes to the development of TIF in DKD. Interestingly, we found that TMEM16A expression was significantly up-regulated in tubule of murine model of DKD, which was associated with development of TIF. In vivo inhibition of TMEM16A channel activity with specific inhibitors Ani9 effectively protects against TIF. Then, we found that TMEM16A activation induces tubular mitochondrial dysfunction in in vivo and in vitro models, with the evidence of the TMEM16A inhibition with specific inhibitor. Mechanically, TMEM16A mediated tubular mitochondrial dysfunction through inhibiting PGC-1α, whereas overexpression of PGC-1α could rescue the changes. In addition, TMEM16A-induced fibrogenesis was dependent on increased intracellular Cl-, and reducing intracellular Cl- significantly blunted high glucose-induced PGC-1α and profibrotic factors expression. Taken together, our studies demonstrated that tubular TMEM16A promotes TIF by suppressing PGC-1α-mediated mitochondrial homeostasis in DKD. Blockade of TMEM16A may serve as a novel therapeutic approach to ameliorate TIF.
Collapse
Affiliation(s)
- Jia-Ling Ji
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun-Ying Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jian-Xiang Liang
- Department of Ultrasonography, Weifang People's Hospital, Weifang, Shandong, China
| | - Yan Zhou
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Cong-Cong Liu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yao Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ai-Qing Zhang
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| | - Rui-Xia Ma
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Han Y, Luo L, Li H, Zhang L, Yan Y, Fang M, Yu J, Gao X, Liu Y, Huang C, Fan S. Nomilin and its analogue obacunone alleviate NASH and hepatic fibrosis in mice via enhancing antioxidant and anti-inflammation capacity. Biofactors 2023; 49:1189-1204. [PMID: 37401768 DOI: 10.1002/biof.1987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) and hepatic fibrosis are leading causes of cirrhosis with rising morbidity and mortality worldwide. Currently, there is no appropriate treatment for NASH and hepatic fibrosis. Many studies have shown that oxidative stress is a main factor inducing NASH. Nomilin (NML) and obacunone (OBA) are limonoid compounds naturally occurring in citrus fruits with various biological properties. However, whether OBA and NML have beneficial effects on NASH remains unclear. Here, we demonstrated that OBA and NML inhibited hepatic tissue necrosis, inflammatory infiltration and liver fibrosis progression in methionine and choline-deficient (MCD) diet, carbon tetrachloride (CCl4 )-treated and bile duct ligation (BDL) NASH and hepatic fibrosis mouse models. Mechanistic studies showed that NML and OBA enhanced anti-oxidative effects, including reduction of malondialdehyde (MDA) level, increase of catalase (CAT) activity and the gene expression of glutathione S-transferases (GSTs) and Nrf2-keap1 signaling. Additional, NML and OBA inhibited the expression of inflammatory gene interleukin 6 (Il-6), and regulated the bile acid metabolism genes Cyp3a11, Cyp7a1, multidrug resistance-associated protein 3 (Mrp3). Overall, these findings indicate that NML and OBA may alleviate NASH and liver fibrosis in mice via enhancing antioxidant and anti-inflammation capacity. Our study proposed that NML and OBA may be potential strategies for NASH treatment.
Collapse
Affiliation(s)
- Yongli Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingling Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongli Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingxuan Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Lu H, Jiang X, He L, Ji X, Li X, Liu S, Sun Y, Qin X, Xiong X, Philipsen S, Xi B, Zhang M, Yang J, Zhang C, Zhang Y, Zhang W. Endothelial Sp1/Sp3 are essential to the effect of captopril on blood pressure in male mice. Nat Commun 2023; 14:5891. [PMID: 37735515 PMCID: PMC10514286 DOI: 10.1038/s41467-023-41567-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Endothelial dysfunction represents a major cardiovascular risk factor for hypertension. Sp1 and Sp3 belong to the specificity protein and Krüppel-like transcription factor families. They are ubiquitously expressed and closely associated with cardiovascular development. We investigate the role of Sp1 and Sp3 in endothelial cells in vivo and evaluate whether captopril, an angiotensin-converting enzyme inhibitor (ACEI), targets Sp1/Sp3 to exert its effects. Inducible endothelial-specific Sp1/Sp3 knockout mice are generated to elucidate their role in endothelial cells. Tamoxifen-induced deletion of endothelial Sp1 and Sp3 in male mice decreases the serum nitrite/nitrate level, impairs endothelium-dependent vasodilation, and causes hypertension and cardiac remodeling. The beneficial actions of captopril are abolished by endothelial-specific deletion of Sp1/Sp3, indicating that they may be targets for ACEIs. Captopril increases Sp1/Sp3 protein levels by recruiting histone deacetylase 1, which elevates deacetylation and suppressed degradation of Sp1/Sp3. Sp1/Sp3 represents innovative therapeutic target for captopril to prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Hanlin Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiuxin Jiang
- Department of Bariatric and Metabolic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lifan He
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xuyang Ji
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyun Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shaozhuang Liu
- Department of Bariatric and Metabolic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanyuan Sun
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoteng Qin
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiwen Xiong
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jianmin Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wencheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
17
|
Mai X, Shang J, Chen Q, Gu S, Hong Y, Zhou J, Zhang M. Endophilin A2 protects against renal fibrosis by targeting TGF-β/Smad signaling. FASEB J 2022; 36:e22603. [PMID: 36259445 DOI: 10.1096/fj.202101769r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Renal fibrosis underlies all forms of end-stage kidney disease. Endophilin A2 (EndoA2) plays a role in nephrotic syndrome; however, its effect on renal fibrosis remains unknown. Here, we demonstrate that EndoA2 protects against kidney interstitial fibrosis via the transforming growth factor-β (TGF-β)/Smad signaling pathway. Mouse kidneys with fibrosis or kidney biopsy specimens from patients with fibrotic nephropathy had lower levels of EndoA2 protein expression than that in kidneys without fibrosis. In vivo overexpression of EndoA2 with the endophilin A2 transgene (EndoA2Tg ) notably prevented renal fibrosis, decreased the protein expression of profibrotic molecules, suppressed tubular injury, and reduced apoptotic tubular cells in the obstructed kidney cortex of mice with unilateral ureteral obstruction (UUO). In vivo and in vitro overexpression of EndoA2 markedly inhibited UUO- or TGF-β1-induced phosphorylation of Smad2/3 and tubular epithelial cells dedifferentiation. Furthermore, EndoA2 was co-immunoprecipitated with the type II TGF-β receptor (TβRII), thus inhibiting the binding of the type I TGF-β receptor (TβRI) to TβRII. These findings indicate that EndoA2 mitigates renal fibrosis, at least partially, via modulating the TGF-β/Smad signaling. Targeting EndoA2 may be a new potential therapeutic strategy for treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xiaoyi Mai
- Intensive Care Research Team of Traditional Chinese Medicine & AMI Key Lab of Chinese Medicine in Guangzhou, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyan Shang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qiuyuan Chen
- Department of Organ Transplantation, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijie Gu
- Department of Organ Transplantation, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Hong
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiaguo Zhou
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Minzhou Zhang
- Intensive Care Research Team of Traditional Chinese Medicine & AMI Key Lab of Chinese Medicine in Guangzhou, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
18
|
Huang LY, Song JX, Cai H, Wang PP, Yin QL, Zhang YD, Chen J, Li M, Song JJ, Wang YL, Luo L, Wang W, Qi SH. Healthy Serum-Derived Exosomes Improve Neurological Outcomes and Protect Blood–Brain Barrier by Inhibiting Endothelial Cell Apoptosis and Reversing Autophagy-Mediated Tight Junction Protein Reduction in Rat Stroke Model. Front Cell Neurosci 2022; 16:841544. [PMID: 35308117 PMCID: PMC8927286 DOI: 10.3389/fncel.2022.841544] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/07/2022] [Indexed: 02/03/2023] Open
Abstract
Blood–brain barrier (BBB) dysfunction causing edema and hemorrhagic transformation is one of the pathophysiological characteristics of stroke. Protection of BBB integrity has shown great potential in improving stroke outcome. Here, we assessed the efficacy of exosomes extracted from healthy rat serum in protection against ischemic stroke in vivo and in vitro. Exosomes were isolated by gradient centrifugation and ultracentrifugation and exosomes were characterized by transmission electron microscopy (TEM) and nanoparticle tracking video microscope. Exosomes were applied to middle cerebral artery occlusion (MCAO) rats or brain microvascular endothelial cell line (bEnd.3) subjected to oxygen-glucose deprivation (OGD) injury. Serum-derived exosomes were injected intravenously into adult male rats 2 h after transient MCAO. Infarct volume and gross cognitive function were assessed 24 h after reperfusion. Poststroke rats treated with serum-derived exosomes exhibited significantly reduced infarct volumes and enhanced neurological function. Apoptosis was assessed via terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining and the expression of B-cell lymphoma-2 (Bcl-2), Bax, and cleaved caspase-3 24 h after injury. Our data showed that serum exosomes treatment strikingly decreased TUNEL+ cells in the striatum, enhanced the ratio of Bcl-2 to Bax, and inhibited cleaved caspase-3 production in MCAO rats and OGD/reoxygenation insulted bEnd.3 cells. Under the consistent treatment, the expression of microtubule-associated protein 1 light chain 3B-II (LC3B-II), LC3B-I, and Sequestosome-1 (SQSTM1)/p62 was detected by Western blotting. Autolysosomes were observed via TEM. We found that serum exosomes reversed the ratio of LC3B-II to LC3B-I, prevented SQSTM1/p62 degradation, autolysosome formation, and autophagic flux. Together, these results indicated that exosomes isolated from healthy serum provided neuroprotection against experimental stroke partially via inhibition of endothelial cell apoptosis and autophagy-mediated BBB breakdown. Intravenous serum-derived exosome treatment may, therefore, provide a novel clinical therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Lin-Yan Huang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Jin-Xiu Song
