1
|
Liu J, Qing T, He M, Xu L, Wu Z, Huang M, Liu Z, Zhang Y, Li Z, Yang W, Liu J, Li J. Transcriptomics, single-cell sequencing and spatial sequencing-based studies of cerebral ischemia. Eur J Med Res 2025; 30:326. [PMID: 40275374 PMCID: PMC12020253 DOI: 10.1186/s40001-025-02596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
With high disability and mortality rate as well as highly complex pathogenesis, cerebral ischemia is highly morbid, prone to recurrence. To comprehensively understand the pathophysiological process of cerebral ischemia and to find new therapeutic strategies, a new approach to cerebral ischemia transcriptomics has emerged in recent years. By integrating data from multiple levels of transcriptomics, such as transcriptomics, single-cell transcriptomics, and spatial transcriptomics, this new approach can provide powerful help in revealing the molecular mechanisms of cerebral ischemia occurrence and development. Key findings highlight the critical roles of inflammation, blood-brain barrier dysfunction, and mitochondrial dysregulation in cerebral ischemia, offering potential biomarkers and therapeutic targets for early diagnosis and personalized treatment. A review of the research progress of cerebral ischemic injury mechanism under the analysis of the comprehensive transcriptomics research method was presented in this article, aiming to study the potential mechanism to provide new, innovative therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Jiaming Liu
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Tao Qing
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Mei He
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
- National Health Commission Key Laboratory of Birth Defects Research and Prevention, Changsha, Hunan, China
| | - Liu Xu
- International Education School, Hunan University of Medicine, Huaihua, Hunan, China
| | - Zhuxiang Wu
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Meiting Huang
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Zheyu Liu
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Ye Zhang
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Zisheng Li
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Wenhui Yang
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Junbo Liu
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Jie Li
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China.
- Huaihua Key Laboratory of Ion Channels and Complex Diseases, Huaihua, Hunan, China.
| |
Collapse
|
2
|
Gottesman RF, Egle M, Groechel RC, Mughal A. Blood pressure and the brain: the conundrum of hypertension and dementia. Cardiovasc Res 2025; 120:2360-2372. [PMID: 40084805 DOI: 10.1093/cvr/cvaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 03/16/2025] Open
Abstract
As the population ages, the anticipated rates of dementia worldwide are likely to increase dramatically, especially in low- and middle-income countries; thus, any opportunity to modify dementia risk is especially critical. Hypertension is one risk factor that is highly prevalent, consistently important for late-life brain health, and which could represent a target for prevention of dementia. Furthermore, hypertension is the most significant modifiable risk factor for stroke. This review will summarize existing literature linking hypertension with dementia and brain health more broadly, will discuss potential mechanisms linking hypertension with brain health, and will consider specific factors that may impact not only the relationship between hypertension and the brain but also the importance of treatment, including different associations over the life course.
Collapse
Affiliation(s)
- Rebecca F Gottesman
- Stroke Branch, National Institute of Neurological Disorders and Stroke Intramural Research Program, Building 10, 4D37, 10 Center Drive, Bethesda, MD 20814, USA
| | - Marco Egle
- Stroke Branch, National Institute of Neurological Disorders and Stroke Intramural Research Program, Building 10, 4D37, 10 Center Drive, Bethesda, MD 20814, USA
| | - Renee C Groechel
- Stroke Branch, National Institute of Neurological Disorders and Stroke Intramural Research Program, Building 10, 4D37, 10 Center Drive, Bethesda, MD 20814, USA
| | - Amreen Mughal
- Stroke Branch, National Institute of Neurological Disorders and Stroke Intramural Research Program, Building 10, 4D37, 10 Center Drive, Bethesda, MD 20814, USA
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute Intramural Research Program, Bethesda, MD 20814, USA
| |
Collapse
|
3
|
Colombari E, Biancardi VC, Colombari DSA, Katayama PL, Medeiros FDCD, Aitken AV, Xavier CH, Pedrino GR, Bragin DE. Hypertension, blood-brain barrier disruption and changes in intracranial pressure. J Physiol 2025; 603:2245-2261. [PMID: 40163552 DOI: 10.1113/jp285058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Intracranial pressure (ICP) is pressure within the cranium, between 5 and 15 mmHg in a normal brain, and is influenced by the dynamic balance between brain tissue, cerebrospinal fluid (CSF) and cerebral blood volume. ICP is vital for cerebral health, impacting outcomes in various neurological conditions. Disruptions, such as cerebral haemorrhage, hydrocephalus and malignant hypertension, can lead to elevated ICP, a dangerous condition known as intracranial hypertension (IH). Systemic hypertension significantly impacts cerebral health by causing microvascular damage, dysfunction of the blood-brain barrier (BBB) and impairment of intracranial compliance (ICC). This increases the risk of IH), cerebral ischaemia, neuroinflammation and lacunar infarction, further worsening neurological dysfunction. This review describes the complex relationship between hypertension and ICP regulation, focusing on the mechanisms underlying ICP and ICC adjustments in hypertensive conditions and emphasizing the role of BBB integrity and cerebral blood flow (CBF) dynamics. It discusses how the sympathetic output might change the regulation of CBF and the maintenance of ICP, highlighting how hypertensive conditions can impair this mechanism, increasing the risk of cerebral ischaemia. The neurovascular unit, including astrocytes and microglia, plays a significant role in this process, contributing to IH in hypertensive patients. Understanding the effects of hypertension on ICP and ICC could lead to therapies aimed at preserving BBB integrity, reducing inflammation and improving cerebral compliance, potentially preventing brain dysfunction and reducing stroke risk in hypertensive patients. This review underscores the need for early detection and intervention to mitigate the severe consequences of uncontrolled hypertension on cerebral health.
Collapse
Affiliation(s)
- Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Vinícia Campana Biancardi
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Débora Simões Almeida Colombari
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Pedro Lourenço Katayama
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Fernanda de Campos de Medeiros
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Andrew Vieira Aitken
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Carlos Henrique Xavier
- Department of Physiological Science, Biological Science Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Gustavo Rodrigues Pedrino
- Department of Physiological Science, Biological Science Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Denis E Bragin
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
4
|
Chen J, Bao M, Zhang C, Pan D, Chen Y, Xu Y, Zhou F, Tang Y. Nomogram for Predicting Hemorrhagic Transformation Risk in Acute Ischemic Stroke Patients With Atrial Fibrillation. CNS Neurosci Ther 2025; 31:e70402. [PMID: 40285414 PMCID: PMC12032400 DOI: 10.1111/cns.70402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/24/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Hemorrhagic transformation (HT) is a critical complication in acute ischemic stroke (AIS) patients with atrial fibrillation (AF) awaiting anticoagulation reinitiation. No reliable predictive model exists for assessing HT risk for these patients. Clinical decisions typically rely on NIHSS score and infarct size; however, other relevant risk factors remain insufficiently explored. This study aimed to develop and validate a predictive model for assessing the risk of HT in AIS patients with AF from stroke onset to anticoagulation therapy reinitiation. METHODS This retrospective study included AIS patients with AF from two comprehensive medical centers in China. The primary outcome was HT postinfarction confirmed with CT/MRI before anticoagulation reinitiation. Significant predictors were identified via LASSO regression in the training set, followed by multivariable logistic regression for developing a predictive model and generating the nomogram. Model performance was validated in a separate external cohort. RESULTS In the training cohort (n = 629), 174 patients (27.7%) developed HT. LASSO logistic regression revealed that infarct size, NIHSS score, diabetes mellitus, reperfusion therapy, left ventricular ejection fraction, and prehospital antihypertensive treatment were significant HT predictors. In the external validation cohort (n = 236), 61 patients (25.8%) developed HT. The nomogram exhibited strong predictive performance, with AUCs of 0.720 in the training set and 0.747 in the validation set. CONCLUSIONS The proposed nomogram offers a practical tool for predicting HT risk in AIS patients with AF before anticoagulation reinitiation, potentially supporting informed clinical decision-making, though further validation is required.
Collapse
Affiliation(s)
- Jingjuan Chen
- Department of NeurologyFirst People's Hospital of FoshanFoshanChina
| | - Mingyi Bao
- Department of NeurologySun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Chengguo Zhang
- Department of NeurologyFirst People's Hospital of FoshanFoshanChina
| | - Dong Pan
- Department of Neurology, The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Yanting Chen
- Department of NeurologySun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Yongteng Xu
- Department of NeurologySun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Feng Zhou
- Department of NeurologyFirst People's Hospital of FoshanFoshanChina
| | - Yamei Tang
- Department of NeurologySun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
5
|
Karam M, Ortega-Gascó A, Tornero D. Emerging Insights into Brain Inflammation: Stem-Cell-Based Approaches for Regenerative Medicine. Int J Mol Sci 2025; 26:3275. [PMID: 40244116 PMCID: PMC11989304 DOI: 10.3390/ijms26073275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Neuroinflammation is a complex immune response triggered by brain injury or pathological stimuli, and is highly exacerbated in neurodegenerative diseases. It plays a dual role in the central nervous system, promoting repair in acute stages while aggravating disease progression by contributing to neuronal loss, synaptic dysfunction, and glial dysregulation in chronic phases. Inflammatory responses are mainly orchestrated by microglia and infiltrated monocytes, which, when dysregulated, not only harm existing neurons, but also impair the survival and differentiation of neural stem and progenitor cells in the affected brain regions. Modulating neuroinflammation is crucial for harnessing its protective functions while minimizing its detrimental effects. Current therapeutic strategies focus on fine-tuning inflammatory responses through pharmacological agents, bioactive molecules, and stem cell-based therapies. These approaches aim to restore immune homeostasis, support neuroprotection, and promote regeneration in various neurological disorders. However, animal models sometimes fail to reproduce human-specific inflammatory responses in the brain. In this context, stem-cell-derived models provide a powerful tool to study neuroinflammatory mechanisms in a patient-specific and physiologically relevant context. These models facilitate high-throughput screening, personalized medicine, and the development of targeted therapies while addressing the limitations of traditional animal models, paving the way for more targeted and effective treatments.
