1
|
Misak A, Grman M, Ondrias K, Tomasova L. From methionine to sulfide: Exploring the diagnostic and therapeutic potential of sulfur-containing biomolecules in hypertension. Nitric Oxide 2025; 156:107-113. [PMID: 40157636 DOI: 10.1016/j.niox.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Sulfur-containing amino acids are involved in the regulation of vascular activity and blood pressure. Clinically, a positive correlation was found between serum homocysteine levels and blood pressure. On the other hand, methionine and cysteine levels were reduced in hypertensive patients. Recently, the redox state of sulfur-containing amino acids has emerged as potential diagnostic marker of cardiovascular health. Metabolomic studies have revealed a shift in thiol/disulfide ratio toward oxidized forms and overproduction of thiyl radicals in hypertensive patients. Although accumulating evidence confirms that sulfur-containing amino acids are essential for the maintaining of redox homeostasis and blood pressure control, their hypotensive and antioxidant properties have been primarily demonstrated in animal studies. While several groups are developing new targeted and triggered sulfur-based donors, standardized pharmacological interventions for hypertensive patients are largely absent and pose a challenge for future research. In this review, we summarize recent studies that investigate the role of sulfur-containing amino acids and their redox-active metabolites, including glutathione and sulfide, in blood pressure control and the development of systemic hypertension.
Collapse
Affiliation(s)
- Anton Misak
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Lenka Tomasova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.
| |
Collapse
|
2
|
Wang H, Li Y, You J, Feng N, Wang D, Su Y, Feng X. Diurnal oscillations of amino acids dynamically associate with microbiota and resistome in the colon of pigs. Anim Microbiome 2025; 7:26. [PMID: 40083031 PMCID: PMC11908058 DOI: 10.1186/s42523-025-00393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 03/08/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Nutrients are one of the key determinants of gut microbiota variation. However, the intricate associations between the amino acid (AA) profile and the dynamic fluctuations in the gut microbiota and resistome remain incompletely elucidated. Herein, we investigated the temporal dynamics of AA profile and gut microbiota in the colon of pigs over a 24-hour period, and further explored the dynamic interrelationships among AA profile, microbiota, and resistome using metagenomics and metabolomics approaches. RESULTS JTK_circle analysis revealed that both the AA profile and the gut microbiota exhibited rhythmic fluctuations. With respect to the feed intake, all AAs except L-homoserine (PAdj = 0.553) demonstrated significant fluctuations. Over 50% of Lactobacillaceae, Ruminococcaceae, Clostridiaceae, and Eubacteriaceae species reached their peaks during T15 ∼ T21 when 50% of Lachnospiraceae species experienced a trough. The eLSA results showed that most AAs positively correlated with Prevotellaceae species but negatively correlated with Lactobacillaceae and Lachnospiraceae species. Moreover, most of the AAs negatively correlated with the mobile genetic elements Tn916 and istA group but positively correlated with plasmids. Further partial least squares structural equation model analysis indicated that AAs affected the antibiotic resistance gene dynamics through mobile genetic elements and the gut microbiota. CONCLUSIONS Taken together, the AA profile and the gut microbiota exhibit robust fluctuations over a day. The AA profile can affect the gut microbiota and resistome in a direct or indirect manner. These findings may provide new insights into a potential strategy for manipulating the gut microbiota and resistome.
Collapse
Affiliation(s)
- Hongyu Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Yue Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jinwei You
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ni Feng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dongfang Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Xiaobo Feng
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Shremo Msdi A, Haghparast A, Garey KW, Wang EM. Microbiome-Based Therapeutics for Salt-Sensitive Hypertension: A Scoping Review. Nutrients 2025; 17:825. [PMID: 40077695 PMCID: PMC11901721 DOI: 10.3390/nu17050825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/29/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The purpose of this scoping review was to provide a comprehensive understanding of the current knowledge concerning the gut microbiome and SCFAs as emerging treatments for salt-sensitive hypertension. Relevant animal and human studies were identified via PubMed through August 2024. Twenty-four human (n = 9) and animal (n = 15) trials were included. Most human studies were observational (n = 6), aiming to compare gut microbiota differences between hypertensive and normotensive individuals. Three human studies evaluated microbiome-based interventions either via a sodium-restricted diet (n = 2) or prebiotic supplementation (n = 1). Fifteen animal trials involving either mice or rats were identified, all of which were interventional. These included dietary changes (n = 9), probiotic treatments (n = 1), postbiotic primarily bacterial metabolites (n = 4), and live biotherapeutic products (n = 4). All interventions were effective in decreasing blood pressure. Microbiome-based therapies as biologic modifiers for salt-sensitive hypertension are emerging. Substantial knowledge gaps remain, warranting further research to fully explore this promising therapeutic avenue.
Collapse
Affiliation(s)
- Abdulwhab Shremo Msdi
- Department of Pharmacy Practice and Translational Research, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA
| | | | | | | |
Collapse
|
4
|
He L, Zuo Q, Ma S, Zhang G, Wang Z, Zhang T, Zhai J, Guo Y. Canagliflozin attenuates kidney injury, gut-derived toxins, and gut microbiota imbalance in high-salt diet-fed Dahl salt-sensitive rats. Ren Fail 2024; 46:2300314. [PMID: 38189082 PMCID: PMC10776083 DOI: 10.1080/0886022x.2023.2300314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024] Open
Abstract
PURPOSE To investigate the effects of canagliflozin (20 mg/kg) on Dahl salt-sensitive (DSS) rat gut microbiota and salt-sensitive hypertension-induced kidney injury and further explore its possible mechanism. METHODS Rats were fed a high-salt diet to induce hypertension and kidney injury, and physical and physiological indicators were measured afterwards. This study employed 16S rRNA sequencing technology and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolic profiling combined with advanced differential and association analyses to investigate the correlation between the microbiome and the metabolome in male DSS rats. RESULTS A high-salt diet disrupted the balance of the intestinal flora and increased toxic metabolites (methyhistidines, creatinine, homocitrulline, and indoxyl sulfate), resulting in severe kidney damage. Canagliflozin contributed to reconstructing the intestinal flora of DSS rats by significantly increasing the abundance of Corynebacterium spp., Bifidobacterium spp., Facklamia spp., Lactobacillus spp., Ruminococcus spp., Blautia spp., Coprococcus spp., and Allobaculum spp. Moreover, the reconstruction of the intestinal microbiota led to significant changes in host amino acid metabolite concentrations. The concentration of uremic toxins, such as methyhistidines, creatinine, and homocitrulline, in the serum of rats was decreased by canagliflozin, which resulted in oxidative stress and renal injury alleviation. CONCLUSION Canagliflozin may change the production of metabolites and reduce the level of uremic toxins in the blood circulation by reconstructing the intestinal flora of DSS rats fed a high-salt diet, ultimately alleviating oxidative stress and renal injury.