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Heng Cai
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Pei-Pei Wang
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Qi-Long Yin
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Yi-De Zhang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Jie Chen
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Ming Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Jia-Jia Song
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Yan-Ling Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Lan Luo
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Wan Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Su-Hua Qi
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Su-Hua Qi,
| |
Collapse
|
19
|
Gao M, Ma MM, Lu FT, Huang CC, Sun L, Lv XF, Zhang B, Wang GL, Guan YY. Low Chloride-Regulated ClC-5 Contributes to Arterial Smooth Muscle Cell Proliferation and Cerebrovascular Remodeling. Hypertension 2022; 79:e73-e85. [PMID: 35144478 DOI: 10.1161/hypertensionaha.121.18472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Low serum chloride (Cl-) level is considered an independent predictor of cardiovascular mortality associated with chronic hypertension. However, the underlying mechanisms are unknown. ClC-5, a member of the Cl- channel family, is sensitive to changes in intracellular and extracellular Cl- concentration and conducts outwardly rectifying Cl- currents. The aims of this study were to determine if ClC-5 is regulated by low extracellular Cl-, clarify its putative roles in hypertension-induced cerebrovascular remodeling, and elucidate the associated underlying mechanisms. METHODS Whole-cell patch technique, intracellular Cl- concentration measurements, flow cytometry, Western blot, Clcn5 knockdown (Clcn5-/y), and adenovirus-mediated ClC-5 overexpression mice, 2-kidney, 2-clip, and angiotensin II infusion-induced hypertensive models were used. RESULTS We found that low extracellular Cl- evoked a ClC-5-dependent Cl- current that was abolished by ClC-5 depletion in basilar artery smooth muscle cells. ClC-5 was upregulated in the arterial tissues of rats and patients with hypertension. Low Cl--induced current and ClC-5 protein expression positively correlated with basilar artery remodeling during hypertension. ClC-5 knockdown ameliorated hypertension-induced cerebrovascular remodeling and smooth muscle cell proliferation, whereas ClC-5 overexpression mice exhibited the opposite phenotype. ClC-5-dependent Cl- efflux induced by low extracellular Cl- activated WNK1 (lysine-deficient protein kinase 1) which, in turn, activated AKT, and culminated in basilar artery smooth muscle cell proliferation and vascular remodeling. CONCLUSIONS ClC-5 mediates low Cl--induced Cl- currents in basilar artery smooth muscle cells and regulates hypertension-induced cerebrovascular remodeling by promoting basilar artery smooth muscle cell proliferation via the WNK1/AKT signaling pathway.
Collapse
Affiliation(s)
- Min Gao
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.).,Department of Pharmacy, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China. (M.G., C.-C.H.)
| | - Ming-Ming Ma
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.)
| | - Feng-Ting Lu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.)
| | - Cheng-Cui Huang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.).,Department of Pharmacy, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China. (M.G., C.-C.H.)
| | - Lu Sun
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.).,Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (L.S.)
| | - Xiao-Fei Lv
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.)
| | - Bin Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, China (B.Z.)
| | - Guan-Lei Wang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.)
| | - Yong-Yuan Guan
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.)
| |
Collapse
|
20
|
Cheng F, Liu J, Guo Z, Li S, Chen J, Tu C, Fu F, Shen B, Zhang X, Lai G, Lan J. Angiotensin-(1-7) ameliorates high glucose-induced vascular endothelial injury through suppressing chloride channel 3. Bioengineered 2022; 13:4100-4111. [PMID: 35098884 PMCID: PMC8973701 DOI: 10.1080/21655979.2021.1997695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diabetes Mellitus (DM) is a significant risk factor for cardiovascular disease (CVD), which is leading cause of deaths in DM patients. However, there are limited effective medical therapies for diabetic CVD. Vascular endothelial injury caused by DM is a critical risk factor for diabetic CVD. Previous study has indicated that Angiotensin-(1-7) (Ang-(1-7)) may prevent diabetic CVD, whereas it is not clear that Ang-(1-7) whether attenuates diabetic CVD through suppressing vascular endothelial injury. In this study, we found that Ang-(1-7) alleviated high glucose (HG)-induced endothelial injury in bEnd3 cells. Moreover, Ang-(1-7) ameliorated HG-induced endothelial injury through downregulating chloride channel 3 (CIC-3) via Mas receptor. Furthermore, HG-induced CIC-3 enhanced reactive oxygen species (ROS) and cytokine production and reduced the level of nitric oxide (NO), while Ang-(1-7) preserved the impact of HG-induced CIC-3 on productions of ROS, cytokine and NO through inhibiting CIC-3 via Mas receptor. Summarily, the present study revealed that Ang-(1-7) alleviated HG-induced vascular endothelial injury through the inhibition of CIC-3, suggested that Ang-(1-7) may preserve diabetic CVD through suppressing HG-induced vascular endothelial injury.
Collapse
Affiliation(s)
- Fei Cheng
- Second Ward of Cardiovascular Medicine, Dongguan Songshan Lake Center Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan City, Guangdong Province 523326, China.,Dongguan Cardiovascular Institute, Dongguan Third People's Hospital, Dongguan City, Guangdong Province 523326, China
| | - Jing Liu
- Second Ward of General Pediatrics, Dongguan Eighth People's Hospital, Dongguan Children's Hospital, Dongguan City, Guangdong Province 523321, China
| | - Zhuolin Guo
- Dongguan Cardiovascular Institute, Dongguan Third People's Hospital, Dongguan City, Guangdong Province 523326, China
| | - Shicheng Li
- Second Ward of Cardiovascular Medicine, Dongguan Songshan Lake Center Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan City, Guangdong Province 523326, China
| | - Jingfu Chen
- Second Ward of Cardiovascular Medicine, Dongguan Songshan Lake Center Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan City, Guangdong Province 523326, China
| | - Chang Tu
- Dongguan Cardiovascular Institute, Dongguan Third People's Hospital, Dongguan City, Guangdong Province 523326, China
| | - Fengzhou Fu
- Second Ward of Cardiovascular Medicine, Dongguan Songshan Lake Center Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan City, Guangdong Province 523326, China
| | - Bai Shen
- Second Ward of Cardiovascular Medicine, Dongguan Songshan Lake Center Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan City, Guangdong Province 523326, China
| | - Xiaojie Zhang
- Second Ward of Cardiovascular Medicine, Dongguan Songshan Lake Center Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan City, Guangdong Province 523326, China
| | - Guohua Lai
- Dongguan Cardiovascular Institute, Dongguan Third People's Hospital, Dongguan City, Guangdong Province 523326, China
| | - Jun Lan
- Dongguan Cardiovascular Institute, Dongguan Third People's Hospital, Dongguan City, Guangdong Province 523326, China
| |
Collapse
|
21
|
Kouyoumdzian NM, Kim G, Rudi MJ, Rukavina Mikusic NL, Fernández BE, Choi MR. Clues and new evidences in arterial hypertension: unmasking the role of the chloride anion. Pflugers Arch 2022; 474:155-176. [PMID: 34966955 DOI: 10.1007/s00424-021-02649-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
The present review will focus on the role of chloride anion in cardiovascular disease, with special emphasis in the development of hypertensive disease and vascular inflammation. It is known that acute and chronic overload of sodium chloride increase blood pressure and have pro-inflammatory and pro-fibrotic effects on different target organs, but it is unknown how chloride may influence these processes. Chloride anion is the predominant anion in the extracellular fluid and its intracellular concentration is dynamically regulated. As the queen of the electrolytes, it is of crucial importance to understand the physiological mechanisms that regulate the cellular handling of this anion including the different transporters and cellular chloride channels, which exert a variety of functions, such as regulation of cellular proliferation, differentiation, migration, apoptosis, intracellular pH and cellular redox state. In this article, we will also review the relationship between dietary, serum and intracellular chloride and how these different sources of chloride in the organism are affected in hypertension and their impact on cardiovascular disease. Additionally, we will discuss the approach of potential strategies that affect chloride handling and its potential effect on cardiovascular system, including pharmacological blockade of chloride channels and non-pharmacological interventions by replacing chloride by another anion.