Collapse
Affiliation(s)
- Marie Karam
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Alba Ortega-Gascó
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Daniel Tornero
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| |
Collapse
|
6
|
Ahn SJ, Goya B, Bertomo C, Sciortino R, Racchumi G, Bonilla LG, Anrather J, Iadecola C, Faraco G. Neutrophil stalling does not mediate the increase in tau phosphorylation and the cognitive impairment associated with high salt diet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640593. [PMID: 40093148 PMCID: PMC11908121 DOI: 10.1101/2025.02.27.640593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
High dietary salt intake has powerful effects on cerebral blood vessels and has emerged as a risk factor for stroke and cognitive impairment. In mice, high salt diet (HSD) leads to reduced cerebral blood flow (CBF), tau hyperphosphorylation and cognitive dysfunction. However, it is still unclear whether the reduced CBF is responsible for the effects of HSD on tau and cognition. Capillary stalling has emerged as a cause of CBF reduction and cognitive impairment in models of Alzheimer's disease and diabetes. Therefore, we tested the hypothesis that capillary stalling also contributes to the CBF reduction and cognitive impairment in HSD. Using two-photon imaging, we found that HSD increased stalling of neutrophils in brain capillaries and decreased CBF. Neutrophil depletion reduced the number of stalled capillaries and restored resting CBF but did not prevent tau phosphorylation or cognitive impairment. These novel findings show that, capillary stalling contribute to CBF reduction in HSD, but not to tau phosphorylation and cognitive deficits. Therefore, the hypoperfusion caused by capillary stalling is not the main driver of the tau phosphorylation and cognitive impairment.
Collapse
|
7
|
Ricciardelli AR, Genet G, Genet N, McClugage ST, Kan PT, Hirschi KK, Fish JE, Wythe JD. From bench to bedside: murine models of inherited and sporadic brain arteriovenous malformations. Angiogenesis 2025; 28:15. [PMID: 39899215 PMCID: PMC11790818 DOI: 10.1007/s10456-024-09953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/06/2024] [Indexed: 02/04/2025]
Abstract
Brain arteriovenous malformations are abnormal vascular structures in which an artery shunts high pressure blood directly to a vein without an intervening capillary bed. These lesions become highly remodeled over time and are prone to rupture. Historically, brain arteriovenous malformations have been challenging to treat, using primarily surgical approaches. Over the past few decades, the genetic causes of these malformations have been uncovered. These can be divided into (1) familial forms, such as loss of function mutations in TGF-β (BMP9/10) components in hereditary hemorrhagic telangiectasia, or (2) sporadic forms, resulting from somatic gain of function mutations in genes involved in the RAS-MAPK signaling pathway. Leveraging these genetic discoveries, preclinical mouse models have been developed to uncover the mechanisms underlying abnormal vessel formation, and thus revealing potential therapeutic targets. Impressively, initial preclinical studies suggest that pharmacological treatments disrupting these aberrant pathways may ameliorate the abnormal pathologic vessel remodeling and inflammatory and hemorrhagic nature of these high-flow vascular anomalies. Intriguingly, these studies also suggest uncontrolled angiogenic signaling may be a major driver in bAVM pathogenesis. This comprehensive review describes the genetics underlying both inherited and sporadic bAVM and details the state of the field regarding murine models of bAVM, highlighting emerging therapeutic targets that may transform our approach to treating these devastating lesions.
Collapse
Affiliation(s)
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nafiisha Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Samuel T McClugage
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
- Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, TX, USA
| | - Peter T Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, 77598, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Developmental Genomics Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Joshua D Wythe
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Developmental Genomics Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Brain, Immunology, and Glia Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Chen JXY, Vipin A, Sandhu GK, Leow YJ, Zailan FZ, Tanoto P, Lee ES, Lee KL, Cheung C, Kandiah N. Blood-brain barrier integrity disruption is associated with both chronic vascular risk factors and white matter hyperintensities. J Prev Alzheimers Dis 2025; 12:100029. [PMID: 39863325 DOI: 10.1016/j.tjpad.2024.100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD. OBJECTIVE This study explores the relationship between CRFs, BBB integrity, and WMH burden. DESIGN, SETTING, AND PARTICIPANTS The study included 155 participants from the Biomarkers and Cognition Study, Singapore (BIOCIS). CRFs were assessed through blood tests for glucose and lipid profiles, and blood pressure measurements. WMH volumes were quantified using MRI. MEASUREMENTS BBB integrity was evaluated using a Transendothelial Electrical Resistance (TEER) assay with human brain microvascular endothelial cells (hBMEC) exposed to participant plasma. RESULTS Plasma from individuals with a higher WMH burden was associated with increased BBB disruption in hBMEC. Higher systolic and diastolic blood pressure, as well as body mass index, were correlated with greater BBB disruption. Regression analyses revealed that elevated blood glucose and lipid levels were linked to increased BBB disruption. Both periventricular and subcortical WMH burdens were associated with increased BBB disruption. CONCLUSION This study highlights a relationship between CRFs, BBB disruption, and WMH burden, suggesting that CRFs may impair BBB integrity and contribute to WMH and cognitive decline in cSVD.
Collapse
Affiliation(s)
- James Xiao Yuan Chen
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Ashwati Vipin
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Gurveen Kaur Sandhu
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Yi Jin Leow
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Fatin Zahra Zailan
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Pricilia Tanoto
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Ee Soo Lee
- Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore; School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| | - Khang Leng Lee
- Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Nagaendran Kandiah
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore.
| |
Collapse
|
9
|
Fekete M, Lehoczki A, Szappanos Á, Toth A, Mahdi M, Sótonyi P, Benyó Z, Yabluchanskiy A, Tarantini S, Ungvari Z. Cerebromicrovascular mechanisms contributing to long COVID: implications for neurocognitive health. GeroScience 2025; 47:745-779. [PMID: 39777702 PMCID: PMC11872997 DOI: 10.1007/s11357-024-01487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Long COVID (also known as post-acute sequelae of SARS-CoV-2 infection [PASC] or post-COVID syndrome) is characterized by persistent symptoms that extend beyond the acute phase of SARS-CoV-2 infection, affecting approximately 10% to over 30% of those infected. It presents a significant clinical challenge, notably due to pronounced neurocognitive symptoms such as brain fog. The mechanisms underlying these effects are multifactorial, with mounting evidence pointing to a central role of cerebromicrovascular dysfunction. This review investigates key pathophysiological mechanisms contributing to cerebrovascular dysfunction in long COVID and their impacts on brain health. We discuss how endothelial tropism of SARS-CoV-2 and direct vascular infection trigger endothelial dysfunction, impaired neurovascular coupling, and blood-brain barrier disruption, resulting in compromised cerebral perfusion. Furthermore, the infection appears to induce mitochondrial dysfunction, enhancing oxidative stress and inflammation within cerebral endothelial cells. Autoantibody formation following infection also potentially exacerbates neurovascular injury, contributing to chronic vascular inflammation and ongoing blood-brain barrier compromise. These factors collectively contribute to the emergence of white matter hyperintensities, promote amyloid pathology, and may accelerate neurodegenerative processes, including Alzheimer's disease. This review also emphasizes the critical role of advanced imaging techniques in assessing cerebromicrovascular health and the need for targeted interventions to address these cerebrovascular complications. A deeper understanding of the cerebrovascular mechanisms of long COVID is essential to advance targeted treatments and mitigate its long-term neurocognitive consequences.
Collapse
Affiliation(s)
- Monika Fekete
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Andrea Lehoczki
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary.
| | - Ágnes Szappanos
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
| | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, 4032, Debrecen, Hungary
- Infectology Clinic, University of Debrecen Clinical Centre, 4031, Debrecen, Hungary
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN , Semmelweis University, 1094, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
10
|
Iadecola C, Anrather J. The immunology of stroke and dementia. Immunity 2025; 58:18-39. [PMID: 39813992 PMCID: PMC11736048 DOI: 10.1016/j.immuni.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Ischemic stroke and vascular cognitive impairment, caused by a sudden arterial occlusion or more subtle but protracted vascular insufficiency, respectively, are leading causes of morbidity and mortality worldwide with limited therapeutic options. Innate and adaptive immunity have long been implicated in neurovascular injury, but recent advances in methodology and new experimental approaches have shed new light on their contributions. A previously unappreciated dynamic interplay of brain-resident, meningeal, and systemic immune cells with the ischemic brain and its vasculature has emerged, and new insights into the frequent overlap between vascular and Alzheimer pathology have been provided. Here, we critically review these recent findings, place them in the context of current concepts on neurovascular pathologies and Alzheimer's disease, and highlight their impact on recent stroke and Alzheimer therapies.
Collapse
Affiliation(s)
- Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
11
|
Zheng F, Dong T, Chen Y, Wang L, Peng G. Border-associated macrophages: From physiology to therapeutic targets in Alzheimer's disease. Exp Neurol 2025; 383:115021. [PMID: 39461707 DOI: 10.1016/j.expneurol.2024.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Border-associated macrophages (BAMs) constitute a highly heterogeneous group of central nervous system-resident macrophages at the brain boundaries. Despite their significance, BAMs have mainly been overlooked compared to microglia, resulting in a limited understanding of their functions. However, recent advancements in single-cell immunophenotyping and transcriptomic analyses of BAMs have revealed a previously unrecognized complexity in these cells, in addition to their critical roles under non-pathological conditions and diseases like Alzheimer's disease (AD), Parkinson's disease, glioma, and ischemic stroke. In this review, we discuss the origins, self-renewal capabilities, and extensive heterogeneity of BAMs, and clarify their important physiological functions such as immune monitoring, waste removal and vascular permeability regulation. We also summarize experimental evidence linking BAMs to the progression of AD. Finally, we review therapeutic strategies targeting brain innate immune cells mainly focusing on strategies aimed at modulating BAMs to treat AD and evaluate their potential in clinical applications.