Collapse
Affiliation(s)
- Lili He
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Qingjuan Zuo
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Sai Ma
- Department of Internal Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Guorui Zhang
- Department of Cardiology, The Third Hospital of Shijiazhuang City Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Zhongli Wang
- Department of Physical Examination Center, Hebei General Hospital, Shijiazhuang, China
| | - Tingting Zhang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Jianlong Zhai
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Yifang Guo
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
5
|
Mu YF, Gao ZX, Mao ZH, Pan SK, Liu DW, Liu ZS, Wu P. Perspectives on the involvement of the gut microbiota in salt-sensitive hypertension. Hypertens Res 2024; 47:2351-2362. [PMID: 38877311 DOI: 10.1038/s41440-024-01747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/13/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Salt-sensitivity hypertension (SSH) is an independent predictor of cardiovascular event-related death. Despite the extensiveness of research on hypertension, which covers areas such as the sympathetic nervous system, the renin-angiotensin system, the vascular system, and the immune system, its pathogenesis remains elusive, with sub-optimal blood pressure control in patients. The gut microbiota is an important component of nutritional support and constitutes a barrier in the host. Long-term high salt intake can lead to gut microbiota dysbiosis and cause significant changes in the expression of gut microbiota-related metabolites. Of these metabolites, short chain fatty acids (SCFAs), trimethylamine oxide, amino acids, bile acids, and lipopolysaccharide are essential mediators of microbe-host crosstalk. These metabolites may contribute to the incidence and development of SSH via inflammatory, immune, vascular, and nervous pathways, among others. In addition, recent studies, including those on the histone deacetylase inhibitory mechanism of SCFAs and the blood pressure-decreasing effects of H2S via vascular activation, suggest that several proteins and factors in the classical pathway elicit their effects through multiple non-classical pathways. This review summarizes changes in the gut microbiota and its related metabolites in high-salt environments, as well as corresponding treatment methods for SSH, such as diet management, probiotic and prebiotic use, antibiotic use, and fecal transplantation, to provide new insights and perspectives for understanding SSH pathogenesis and the development of strategies for its treatment.
Collapse
Affiliation(s)
- Ya-Fan Mu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhong-Xiuzi Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zi-Hui Mao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shao-Kang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.
| | - Peng Wu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.
| |
Collapse
|
6
|
Wang L, Hu J. Unraveling the gut microbiota's role in salt-sensitive hypertension: current evidences and future directions. Front Cardiovasc Med 2024; 11:1410623. [PMID: 39091359 PMCID: PMC11291451 DOI: 10.3389/fcvm.2024.1410623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
The gut microbiota plays a pivotal role in both maintaining human health and in the pathogenesis of diseases. Recent studies have brought to light the significant correlation between gut microbiota and hypertension, particularly focusing on its role in the development and advancement of SSH, a subtype characterized by elevated blood pressure in response to high salt consumption. The complexity of SSH's etiology is notable, with dysbiosis of the gut microbiome identified as a crucial contributing factor. The gut microbiota participates in the occurrence and development of SSH by affecting the host's immune system, metabolic function, and neuromodulation. Investigations have demonstrated that the gut microbes regulate the development of SSH by regulating the TH17 axis and the activity of immune cells. Moreover, microbial metabolites, such as short-chain fatty acids, are implicated in blood pressure regulation and affect the development of SSH. There is evidence to show that the composition of the gut microbiome can be altered through prebiotic interventions so as to prevent and treat SSH. This review aims to concisely sum up the role of gut microbiota in SSH and to discuss pertinent therapeutic strategies and clinical implications, thereby providing a valuable reference for further research and clinical practice in this area.
Collapse
Affiliation(s)
- Li Wang
- Public Health School, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jihong Hu
- Teaching Experiment and Training Center, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
7
|
Qi H, Xie YY, Yang XJ, Xia J, Liu K, Zhang FX, Peng WJ, Wen FY, Li BX, Zhang BW, Yao XY, Li BY, Meng HD, Shi ZM, Wang Y, Zhang L. Susceptibility gene identification and risk evaluation model construction by transcriptome-wide association analysis for salt sensitivity of blood pressure. BMC Genomics 2024; 25:612. [PMID: 38890564 PMCID: PMC11184770 DOI: 10.1186/s12864-024-10409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Salt sensitivity of blood pressure (SSBP) is an intermediate phenotype of hypertension and is a predictor of long-term cardiovascular events and death. However, the genetic structures of SSBP are uncertain, and it is difficult to precisely diagnose SSBP in population. So, we aimed to identify genes related to susceptibility to the SSBP, construct a risk evaluation model, and explore the potential functions of these genes. METHODS AND RESULTS A genome-wide association study of the systemic epidemiology of salt sensitivity (EpiSS) cohort was performed to obtain summary statistics for SSBP. Then, we conducted a transcriptome-wide association study (TWAS) of 12 tissues using FUSION software to predict the genes associated with SSBP and verified the genes with an mRNA microarray. The potential roles of the genes were explored. Risk evaluation models of SSBP were constructed based on the serial P value thresholds of polygenetic risk scores (PRSs), polygenic transcriptome risk scores (PTRSs) and their combinations of the identified genes and genetic variants from the TWAS. The TWAS revealed that 2605 genes were significantly associated with SSBP. Among these genes, 69 were differentially expressed according to the microarray analysis. The functional analysis showed that the genes identified in the TWAS were enriched in metabolic process pathways. The PRSs were correlated with PTRSs in the heart atrial appendage, adrenal gland, EBV-transformed lymphocytes, pituitary, artery coronary, artery tibial and whole blood. Multiple logistic regression models revealed that a PRS of P < 0.05 had the best predictive ability compared with other PRSs and PTRSs. The combinations of PRSs and PTRSs did not significantly increase the prediction accuracy of SSBP in the training and validation datasets. CONCLUSIONS Several known and novel susceptibility genes for SSBP were identified via multitissue TWAS analysis. The risk evaluation model constructed with the PRS of susceptibility genes showed better diagnostic performance than the transcript levels, which could be applied to screen for SSBP high-risk individuals.