Collapse
Affiliation(s)
- Nicolás Martín Kouyoumdzian
- Universidad de Buenos Aires, CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina.
| | - Gabriel Kim
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Julieta Rudi
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Lucía Rukavina Mikusic
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Marcelo Roberto Choi
- Universidad de Buenos Aires, CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Universitario de Ciencias de La Salud, Fundación H.A. Barceló, Buenos Aires, Argentina
| |
Collapse
|
22
|
Li XL, Liu J, Chen XS, Cheng LM, Liu WL, Chen XF, Li YJ, Guan YY, Zeng X, Du YH. Blockade of TMEM16A protects against renal fibrosis by reducing intracellular Cl - concentration. Br J Pharmacol 2021; 179:3043-3060. [PMID: 34961937 DOI: 10.1111/bph.15786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 09/27/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Renal fibrosis is the final common outcome in most forms of CKD. However, the underlying causal mechanisms remain obscure. The present study examined whether TMEM16A, a Ca2+ -activated chloride channel, contributes to the progress of renal fibrosis. EXPERIMENTAL APPROACH Masson staining, western blot and immunohistochemistry were used to measure renal fibrosis and related proteins expression. MQAE was used to evaluate the intracellular Cl- concentration. KEY RESULTS TMEM16A expression was significantly upregulated in fibrotic kidneys of unilateral ureteral obstruction (UUO) and high-fat diet murine models, and in renal samples of IgA nephropathy patients. In vivo knockdown of TMEM16A with adenovirus harboring TMEM16A-shRNA or inhibition of TMEM16A channel activity with its specific inhibitor CaCCinh-A01 or T16Ainh-A01 effectively prevented UUO-induced renal fibrosis and decreased protein expression of fibronectin, α-SMA and collagen in the obstructed kidneys. In cultured HK2 cells, knockdown or inhibition of TMEM16A suppressed TGF-β1-induced epithelial to mesenchymal transition, reduced snail1 expression and phosphorylation of Smad2/3 and ERK1/2, whereas overexpression of TMEM16A showed the opposite effects. TGF-β1 increased [Cl- ]i in HK2 cells, which was inhibited by knockdown or inhibition of TMEM16A. Reducing [Cl- ]i by low Cl- culture medium significantly blunted TGF-β1-induced Smad2/3 phosphorylation and profibrotic factors expression. The profibrotic effects of TGF-β1 were also abrogated by the inhibitor of SGK1, a kinase whose activity was also suppressed by reducing [Cl- ]i. CONCLUSION AND IMPLICATIONS Blockade of TMEM16A prevented the progression of kidney fibrosis, likely by suppressing [Cl- ]i/SGK1/TGF-β1 signaling pathway. TMEM16A may be a potential new therapeutic target against renal fibrosis.
Collapse
Affiliation(s)
- Xiao-Long Li
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jing Liu
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Shan Chen
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Li-Min Cheng
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei-Ling Liu
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xing-Feng Chen
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yue-Jiao Li
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yong-Yuan Guan
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xin Zeng
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yan-Hua Du
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Huang H, Liu J, Liang Y, Bao K, Qiao L, Liu J, Li Q, Wang B, Chen S, Lai W, Chen C, Zhang L, Huang X, Huang D, Chen J, Tan N, Liu Y. Prevalence and Mortality of Hypochloremia Among Patients Suffering From Coronary Artery Disease and Congestive Heart Failure: An Analysis of Patients in CIN-I and MIMIC-III Databases. Front Med (Lausanne) 2021; 8:769646. [PMID: 34993210 PMCID: PMC8724045 DOI: 10.3389/fmed.2021.769646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Hypochloremia is an independent predictor for mortality in patients with coronary artery disease (CAD) but whether the same correlation exists in CAD patients with congestive heart failure (CHF) is unclear. Methods: This is an analysis of data stored in the databases of the CIN-I [a registry of Cardiorenal Improvement (NCT04407936) in China from January 2007 to December 2018] and Medical Information Mart for Intensive Care (MIMIC)-III. CAD patients with CHF were included. The outcome measures were 90-day all-cause mortality (ACM) and long-term ACM. Results: Data from 8,243 CAD patients with CHF were analyzed. We found that 10.2% of the study population had hypochloremia (Cl- <98 mmol/L) in CIN-I (n = 4,762) and 20.1% had hypochloremia in MIMIC-III (n = 3,481). Patients suffering from hypochloremia were, in general, older and had a higher prevalence of comorbidities. After adjustment for confounders, hypochloremia remained a significant predictor of short-term mortality risk [90-day ACM: adjusted hazard ratio (aHR), 1.69; 95% CI, 1.27-2.25; P < 0.001 in CIN-I, and 1.36 (1.17-1.59); P < 0.001 in MIMIC-III]. Hypochloremia was also associated with long-term mortality [aHR, 1.26; 95% CI, 1.06-1.50; P = 0.009 in CIN-I, and 1.48 (1.32-1.66); P < 0.001 in MIMIC-III]. Prespecified subgroup analyses revealed an association of hypochloremia with long-term ACM to be attenuated slightly in the women of the two databases (P interaction < 0.05). Conclusions: Hypochloremia is independently associated with higher short-term and long-term ACM. Further studies are needed to determine if early preventive measurements and active intervention of hypochloremia can reduce the mortality risk of CAD patients with CHF.
Collapse
Affiliation(s)
- Haozhang Huang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jin Liu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Liang
- Department of Cardiology, Maoming People's Hospital, Maoming, China
| | - Kunming Bao
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Linfang Qiao
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiulin Liu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qiang Li
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bo Wang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shiqun Chen
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wenguang Lai
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People's Hospital, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Cong Chen
- Department of Cardiology, Maoming People's Hospital, Maoming, China
| | - Lingyu Zhang
- Department of Cardiology, Maoming People's Hospital, Maoming, China
| | - Xiaoyu Huang
- Department of Cardiology, People's Hospital of Yangjiang, Yangjiang, China
| | - Dehua Huang
- Department of Cardiology, People's Hospital of Yangjiang, Yangjiang, China
| | - Jiyan Chen
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ning Tan
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yong Liu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
24
|
Wang A, Tian X, Gu H, Zuo Y, Meng X, Chen P, Li H, Wang Y. Electrolytes and clinical outcomes in patients with acute ischemic stroke or transient ischemic attack. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1069. [PMID: 34422981 PMCID: PMC8339832 DOI: 10.21037/atm-21-741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/02/2021] [Indexed: 11/06/2022]
Abstract
Background Abnormal electrolytes were closely related to the prognosis of various diseases, the prognostic role of electrolytes in stroke has not been investigated well. We aimed to investigate the association between electrolytes and clinical outcomes in patients with acute ischemic stroke (AIS) or transient ischemic attack (TIA). Methods Data were recruited from the China National Stroke Registry III study. Patients were classified into three groups according to tertiles and the normal range of each electrolyte. Multivariable logistic and Cox proportional hazards regressions were adopted to explore the associations of electrolytes with poor functional outcomes [modified Rankin Scale (mRS) 3–6/2–6] and all-cause death at 3 months and 1 year. Results A total of 10,299 eligible patients were enrolled. After adjusted for confounding factors, the first tertile electrolytes were associated with increased risk of poor functional outcome (mRS score 3–6) at 1 year, the adjusted odds ratios (95% confidence intervals) were 1.33 (1.14–1.55) for potassium, 1.41 (1.20–1.60) for sodium, 1.27 (1.08–1.48) for chloride, compared with the second tertile. Similar results were found when poor functional outcome was defined as mRS score 2–6 and all-cause death. However, almost no significant association was present of calcium with these outcomes. All results were consistent when each electrolyte was classified into three groups according to the normal range and the outcomes timepoint was set at 3 months. Conclusions Lower levels of potassium, sodium, chloride but not calcium were associated with higher risk of poor functional outcomes and death in patients with AIS or TIA.
Collapse
Affiliation(s)
- Anxin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xue Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Hongqiu Gu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yingting Zuo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xia Meng
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Pan Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Yuan JN, Hong Y, Ma ZL, Pang RP, Lei QQ, Lv XF, Zhou JG, Huang H, Zhang TT. MiR-302a Limits Vascular Inflammation by Suppressing Nuclear Factor-κ B Pathway in Endothelial Cells. Front Cell Dev Biol 2021; 9:682574. [PMID: 34409030 PMCID: PMC8365611 DOI: 10.3389/fcell.2021.682574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023] Open
Abstract
The inflammatory response of endothelial cells accelerates various vascular diseases. MicroRNAs (miRNAs) participate in diverse cellular processes during inflammation. In the present study, we found that miR-302a is an effective suppressor of vascular inflammation in endothelial cells. It was revealed that miR-302a exhibited a lower level in a lipopolysaccharide (LPS)-induced mouse model and in patients with vascular inflammatory disease. Genetic haploinsufficiency of miR-302 aggravated the LPS-induced vascular inflammatory response in mice, and overexpression of miR-302a attenuated vascular inflammation in mice. Furthermore, overexpression of miR-302a inhibited the synthesis and secretion of adhesion factors in endothelial cells, and suppressed the adhesion of monocytes to endothelium. In the study of molecular mechanism, we found that miR-302a relieved vascular inflammation mainly by regulating the nuclear factor kappa-B (NF-κB) pathway in endothelial cells. The results showed that interleukin-1 receptor-associated kinase4 (IRAK4) and zinc finger protein 91 (ZFP91) were the binding targets of miR-302a. MiR-302a prevented the nuclear translocation of NF-κB by inhibiting phosphorylation of IκB kinase complex β (IKKβ) and inhibitors of κBα (IκBα) via targeting IRAK4. In addition, miR-302a downregulated the expression of NF-κB by directly binding with ZFP91. These findings indicate that miR-302a negatively regulates inflammatory responses in the endothelium via the NF-κB pathway and it may be a novel target for relieving vascular inflammation.