Collapse
Affiliation(s)
- Fangxue Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Taiwei Dong
- Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Yi Chen
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lang Wang
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
12
|
Bijnen M, Sridhar S, Keller A, Greter M. Brain macrophages in vascular health and dysfunction. Trends Immunol 2025; 46:46-60. [PMID: 39732528 DOI: 10.1016/j.it.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/30/2024]
Abstract
Diverse macrophage populations inhabit the rodent and human central nervous system (CNS), including microglia in the parenchyma and border-associated macrophages (BAMs) in the meninges, choroid plexus, and perivascular spaces. These innate immune phagocytes are essential in brain development and maintaining homeostasis, but they also play diverse roles in neurological diseases. In this review, we highlight the emerging roles of CNS macrophages in regulating vascular function in health and disease. We discuss that, in addition to microglia, BAMs, including perivascular macrophages, play roles in supporting vascular integrity and maintaining blood flow. We highlight recent advancements in understanding how these macrophages are implicated in protecting against vascular dysfunction and modulating the progression of cerebrovascular diseases, as seen in vessel-associated neurodegeneration.
Collapse
Affiliation(s)
- Mitchell Bijnen
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sucheta Sridhar
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
AlRawili N, Al‐Kuraishy HM, Al‐Gareeb AI, Abdel‐Fattah MM, Al‐Harchan NA, Alruwaili M, Papadakis M, Alexiou A, Batiha GE. Trajectory of Cardiogenic Dementia: A New Perspective. J Cell Mol Med 2025; 29:e70345. [PMID: 39828641 PMCID: PMC11742966 DOI: 10.1111/jcmm.70345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/27/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
The functions of the heart and brain are closely linked and essential to support human life by the heart-brain axis, which is a complex interconnection between the heart and brain. Also, cardiac function and cerebral blood flow regulate the brain's metabolism and function. Therefore, deterioration of cardiac function may affect cognitive function and may increase the risk of dementia. Cardiogenic dementia is defined as a cognitive deterioration due to heart diseases such as heart failure, myocardial infarction, and atrial fibrillation. The prevalence of cognitive impairment in patients with heart failure was 29%. In addition, coronary artery disease (CAD) is also associated with the development of cognitive impairment. CAD and reduction of myocardial contractility reduced cerebral blood flow and increased the risk of dementia in CAD patients. Furthermore, myocardial infarction and subsequent systemic haemodynamic instability promote the development and progression of cardiogenic dementia. These findings indicated that many cardiac diseases are implicated in the development and progression of cognitive impairment. Nevertheless, the underlying mechanism for the development of cardiogenic dementia was not fully elucidated. Consequently, this review aims to discuss the potential mechanisms involved in the pathogenesis of cardiogenic dementia.
Collapse
Affiliation(s)
- Nawaf AlRawili
- Department of Internal Medicine, College of MedicineNorthern Border UniversityArarSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical PharmacologyJabir ibn Hayyan Medical UniversityKufaIraq
| | - Maha M. Abdel‐Fattah
- Department of Pharmacology and Toxicology, Faculty of PharmacyBeni‐Suef UniversityBeni‐SuefEgypt
| | - Nasser A. Al‐Harchan
- Department of Clinical Pharmacology, College of DentistryAl‐Rasheed UniversityBaghdadIraq
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of MedicineJouf UniversitySaudi Arabia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐ HerdeckeWuppertalGermany
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationNew South WalesAustralia
- Department of Research & DevelopmentAthensGreece
| | - Gaber El‐Saber Batiha
- Department of Research & DevelopmentAFNP MedWienAustria
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
14
|
Camargo LL, Rios FJ, Montezano AC, Touyz RM. Reactive oxygen species in hypertension. Nat Rev Cardiol 2025; 22:20-37. [PMID: 39048744 DOI: 10.1038/s41569-024-01062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Hypertension is a leading risk factor for stroke, heart disease and chronic kidney disease. Multiple interacting factors and organ systems increase blood pressure and cause target-organ damage. Among the many molecular elements involved in the development of hypertension are reactive oxygen species (ROS), which influence cellular processes in systems that contribute to blood pressure elevation (such as the cardiovascular, renal, immune and central nervous systems, or the renin-angiotensin-aldosterone system). Dysregulated ROS production (oxidative stress) is a hallmark of hypertension in humans and experimental models. Of the many ROS-generating enzymes, NADPH oxidases are the most important in the development of hypertension. At the cellular level, ROS influence signalling pathways that define cell fate and function. Oxidative stress promotes aberrant redox signalling and cell injury, causing endothelial dysfunction, vascular damage, cardiovascular remodelling, inflammation and renal injury, which are all important in both the causes and consequences of hypertension. ROS scavengers reduce blood pressure in almost all experimental models of hypertension; however, clinical trials of antioxidants have yielded mixed results. In this Review, we highlight the latest advances in the understanding of the role and the clinical implications of ROS in hypertension. We focus on cellular sources of ROS, molecular mechanisms of oxidative stress and alterations in redox signalling in organ systems, and their contributions to hypertension.
Collapse
Affiliation(s)
- Livia L Camargo
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada.
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada.
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
Lin R, Luo R, Yu X, Zou J, Huang X, Guo Y. Depleting parenchymal border macrophages alleviates cerebral edema and neuroinflammation following status epilepticus. J Transl Med 2024; 22:1094. [PMID: 39623451 PMCID: PMC11613707 DOI: 10.1186/s12967-024-05912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Status epilepticus (SE) is a common severe neurological emergency. Cerebral edema caused by SE is unavoidable and may exacerbate epilepsy. Recent studies have identified cerebrospinal fluid (CSF) as a crucial fluid source of initial cerebral edema following ischemic stroke and cardiac arrest. Moreover, synchronized neuronal firings drive CSF influx into interstitial fluid (ISF). Parenchymal border macrophages (PBMs) have been found to play a role in regulating CSF flow dynamics. However, the involvement of CSF and PBMs in cerebral edema during SE remains unclear. Here, we investigated the fluid source of cerebral edema in the initial phase of SE with the role of PBMs involved. METHODS Lithium chloride-pilocarpine was used to induce SE in C57BL/6 J mice. Electroencephalogram (EEG) was acquired to assess changes in relative EEG power pre- and post-seizure onset. Apparent diffusion coefficient (ADC) maps reconstructed from diffusion-weighted imaging (DWI) were utilized to evaluate cytotoxic edema. Blood-brain barrier (BBB) permeability was examined using sodium fluorescein (NaFl). CSF tracer influx into the brain was assessed by transcranial imaging and brain slices. PBMs were depleted using clodronate liposomes. Immunohistochemistry was used to evaluate PBM depletion, severity of vasogenic edema, inflammation, and neuronal damage. RESULTS During the initial stage of SE, relative EEG power sharply increased and ADC values significantly decreased. Concurrently, CSF tracer influx into the cortex significantly elevated, though NaFl leakage from blood to brain parenchyma did not evidently alter. Following depletion of PBM, CSF influx declined but AQP4 expression and polarization remained unaffected. Post-PBM depletion, there was no significant alteration in relative EEG power, yet CSF influx decreased substantially during the initial stage of SE. The degree of ADC decline lessened, IgG extravasation after SE decreased, activated microglia and proliferating astrocytes count fell, and neuronal damage post-SE alleviated. CONCLUSIONS CSF appeared to contribute to cerebral edema in SE. Depletion of PBM alleviated cytotoxic edema in the initial phase of SE, and subsequent vasogenic edema, inflammatory response and neurological damage were reduced. These findings may provide potential novel strategies for treating cerebral edema following SE.
Collapse
Affiliation(s)
- Renbao Lin
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Rui Luo
- Dermatology Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Xinyue Yu
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Junjie Zou
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China.
| | - Xiaowei Huang
- Dongguan University of Technology, Dongguan, 510282, China.
| | - Yanwu Guo
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
16
|
Marottoli FM, Balu D, Chaudhary R, Lutz SE, Tai LM. Evaluation of BR1 and BI30 AAVs for Brain Endothelial Tropism. ASN Neuro 2024; 16:2427953. [PMID: 39621720 PMCID: PMC11792159 DOI: 10.1080/17590914.2024.2427953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/04/2024] [Accepted: 11/03/2024] [Indexed: 12/06/2024] Open
Abstract
Brain endothelial cells are critical for homeostasis of the central nervous system. Novel adeno-associated viruses (AAV) with brain endothelial cell tropism have been developed and are beginning to be employed in mechanistic and therapeutic research. Studies using AAVs can be involved in terms of cost, time and personnel, and many groups, including our own, are not experts on the technology. Therefore, it is important to report data using AAVs with the research community as a guide for ongoing and future studies. Here, we detail our initial experience with the two most prevalent AAVs with tropism for brain endothelial cells, AAV-BR1 and AAV-BI30. One of our long-term goals is to express key proteins in brain endothelial cells and determine the impact on brain function. For method development, we administered AAV-BR1 and AAV-BI30 with a CMV-driven fluorescent reporter (CMV-P2A-mCherry) to wild-type mice intravenously (retro-orbital) and measured expression in brain and peripheral tissues by RT-PCR and immunostaining. We found that AAV-BR1 transduces neurons and endothelial cells in the brain, and the lung and liver, whereas AAV-BI30 transduces brain endothelial cells and peripheral tissue. Our data highlights the importance of using the AAV best suited to the scientific question.