Collapse
Affiliation(s)
- Han Qi
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Capital Medical University, Beijing, 100088, China
| | - Yun-Yi Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Xiao-Jun Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Juan Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Kuo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Feng-Xu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Wen-Juan Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Fu-Yuan Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Bing-Xiao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Bo-Wen Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Xin-Yue Yao
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Bo-Ya Li
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Hong-Dao Meng
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Zu-Min Shi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Yang Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China.
| |
Collapse
|
8
|
Durgan DJ, Zubcevic J, Vijay-Kumar M, Yang T, Manandhar I, Aryal S, Muralitharan RR, Li HB, Li Y, Abais-Battad JM, Pluznick JL, Muller DN, Marques FZ, Joe B. Prospects for Leveraging the Microbiota as Medicine for Hypertension. Hypertension 2024; 81:951-963. [PMID: 38630799 DOI: 10.1161/hypertensionaha.124.21721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Affiliation(s)
- David J Durgan
- Department of Integrative Physiology and Anesthesiology, Baylor College of Medicine, Houston, TX (D.J.D.)
| | - Jasenka Zubcevic
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Matam Vijay-Kumar
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Tao Yang
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Ishan Manandhar
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Sachin Aryal
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Australia (R.R.M., F.Z.M.)
- Victorian Heart Institute, Monash University, Melbourne, Australia (R.R.M., F.Z.M.)
- Baker Heart and Diabetes Institute, Melbourne, Australia (R.R.M., F.Z.M.)
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, PR China (H.-B.L., Y.L.)
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, PR China (H.-B.L., Y.L.)
| | | | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD (J.L.P.)
| | - Dominik N Muller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (D.N.M.)
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Germany (D.N.M.)
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (D.N.M.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (D.N.M.)
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Australia (R.R.M., F.Z.M.)
- Victorian Heart Institute, Monash University, Melbourne, Australia (R.R.M., F.Z.M.)
- Baker Heart and Diabetes Institute, Melbourne, Australia (R.R.M., F.Z.M.)
| | - Bina Joe
- Department of Integrative Physiology and Anesthesiology, Baylor College of Medicine, Houston, TX (D.J.D.)
| |
Collapse
|
9
|
Abstract
Salt (sodium chloride) is an essential nutrient required to maintain physiological functions. However, for most people, daily salt intake far exceeds their physiological need and is habitually greater than recommended upper thresholds. Excess salt intake leads to elevation in blood pressure which drives cardiovascular morbidity and mortality. Indeed, excessive salt intake is estimated to be responsible for ≈5 million deaths per year globally. For approximately one-third of otherwise healthy individuals (and >50% of those with hypertension), the effect of salt intake on blood pressure elevation is exaggerated; such people are categorized as salt sensitive and salt sensitivity of blood pressure is considered an independent risk factor for cardiovascular disease and death. The prevalence of salt sensitivity is higher in women than in men and, in both, increases with age. This narrative review considers the foundational concepts of salt sensitivity and the underlying effector systems that cause salt sensitivity. We also consider recent updates in preclinical and clinical research that are revealing new modifying factors that determine the blood pressure response to high salt intake.
Collapse
Affiliation(s)
- Matthew A Bailey
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom (M.A.B., N.D.)
| | - Neeraj Dhaun
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom (M.A.B., N.D.)
- Department of Renal Medicine, Royal Infirmary of Edinburgh, United Kingdom (N.D.)
| |
Collapse
|
10
|
Yang K, Du G, Liu J, Zhao S, Dong W. Gut microbiota and neonatal acute kidney injury biomarkers. Pediatr Nephrol 2023; 38:3529-3547. [PMID: 36997773 DOI: 10.1007/s00467-023-05931-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 04/01/2023]
Abstract
One of the most frequent issues in newborns is acute kidney injury (AKI), which can lengthen their hospital stay or potentially raise their chance of dying. The gut-kidney axis establishes a bidirectional interplay between gut microbiota and kidney illness, particularly AKI, and demonstrates the importance of gut microbiota to host health. Since the ability to predict neonatal AKI using blood creatinine and urine output as evaluation parameters is somewhat constrained, a number of interesting biomarkers have been developed. There are few in-depth studies on the relationships between these neonatal AKI indicators and gut microbiota. In order to gain fresh insights into the gut-kidney axis of neonatal AKI, this review is based on the gut-kidney axis and describes relationships between gut microbiota and neonatal AKI biomarkers.
Collapse
Affiliation(s)
- Kun Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Guoxia Du
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Jinjing Liu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Shuai Zhao
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China.
| |
Collapse
|
11
|
Aryal S, Manandhar I, Mei X, Yeoh BS, Tummala R, Saha P, Osman I, Zubcevic J, Durgan DJ, Vijay-Kumar M, Joe B. Combating hypertension beyond genome-wide association studies: Microbiome and artificial intelligence as opportunities for precision medicine. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e26. [PMID: 38550938 PMCID: PMC10953772 DOI: 10.1017/pcm.2023.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 11/03/2024]
Abstract
The single largest contributor to human mortality is cardiovascular disease, the top risk factor for which is hypertension (HTN). The last two decades have placed much emphasis on the identification of genetic factors contributing to HTN. As a result, over 1,500 genetic alleles have been associated with human HTN. Mapping studies using genetic models of HTN have yielded hundreds of blood pressure (BP) loci but their individual effects on BP are minor, which limits opportunities to target them in the clinic. The value of collecting genome-wide association data is evident in ongoing research, which is beginning to utilize these data at individual-level genetic disparities combined with artificial intelligence (AI) strategies to develop a polygenic risk score (PRS) for the prediction of HTN. However, PRS alone may or may not be sufficient to account for the incidence and progression of HTN because genetics is responsible for <30% of the risk factors influencing the etiology of HTN pathogenesis. Therefore, integrating data from other nongenetic factors influencing BP regulation will be important to enhance the power of PRS. One such factor is the composition of gut microbiota, which constitute a more recently discovered important contributor to HTN. Studies to-date have clearly demonstrated that the transition from normal BP homeostasis to a state of elevated BP is linked to compositional changes in gut microbiota and its interaction with the host. Here, we first document evidence from studies on gut dysbiosis in animal models and patients with HTN followed by a discussion on the prospects of using microbiota data to develop a metagenomic risk score (MRS) for HTN to be combined with PRS and a clinical risk score (CRS). Finally, we propose that integrating AI to learn from the combined PRS, MRS and CRS may further enhance predictive power for the susceptibility and progression of HTN.