Collapse
Affiliation(s)
- Jia-Ni Yuan
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu Hong
- Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhuo-Lin Ma
- Department of Physiology, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China
| | - Rui-Ping Pang
- Department of Physiology, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qing-Qing Lei
- Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Fei Lv
- Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jia-Guo Zhou
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Huang
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ting-Ting Zhang
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
26
|
Huang H, Mai Z, Chen L, Li Q, Chen S, Bao K, Tang R, Wei W, Yu Y, Huang Z, Lai W, Wang B, Tan N, Chen J, Liu J, Liu Y. Prevalence and Mortality of Hypochloremia Among Patients with Coronary Artery Disease: A Cohort Study. Risk Manag Healthc Policy 2021; 14:3137-3145. [PMID: 34349574 PMCID: PMC8326930 DOI: 10.2147/rmhp.s306125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/15/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Hypochloremia is a predictor for short-term mortality in patients with cardiovascular disease, but its association with coronary artery disease (CAD) is still unclear. We aimed to assess the impact of hypochloremia on all-cause mortality (short-and long-term) among patients with CAD. PATIENTS AND METHODS Based on the registry at Guangdong Provincial People's Hospital in China, we analyzed data of 49,025 hospitalized patients who underwent coronary angiography (CAG) and were diagnosed with CAD from January 2007 to December 2018. To assess the association between hypochloremia and the study endpoints, a logistic-regression model (for 30-day all-cause mortality) and a Cox regression model (for long-term all-cause mortality) were fitted. RESULTS Overall, 4.4% of the study population showed hypochloremia (<98 mmol/L). During a median follow-up of 5.2 (3.1-7.8) years, a total of 6486 (13.2%) patients died. Patients with hypochloremia were generally older and at risk for diabetes, cardiorenal dysfunction, and morbidity than those without hypochloremia. After adjustment for confounders, hypochloremia remained a significant predictor of mortality risk (30-day all-cause death: adjusted odds ratio [aOR], 1.99; 95% confidence interval, 1.08-3.18; P=0.017 and long-term all-cause death: adjusted hazard ratio [aHR], 1.32; 95% confidence interval, 1.19-1.47; P<0.001). CONCLUSION Hypochloremia is mildly common in patients with CAD and is associated with increased short-and long-term mortality. Meanwhile, it is necessary to further investigate effective and preventive measures and the potential mechanisms of hypochloremia in patients with CAD.
Collapse
Affiliation(s)
- Haozhang Huang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Ziling Mai
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
- Guangdong General Hospital, Affiliated with South China University of Technology, Guangzhou, 510515, People’s Republic of China
| | - Liling Chen
- Department of Cardiology, Longyan First Hospital Affiliated with Fujian Medical University, Longyan, 364000, People’s Republic of China
| | - Qiang Li
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Shiqun Chen
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Kunming Bao
- Department of Cardiology, Longyan First Hospital Affiliated with Fujian Medical University, Longyan, 364000, People’s Republic of China
| | - Ronghui Tang
- Yunnan Fuwai Cardiovascular Hospital, Department of Ultrasound Imaging, Yunnan, 650000, People’s Republic of China
| | - Wen Wei
- Department of Cardiology, Longyan First Hospital Affiliated with Fujian Medical University, Longyan, 364000, People’s Republic of China
| | - Yaren Yu
- The First People’s Hospital of Foshan, Foshan, Guangdong Province, 528000, People’s Republic of China
| | - Zhidong Huang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Wenguang Lai
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
- Guangdong General Hospital, Affiliated with South China University of Technology, Guangzhou, 510515, People’s Republic of China
| | - Bo Wang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Ning Tan
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Guangdong General Hospital, Affiliated with South China University of Technology, Guangzhou, 510515, People’s Republic of China
| | - Jiyan Chen
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Guangdong General Hospital, Affiliated with South China University of Technology, Guangzhou, 510515, People’s Republic of China
| | - Jin Liu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Yong Liu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Guangdong General Hospital, Affiliated with South China University of Technology, Guangzhou, 510515, People’s Republic of China
| |
Collapse
|
27
|
Abstract
Chloride channel 3 (ClC-3), a Cl-/H+ antiporter, has been well established as a member of volume-regulated chloride channels (VRCCs). ClC-3 may be a crucial mediator for activating inflammation-associated signaling pathways by regulating protein phosphorylation. A growing number of studies have indicated that ClC-3 overexpression plays a crucial role in mediating increased plasma low-density lipoprotein levels, vascular endothelium dysfunction, pro-inflammatory activation of macrophages, hyper-proliferation and hyper-migration of vascular smooth muscle cells (VSMCs), as well as oxidative stress and foam cell formation, which are the main factors responsible for atherosclerotic plaque formation in the arterial wall. In the present review, we summarize the molecular structures and classical functions of ClC-3. We further discuss its emerging role in the atherosclerotic process. In conclusion, we explore the potential role of ClC-3 as a therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Dun Niu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 34706University of South China, Hengyang, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 34706University of South China, Hengyang, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 34706University of South China, Hengyang, China
| |
Collapse
|
28
|
Li K, Liu YY, Lv XF, Lin ZM, Zhang TT, Zhang FR, Guo JW, Hong Y, Liu X, Lin XC, Zhou JG, Wu QQ, Liang SJ, Shang JY. Reduced intracellular chloride concentration impairs angiogenesis by inhibiting oxidative stress-mediated VEGFR2 activation. Acta Pharmacol Sin 2021; 42:560-572. [PMID: 32694758 PMCID: PMC8115249 DOI: 10.1038/s41401-020-0458-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 06/07/2020] [Indexed: 12/13/2022]
Abstract
Chloride (Cl-) homeostasis is of great significance in cardiovascular system. Serum Cl- level is inversely associated with the mortality of patients with heart failure. Considering the importance of angiogenesis in the progress of heart failure, this study aims to investigate whether and how reduced intracellular Cl- concentration ([Cl-]i) affects angiogenesis. Human umbilical endothelial cells (HUVECs) were treated with normal Cl- medium or low Cl- medium. We showed that reduction of [Cl-]i (from 33.2 to 16.18 mM) inhibited HUVEC proliferation, migration, cytoskeleton reorganization, tube formation, and subsequently suppressed angiogenesis under basal condition, and VEGF stimulation or hypoxia treatment. Moreover, VEGF-induced NADPH-mediated reactive oxygen species (ROS) generation and VEGFR2 axis activation were markedly attenuated in low Cl- medium. We revealed that lowering [Cl-]i inhibited the expression of the membrane-bound catalytic subunits of NADPH, i.e., p22phox and Nox2, and blunted the translocation of cytosolic regulatory subunits p47phox and p67phox, thereby restricting NADPH oxidase complex formation and activation. Furthermore, reduced [Cl-]i enhanced ROS-associated protein tyrosine phosphatase 1B (PTP1B) activity and increased the interaction of VEGFR2 and PTP1B. Pharmacological inhibition of PTP1B reversed the effect of lowering [Cl-]i on VEGFR2 phosphorylation and angiogenesis. In mouse hind limb ischemia model, blockade of Cl- efflux using Cl- channel inhibitors DIDS or DCPIB (10 mg/kg, i.m., every other day for 2 weeks) significantly enhanced blood flow recovery and new capillaries formation. In conclusion, decrease of [Cl-]i suppresses angiogenesis via inhibiting oxidase stress-mediated VEGFR2 signaling activation by preventing NADPH oxidase complex formation and promoting VEGFR2/PTP1B association, suggesting that modulation of [Cl-]i may be a novel therapeutic avenue for the treatment of angiogenic dysfunction-associated diseases.
Collapse
Affiliation(s)
- Kai Li
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ying-Ying Liu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiao-Fei Lv
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhuo-Miao Lin
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ting-Ting Zhang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Fei-Ran Zhang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jia-Wei Guo
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yu Hong
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiu Liu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiao-Chun Lin
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jia-Guo Zhou
- Program of Kidney and Cardiovascular Disease, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Physiology, Key Laboratory of Cardiovascular disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qian-Qian Wu
- Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Si-Jia Liang
- Program of Kidney and Cardiovascular Disease, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Jin-Yan Shang
- Program of Kidney and Cardiovascular Disease, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
29
|
Abundant Monovalent Ions as Environmental Signposts for Pathogens during Host Colonization. Infect Immun 2021; 89:IAI.00641-20. [PMID: 33526568 DOI: 10.1128/iai.00641-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Host colonization by a pathogen requires proper sensing and response to local environmental cues, to ensure adaptation and continued survival within the host. The ionic milieu represents a critical potential source of environmental cues, and indeed, there has been extensive study of the interplay between host and pathogen in the context of metals such as iron, zinc, and manganese, vital ions that are actively sequestered by the host. The inherent non-uniformity of the ionic milieu also extends, however, to "abundant" ions such as chloride and potassium, whose concentrations vary greatly between tissue and cellular locations, and with the immune response. Despite this, the concept of abundant ions as environmental cues and key players in host-pathogen interactions is only just emerging. Focusing on chloride and potassium, this review brings together studies across multiple bacterial and parasitic species that have begun to define both how these abundant ions are exploited as cues during host infection, and how they can be actively manipulated by pathogens during host colonization. The close links between ion homeostasis and sensing/response to different ionic signals, and the importance of studying pathogen response to cues in combination, are also discussed, while considering the fundamental insight still to be uncovered from further studies in this nascent area of inquiry.