Collapse
Affiliation(s)
- Felecia M. Marottoli
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Rohan Chaudhary
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Sarah E. Lutz
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Leon M. Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Mone P, D'Onofrio F, Dazzetti T, De Oliveira Roza TL, Guerra G, Santulli G. Age drives the impact of vascular disease on ischemic stroke in patients with atrial fibrillation: Role of hypertension and prediabetes. Atherosclerosis 2024; 399:118619. [PMID: 39438223 DOI: 10.1016/j.atherosclerosis.2024.118619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Affiliation(s)
- Pasquale Mone
- Department of Medicine and "Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy; Casa di Cura Montevergine, Mercogliano, Italy; Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York City, NY, USA.
| | | | - Tommaso Dazzetti
- Department of Medicine and "Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | | | - Germano Guerra
- Department of Medicine and "Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York City, NY, USA; Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy; International Translational Research and Medical Education (ITME) Consortium, Academic Research Unit, Naples, Italy; Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York City, NY, USA
| |
Collapse
|
18
|
Hannawi Y. Cerebral Small Vessel Disease: a Review of the Pathophysiological Mechanisms. Transl Stroke Res 2024; 15:1050-1069. [PMID: 37864643 DOI: 10.1007/s12975-023-01195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/02/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
Cerebral small vessel disease (cSVD) refers to the age-dependent pathological processes involving the brain small vessels and leading to vascular cognitive impairment, intracerebral hemorrhage, and acute lacunar ischemic stroke. Despite the significant public health burden of cSVD, disease-specific therapeutics remain unavailable due to the incomplete understanding of the underlying pathophysiological mechanisms. Recent advances in neuroimaging acquisition and processing capabilities as well as findings from cSVD animal models have revealed critical roles of several age-dependent processes in cSVD pathogenesis including arterial stiffness, vascular oxidative stress, low-grade systemic inflammation, gut dysbiosis, and increased salt intake. These factors interact to cause a state of endothelial cell dysfunction impairing cerebral blood flow regulation and breaking the blood brain barrier. Neuroinflammation follows resulting in neuronal injury and cSVD clinical manifestations. Impairment of the cerebral waste clearance through the glymphatic system is another potential process that has been recently highlighted contributing to the cognitive decline. This review details these mechanisms and attempts to explain their complex interactions. In addition, the relevant knowledge gaps in cSVD mechanistic understanding are identified and a systematic approach to future translational and early phase clinical research is proposed in order to reveal new cSVD mechanisms and develop disease-specific therapeutics.
Collapse
Affiliation(s)
- Yousef Hannawi
- Division of Cerebrovascular Diseases and Neurocritical Care, Department of Neurology, The Ohio State University, 333 West 10th Ave, Graves Hall 3172C, Columbus, OH, 43210, USA.
| |
Collapse
|
19
|
Pacella J, Lembo G, Carnevale L. A Translational Perspective on the Interplay Between Hypertension, Inflammation and Cognitive Impairment. Can J Cardiol 2024; 40:2368-2377. [PMID: 39455022 DOI: 10.1016/j.cjca.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/26/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Hypertension represents the major risk factor in the onset of cardiovascular disease worldwide. Preclinically, several mouse models of hypertension have been developed to investigate the pathophysiological link between hypertension and vascular impairment. Specifically, angiotensin-II infusion, transverse aortic constriction, deoxycorticosterone acetate salt, and N(ω)-nitro-L-arginine methyl ester (L-NAME) administration as hypertensive stimuli at the preclinical level permit the unveiling of a proinflammatory response driven by the innate and adaptive immune system and leads to vascular injury in terms of structural and functional alterations. Vascular impairment seems to be particularly critical at the cerebral level wherein arterioles, venules, and capillaries finely tune blood supply across the whole brain leading to the onset of a well known clinical condition named cerebral small vessel disease (cSVD) characterized by extensive brain injury, which culminates in the decline of cognitive functions. Advances in magnetic resonance imaging permit identification and accurate diagnosis of specific cSVD biomarkers including white matter hyperintensities, lacunar strokes, cerebral microbleeds, and enlarged perivascular spaces, each of which proved to be associated with a specific cognitive domain impairment. Such an approach in combination with pharmacological interventions targeted to the lowering of blood pressure and the prevention of vascular thrombosis formation represents a solid strategy in the prevention and the management of cSVD cognitive decay.
Collapse
Affiliation(s)
- Jacopo Pacella
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy; Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| | - Lorenzo Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy. https://twitter.com/LorCarnevale
| |
Collapse
|
20
|
Villalobos V, Silva I, Morales D, Canelo J, Garrido M, Carreño LJ, Cavalla F, Dutzan N, Caceres M. Topological insight of immune-vascular distribution in peri-implantitis lesions. Oral Dis 2024; 30:5305-5314. [PMID: 38566281 DOI: 10.1111/odi.14935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/31/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE To characterize the distribution of macrophages, neutrophils, NK cells, and blood vessels in peri-implantitis compared to healthy aged gingiva samples. MATERIALS AND METHODS This observational study included eight gingival samples from peri-implantitis and eight from periodontally healthy individuals. By immunofluorescence were identified neutrophils, NK cells, macrophages, and their pro-inflammatory or pro-healing phenotypes, and blood vessels. Two ROIs were designated as zone 1, connective tissue closest to the epithelium and zone 2, connective tissue over 200 microns from the rete ridges. Immune cells and vascular structures were quantified and characterized according to their distribution in both zones. RESULTS Two peri-implantitis zones were characterized by unique macrophage phenotypes and blood vessel architecture. Blood vessels were larger in zone 2 in peri-implantitis. A greater number of NK cells and macrophages were found in peri-implantitis compared to healthy aged samples. A higher presence of pro-inflammatory macrophages was found in zone 1 compared to zone 2. A similar proportion of pro-inflammatory and pro-healing macrophages were found in zone 2. CONCLUSION A specific distribution for pro-inflammatory macrophages and vascular architecture is observed in peri-implantitis. TNF-α colocalizes with macrophages in the connective tissue near rete ridges. NK cells are more abundant in peri-implantitis than in healthy samples.
Collapse
Affiliation(s)
- Veronica Villalobos
- Program of Molecular and Cell Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Universidad de Chile, Santiago, Chile
| | - Ian Silva
- Program of Molecular and Cell Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Universidad de Chile, Santiago, Chile
| | - Diego Morales
- Program of Molecular and Cell Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Javiera Canelo
- Program of Molecular and Cell Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Mauricio Garrido
- Millennium Institute on Immunology and Immunotherapy (IMII), Universidad de Chile, Santiago, Chile
- Faculty of Dentistry, Department of Conservative Dentistry, Universidad de Chile, Santiago, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy (IMII), Universidad de Chile, Santiago, Chile
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Franco Cavalla
- Faculty of Dentistry, Department of Conservative Dentistry, Universidad de Chile, Santiago, Chile
- Faculty of Dentistry, Andres Bello University, Santiago, Chile
| | - Nicolas Dutzan
- Faculty of Dentistry, Department of Conservative Dentistry, Universidad de Chile, Santiago, Chile
| | - Monica Caceres
- Program of Molecular and Cell Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Universidad de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| |
Collapse
|
21
|
Zhan T, Tian S, Chen S. Border-Associated Macrophages: From Embryogenesis to Immune Regulation. CNS Neurosci Ther 2024; 30:e70105. [PMID: 39496482 PMCID: PMC11534460 DOI: 10.1111/cns.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Border-associated macrophages (BAMs) play a pivotal role in maintaining brain homeostasis and responding to pathological conditions. Understanding their origins, characteristics, and roles in both healthy and diseased brains is crucial for advancing our knowledge of neuroinflammatory and neurodegenerative diseases. This review addresses the ontogeny, replenishment, microenvironmental regulation, and transcriptomic heterogeneity of BAMs, highlighting recent advancements in lineage tracing and fate-mapping studies. Furthermore, we examine the roles of BAMs in maintaining brain homeostasis, immune surveillance, and responses to injury and neurodegenerative diseases. Further research is crucial to clarify the dynamic interplay between BAMs and the brain's microenvironment in health and disease. This effort will not only resolve existing controversies but also reveal new therapeutic targets for neuroinflammatory and neurodegenerative disorders, pushing the boundaries of neuroscience.
Collapse
Affiliation(s)
- Tiantong Zhan
- Department of Neurosurgery, School of Medicine, The Second Affiliated HospitalZhejiang UniversityHangzhouChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
| | - Sixuan Tian
- Department of Neurosurgery, School of Medicine, The Second Affiliated HospitalZhejiang UniversityHangzhouChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
| | - Sheng Chen
- Department of Neurosurgery, School of Medicine, The Second Affiliated HospitalZhejiang UniversityHangzhouChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
| |
Collapse
|
22
|
Pushpam M, Talukdar A, Anilkumar S, Maurya SK, Issac TG, Diwakar L. Recurrent endothelin-1 mediated vascular insult leads to cognitive impairment protected by trophic factor pleiotrophin. Exp Neurol 2024; 381:114938. [PMID: 39197707 DOI: 10.1016/j.expneurol.2024.114938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Vascular dementia (VaD) is a complex neurodegenerative condition, with cerebral small vessel dysfunctions as the central role in its pathogenesis. Given the lack of suitable animal models to study the disease pathogenesis, we developed a mouse model to closely emulate the clinical scenarios of recurrent transient ischemic attacks (TIAs) leading to VaD using vasoconstricting peptide Endothelin-1(ET-1). We observed that administration of ET-1 led to blood-brain barrier (BBB) disruption and detrimental changes in its components, such as endothelial cells and pericytes, along with neuronal loss and synaptic dysfunction, resulting in irreversible memory loss. Further, in our pursuit of understanding potential interventions, we co-administered pleiotrophin (PTN) alongside ET-1 injections. PTN exhibited remarkable efficacy in preserving vital components of the BBB, including endothelial cells and pericytes, thereby restoring BBB integrity, preventing neuronal loss, and enhancing memory function. Our findings give a valuable framework for understanding the detrimental effects of multiple TIAs on brain health and provide a useful animal model to explore VaD's underlying mechanisms further and pave the way for promising therapies.