Collapse
Affiliation(s)
- Sachin Aryal
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ishan Manandhar
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Xue Mei
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Beng S. Yeoh
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ramakumar Tummala
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Piu Saha
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Islam Osman
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jasenka Zubcevic
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - David J. Durgan
- Integrative Physiology & Anesthesiology, Baylor College of Medicine, Houston, TX, USA
| | - Matam Vijay-Kumar
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
12
|
Huart J, Persu A, Lengelé JP, Krzesinski JM, Jouret F, Stergiou GS. Pathophysiology of the Nondipping Blood Pressure Pattern. Hypertension 2023; 80:719-729. [PMID: 36606502 DOI: 10.1161/hypertensionaha.122.19996] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The nondipping blood pressure (BP) pattern corresponds to a disruption in the circadian BP rhythm with an insufficient decrease in BP levels during nighttime sleep as observed using 24-hour ambulatory BP monitoring. Patients with nondipping BP pattern have poorer renal and cardiovascular outcomes, independent of their average 24-hour BP levels. The pathophysiology of nondipping BP is complex and involves numerous mechanisms: perturbations of (1) the circadian rhythm, (2) the autonomic nervous system, and (3) water and sodium regulation. This review provides an outline of the pathways potentially involved in the nondipping BP profile in different conditions. A recent hypothesis is also discussed involving the role of gut microbiota in the dipping/nondipping patterns, via the fecal diet-derived short chain fatty acids.
Collapse
Affiliation(s)
- Justine Huart
- Division of Nephrology, University of Liège Hospital (ULiège CHU), University of Liège, Belgium (J.H., J.-M.K., F.J.).,Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Belgium (J.H., J.-M.K., F.J.)
| | - Alexandre Persu
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires Saint-Luc and Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium (A.P., J.-P.L.)
| | - Jean-Philippe Lengelé
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires Saint-Luc and Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium (A.P., J.-P.L.).,Department of Nephrology, Grand Hôpital de Charleroi, Gilly, Belgium (J.-P.L.)
| | - Jean-Marie Krzesinski
- Division of Nephrology, University of Liège Hospital (ULiège CHU), University of Liège, Belgium (J.H., J.-M.K., F.J.).,Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Belgium (J.H., J.-M.K., F.J.)
| | - François Jouret
- Division of Nephrology, University of Liège Hospital (ULiège CHU), University of Liège, Belgium (J.H., J.-M.K., F.J.).,Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Belgium (J.H., J.-M.K., F.J.)
| | - George S Stergiou
- Hypertension Center STRIDE-7, National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, Athens, Greece (G.S.S.)
| |
Collapse
|
13
|
Gumz ML, Shimbo D, Abdalla M, Balijepalli RC, Benedict C, Chen Y, Earnest DJ, Gamble KL, Garrison SR, Gong MC, Hogenesch JB, Hong Y, Ivy JR, Joe B, Laposky AD, Liang M, MacLaughlin EJ, Martino TA, Pollock DM, Redline S, Rogers A, Dan Rudic R, Schernhammer ES, Stergiou GS, St-Onge MP, Wang X, Wright J, Oh YS. Toward Precision Medicine: Circadian Rhythm of Blood Pressure and Chronotherapy for Hypertension - 2021 NHLBI Workshop Report. Hypertension 2023; 80:503-522. [PMID: 36448463 PMCID: PMC9931676 DOI: 10.1161/hypertensionaha.122.19372] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Healthy individuals exhibit blood pressure variation over a 24-hour period with higher blood pressure during wakefulness and lower blood pressure during sleep. Loss or disruption of the blood pressure circadian rhythm has been linked to adverse health outcomes, for example, cardiovascular disease, dementia, and chronic kidney disease. However, the current diagnostic and therapeutic approaches lack sufficient attention to the circadian rhythmicity of blood pressure. Sleep patterns, hormone release, eating habits, digestion, body temperature, renal and cardiovascular function, and other important host functions as well as gut microbiota exhibit circadian rhythms, and influence circadian rhythms of blood pressure. Potential benefits of nonpharmacologic interventions such as meal timing, and pharmacologic chronotherapeutic interventions, such as the bedtime administration of antihypertensive medications, have recently been suggested in some studies. However, the mechanisms underlying circadian rhythm-mediated blood pressure regulation and the efficacy of chronotherapy in hypertension remain unclear. This review summarizes the results of the National Heart, Lung, and Blood Institute workshop convened on October 27 to 29, 2021 to assess knowledge gaps and research opportunities in the study of circadian rhythm of blood pressure and chronotherapy for hypertension.
Collapse
Affiliation(s)
- Michelle L Gumz
- Department of Physiology and Aging; Center for Integrative Cardiovascular and Metabolic Disease, Department of Medicine, Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL (M.L.G.)
| | - Daichi Shimbo
- Department of Medicine, The Columbia Hypertension Center, Columbia University Irving Medical Center, New York, NY (D.S.)
| | - Marwah Abdalla
- Department of Medicine, Center for Behavioral Cardiovascular Health, Columbia University Irving Medical Center, New York, NY (M.A.)
| | - Ravi C Balijepalli
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (R.C.B., Y.H., J.W., Y.S.O.)
| | - Christian Benedict
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Sweden (C.B.)