Collapse
|
30
|
Peng F, Cai W, Li J, Li H. ClC-5 Downregulation Induces Osteosarcoma Cell Apoptosis by Promoting Bax and tBid Complex Formation. Front Oncol 2021; 10:556908. [PMID: 33614474 PMCID: PMC7892965 DOI: 10.3389/fonc.2020.556908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor. Chloride (Cl-) channels-mediated Cl- movement plays an important role in regulating the functions of various cancer cells, but its role in osteosarcoma remains unclear. In this study, we found that ClC-5 was increased in osteosarcoma tissues compared with normal bone tissues. Patients with high ClC-5 expression showed poor overall survival relative to those patients with low ClC-5 expression. Higher ClC-5 expression and lower intracellular Cl- concentration ([Cl-]i) were observed in osteosarcoma cells compared with normal osteoblasts. Lowering [Cl-]i increased the viability of osteosarcoma cells, which was markedly blocked by ClC-5 downregulation. Knockdown of ClC-5 significantly induced osteosarcoma cell apoptosis and increased the release of cytochrome c from mitochondria to cytosol, concomitantly with cleavage of caspase-9, caspase-3, and PARP. The effect of ClC-5 downregulation on osteosarcoma cell apoptosis and viability was abolished by caspase-3 and caspase-9 inhibitors, but not caspase-8 inhibitor. Furthermore, ClC-5 inhibition promoted Bax translocation from cytosol to mitochondria. Immunoprecipitation showed that ClC-5 interacted with Bax and ClC-5 downregulation enhanced Bax and tBid complex formation. Collectively, we demonstrate that ClC-5 downregulation induces osteosarcoma cell apoptosis via mitochondria-dependent apoptotic pathway activation by promoting Bax and tBid association and subsequent Bax translocation.
Collapse
Affiliation(s)
- Fei Peng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weisong Cai
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianping Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haohuan Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Usefulness of chloride levels for fluid resuscitation in patients undergoing targeted temperature management after out-of-hospital cardiac arrest. Am J Emerg Med 2021; 43:69-76. [PMID: 33529852 DOI: 10.1016/j.ajem.2021.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Chloride is an important electrolyte in the body. In this study, we aimed to evaluate the associations between chloride levels on emergency department (ED) admission and neurologic outcomes by stratifying patients undergoing targeted temperature management (TTM) after out-of-hospital cardiac arrest (OHCA) into three groups (hyper/normo/hypochloremia); we also assessed the effect of changes in chloride levels from baseline over time on outcomes. METHODS This retrospective, observational cohort study of 346 patients was conducted between 2011 and 2019. The chloride levels were categorized as hypochloremia, normochloremia, and hyperchloremia by predetermined definitions. The primary endpoint was poor neurologic outcomes after hospital discharge. We evaluated the associations between chloride levels on ED admission and neurologic outcomes and assess the effect of changes in chloride levels over time on clinical outcomes. RESULTS On ED admission, compared with normochloremia, hypochloremia was significantly associated with unfavorable neurologic outcomes (OR, 2.668; 95% CI, 1.217-5.850, P = 0.014). Over time, unfavorable neurologic outcomes were significantly associated with increases in chloride levels in the hyperchloremia and normochloremia groups after ED admission. The rates of poor neurologic outcomes in the hyperchloremia and normochloremia groups were increased by 14.2% at Time-12, 20.1% at Time-24, and 9.3% at Time-48 with a 1-mEq/L increase in chloride levels. CONCLUSION In clinical practice, chloride levels can be routinely and serially measured cost-effectively. Thus, baseline chloride levels may be a promising tool for rapid risk stratification of patients after OHCA. For fluid resuscitation after cardiac arrest, a chloride-restricted solution may be an early therapeutic strategy.
Collapse
|
32
|
Kent MR, Kara N, Patton JG. Inhibition of GABA A-ρ receptors induces retina regeneration in zebrafish. Neural Regen Res 2021; 16:367-374. [PMID: 32859800 PMCID: PMC7896201 DOI: 10.4103/1673-5374.286972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A potential treatment for retinal diseases is to induce an endogenous Müller glia (MG)-derived regenerative response to replace damaged neurons. In contrast to mammalian MG, zebrafish MG are capable of mediating spontaneous regeneration. We seek to define the mechanisms that enable retina regeneration in zebrafish in order to identify therapeutic targets to induce mammalian retina regeneration. We previously used pharmacological and genetic methods to inhibit gamma aminobutyric acid A (GABAA) receptors in undamaged zebrafish retinas and showed that such inhibition could induce initiation of retina regeneration, as measured by the dedifferentiation of MG and the appearance of MG-derived proliferating progenitor cells. Here, we show that inhibition of a pharmacologically distinct subset of GABAA receptors (GABAA-ρ) can also induce retina regeneration. Dual inhibition of both GABA receptor subtypes led to enhanced retina regeneration. Gene expression analyses indicate that inhibition of GABAA-ρ receptors induces a canonical retinal regenerative response. Our results support a model in which decreased levels of GABA, such as would occur after retinal cell death or damage, induce dedifferentiation of MG and the generation of proliferating progenitor cells during zebrafish retina regeneration. Animal experiments were approved by the Vanderbilt's Institutional Animal Care and Use Committee (Protocol M1800200) on January 29, 2019.
Collapse
Affiliation(s)
- Matthew R Kent
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Nergis Kara
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
33
|
Huang X, Ouyang Q, Ran M, Zeng B, Deng L, Hu S, Yang M, Li G, Deng T, He M, Li T, Yang H, Zhang G, Zhang H, Zeng C, Wang J. The immune and metabolic changes with age in giant panda blood by combined transcriptome and DNA methylation analysis. Aging (Albany NY) 2020; 12:21777-21797. [PMID: 33188156 PMCID: PMC11623972 DOI: 10.18632/aging.103990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/14/2020] [Indexed: 11/25/2022]
Abstract
Giant panda (Ailuropoda melanoleuca) is an endangered mammalian species. Exploring immune and metabolic changes that occur in giant pandas with age is important for their protection. In this study, we systematically investigated the physiological and biochemical indicators in blood, as well as the transcriptome, and methylation profiles of young, adult, and old giant pandas. The white blood cell (WBC), neutrophil (NEU) counts and hemoglobin (HGB) concentrations increased significantly with age (young to adult), and some indicators related to blood glucose and lipids also changed significantly with age. In the transcriptome analysis, differentially expressed genes (DEGs) were found in comparisons of the young and adult (257), adult and old (20), young and old (744) groups. Separation of the DEGs into eight profiles according to the expression trend using short time-series expression miner (STEM) software revealed that most DEGs were downregulated with age. Functional analysis showed that most DEGs were associated with disease and that these DEGs were also associated with the immune system and metabolism. Furthermore, gene methylation in giant pandas decreased globally with age, and the expression of CCNE1, CD79A, IL1R1, and TCF7 showed a highly negative correlation with their degree of methylation. These results indicate that the giant panda's immune function improves gradually with age (young to adult), and that changes in the methylation profile are involved in the effects of age on immune and metabolic functions. These results have important implications for the understanding and conservation of giant pandas.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mingxia Ran
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Linhua Deng
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mingyao Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Guo Li
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Tao Deng
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Ming He
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Ti Li
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Haidi Yang
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Guiquan Zhang
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Heming Zhang
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Changjun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
34
|
Volume-regulated anion channel as a novel cancer therapeutic target. Int J Biol Macromol 2020; 159:570-576. [DOI: 10.1016/j.ijbiomac.2020.05.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/23/2020] [Accepted: 05/17/2020] [Indexed: 01/01/2023]
|
35
|
Endothelial Dysfunction Following Enhanced TMEM16A Activity in Human Pulmonary Arteries. Cells 2020; 9:cells9091984. [PMID: 32872351 PMCID: PMC7563136 DOI: 10.3390/cells9091984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial dysfunction is one of the hallmarks of different vascular diseases, including pulmonary arterial hypertension (PAH). Ion channelome changes have long been connected to vascular remodeling in PAH, yet only recently has the focus shifted towards Ca2+-activated Cl− channels (CaCC). The most prominent member of the CaCC TMEM16A has been shown to contribute to the pathogenesis of idiopathic PAH (IPAH) in pulmonary arterial smooth muscle cells, however its role in the homeostasis of healthy human pulmonary arterial endothelial cells (PAECs) and in the development of endothelial dysfunction remains underrepresented. Here we report enhanced TMEM16A activity in IPAH PAECs by whole-cell patch-clamp recordings. Using adenoviral-mediated TMEM16A increase in healthy primary human PAECs in vitro and in human pulmonary arteries ex vivo, we demonstrate the functional consequences of the augmented TMEM16A activity: alterations of Ca2+ dynamics and eNOS activity as well as decreased NO production, PAECs proliferation, wound healing, tube formation and acetylcholine-mediated relaxation of human pulmonary arteries. We propose that the ERK1/2 pathway is specifically affected by elevated TMEM16A activity, leading to these pathological changes. With this work we introduce increased TMEM16A activity in the cell membrane of human PAECs for the development of endothelial dysfunction in PAH.