Collapse
Affiliation(s)
- Mayank Pushpam
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India; Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Ankita Talukdar
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | - Shobha Anilkumar
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | | | - Thomas Gregor Issac
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | - Latha Diwakar
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
23
|
Anfray A, Schaeffer S, Hattori Y, Santisteban MM, Casey N, Wang G, Strickland M, Zhou P, Holtzman DM, Anrather J, Park L, Iadecola C. A cell-autonomous role for border-associated macrophages in ApoE4 neurovascular dysfunction and susceptibility to white matter injury. Nat Neurosci 2024; 27:2138-2151. [PMID: 39294490 PMCID: PMC11758676 DOI: 10.1038/s41593-024-01757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/07/2024] [Indexed: 09/20/2024]
Abstract
Apolipoprotein E4 (ApoE4), the strongest genetic risk factor for sporadic Alzheimer's disease, is also a risk factor for microvascular pathologies leading to cognitive impairment, particularly subcortical white matter injury. These effects have been attributed to alterations in the regulation of the brain blood supply, but the cellular source of ApoE4 and the underlying mechanisms remain unclear. In mice expressing human ApoE3 or ApoE4, we report that border-associated macrophages (BAMs), myeloid cells closely apposed to neocortical microvessels, are both sources and effectors of ApoE4 mediating the neurovascular dysfunction through reactive oxygen species. ApoE4 in BAMs is solely responsible for the increased susceptibility to oligemic white matter damage in ApoE4 mice and is sufficient to enhance damage in ApoE3 mice. The data unveil a new aspect of BAM pathobiology and highlight a previously unrecognized cell-autonomous role of BAM in the neurovascular dysfunction of ApoE4 with potential therapeutic implications.
Collapse
Affiliation(s)
- Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Samantha Schaeffer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Yorito Hattori
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Monica M Santisteban
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nicole Casey
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Michael Strickland
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
24
|
Wang M, Dufort C, Du Z, Shi R, Xu F, Huang Z, Sigler AR, Leak RK, Hu X. IL-33/ST2 signaling in monocyte-derived macrophages maintains blood-brain barrier integrity and restricts infarctions early after ischemic stroke. J Neuroinflammation 2024; 21:274. [PMID: 39449077 PMCID: PMC11515348 DOI: 10.1186/s12974-024-03264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Brain microglia and infiltrating monocyte-derived macrophages are vital in preserving blood vessel integrity after stroke. Understanding mechanisms that induce immune cells to adopt vascular-protective phenotypes may hasten the development of stroke treatments. IL-33 is a potent chemokine released from damaged cells, such as CNS glia after stroke. The activation of IL-33/ST2 signaling has been shown to promote neuronal viability and white matter integrity after ischemic stroke. The impact of IL-33/ST2 on blood-brain barrier (BBB) integrity, however, remains unknown. The current study fills this gap and reveals a critical role of IL-33/ST2 signaling in macrophage-mediated BBB protection after stroke. METHODS Transient middle cerebral artery occlusion (tMCAO) was performed to induce ischemic stroke in wildtype (WT) versus ST2 knockout (KO) male mice. IL-33 was applied intranasally to tMCAO mice with or without dietary PLX5622 to deplete microglia/macrophages. ST2 KO versus WT bone marrow or macrophage cell transplantations were used to test the involvement of ST2+ macrophages in BBB integrity. Macrophages were cocultured in transwells with brain endothelial cells (ECs) after oxygen-glucose deprivation (OGD) to test potential direct effects of IL33-treated macrophages on the BBB in vitro. RESULTS The ST2 receptor was expressed in brain ECs, microglia, and infiltrating macrophages. Global KO of ST2 led to more IgG extravasation and loss of ZO-1 in cerebral microvessels 3 days post-tMCAO. Intranasal IL-33 administration reduced BBB leakage and infarct severity in microglia/macrophage competent mice, but not in microglia/macrophage depleted mice. Worse BBB injury was observed after tMCAO in chimeric WT mice reconstituted with ST2 KO bone marrow, and in WT mice whose monocytes were replaced by ST2 KO monocytes. Macrophages treated with IL-33 reduced in vitro barrier leakage and maintained tight junction integrity after OGD. In contrast, IL-33 exerted minimal direct effects on the endothelial barrier in the absence of macrophages. IL-33-treated macrophages demonstrated transcriptional upregulation of an array of protective factors, suggesting a shift towards favorable phenotypes. CONCLUSION Our results demonstrate that early-stage IL-33/ST2 signaling in infiltrating macrophages reduces the extent of acute BBB disruption after stroke. Intranasal IL-33 administration may represent a new strategy to reduce BBB leakage and infarct severity.
Collapse
Affiliation(s)
- Miao Wang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Connor Dufort
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Zhihong Du
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Ruyu Shi
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Fei Xu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Zhentai Huang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Ana Rios Sigler
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
25
|
Kim D, Gil J, Bae ON. PM2.5 potentiates oxygen glucose deprivation-induced neurovascular unit damage via inhibition of the Akt/β-catenin pathway and autophagy dysregulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124728. [PMID: 39147226 DOI: 10.1016/j.envpol.2024.124728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Air pollution has recently emerged as a significant risk factor for ischemic stroke. Although there is a robust association between higher concentrations of ambient particulate matter (PM2.5) and increased incidence and mortality rates of ischemic stroke, the precise mechanisms underlying PM2.5-induced ischemic stroke remain to be fully elucidated. The purpose of this study was to examine the synergistic effect of PM2.5 and hypoxic stress using in vivo and in vitro ischemic stroke models. Intravenously administered PM2.5 exacerbated the ischemic brain damage induced by middle cerebral artery occlusion (MCAo) in Sprague Dawley rats. Alterations in autophagy flux and decreased levels of tight junction proteins were observed in the brain of PM2.5-administered rats after MCAo. The underlying mechanism of PM2.5-induced potentiation of ischemic brain damage was investigated in neurons, perivascular macrophages, and brain endothelial cells, which are the major components of the integrated neurovascular unit. Co-treatment with PM2.5 and oxygen-glucose deprivation (OGD) amplified the effects of OGD on the reduction of viability in primary neurons, immortalized murine hippocampal neuron (HT-22), and brain endothelial cells (bEND.3). After co-treatment with PM2.5 and OGD, the Akt/β-catenin and autophagy flux were significantly inhibited in HT-22 cells. Notably, the protein levels of metalloproteinase-9 and cystatin C were elevated in the conditioned media of murine macrophages (RAW264.7) exposed to PM2.5, and tight junction protein expression was significantly decreased after OGD exposure in bEND.3 cells pretreated with the conditioned media. Our findings suggest that perivascular macrophages may mediate PM2.5-induced brain endothelial dysfunction following ischemia and that PM2.5 can exacerbate ischemia-induced neurovascular damage.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Junkyung Gil
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea.
| |
Collapse
|
26
|
Zhu M, Tian X, Han X, Ma Y, Fa W, Wang N, Liu R, Dong Y, Ren Y, Liu C, Tian N, Zhang H, Song L, Tang S, Cong L, Wang Y, Hou T, Qiu C, Du Y. Synergistic associations of CD33 variants and hypertension with brain and cognitive aging among dementia-free older adults: A population-based study. Alzheimers Dement 2024; 20:7193-7204. [PMID: 39215505 PMCID: PMC11485077 DOI: 10.1002/alz.14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION CD33 rs3865444 and hypertension (HTN) are related to cognitive impairment, individually. However, little is known about their combined effects on cognitive function in older adults. METHODS This population-based study included 4368 dementia-free participants (age ≥65 years) in the Multimodal Interventions to Delay Dementia and Disability in Rural China (MIND-China), with data available in 1044 persons for gray matter volume and 85 persons for cerebral blood flow (CBF). We used general linear regression and mediation models to examine the associations of rs3865444 and HTN with cognition, brain atrophy, and CBF. RESULTS Among rs3865444 CC carriers, HTN and late-life HTN were significantly associated with impaired cognition. Midlife and late-life HTN were correlated with brain atrophy. CD33 rs3865444 CC moderated the mediation effect of gray matter volume on the association between HTN and global cognition. HTN was correlated with low CBF in rs3865444 CC carriers. DISCUSSION There are synergistic associations of CD33 rs3865444 and HTN with brain and cognitive aging in dementia-free older adults.