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham, and Research Department, Birmingham VA Medical Center, AL (Y.C.)
| | - David J Earnest
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University, Bryan, TX (D.J.E.)
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, AL (K.L.G.)
| | - Scott R Garrison
- Department of Family Medicine, University of Alberta, Canada (S.R.G.)
| | - Ming C Gong
- Department of Physiology, University of Kentucky, Lexington, KY (M.C.G.)
| | | | - Yuling Hong
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (R.C.B., Y.H., J.W., Y.S.O.)
| | - Jessica R Ivy
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom (J.R.I.)
| | - Bina Joe
- Department of Physiology and Pharmacology and Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, OH (B.J.)
| | - Aaron D Laposky
- National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (A.D.L.)
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI (M.L.)
| | - Eric J MacLaughlin
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Amarillo, TX (E.J.M.)
| | - Tami A Martino
- Center for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Ontario, Canada (T.A.M.)
| | - David M Pollock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL (D.M.P.)
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.R.)
| | - Amy Rogers
- Division of Molecular and Clinical Medicine, University of Dundee, United Kingdom (A.R.)
| | - R Dan Rudic
- Department of Pharmacology and Toxicology, Augusta University, GA (R.D.R.)
| | - Eva S Schernhammer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (E.S.S.)
| | - George S Stergiou
- Hypertension Center, STRIDE-7, National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, Athens, Greece (G.S.S.)
| | - Marie-Pierre St-Onge
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center' New York, NY (M.-P.S.-O.)
| | - Xiaoling Wang
- Georgia Prevention Institute, Department of Medicine, Augusta University, GA (X.W.)
| | - Jacqueline Wright
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (R.C.B., Y.H., J.W., Y.S.O.)
| | - Young S Oh
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (R.C.B., Y.H., J.W., Y.S.O.)
| |
Collapse
|
14
|
Ratiner K, Fachler-Sharp T, Elinav E. Small Intestinal Microbiota Oscillations, Host Effects and Regulation-A Zoom into Three Key Effector Molecules. BIOLOGY 2023; 12:142. [PMID: 36671834 PMCID: PMC9855434 DOI: 10.3390/biology12010142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
The gut microbiota features a unique diurnal rhythmicity which contributes to modulation of host physiology and homeostasis. The composition and activity of the microbiota and its secreted molecules influence the intestinal milieu and neighboring organs, such as the liver. Multiple immune-related molecules have been linked to the diurnal microbiota-host interaction, including Reg3γ, IgA, and MHCII, which are secreted or expressed on the gut surface and directly interact with intestinal bacteria. These molecules are also strongly influenced by dietary patterns, such as high-fat diet and time-restricted feeding, which are already known to modulate microbial rhythms and peripheral clocks. Herein, we use Reg3γ, IgA, and MHCII as test cases to highlight the divergent effects mediated by the diurnal activity of the gut microbiota and their downstream host effects. We further highlight current challenges and conflicts, remaining questions, and perspectives toward a holistic understanding of the microbiome's impacts on circadian human behavior.
Collapse
Affiliation(s)
- Karina Ratiner
- Systems Immunology Department, Weisman Institute of Science, Rehovot 7610001, Israel
| | - Tahel Fachler-Sharp
- Systems Immunology Department, Weisman Institute of Science, Rehovot 7610001, Israel
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem 9987500, Israel
| | - Eran Elinav
- Systems Immunology Department, Weisman Institute of Science, Rehovot 7610001, Israel
- Microbiota & Cancer Division, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Gokula V, Terrero D, Joe B. Six Decades of History of Hypertension Research at the University of Toledo: Highlighting Pioneering Contributions in Biochemistry, Genetics, and Host-Microbiota Interactions. Curr Hypertens Rep 2022; 24:669-685. [PMID: 36301488 PMCID: PMC9708772 DOI: 10.1007/s11906-022-01226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The study aims to capture the history and lineage of hypertension researchers from the University of Toledo in Ohio and showcase their collective scientific contributions dating from their initial discoveries of the physiology of adrenal and renal systems and genetics regulating blood pressure (BP) to its more contemporary contributions including microbiota and metabolomic links to BP regulation. RECENT FINDINGS The University of Toledo College of Medicine and Life Sciences (UTCOMLS), previously known as the Medical College of Ohio, has contributed significantly to our understanding of the etiology of hypertension. Two of the scientists, Patrick Mulrow and John Rapp from UTCOMLS, have been recognized with the highest honor, the Excellence in Hypertension award from the American Heart Association for their pioneering work on the physiology and genetics of hypertension, respectively. More recently, Bina Joe has continued their legacy in the basic sciences by uncovering previously unknown novel links between microbiota and metabolites to the etiology of hypertension, work that has been recognized by the American Heart Association with multiple awards. On the clinical research front, Christopher Cooper and colleagues lead the CORAL trials and contributed importantly to the investigations on renal artery stenosis treatment paradigms. Hypertension research at this institution has not only provided these pioneering insights, but also grown careers of scientists as leaders in academia as University Presidents and Deans of Medical Schools. Through the last decade, the university has expanded its commitment to Hypertension research as evident through the development of the Center for Hypertension and Precision Medicine led by Bina Joe as its founding Director. Hypertension being the top risk factor for cardiovascular diseases, which is the leading cause of human mortality, is an important area of research in multiple international universities. The UTCOMLS is one such university which, for the last 6 decades, has made significant contributions to our current understanding of hypertension. This review is a synthesis of this rich history. Additionally, it also serves as a collection of audio archives by more recent faculty who are also prominent leaders in the field of hypertension research, including John Rapp, Bina Joe, and Christopher Cooper, which are cataloged at Interviews .