Collapse
|
36
|
Ding W, Li J, Wang L, Zhang M, Zheng F. ClC-2 inhibition prevents macrophage foam cell formation by suppressing Nlrp3 inflammasome activation. Biosci Biotechnol Biochem 2020; 84:2096-2103. [PMID: 32657644 DOI: 10.1080/09168451.2020.1793294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Macrophage foam cell formation and inflammation are a pathological hallmark of atherosclerosis. ClC-2 has been implicated in various pathological processes, including inflammation and lipid metabolic disorder. However, the functional role of ClC-2 in macrophage foam cell formation and inflammation is unclear. Here, we found that ClC-2 was dominantly expressed in macrophages of atherosclerotic plaque and increased in atherogenesis. Knockdown of ClC-2 inhibited ox-LDL -induced lipid uptake and deposition in macrophages. The increase in CD36 expression and the decrease in ABCA1 expression induced by ox-LDL were alleviated by ClC-2 downregulation. Further, ClC-2 lacking limited the ox-LDL-induced secretion of inflammatory cytokines and chemokine, and suppressed Nlrp3 inflammasome activation. Restoration of Nlrp3 expression reversed the effect of ClC-2 downregulation on macrophage lipid accumulation and inflammation. Collectively, our study demonstrates that ClC-2 knockdown ameliorates ox-LDL-induced macrophage foam cell formation and inflammation by inhibiting Nlrp3 inflammasome activation.
Collapse
Affiliation(s)
- Wenyuan Ding
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University , Jinan, China
| | - Jiamin Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University , Jinan, China
| | - Lili Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University , Jinan, China
| | - Mingming Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University , Jinan, China
| | - Fei Zheng
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University , Jinan, China
| |
Collapse
|
37
|
Huang W, Tan M, Wang Y, Liu L, Pan Y, Li J, Ouyang M, Long C, Qu X, Liu H, Liu C, Wang J, Deng L, Xiang Y, Qin X. Increased intracellular Cl - concentration improves airway epithelial migration by activating the RhoA/ROCK Pathway. Theranostics 2020; 10:8528-8540. [PMID: 32754261 PMCID: PMC7392015 DOI: 10.7150/thno.46002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022] Open
Abstract
In the airway, Cl- is the most abundant anion and is critically involved in transepithelial transport. The correlation of the abnormal expression and activation of chloride channels (CLCs), such as cystic fibrosis transmembrane conductance regulators (CFTRs), anoctamin-1, and CLC-2, with cell migration capability suggests a relationship between defective Cl- transport and epithelial wound repair. However, whether a correlation exists between intracellular Cl- and airway wound repair capability has not been explored thus far, and the underlying mechanisms involved in this relationship are not fully defined. Methods: In this work, the alteration of intracellular chloride concentration ([Cl-]i) was measured by using a chloride-sensitive fluorescent probe (N-[ethoxycarbonylmethyl]-6-methoxyquinolium bromide). Results: We found that clamping with high [Cl-]i and 1 h of treatment with the CLC inhibitor CFTR blocker CFTRinh-172 and chloride intracellular channel inhibitor IAA94 increased intracellular Cl- concentration ([Cl-]i) in airway epithelial cells. This effect improved epithelial cell migration. In addition, increased [Cl-]i in cells promoted F-actin reorganization, decreased cell stiffness, and improved RhoA activation and LIMK1/2 phosphorylation. Treatment with the ROCK inhibitor of Y-27632 and ROCK1 siRNA significantly attenuated the effects of increased [Cl-]i on LIMK1/2 activation and cell migration. In addition, intracellular Ca2+ concentration was unaffected by [Cl-]i clamping buffers and CFTRinh-172 and IAA94. Conclusion: Taken together, these results suggested that Cl- accumulation in airway epithelial cells could activate the RhoA/ROCK/LIMK cascade to induce F-actin reorganization, down-regulate cell stiffness, and improve epithelial migration.
Collapse
Affiliation(s)
- Wenjie Huang
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
- Affiliated Liutie Central Hospital of Guangxi medical university, Liuzhou, Guangxi 545007, China
| | - Meiling Tan
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yue Wang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
- School of Nursing, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Lei Liu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Yan Pan
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Jingjing Li
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Mingxing Ouyang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Chunjiao Long
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xiangping Qu
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Huijun Liu
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Chi Liu
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Jia Wang
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Yang Xiang
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xiaoqun Qin
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
38
|
Petnak T, Thongprayoon C, Cheungpasitporn W, Bathini T, Vallabhajosyula S, Chewcharat A, Kashani K. Serum Chloride Levels at Hospital Discharge and One-Year Mortality among Hospitalized Patients. ACTA ACUST UNITED AC 2020; 8:medsci8020022. [PMID: 32438557 PMCID: PMC7353470 DOI: 10.3390/medsci8020022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/02/2023]
Abstract
This study aimed to assess the one-year mortality risk based on discharge serum chloride among the hospital survivors. We analyzed a cohort of adult hospital survivors at a tertiary referral hospital from 2011 through 2013. We categorized discharge serum chloride; ≤96, 97–99, 100–102, 103–105, 106–108, and ≥109 mmoL/L. We performed Cox proportional hazard analysis to assess the association of discharge serum chloride with one-year mortality after hospital discharge, using discharge serum chloride of 103–105 mmoL/L as the reference group. Of 56,907 eligible patients, 9%, 14%, 26%, 28%, 16%, and 7% of patients had discharge serum chloride of ≤96, 97–99, 100–102, 103–105, 106–108, and ≥109 mmoL/L, respectively. We observed a U-shaped association of discharge serum chloride with one-year mortality, with nadir mortality associated with discharge serum chloride of 103–105 mmoL/L. When adjusting for potential confounders, including discharge serum sodium, discharge serum bicarbonate, and admission serum chloride, one-year mortality was significantly higher in both discharge serum chloride ≤99 hazard ratio (HR): 1.45 and 1.94 for discharge serum chloride of 97–99 and ≤96 mmoL/L, respectively; p < 0.001) and ≥109 mmoL/L (HR: 1.41; p < 0.001), compared with discharge serum chloride of 103–105 mmoL/L. The mortality risk did not differ when discharge serum chloride ranged from 100 to 108 mmoL/L. Of note, there was a significant interaction between admission and discharge serum chloride on one-year mortality. Serum chloride at hospital discharge in the optimal range of 100–108 mmoL/L predicted the favorable survival outcome. Both hypochloremia and hyperchloremia at discharge were associated with increased risk of one-year mortality, independent of admission serum chloride, discharge serum sodium, and serum bicarbonate.
Collapse
Affiliation(s)
- Tananchai Petnak
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55902, USA;
- Division of Pulmonary and Critical Care Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10100, Thailand
| | - Charat Thongprayoon
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Correspondence: (C.T.); (W.C.); (K.K.)
| | - Wisit Cheungpasitporn
- Division of Nephrology, Department of Internal Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Correspondence: (C.T.); (W.C.); (K.K.)
| | - Tarun Bathini
- Department of Internal Medicine, University of Arizona, Tucson, AZ 85721, USA;
| | | | - Api Chewcharat
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Kianoush Kashani
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55902, USA;
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Correspondence: (C.T.); (W.C.); (K.K.)
| |
Collapse
|
39
|
Guo J, Liu X, Zhang T, Lin X, Hong Y, Yu J, Wu Q, Zhang F, Wu Q, Shang J, Lv X, Ou J, Zhou J, Pang R, Tang B, Liang S. Hepatocyte TMEM16A Deletion Retards NAFLD Progression by Ameliorating Hepatic Glucose Metabolic Disorder. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903657. [PMID: 32440483 PMCID: PMC7237841 DOI: 10.1002/advs.201903657] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/22/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease, and the mechanisms underpinning its pathogenesis have not been completely established. Transmembrane member 16A (TMEM16A), a component of the Ca2+-activated chloride channel (CaCC), has recently been implicated in metabolic events. Herein, TMEM16A is shown to be responsible for CaCC activation in hepatocytes and is increased in liver tissues of mice and patients with NAFLD. Hepatocyte-specific ablation of TMEM16A in mice ameliorates high-fat diet-induced obesity, hepatic glucose metabolic disorder, steatosis, insulin resistance, and inflammation. In contrast, hepatocyte-specific TMEM16A transgenic mice exhibit the opposite phenotype. Mechanistically, hepatocyte TMEM16A interacts with vesicle-associated membrane protein 3 (VAMP3) to induce its degradation, suppressing the formation of the VAMP3/syntaxin 4 and VAMP3/synaptosome-associated protein 23 complexes. This leads to the impairment of hepatic glucose transporter 2 (GLUT2) translocation and glucose uptake. Notably, VAMP3 overexpression restrains the functions of hepatocyte TMEM16A in blocking GLUT2 translocation and promoting lipid deposition, insulin resistance, and inflammation. In contrast, VAMP3 knockdown reverses the beneficial effects of TMEM16A downregulation. This study demonstrates a role for TMEM16A in NAFLD and suggests that inhibition of hepatic TMEM16A or disruption of TMEM16A/VAMP3 interaction may provide a new potential therapeutic strategy for NAFLD.