Collapse
Affiliation(s)
- Min Zhu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongP.R. China
| | - Xunyao Tian
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongP.R. China
| | - Xiaodong Han
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingP.R. China
| | - Yixun Ma
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongP.R. China
| | - Wenxin Fa
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongP.R. China
| | - Nan Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongP.R. China
| | - Rui Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongP.R. China
| | - Yi Dong
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongP.R. China
| | - Yifei Ren
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongP.R. China
| | - Cuicui Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongP.R. China
| | - Na Tian
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongP.R. China
| | - Heng Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongP.R. China
| | - Lin Song
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongP.R. China
| | - Shi Tang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongP.R. China
| | - Lin Cong
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongP.R. China
| | - Yongxiang Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongP.R. China
- Institute of Brain Science and Brain‐Inspired ResearchShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongP.R. China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska Institute‐Stockholm UniversityStockholmSweden
| | - Tingting Hou
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongP.R. China
| | - Chengxuan Qiu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Institute of Brain Science and Brain‐Inspired ResearchShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongP.R. China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska Institute‐Stockholm UniversityStockholmSweden
| | - Yifeng Du
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongP.R. China
- Institute of Brain Science and Brain‐Inspired ResearchShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongP.R. China
| | | |
Collapse
|
27
|
van den Kerkhof M, de Jong JJ, Voorter PH, Postma AA, Kroon AA, van Oostenbrugge RJ, Jansen JF, Backes WH. Blood-Brain Barrier Integrity Decreases With Higher Blood Pressure: A 7T DCE-MRI Study. Hypertension 2024; 81:2162-2172. [PMID: 39136128 PMCID: PMC11404763 DOI: 10.1161/hypertensionaha.123.22617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/09/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Blood-brain barrier (BBB) integrity is presumed to be impaired in hypertension, resulting from cerebral endothelial dysfunction. Hypertension precedes various cerebrovascular diseases, such as cerebral small vessel disease, and is a risk factor for developing neurodegenerative diseases for which BBB disruption is a preceding pathophysiological process. In this cross-sectional study, we investigated the relation between hypertension, current blood pressure, and BBB leakage in human subjects. METHODS BBB leakage was determined in 22 patients with hypertension and 19 age- and sex-matched normotensive controls (median age [range], 65 [45-80] years; 19 men) using a sparsely time-sampled contrast-enhanced 7T magnetic resonance imaging protocol. Structural cerebral small vessel disease markers were visually rated. Multivariable regression analyses, adjusted for age, sex, cardiovascular risk factors, and cerebral small vessel disease markers, were performed to determine the relation between hypertension status, systolic and diastolic blood pressure, mean arterial pressure, drug treatment, and BBB leakage. RESULTS Both hypertensive and normotensive participants showed mild scores of cerebral small vessel disease. BBB leakage did not differ between hypertensive and normotensive participants; however, it was significantly higher for systolic blood pressure, diastolic blood pressure, and mean arterial pressure in the cortex, and diastolic blood pressure and mean arterial pressure in the gray matter. Effectively treated patients showed less BBB leakage than those with current hypertension. CONCLUSIONS BBB integrity in the total and cortical gray matter decreases with increasing blood pressure but is not related to hypertension status. These findings show that BBB disruption already occurs with increasing blood pressure, before the presence of overt cerebral tissue damage. Additionally, our results suggest that effective antihypertensive medication has a protective effect on the BBB. REGISTRATION URL: https://trialsearch.who.int/; Unique identifier: NL7537.
Collapse
Affiliation(s)
- Marieke van den Kerkhof
- Department of Radiology and Nuclear Medicine (M.v.d.K., J.J.A.d.J., P.H.M.V., A.A.P., J.F.A.J., W.H.B.), Maastricht University Medical Center, the Netherlands
- School for Mental Health and Neuroscience (M.v.d.K., J.J.A.d.J., P.H.M.V., A.A.P., R.J.v.O., J.F.A.J., W.H.B.), Maastricht University, the Netherlands
| | - Joost J.A. de Jong
- Department of Radiology and Nuclear Medicine (M.v.d.K., J.J.A.d.J., P.H.M.V., A.A.P., J.F.A.J., W.H.B.), Maastricht University Medical Center, the Netherlands
- School for Mental Health and Neuroscience (M.v.d.K., J.J.A.d.J., P.H.M.V., A.A.P., R.J.v.O., J.F.A.J., W.H.B.), Maastricht University, the Netherlands
| | - Paulien H.M. Voorter
- Department of Radiology and Nuclear Medicine (M.v.d.K., J.J.A.d.J., P.H.M.V., A.A.P., J.F.A.J., W.H.B.), Maastricht University Medical Center, the Netherlands
- School for Mental Health and Neuroscience (M.v.d.K., J.J.A.d.J., P.H.M.V., A.A.P., R.J.v.O., J.F.A.J., W.H.B.), Maastricht University, the Netherlands
| | - Alida A. Postma
- Department of Radiology and Nuclear Medicine (M.v.d.K., J.J.A.d.J., P.H.M.V., A.A.P., J.F.A.J., W.H.B.), Maastricht University Medical Center, the Netherlands
- School for Mental Health and Neuroscience (M.v.d.K., J.J.A.d.J., P.H.M.V., A.A.P., R.J.v.O., J.F.A.J., W.H.B.), Maastricht University, the Netherlands
| | - Abraham A. Kroon
- Department of Internal Medicine (A.A.K.), Maastricht University Medical Center, the Netherlands
- School for Cardiovascular Diseases (A.A.K., R.J.v.O., W.H.B.), Maastricht University, the Netherlands
| | - Robert J. van Oostenbrugge
- Department of Neurology (R.J.v.O.), Maastricht University Medical Center, the Netherlands
- School for Mental Health and Neuroscience (M.v.d.K., J.J.A.d.J., P.H.M.V., A.A.P., R.J.v.O., J.F.A.J., W.H.B.), Maastricht University, the Netherlands
- School for Cardiovascular Diseases (A.A.K., R.J.v.O., W.H.B.), Maastricht University, the Netherlands
| | - Jacobus F.A. Jansen
- Department of Radiology and Nuclear Medicine (M.v.d.K., J.J.A.d.J., P.H.M.V., A.A.P., J.F.A.J., W.H.B.), Maastricht University Medical Center, the Netherlands
- School for Mental Health and Neuroscience (M.v.d.K., J.J.A.d.J., P.H.M.V., A.A.P., R.J.v.O., J.F.A.J., W.H.B.), Maastricht University, the Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands (J.F.A.J.)
| | - Walter H. Backes
- Department of Radiology and Nuclear Medicine (M.v.d.K., J.J.A.d.J., P.H.M.V., A.A.P., J.F.A.J., W.H.B.), Maastricht University Medical Center, the Netherlands
- School for Mental Health and Neuroscience (M.v.d.K., J.J.A.d.J., P.H.M.V., A.A.P., R.J.v.O., J.F.A.J., W.H.B.), Maastricht University, the Netherlands
- School for Cardiovascular Diseases (A.A.K., R.J.v.O., W.H.B.), Maastricht University, the Netherlands
| |
Collapse
|
28
|
Cao Q, Zeng W, Nie J, Ye Y, Chen Y. The protective effects of apelin-13 in HIV-1 tat- induced macrophage infiltration and BBB impairment. Tissue Barriers 2024:2392361. [PMID: 39264117 DOI: 10.1080/21688370.2024.2392361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
Impairment of the blood - brain barrier (BBB) and subsequent inflammatory responses contribute to the development of human immunodeficiency virus (HIV)-1-associated neurocognitive disorders (HAND). Apelin-13, the most abundant member of the apelin family, acts as the ligand of the angiotensin receptor-like 1 (APJ). However, its pharmacological function in HAND and its underlying mechanism are unknown. In the current study, we report that the presence of HIV-1 Tat reduced the levels of Apelin-13 and APJ in the cortex tissue of mice. Importantly, Apelin-13 preserved BBB integrity against HIV-1 Tat in mice by increasing the expression of the tight junction protein zonula occludens-1 (ZO-1) and occludin. Interestingly, increased macrophage infiltration, indicated by elevated CD68-positive staining was observed in the cortex after stimulation with HIV-1, which was mitigated by the administration of Apelin-13. Correspondingly, Apelin-13 reduced the expression of monocyte chemoattractant protein-1; (MCP-1). An in vitro two-chamber and two-cell trans-well assay demonstrated that HIV-1 Tat challenge significantly promoted macrophage migration, which was notably attenuated by the introduction of Apelin-13. Accordingly, treatment with Apelin-13 restored the HIV-1 Tat-induced reduction of occludin and ZO-1, while preventing the upregulation of MCP-1 in human brain microvascular endothelial cells (HBMVECs). Our results suggest that Apelin-13 may reduce macrophage infiltration into brain tissues and mitigate BBB dysfunction in patients with HAND.
Collapse
Affiliation(s)
- Qi Cao
- First Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Wei Zeng
- Department of Emergency, Chongqing Public Health Medical Center, Chongqing, China
| | - Jingmin Nie
- First Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Yongjun Ye
- Department of General Surgery, Chongqing Public Health Medical Center, Chongqing, China
| | - Yanchao Chen
- Department of General Internal Medicine, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
29
|
Yi T, Su Z, Wang J, Gan J, Wu H, Shi Z, Sun Z, Liu S, Ji Y. Association between blood pressure and dementia in older adults: a cross-sectional study from China. Front Aging Neurosci 2024; 16:1466089. [PMID: 39328244 PMCID: PMC11425581 DOI: 10.3389/fnagi.2024.1466089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Background and aims The association between blood pressure (BP) and dementia in older adults remains unclear, prompting this study to investigate the relationship between various BP indicators and dementia in this population. Methods A cross-sectional survey was conducted in 2019, including 3,599 participants aged 65 years or older. The basic demographic characteristics of participants were collected. BP measurements and neuropsychological assessments were performed. From the systolic BP (SBP) and diastolic BP (DBP) values, mean arterial pressure (MAP), pulse pressure (PP) and blood pressure index (BPI) were calculated. Generalized additive models and logistic regression models were used to analyze the association between BP indicators and dementia. Results Generalized additive models identified a U-shaped relationship between DBP and dementia, which was more significant in males and people 70 years of age and older. The optimal DBP associated with the lowest dementia risk was 85 mmHg. Logistic regression models revealed that compared to the DBP subgroup (80-89 mmHg), participants in the DBP < 80 mmHg subgroup and the DBP ≥100 mmHg subgroup had OR for dementia of 1.611 (95% CI: 1. 252-2.073, P < 0.001) and 1.423 (95% CI: 0.999-2.028, p = 0.050), respectively. A significant association was observed between BPI and dementia (OR:1.746 95% CI: 1.142-2.668, p = 0.010). Conclusion In older adults, we found a U-shaped relationship between DBP and dementia, and a linear relationship between BPI and dementia. These results underscore the importance of considering DBP and BPI in BP management strategies for older adults to potentially prevent or delay dementia onset.