Collapse
Affiliation(s)
- Veda Gokula
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA.
| |
Collapse
|
16
|
Wang H, Zhang H, Su Y. New Insights into the Diurnal Rhythmicity of Gut Microbiota and Its Crosstalk with Host Circadian Rhythm. Animals (Basel) 2022; 12:1677. [PMID: 35804575 PMCID: PMC9264800 DOI: 10.3390/ani12131677] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/14/2022] Open
Abstract
Unlike the strictly hierarchical organization in the circadian clock system, the gut microbiota rhythmicity has a more complex multilayer network of all taxonomic levels of microbial taxa and their metabolites. However, it is worth noting that the functionality of the gut microbiota rhythmicity is highly dependent on the host circadian clock and host physiological status. Here, we discussed the diurnal rhythmicity of the gut microbiota; its crucial role in host physiology, health, and metabolism; and the crosstalk between the gut microbial rhythmicity and host circadian rhythm. This knowledge lays the foundation for the development of chronotherapies targeting the gut microbiota. However, the formation mechanism, its beneficial effects on the host of gut microbial rhythmicity, and the dynamic microbial-host crosstalk are not yet clear and warrant further research.
Collapse
Affiliation(s)
- Hongyu Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (H.Z.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - He Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (H.Z.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (H.Z.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Hunter RW, Dhaun N, Bailey MA. The impact of excessive salt intake on human health. Nat Rev Nephrol 2022; 18:321-335. [DOI: 10.1038/s41581-021-00533-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 12/19/2022]
|
18
|
Crislip GR, Johnston JG, Douma LG, Costello HM, Juffre A, Boyd K, Li W, Maugans CC, Gutierrez-Monreal M, Esser KA, Bryant AJ, Liu AC, Gumz ML. Circadian Rhythm Effects on the Molecular Regulation of Physiological Systems. Compr Physiol 2021; 12:2769-2798. [PMID: 34964116 PMCID: PMC11514412 DOI: 10.1002/cphy.c210011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nearly every system within the body contains an intrinsic cellular circadian clock. The circadian clock contributes to the regulation of a variety of homeostatic processes in mammals through the regulation of gene expression. Circadian disruption of physiological systems is associated with pathophysiological disorders. Here, we review the current understanding of the molecular mechanisms contributing to the known circadian rhythms in physiological function. This article focuses on what is known in humans, along with discoveries made with cell and rodent models. In particular, the impact of circadian clock components in metabolic, cardiovascular, endocrine, musculoskeletal, immune, and central nervous systems are discussed. © 2021 American Physiological Society. Compr Physiol 11:1-30, 2021.
Collapse
Affiliation(s)
- G. Ryan Crislip
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | - Jermaine G. Johnston
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Hannah M. Costello
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Kyla Boyd
- Department of Biochemistry and Molecular Biology
| | - Wendy Li
- Department of Biochemistry and Molecular Biology
| | | | | | - Karyn A. Esser
- Department of Physiology and Functional Genomics
- Myology Institute
| | | | - Andrew C. Liu
- Department of Physiology and Functional Genomics
- Myology Institute
| | - Michelle L. Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
- Department of Biochemistry and Molecular Biology
- Department of Physiology and Functional Genomics
- Center for Integrative Cardiovascular and Metabolic Disease
| |
Collapse
|
19
|
Abstract
Accumulating evidence suggests that the molecular circadian clock is crucial in blood pressure (BP) control. Circadian rhythms are controlled by the central clock, which resides in the suprachiasmatic nucleus of the hypothalamus and peripheral clocks throughout the body. Both light and food cues entrain these clocks but whether these cues are important for the circadian rhythm of BP is a growing area of interest. The peripheral clocks in the smooth muscle, perivascular adipose tissue, liver, adrenal gland, and kidney have been recently implicated in the regulation of BP rhythm. Dysregulation of the circadian rhythm of BP is associated with adverse cardiorenal outcomes and increased risk of cardiovascular mortality. In this review, we summarize the most recent advances in peripheral clocks as BP regulators, highlight the adverse outcomes of disrupted circadian BP rhythm in hypertension, and provide insight into potential future work in areas exploring the circadian clock in BP control and chronotherapy. A better understanding of peripheral clock function in regulating the circadian rhythm of BP will help pave the way for targeted therapeutics in the treatment of circadian BP dysregulation and hypertension.
Collapse
Affiliation(s)
- Hannah M. Costello
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32610
| | - Michelle L. Gumz
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32610
| |
Collapse
|
20
|
Cookson TA. Using bacteriophages to characterize gut microbe interactions in situ. Med Hypotheses 2021; 158:110715. [PMID: 34753010 DOI: 10.1016/j.mehy.2021.110715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/17/2021] [Indexed: 11/25/2022]
Abstract
As bacteriophage therapy is being investigated more as an alternative to antibiotics, laboratories are isolating and characterizing the functions of bacteriophages. Additionally, with large variations between gut microbiome studies and inconsistencies in results, there is a need for discrete characterization of specific gut microbes in situ. This hypothesis paper describes a method to utilize bacteriophages in order to outline the functions of specific gut bacteria in existing biological systems with minimal disturbance. Further, the effects of specific microbe depletion on gut bacterial composition and host health can theoretically also be measured.
Collapse
|
21
|
Spires DR, Palygin O, Levchenko V, Isaeva E, Klemens CA, Khedr S, Nikolaienko O, Kriegel A, Cheng X, Yeo JY, Joe B, Staruschenko A. Sexual dimorphism in the progression of type 2 diabetic kidney disease in T2DN rats. Physiol Genomics 2021; 53:223-234. [PMID: 33870721 PMCID: PMC8285576 DOI: 10.1152/physiolgenomics.00009.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes, which frequently leads to end-stage renal failure and increases cardiovascular disease risk. Hyperglycemia promotes renal pathologies such as glomerulosclerosis, tubular hypertrophy, microalbuminuria, and a decline in glomerular filtration rate. Importantly, recent clinical data have demonstrated distinct sexual dimorphism in the pathogenesis of DKD in people with diabetes, which impacts both severity- and age-related risk factors. This study aimed to define sexual dimorphism and renal function in a nonobese type 2 diabetes model with the spontaneous development of advanced diabetic nephropathy (T2DN rats). T2DN rats at 12- and over 48-wk old were used to define disease progression and kidney injury development. We found impaired glucose tolerance and glomerular hyperfiltration in T2DN rats to compare with nondiabetic Wistar control. The T2DN rat displays a significant sexual dimorphism in insulin resistance, plasma cholesterol, renal and glomerular injury, urinary nephrin shedding, and albumin handling. Our results indicate that both male and female T2DN rats developed nonobese type 2 DKD phenotype, where the females had significant protection from the development of severe forms of DKD. Our findings provide further evidence for the T2DN rat strain's effectiveness for studying the multiple facets of DKD.