Collapse
Affiliation(s)
- Jia‐Wei Guo
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Xiu Liu
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Ting‐Ting Zhang
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Xiao‐Chun Lin
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Yu Hong
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Jie Yu
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
| | - Qin‐Yan Wu
- Department of GastroenterologyThe First People's Hospital of FoshanFoshan528000China
| | - Fei‐Ran Zhang
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Qian‐Qian Wu
- Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health CommissionNingxia Medical UniversityYinchuan750004China
| | - Jin‐Yan Shang
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Xiao‐Fei Lv
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Jing‐Song Ou
- Division of Cardiac SurgeryThe Key Laboratory of Assisted CirculationMinistry of HealthThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
- National‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular DiseasesThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
| | - Jia‐Guo Zhou
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
- Program of Kidney and Cardiovascular DiseaseThe Fifth Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
- Department of CardiologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Guangdong Province Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Rui‐Ping Pang
- Guangdong Province Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
- Department of PhysiologyPain Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Bao‐Dong Tang
- Department of GastroenterologyThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
| | - Si‐Jia Liang
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| |
Collapse
|
40
|
Ion Channels in The Pathogenesis of Endometriosis: A Cutting-Edge Point of View. Int J Mol Sci 2020; 21:ijms21031114. [PMID: 32046116 PMCID: PMC7037987 DOI: 10.3390/ijms21031114] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/24/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ion channels play a crucial role in many physiological processes. Several subtypes are expressed in the endometrium. Endometriosis is strictly correlated to estrogens and it is evident that expression and functionality of different ion channels are estrogen-dependent, fluctuating between the menstrual phases. However, their relationship with endometriosis is still unclear. OBJECTIVE To summarize the available literature data about the role of ion channels in the etiopathogenesis of endometriosis. METHODS A search on PubMed and Medline databases was performed from inception to November 2019. RESULTS Cystic fibrosis transmembrane conductance regulator (CFTR), transient receptor potentials (TRPs), aquaporins (AQPs), and chloride channel (ClC)-3 expression and activity were analyzed. CFTR expression changed during the menstrual phases and was enhanced in endometriosis samples; its overexpression promoted endometrial cell proliferation, migration, and invasion throughout nuclear factor kappa-light-chain-enhancer of activated B cells-urokinase plasminogen activator receptor (NFκB-uPAR) signaling pathway. No connection between TRPs and the pathogenesis of endometriosis was found. AQP5 activity was estrogen-increased and, through phosphatidylinositol-3-kinase and protein kinase B (PI3K/AKT), helped in vivo implantation of ectopic endometrium. In vitro, AQP9 participated in extracellular signal-regulated kinases/p38 mitogen-activated protein kinase (ERK/p38 MAPK) pathway and helped migration and invasion stimulating matrix metalloproteinase (MMP)2 and MMP9. ClC-3 was also overexpressed in ectopic endometrium and upregulated MMP9. CONCLUSION Available evidence suggests a pivotal role of CFTR, AQPs, and ClC-3 in endometriosis etiopathogenesis. However, data obtained are not sufficient to establish a direct role of ion channels in the etiology of the disease. Further studies are needed to clarify this relationship.
Collapse
|
41
|
Ma MM, Jin CC, Huang XL, Sun L, Zhou H, Wen XJ, Huang XQ, Du JY, Sun HS, Ren ZX, Liu J, Guan YY, Zhao XM, Wang GL. Clcn3 deficiency ameliorates high-fat diet-induced obesity and adipose tissue macrophage inflammation in mice. Acta Pharmacol Sin 2019; 40:1532-1543. [PMID: 31165783 PMCID: PMC7470880 DOI: 10.1038/s41401-019-0229-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Obesity induces accumulation of adipose tissue macrophages (ATMs) and ATM-driven inflammatory responses that promote the development of glucose and lipid metabolism disorders. ClC-3 chloride channel/antiporter, encoded by the Clcn3, is critical for some basic cellular functions. Our previous work has shown significant alleviation of type 2 diabetes in Clcn3 knockout (Clcn3−/−) mice. In the present study we investigated the role of Clcn3 in high-fat diet (HFD)-induced obesity and ATM inflammation. To establish the mouse obesity model, both Clcn3−/− mice and wild-type mice were fed a HFD for 4 or 16 weeks. The metabolic parameters were assessed and the abdominal total adipose tissue was scanned using computed tomography. Their epididymal fat pad tissue and adipose tissue stromal vascular fraction (SVF) cells were isolated for analyses. We found that the HFD-fed Clcn3−/− mice displayed a significant decrease in obesity-induced body weight gain and abdominal visceral fat accumulation as well as an improvement of glucose and lipid metabolism as compared with HFD-fed wild-type mice. Furthermore, the Clcn3 deficiency significantly attenuated HFD-induced ATM accumulation, HFD-increased F4/80+ CD11c+ CD206− SVF cells as well as HFD-activated TLR-4/NF-κB signaling in epididymal fat tissue. In cultured human THP-1 macrophages, adenovirus-mediated transfer of Clcn3 specific shRNA inhibited, whereas adenovirus-mediated cDNA overexpression of Clcn3 enhanced lipopolysaccharide-induced activation of NF-κB and TLR-4. These results demonstrate a novel role for Clcn3 in HFD-induced obesity and ATM inflammation.
Collapse
|
42
|
Cheng LM, Li YJ, Chen XF, Li XL, Chen XS, Du YH. ClC-3 Deficiency Impairs the Neovascularization Capacity of Early Endothelial Progenitor Cells by Decreasing CXCR4/JAK-2 Signalling. Can J Cardiol 2019; 35:1546-1556. [DOI: 10.1016/j.cjca.2019.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
|
43
|
Xu JB, Zhang YL, Huang J, Lu SJ, Sun Q, Chen PX, Jiang P, Qiu ZE, Jiang FN, Zhu YX, Lai DH, Zhong WD, Lun ZR, Zhou WL. Increased intracellular Cl - concentration mediates Trichomonas vaginalis-induced inflammation in the human vaginal epithelium. Int J Parasitol 2019; 49:697-704. [PMID: 31254529 DOI: 10.1016/j.ijpara.2019.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 11/15/2022]
Abstract
Trichomonas vaginalis is a primary urogenital parasite that causes trichomoniasis, a common sexually transmitted disease. As the first line of host defense, vaginal epithelial cells play critical roles in orchestrating vaginal innate immunity and modulate intracellular Cl- homeostasis via the cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel that plays positive roles in regulating nuclear factor-κB (NF-κB) signalling. However, the association between T. vaginalis infection and intracellular Cl- disequilibrium remains elusive. This study showed that after T. vaginalis infection, CFTR was markedly down-regulated by cysteine proteases in vaginal epithelial cells. The intracellular Cl- concentration ([Cl-]i) was consequently elevated, leading to NF-κB signalling activation via serum- and glucocorticoid-inducible kinase-1. Moreover, heightened [Cl-]i and activated NF-κB signalling could be sustained in a positive feedback regulatory manner resulting from decreased intracellular cAMP through NF-κB-mediated up-regulation of phosphodiesterase 4. The results conclusively revealed that the intracellular Cl- of the human vaginal epithelium could be dynamically modulated by T. vaginalis, which contributed to mediation of epithelial inflammation in the human vagina.
Collapse
Affiliation(s)
- Jian-Bang Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiehong Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shen-Jiao Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qing Sun
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peng-Xiao Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ping Jiang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fu-Neng Jiang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - De-Hua Lai
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei-De Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Zhao-Rong Lun
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
44
|
Valdivieso ÁG, Santa‐Coloma TA. The chloride anion as a signalling effector. Biol Rev Camb Philos Soc 2019; 94:1839-1856. [DOI: 10.1111/brv.12536] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Ángel G. Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina Buenos Aires 1107 Argentina
- The National Scientific and Technical Research Council of Argentina (CONICET) Buenos Aires 1107 Argentina
| | - Tomás A. Santa‐Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina Buenos Aires 1107 Argentina
- The National Scientific and Technical Research Council of Argentina (CONICET) Buenos Aires 1107 Argentina
| |
Collapse
|
45
|
Su Y, Yuan J, Zhang F, Lei Q, Zhang T, Li K, Guo J, Hong Y, Bu G, Lv X, Liang S, Ou J, Zhou J, Luo B, Shang J. MicroRNA-181a-5p and microRNA-181a-3p cooperatively restrict vascular inflammation and atherosclerosis. Cell Death Dis 2019; 10:365. [PMID: 31064980 PMCID: PMC6504957 DOI: 10.1038/s41419-019-1599-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/20/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
MicroRNAs have emerged as important post-transcriptional regulators of gene expression and are involved in diverse diseases and cellular process. Decreased expression of miR-181a has been observed in the patients with coronary artery disease, but its function and mechanism in atherogenesis is not clear. This study was designed to determine the roles of miR-181a-5p, as well as its passenger strand, miR-181a-3p, in vascular inflammation and atherogenesis. We found that the levels of both miR-181a-5p and miR-181a-3p are decreased in the aorta plaque and plasma of apoE−/− mice in response to hyperlipidemia and in the plasma of patients with coronary artery disease. Rescue of miR-181a-5p and miR-181a-3p significantly retards atherosclerotic plaque formation in apoE−/− mice. MiR-181a-5p and miR-181a-3p have no effect on lipid metabolism but decrease proinflammatory gene expression and the infiltration of macrophage, leukocyte and T cell into the lesions. In addition, gain-of-function and loss-of-function experiments show that miR-181a-5p and miR-181a-3p inhibit adhesion molecule expression in HUVECs and monocytes-endothelial cell interaction. MiR-181a-5p and miR-181a-3p cooperatively receded endothelium inflammation compared with single miRNA strand. Mechanistically, miR-181a-5p and miR-181a-3p prevent endothelial cell activation through blockade of NF-κB signaling pathway by targeting TAB2 and NEMO, respectively. In conclusion, these findings suggest that miR-181a-5p and miR-181a-3p are both antiatherogenic miRNAs. MiR-181a-5p and miR-181a-3p mimetics retard atherosclerosis progression through blocking NF-κB activation and vascular inflammation by targeting TAB2 and NEMO, respectively. Therefore, restoration of miR-181a-5p and miR-181a-3p may represent a novel therapeutic approach to manage atherosclerosis.