Collapse
Affiliation(s)
- Tingting Yi
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative diseases, Tianjin dementia institute, Tianjin, China
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhou Su
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jiyang Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative diseases, Tianjin dementia institute, Tianjin, China
- Department of Neurology, People's Hospital of Qingxian, Cangzhou, China
| | - Jinghuan Gan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative diseases, Tianjin dementia institute, Tianjin, China
| | - Zhihong Shi
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative diseases, Tianjin dementia institute, Tianjin, China
| | - Zhen Sun
- Department of Neurology, Linfen Central Hospital, Linfen, Shanxi, China
| | - Shuai Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative diseases, Tianjin dementia institute, Tianjin, China
| | - Yong Ji
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative diseases, Tianjin dementia institute, Tianjin, China
| |
Collapse
|
30
|
Sorets AG, Schwensen KR, Francini N, Kjar A, Abdulrahman AM, Shostak A, Katdare KA, Schoch KM, Cowell RP, Park JC, Ligocki AP, Ford WT, Ventura-Antunes L, Hoogenboezem EN, Prusky A, Castleberry M, Michell DL, Miller TM, Vickers KC, Schrag MS, Duvall CL, Lippmann ES. Lipid-siRNA conjugate accesses perivascular transport and achieves durable knockdown throughout the central nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598079. [PMID: 38915549 PMCID: PMC11195074 DOI: 10.1101/2024.06.09.598079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Short-interfering RNA (siRNA) has gained significant interest for treatment of neurological diseases by providing the capacity to achieve sustained inhibition of nearly any gene target. Yet, efficacious drug delivery throughout deep brain structures of the CNS remains a considerable hurdle for intrathecally administered therapeutics. We herein describe an albumin-binding lipid-siRNA conjugate that transports along meningeal and perivascular CSF pathways, leading to broad dispersion throughout the CNS parenchyma. We provide a detailed examination of the temporal kinetics of gene silencing, highlighting potent knockdown for up to five months from a single injection without detectable toxicity. Single-cell RNA sequencing further demonstrates gene silencing activity across diverse cell populations in the parenchyma and at brain borders, which may provide new avenues for neurological disease-modifying therapies.
Collapse
Affiliation(s)
- Alexander G. Sorets
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Katrina R. Schwensen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Nora Francini
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Andrew Kjar
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Adam M. Abdulrahman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alena Shostak
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ketaki A. Katdare
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Kathleen M. Schoch
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Rebecca P. Cowell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joshua C. Park
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alexander P. Ligocki
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - William T. Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | | | - Alex Prusky
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark Castleberry
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Danielle L. Michell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy M. Miller
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Kasey C. Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew S. Schrag
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ethan S. Lippmann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
31
|
Li Q, Pang B, Dang E, Wang G. Endothelial Dysfunction in Psoriasis: An Integrative Review. J Invest Dermatol 2024; 144:1935-1942. [PMID: 38493385 DOI: 10.1016/j.jid.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024]
Abstract
Vascular endothelial cells (ECs), the inner layer of blood vessels, were previously considered to be a passive lining that facilitates cellular and molecular exchange. However, recent studies have revealed that ECs can respond to various stimuli and actively regulate vascular function and skin inflammation. Specific subtypes of ECs are known to have significant roles in a diverse range of physiological and pathological processes in the skin. This review suggests that EC dysfunction is both causal and consequential in the pathogenesis of psoriasis. Further investigations into dysregulated pathways in EC dysfunction may provide new insights for the treatment of psoriasis.
Collapse
Affiliation(s)
- Qingyang Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People Republic of China
| | - Bingyu Pang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People Republic of China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People Republic of China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People Republic of China.
| |
Collapse
|
32
|
Zhu H, Hei B, Zhou W, Tan J, Zeng Y, Li M, Liu Z. Association between Life's Essential 8 and cognitive function among older adults in the United States. Sci Rep 2024; 14:19773. [PMID: 39187530 PMCID: PMC11347626 DOI: 10.1038/s41598-024-70112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
The American Heart Association (AHA) recently redefined cardiovascular health (CVH) with the introduction of Life's Essential 8 (LE8), which encompasses eight areas (diet, physical activity, nicotine exposure, sleep duration body mass index, non-HDL cholesterol, blood glucose, and blood pressure). This study aimed to explore the relationships between both the aggregate and individual CVH metrics, as defined by Life's Essential 8, and cognitive function in older adults in the United States. This cross-sectional, population-based study analyzed data from the National Health and Nutrition Examination Survey conducted between 2011 and 2014, focusing on individuals aged 60 years and older. CVH was categorized as low (0-49), moderate (50-79), or high (80-100). Cognitive function was assessed through the CERAD tests, Animal Fluency test, and Digit Symbol Substitution test. Multivariable logistic models and restricted cubic spline models were employed to investigate these associations. This study included a total of 2279 older adults in the United States. Only 11% of adults achieved a high total CVH score, while 12% had a low score. After further adjustment for potential confounding factors, higher LE8 scores were significantly associated with higher scores on CERAD: delayed recall score (0.02[0.01, 0.03]; P < 0.001), CERAD: total score (3 recall trials) (0.04[0.02, 0.06]; P < 0.001), animal fluency: total score (0.09[0.05, 0.12]; P < 0.001), and digit symbol: score (0.29[0.18, 0.41]; P < 0.001), demonstrating a linear dose-response relationship. Similar patterns were also observed in the associations between health behavior and health factor scores with cognitive function tests. LE8 scores exhibited positive linear associations with cognitive function. Maintaining better levels of CVH may be associated with higher levels of cognitive function in older Americans, but further research is needed to confirm the causal and temporal relationships between LE8 and cognitive function.
Collapse
Affiliation(s)
- Huaxin Zhu
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Bo Hei
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Department of Neurosurgery, Peking University People's Hospital, Peking University, No.11 Xizhimen South Street, Beijing, 100044, China
| | - Wu Zhou
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Jiacong Tan
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Yanyang Zeng
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Meihua Li
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Zheng Liu
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
33
|
Liu T, Li J, Sun L, Zhu C, Wei J. The role of ACE2 in RAS axis on microglia activation in Parkinson's disease. Neuroscience 2024; 553:128-144. [PMID: 38986737 DOI: 10.1016/j.neuroscience.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The classic renin-angiotensin system (RAS) induces organ damage, while the ACE2/Ang-(1-7)/MasR axis opposes it. However, the role of ACE2 in the brain is unclear. We studied ACE2's role in the brain. METHOD We used male C57BL/6J (WT) mice, ACE2 knockout (KO) mice, and MPTP-induced mice. Behavioral tests confirmed successful modeling. We assessed the impact of ACE2 KO on the RAS axis and PD index, including ACE, ACE2, AT1, AT2, MasR, TH, α-syn, and Iba1. We investigated ACE2 and MasR's involvement in microglial activation via western blot and immunofluorescence. GSE10867 and GSE26532 datasets were used to analyze the effects of AT1 antagonists and in vitro PD models on microglia. RESULT Behavioral tests revealed that MPTP mice displayed motor deficits, depression, anxiety, and increased inflammatory markers in the SN and CPU, with reduced antioxidant capacity. ACE2 KO worsened these symptoms and exacerbated inflammation and oxidative stress. LPS-induced ACE2/MasR activation in BV2 cells demonstrated anti-inflammatory and neuroprotective effects by modulating microglial polarization. Antagonists inhibited microglial activation via inflammation and ROS processes. CONCLUSION The RAS axis regulates inflammation and oxidative stress to maintain CNS function, suggesting potential targets for neurologic disease treatment. Understanding microglial RAS activation can offer new therapeutic strategies.
Collapse
Affiliation(s)
- Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Jingwen Li
- Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475000, China.
| | - Chaoyang Zhu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng 475000, China.
| |
Collapse
|
34
|
Harrison DG, Patrick DM. Immune Mechanisms in Hypertension. Hypertension 2024; 81:1659-1674. [PMID: 38881474 PMCID: PMC11254551 DOI: 10.1161/hypertensionaha.124.21355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
It is now apparent that immune mediators including complement, cytokines, and cells of the innate and adaptive immune system contribute not only to blood pressure elevation but also to the target organ damage that occurs in response to stimuli like high salt, aldosterone, angiotensin II, and sympathetic outflow. Alterations of vascular hemodynamic factors, including microvascular pulsatility and shear forces, lead to vascular release of mediators that affect myeloid cells to become potent antigen-presenting cells and promote T-cell activation. Research in the past 2 decades has defined specific biochemical and molecular pathways that are engaged by these stimuli and an emerging paradigm is these not only lead to immune activation, but that products of immune cells, including cytokines, reactive oxygen species, and metalloproteinases act on target cells to further raise blood pressure in a feed-forward fashion. In this review, we will discuss these molecular and pathophysiological events and discuss clinical interventions that might prove effective in quelling this inflammatory process in hypertension and related cardiovascular diseases.