Collapse
Affiliation(s)
- Denisha R Spires
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christine A Klemens
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sherif Khedr
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Oksana Nikolaienko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xi Cheng
- Department of Physiology and Pharmacology, University of Toledo, Ohio
| | - Ji-Youn Yeo
- Department of Physiology and Pharmacology, University of Toledo, Ohio
| | - Bina Joe
- Department of Physiology and Pharmacology, University of Toledo, Ohio
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
22
|
Huart J, Cirillo A, Taminiau B, Descy J, Saint-Remy A, Daube G, Krzesinski JM, Melin P, de Tullio P, Jouret F. Human Stool Metabolome Differs upon 24 h Blood Pressure Levels and Blood Pressure Dipping Status: A Prospective Longitudinal Study. Metabolites 2021; 11:metabo11050282. [PMID: 33946722 PMCID: PMC8146767 DOI: 10.3390/metabo11050282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Dysbiosis of gut microbiota (GM) has been involved in the pathophysiology of arterial hypertension (HT), via a putative role of short chain fatty acids (SCFAs). Its role in the circadian regulation of blood pressure (BP), also called “the dipping profile”, has been poorly investigated. Sixteen male volunteers and 10 female partners were subjected to 24 h ambulatory BP monitoring and were categorized in normotensive (NT) versus HT, as well as in dippers versus non-dippers. Nuclear magnetic resonance (NMR)-based metabolomics was performed on stool samples. A 5-year comparative follow-up of BP profiles and stool metabolomes was done in men. Significant correlations between stool metabolome and 24 h mean BP levels were found in both male and female cohorts and in the entire cohort (R2 = 0.72, R2 = 0.79, and R2 = 0.45, respectively). Multivariate analysis discriminated dippers versus non-dippers in both male and female cohorts and in the entire cohort (Q2 = 0.87, Q2 = 0.98, and Q2 = 0.68, respectively). Fecal amounts of acetate, propionate, and butyrate were higher in HT versus NT patients (p = 0.027; p = 0.015 and p = 0.015, respectively), as well as in non-dippers versus dippers (p = 0.027, p = 0.038, and p = 0.036, respectively) in the entire cohort. SCFA levels were significantly different in patients changing of dipping status over the 5-year follow-up. In conclusion, stool metabolome changes upon global and circadian BP profiles in both genders.
Collapse
Affiliation(s)
- Justine Huart
- Division of Nephrology, University of Liège Hospital (ULg CHU), University of Liège, B-4000 Liège, Belgium; (A.S.-R.); (J.-M.K.); (F.J.)
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, B-4000 Liège, Belgium
- Correspondence:
| | - Arianna Cirillo
- Center for Interdisciplinary Research on Medicines (CIRM), Metabolomics Group, University of Liège, B-4000 Liège, Belgium; (A.C.); (P.d.T.)
| | - Bernard Taminiau
- Fundamental and Applied Research Center for Animal & Health (FARAH), Veterinary Public Health, University of Liège, B-4000 Liège, Belgium; (B.T.); (G.D.)
- Laboratory for Food Microbiology, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | - Julie Descy
- Clinical Microbiology, University of Liège Hospital (ULg CHU), University of Liège, B-4000 Liège, Belgium; (J.D.); (P.M.)
| | - Annie Saint-Remy
- Division of Nephrology, University of Liège Hospital (ULg CHU), University of Liège, B-4000 Liège, Belgium; (A.S.-R.); (J.-M.K.); (F.J.)
| | - Georges Daube
- Fundamental and Applied Research Center for Animal & Health (FARAH), Veterinary Public Health, University of Liège, B-4000 Liège, Belgium; (B.T.); (G.D.)
- Laboratory for Food Microbiology, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | - Jean-Marie Krzesinski
- Division of Nephrology, University of Liège Hospital (ULg CHU), University of Liège, B-4000 Liège, Belgium; (A.S.-R.); (J.-M.K.); (F.J.)
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, B-4000 Liège, Belgium
| | - Pierrette Melin
- Clinical Microbiology, University of Liège Hospital (ULg CHU), University of Liège, B-4000 Liège, Belgium; (J.D.); (P.M.)
| | - Pascal de Tullio
- Center for Interdisciplinary Research on Medicines (CIRM), Metabolomics Group, University of Liège, B-4000 Liège, Belgium; (A.C.); (P.d.T.)
| | - François Jouret
- Division of Nephrology, University of Liège Hospital (ULg CHU), University of Liège, B-4000 Liège, Belgium; (A.S.-R.); (J.-M.K.); (F.J.)
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
23
|
Yang T, Chakraborty S, Mandal J, Mei X, Joe B. Microbiota and Metabolites as Factors Influencing Blood Pressure Regulation. Compr Physiol 2021; 11:1731-1757. [PMID: 33792901 DOI: 10.1002/cphy.c200009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The study of microbes has rapidly expanded in recent years due to a surge in our understanding that humans host a plethora of commensal microbes, which reside in their bodies and depending upon their composition, contribute to either normal physiology or pathophysiology. This article provides a general foundation for learning about host-commensal microbial interactions as an emerging area of research. The article is divided into two sections. The first section is dedicated to introducing commensal microbiota and its known effects on the host. The second section is on metabolites, which are biochemicals that the host and the microbes use for bi-directional communication with each other. Together, the sections review what is known about how microbes interact with the host to impact cardiovascular physiology, especially blood pressure regulation. © 2021 American Physiological Society. Compr Physiol 11:1731-1757, 2021.