Collapse
Affiliation(s)
- Yingxue Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China.,Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Jiani Yuan
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Feiran Zhang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Qingqing Lei
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Tingting Zhang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Kai Li
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Jiawei Guo
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Yu Hong
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Guolong Bu
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Xiaofei Lv
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Sijia Liang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Jingsong Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, 510080, Guangzhou, China
| | - Jiaguo Zhou
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, 510080, Guangzhou, China.,Program of Kidney and Cardiovascular Disease, The Fifth Affiliated Hospital, 510080, Guangzhou, China.,Department of Cardiology, Sun Yat-sen Memorial Hospital, 510080, Guangzhou, China
| | - Bin Luo
- Department of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, 510080, Guangzhou, China.
| | - Jinyan Shang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China.
| |
Collapse
|
46
|
Michel J, Nolin F, Wortham L, Lalun N, Tchelidze P, Banchet V, Terryn C, Ploton D. Various Nucleolar Stress Inducers Result in Highly Distinct Changes in Water, Dry Mass and Elemental Content in Cancerous Cell Compartments: Investigation Using a Nano-Analytical Approach. Nanotheranostics 2019; 3:179-195. [PMID: 31183313 PMCID: PMC6536780 DOI: 10.7150/ntno.31878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/20/2019] [Indexed: 01/10/2023] Open
Abstract
Rationale: Numerous chemotherapeutic drugs that affect ribosome biogenesis in the nucleolus induce nucleolar stress. Improving our understanding of the effects of these drugs will require uncovering and comparing their impact on several biophysical parameters of the major cell compartments. Here, we quantified the water content and dry mass of cancerous cells treated with CX-5461, DRB or DAM to calculate macromolecular crowding and the volume occupied by free water, as well as elemental content. Methods: HeLa-H2B-GFP cells were treated with CX-5461, DRB or DAM. Water content and dry mass were measured in numerous regions of interest of ultrathin cryo-sections by quantitative scanning transmission electron microscope dark-field imaging and the elements quantified by energy dispersive X-ray spectrometry. The data were used to calculate macromolecular crowding and the volume occupied by free water in all cell compartments of control and treated cells. Hydrophobic and unfolded proteins were revealed by 8-Anilinonaphtalene-1-sulfonic acid (ANS) staining and imaging by two-photon microscopy. Immunolabeling of UBF, pNBS1 and pNF-κB was carried out and the images acquired with a confocal microscope for 3D imaging to address whether the localization of these proteins changes in treated cells. Results: Treatment with CX-5461, DRB or DAM induced completely different changes in macromolecular crowding and elemental content. Macromolecular crowding and elemental content were much higher in CX-5461-treated, moderately higher in DRB-treated, and much lower in DAM-treated cells than control cells. None of the drugs alone induced nucleolar ANS staining but it was induced by heat-shock of control cells and cells previously treated with DAM. UBF and pNBS1 were systematically co-localized in the nucleolus of CX-5461- and DAM-treated cells. pNF-κB only localized to the nucleolar caps of pre-apoptotic DAM-treated cells. Conclusion: We directly quantified water and ion content in cell compartments using cryo-correlative electron microscopy. We show that different chemotherapeutic nucleolar stress inducers result in distinctive, thus far-unrecognized changes in macromolecular crowding and elemental content which are known to modify cell metabolism. Moreover we were able to correlate these changes to the sensitivity of treated cells to heat-shock and the behavior of nucleolar pNBS1 and pNF-κB.
Collapse
Affiliation(s)
- Jean Michel
- UMR-S 1250 INSERM, Université de Reims Champagne Ardenne
| | | | - Laurence Wortham
- Platform of Cell and Tissue Imaging (PICT), Université de Reims Champagne Ardenne
| | - Nathalie Lalun
- UMR-S 1250 INSERM, Université de Reims Champagne Ardenne
| | - Pavel Tchelidze
- Faculty of Exact and Life Sciences, Department of Morphology, Tbilisi State University, Tbilisi, Georgia
| | | | - Christine Terryn
- Platform of Cell and Tissue Imaging (PICT), Université de Reims Champagne Ardenne
| | | |
Collapse
|
47
|
Guan Y, Luan Y, Xie Y, Zhou H, Li W, Zhang X, Shen X, Chen Y, Xu L, Lin Z, Wang G. Chloride channel-3 is required for efficient tumour cell migration and invasion in human cervical squamous cell carcinoma. Gynecol Oncol 2019; 153:661-669. [PMID: 30905432 DOI: 10.1016/j.ygyno.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Chloride channel-3 (ClC-3) plays significant roles in various physiological and physiopathological activities, including cell migration and invasion ability. The purpose of this study was to evaluate whether ClC-3 influences the migration and invasion of cervical squamous cell carcinoma cells and its possible mechanisms. METHODS Paraffin-embedded cervical tissues, including normal cervical tissues, cervical squamous cell carcinoma (SCC) and homologous paracancerous tissues, were collected. The cervical squamous cell carcinoma and matched paracarcinoma fresh tissues specimens were collected from 49 patients with SCC, and the normal cervical tissues were collected from 45 non-cervical squamous cell carcinoma patients. The human cervical squamous carcinoma cell line SiHa was cultured. ClC-3 expression was assessed by real-time RT-PCR, immunohistochemistry and Western blot, and the expression of phospho-PI3K/Akt/mTOR and matrix metalloproteinase-9 (MMP-9) was detected by Western blot. Small interfering RNA (siRNA) technology was used to knockdown ClC-3 expression. SiHa cell migration and invasion ability were measured using Transwell assays with or without Matrigel-coated membranes. RESULTS ClC-3 mRNA and protein expression in SCC tissues from cervical squamous cell carcinoma patients was significantly upregulated, and no significant difference was noted between the matched paracarcinoma fresh tissue from the same patients and non-cervical cancer patients. SiHa cell migration and invasion and phospho-PI3K/Akt/mTOR and MMP-9 expression were attenuated by knocking down ClC-3 expression using ClC-3 siRNA. CONCLUSIONS ClC-3 participates in the processes of SCC cell migration and invasion and regulates MMP-9 expression via the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yutao Guan
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, China
| | - Yi Luan
- Department of Laboratory Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yong Xie
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, China
| | - Hui Zhou
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Weifeng Li
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, China
| | - Xiaolu Zhang
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, China
| | - Ximing Shen
- Department of Pathology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yangping Chen
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, China
| | - Lijiang Xu
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, China
| | - Zhongqiu Lin
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Gang Wang
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, China.
| |
Collapse
|
48
|
Activated glycine receptors may decrease endosomal NADPH oxidase activity by opposing ClC-3-mediated efflux of chloride from endosomes. Med Hypotheses 2019; 123:125-129. [PMID: 30696582 DOI: 10.1016/j.mehy.2019.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/15/2019] [Indexed: 12/25/2022]
|
49
|
Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction. CURRENT TOPICS IN MEMBRANES 2019; 83:205-283. [PMID: 31196606 DOI: 10.1016/bs.ctm.2019.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Yang C, He L, Chen G, Ning Z, Xia Z. LRRC8A potentiates temozolomide sensitivity in glioma cells via activating mitochondria-dependent apoptotic pathway. Hum Cell 2019; 32:41-50. [PMID: 30426452 DOI: 10.1007/s13577-018-0221-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/04/2018] [Indexed: 02/06/2023]
Abstract
Chloride (Cl-), a primary anion in the extracellular fluid, plays an important role in a variety of physiological and pathological processes, such as cell apoptosis and proliferation. However, the information about Cl- in cancer cell apoptosis and chemoresistance is poorly understood. In the present study, we found that temozolomide (TMZ) treatment led to a decrease in intracellular concentration of Cl- ([Cl-]i) in both U87 and TMZ-resistant U87/R glioma cells. The decrease in [Cl-]i was more noticeable in U87 cells than in U87/R cells. Moreover, the expression of LRRC8A was reduced in U87/R cells compared with U87 cells. LRRC8A downregulation inhibited TMZ, induced the decrease in [Cl-]i and abolished the difference of [Cl-]i between U87 cells and U87/R cells. Knockdown of LRRC8A using small interfering RNA attenuated TMZ-induced U87 cell growth inhibition and apoptosis, while overexpression of LRRC8A by adenoviral infection enhanced the effect of TMZ on U87 and U87/R cell viability and apoptosis. Furthermore, LRRC8A downregulation inhibited TMZ-induced mitochondria-dependent apoptosis, including elevated Bcl-2 expression, reduced Bax expression, cytochrome c release, and caspase nine and caspase three activation. On the contrary, upregulation of LRRC8A augmented the activation of mitochondria-dependent apoptotic pathway in U87 and U87/R cells. In conclusion, this study demonstrates that LRRC8A potentiates TMZ-induced glioma cell apoptosis via promoting mitochondria-dependent apoptosis, suggesting that LRRC8A can be represented as a novel target for drug resistance treatment in glioma cells.
Collapse
Affiliation(s)
- Chao Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, 58th Zhongshan Road II, Guangzhou, 510089, China
| | - Longshuang He
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Gaofei Chen
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, 510089, China
| | - Zeqian Ning
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Zhibai Xia
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, 58th Zhongshan Road II, Guangzhou, 510089, China.
| |
Collapse
|