Collapse
Affiliation(s)
- Tao Yang
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Saroj Chakraborty
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Juthika Mandal
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Xue Mei
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
24
|
Hypertension Editors' Picks: Gut Microbiome. Hypertension 2021; 77:e35-e41. [PMID: 33611938 PMCID: PMC7968965 DOI: 10.1161/hypertensionaha.121.16874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Gut Microbiota-Derived Short-Chain Fatty Acids Facilitate Microbiota:Host Cross talk and Modulate Obesity and Hypertension. Curr Hypertens Rep 2021; 23:8. [PMID: 33537923 PMCID: PMC7992370 DOI: 10.1007/s11906-020-01125-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the evidence supporting a role of short-chain fatty acids (SCFAs) as messengers facilitating cross talk between the host and gut microbiota and discuss the effects of altered SCFA signaling in obesity and hypertension. RECENT FINDINGS Recent evidence suggests there to be a significant contribution of gut microbiota-derived SCFAs to microbe:host communication and host metabolism. SCFA production within the intestine modulates intestinal pH, microbial composition, and intestinal barrier integrity. SCFA signaling through host receptors, such as PPARγ and GPCRs, modulates host health and disease physiology. Alterations in SCFA signaling and downstream effects on inflammation are implicated in the development of obesity and hypertension. SCFAs are crucial components of the holobiont relationship; in the proper environment, they support normal gut, immune, and metabolic function. Dysregulation of microbial SCFA signaling affects downstream host metabolism, with implications in obesity and hypertension.
Collapse
|
26
|
Palmu J, Lahti L, Niiranen T. Targeting Gut Microbiota to Treat Hypertension: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1248. [PMID: 33561095 PMCID: PMC7908114 DOI: 10.3390/ijerph18031248] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022]
Abstract
While hypertension remains the leading modifiable risk factor for cardiovascular morbidity and mortality, the pathogenesis of essential hypertension remains only partially understood. Recently, microbial dysbiosis has been associated with multiple chronic diseases closely related to hypertension. In addition, multiple small-scale animal and human studies have provided promising results for the association between gut microbial dysbiosis and hypertension. Animal models and a small human pilot study, have demonstrated that high salt intake, a risk factor for both hypertension and cardiovascular disease, depletes certain Lactobacillus species while oral treatment of Lactobacilli prevented salt-sensitive hypertension. To date, four large cohort studies have reported modest associations between gut microbiota features and hypertension. In this systematic literature review, we examine the previously reported links between the gut microbiota and hypertension and what is known about the functional mechanisms behind this association.
Collapse
Affiliation(s)
- Joonatan Palmu
- Department of Medicine, University of Turku, FI-20014 Turku, Finland;
- Division of Medicine, Turku University Hospital, FI-20521 Turku, Finland
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, FI-00271 Helsinki, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, FI-20014 Turku, Finland;
| | - Teemu Niiranen
- Department of Medicine, University of Turku, FI-20014 Turku, Finland;
- Division of Medicine, Turku University Hospital, FI-20521 Turku, Finland
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, FI-00271 Helsinki, Finland
| |
Collapse
|
27
|
Aryal S, Alimadadi A, Manandhar I, Joe B, Cheng X. Machine Learning Strategy for Gut Microbiome-Based Diagnostic Screening of Cardiovascular Disease. Hypertension 2020; 76:1555-1562. [PMID: 32909848 PMCID: PMC7577586 DOI: 10.1161/hypertensionaha.120.15885] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cardiovascular disease (CVD) is the number one leading cause for human mortality. Besides genetics and environmental factors, in recent years, gut microbiota has emerged as a new factor influencing CVD. Although cause-effect relationships are not clearly established, the reported associations between alterations in gut microbiota and CVD are prominent. Therefore, we hypothesized that machine learning (ML) could be used for gut microbiome-based diagnostic screening of CVD. To test our hypothesis, fecal 16S ribosomal RNA sequencing data of 478 CVD and 473 non-CVD human subjects collected through the American Gut Project were analyzed using 5 supervised ML algorithms including random forest, support vector machine, decision tree, elastic net, and neural networks. Thirty-nine differential bacterial taxa were identified between the CVD and non-CVD groups. ML modeling using these taxonomic features achieved a testing area under the receiver operating characteristic curve (0.0, perfect antidiscrimination; 0.5, random guessing; 1.0, perfect discrimination) of ≈0.58 (random forest and neural networks). Next, the ML models were trained with the top 500 high-variance features of operational taxonomic units, instead of bacterial taxa, and an improved testing area under the receiver operating characteristic curves of ≈0.65 (random forest) was achieved. Further, by limiting the selection to only the top 25 highly contributing operational taxonomic unit features, the area under the receiver operating characteristic curves was further significantly enhanced to ≈0.70. Overall, our study is the first to identify dysbiosis of gut microbiota in CVD patients as a group and apply this knowledge to develop a gut microbiome-based ML approach for diagnostic screening of CVD.
Collapse
Affiliation(s)
- Sachin Aryal
- Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Ahmad Alimadadi
- Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Ishan Manandhar
- Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Bina Joe
- Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xi Cheng
- Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
28
|
Zhang Z, Shao S, Zhang Y, Jia R, Hu X, Liu H, Sun M, Zhang B, Li Q, Wang Y. Xiaoyaosan slows cancer progression and ameliorates gut dysbiosis in mice with chronic restraint stress and colorectal cancer xenografts. Biomed Pharmacother 2020; 132:110916. [PMID: 33113425 DOI: 10.1016/j.biopha.2020.110916] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
Depression is a risk factor for colorectal cancer (CRC) progression. Xiaoyaosan (XYS) is a traditional Chinese medicine prescription for treating depression. Our present study aimed to investigate the effect of XYS on chronic restraint stress (CRS) in mice with CRC xenografts and explore its underlying mechanisms. XYS treatment for 21 consecutive days successfully reduced the tumour volume and tumour weight in mice and prolonged the overall survival time. In addition, the intestinal permeability in the XYS group was significantly improved after administration. The 16S rRNA high-throughput sequencing method was used to sequence stool samples to check the structure and changes of gut bacteria. XYS mainly regulated the abundance of Bacteroides, Lactobacillus, Desulfovibrio and Rikenellaceae. Taken together, these results provide direct strong evidence that XYS effectively improves the progression of CRC in CRS-handled mice, and its efficacy is associated with the modulation of gut dysbiosis. The application of XYS can be a novel therapeutic strategy for CRC patients with depression.
Collapse
Affiliation(s)
- Zhaozhou Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiyun Shao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ru Jia
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xueqing Hu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingyu Sun
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China.
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|