Collapse
Affiliation(s)
- David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - David M. Patrick
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs, Nashville, TN 37212
| |
Collapse
|
35
|
Chen J, Luo C, Tan D, Li Y. J-shaped associations of pan-immune-inflammation value and systemic inflammation response index with stroke among American adults with hypertension: evidence from NHANES 1999-2020. Front Neurol 2024; 15:1417863. [PMID: 39144717 PMCID: PMC11322096 DOI: 10.3389/fneur.2024.1417863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
INTRODUCTION Stroke, a leading cause of death and disability worldwide, is primarily ischemic and linked to hypertension. Hypertension, characterized by systemic chronic inflammation, significantly increases stroke risk. This study explores the association of novel systemic inflammatory markers (SII, PIV, SIRI) with stroke prevalence in hypertensive U.S. adults using NHANES data. METHODS We analyzed data from hypertensive participants in the NHANES 1999-2020 survey, excluding those under 20, pregnant, or with missing data, resulting in 18,360 subjects. Systemic inflammatory markers (SII, PIV, SIRI) were calculated from blood counts. Hypertension and stroke status were determined by self-report and clinical measurements. Covariates included sociodemographic, lifestyle, and medical history factors. Weighted statistical analyses and multivariate logistic regression models were used to explore associations, with adjustments for various covariates. Ethical approval was obtained from the NCHS Ethics Review Board. RESULTS In a cohort of 18,360 hypertensive individuals (mean age 56.652 years), 7.25% had a stroke. Stroke patients were older, had lower PIR, and were more likely to be female, single, less educated, smokers, non-drinkers, physically inactive, and have diabetes and CHD. Multivariate logistic regression showed that SII was not significantly associated with stroke. However, PIV and SIRI were positively associated with stroke prevalence. Each unit increase in lnPIV increased stroke odds by 14% (OR = 1.140, p = 0.0022), and lnSIRI by 20.6% (OR = 1.206, p = 0.0144). RCS analyses confirmed J-shaped associations for lnPIV and lnSIRI with stroke. Stratified analyses identified gender and smoking as significant effect modifiers. Smoking was significantly associated with elevated PIV, SIRI, and SII levels, especially in current smokers. CONCLUSION Elevated PIV and SIRI levels significantly increase stroke prevalence in hypertensive individuals, notably among males and smokers. A predictive model with PIV, SIRI, and sociodemographic factors offers strong clinical utility.
Collapse
Affiliation(s)
| | | | - Dianhui Tan
- Department of Neurosurgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | | |
Collapse
|
36
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
37
|
Zarate SM, Kirabo A, Hinton AO, Santisteban MM. Neuroimmunology of Cardiovascular Disease. Curr Hypertens Rep 2024; 26:339-347. [PMID: 38613621 PMCID: PMC11199253 DOI: 10.1007/s11906-024-01301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) is a leading cause of death and chronic disability worldwide. Yet, despite extensive intervention strategies the number of persons affected by CVD continues to rise. Thus, there is great interest in unveiling novel mechanisms that may lead to new treatments. Considering this dilemma, recent focus has turned to the neuroimmune mechanisms involved in CVD pathology leading to a deeper understanding of the brain's involvement in disease pathology. This review provides an overview of new and salient findings regarding the neuroimmune mechanisms that contribute to CVD. RECENT FINDINGS The brain contains neuroimmune niches comprised of glia in the parenchyma and immune cells at the brain's borders, and there is strong evidence that these neuroimmune niches are important in both health and disease. Mechanistic studies suggest that the activation of glia and immune cells in these niches modulates CVD progression in hypertension and heart failure and contributes to the inevitable end-organ damage to the brain. This review provides evidence supporting the role of neuroimmune niches in CVD progression. However, additional research is needed to understand the effects of prolonged neuroimmune activation on brain function.
Collapse
Affiliation(s)
- Sara M Zarate
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
- Vanderbilt Center for Immunobiology, Nashville, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, USA
- Vanderbilt Institute for Global Health, Nashville, USA
| | - Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
| | - Monica M Santisteban
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, USA.
| |
Collapse
|
38
|
Uekawa K, Anfray A, Ahn SJ, Casey N, Seo J, Zhou P, Iadecola C, Park L. tPA supplementation preserves neurovascular and cognitive function in Tg2576 mice. Alzheimers Dement 2024; 20:4572-4582. [PMID: 38899570 PMCID: PMC11247712 DOI: 10.1002/alz.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Amyloid beta (Aβ) impairs the cerebral blood flow (CBF) increase induced by neural activity (functional hyperemia). Tissue plasminogen activator (tPA) is required for functional hyperemia, and in mouse models of Aβ accumulation tPA deficiency contributes to neurovascular and cognitive impairment. However, it remains unknown if tPA supplementation can rescue Aβ-induced neurovascular and cognitive dysfunction. METHODS Tg2576 mice and wild-type littermates received intranasal tPA (0.8 mg/kg/day) or vehicle 5 days a week starting at 11 to 12 months of age and were assessed 3 months later. RESULTS Treatment of Tg2576 mice with tPA restored resting CBF, prevented the attenuation in functional hyperemia, and improved nesting behavior. These effects were associated with reduced cerebral atrophy and cerebral amyloid angiopathy, but not parenchymal amyloid. DISCUSSION These findings highlight the key role of tPA deficiency in the neurovascular and cognitive dysfunction associated with amyloid pathology, and suggest potential therapeutic strategies involving tPA reconstitution. HIGHLIGHTS Amyloid beta (Aβ) induces neurovascular dysfunction and impairs the increase of cerebral blood flow induced by neural activity (functional hyperemia). Tissue plasminogen activator (tPA) deficiency contributes to the neurovascular and cognitive dysfunction caused by Aβ. In mice with florid amyloid pathology intranasal administration of tPA rescues the neurovascular and cognitive dysfunction and reduces brain atrophy and cerebral amyloid angiopathy. tPA deficiency plays a crucial role in neurovascular and cognitive dysfunction induced by Aβ and tPA reconstitution may be of therapeutic value.
Collapse
Affiliation(s)
- Ken Uekawa
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Sung Ji Ahn
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Nicole Casey
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - James Seo
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
39
|
Wei W, Ma D, Li L, Zhang L. Cognitive impairment in cerebral small vessel disease induced by hypertension. Neural Regen Res 2024; 19:1454-1462. [PMID: 38051887 PMCID: PMC10883517 DOI: 10.4103/1673-5374.385841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/22/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Hypertension is a primary risk factor for the progression of cognitive impairment caused by cerebral small vessel disease, the most common cerebrovascular disease. However, the causal relationship between hypertension and cerebral small vessel disease remains unclear. Hypertension has substantial negative impacts on brain health and is recognized as a risk factor for cerebrovascular disease. Chronic hypertension and lifestyle factors are associated with risks for stroke and dementia, and cerebral small vessel disease can cause dementia and stroke. Hypertension is the main driver of cerebral small vessel disease, which changes the structure and function of cerebral vessels via various mechanisms and leads to lacunar infarction, leukoaraiosis, white matter lesions, and intracerebral hemorrhage, ultimately resulting in cognitive decline and demonstrating that the brain is the target organ of hypertension. This review updates our understanding of the pathogenesis of hypertension-induced cerebral small vessel disease and the resulting changes in brain structure and function and declines in cognitive ability. We also discuss drugs to treat cerebral small vessel disease and cognitive impairment.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
40
|
Li Q, Wang B, Yang J, Wang Y, Duan F, Luo M, Zhao C, Wei W, Wang L, Liu S. Preliminary Analysis of Aging-Related Genes in Intracerebral Hemorrhage by Integration of Bulk and Single-Cell RNA Sequencing Technology. Int J Gen Med 2024; 17:2719-2740. [PMID: 38883702 PMCID: PMC11180471 DOI: 10.2147/ijgm.s457480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
Background Aging is recognized as the key risk for intracerebral hemorrhage (ICH). The detailed mechanisms of aging in ICH warrant exploration. This study aimed to identify potential aging-related genes associated with ICH. Methods ICH-specific aging-related genes were determined by the intersection of differentially expressed genes (DEGs) between perihematomal tissues and corresponding contralateral parts of four patients with ICH (GSE24265) and 349 aging-related genes obtained from the Aging Atlas database. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) analyses were performed to identify the potential biological functions and pathways in which these ICH-specific aging-related genes may be involved. Then, PPI network was established to identify the hub genes of ICH-specific aging-related genes. Meanwhile, miRNA-mRNA and transcription factor (TF)-mRNA regulatory networks were constructed to further explore the ICH-specific aging-related genes regulation. The relationship between these hub genes and immune infiltration was also further explored. Additional single-cell RNA-seq analysis (scRNA-seq, GSE167593) was used to locate the hub genes in different cell types. Besides, expression levels of the hub genes were validated using clinical samples from our institute and another GEO dataset (GSE206971). Results This study identified 24 ICH-specific aging-related genes, including 22 up-regulated and 2 down-regulated genes. The results of GO and KEGG suggested that the ICH-specific aging-related genes mainly enriched in immunity and inflammation-related pathways, suggesting that aging may affect the ich pathogenesis by regulating inflammatory and immune-related pathways. Conclusion Our study revealed 24 ICH-specific aging-related genes and their functions highly pertinent to ICH pathogenesis, providing new insights into the impact of aging on ICH.
Collapse
Affiliation(s)
- Qianfeng Li
- Department of Neurosurgery, Wuhan No.1 Hospital, Wuhan, People's Republic of China
| | - Bo Wang
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jun Yang
- Huanggang Central Hospital of Yangtze University, Huanggang, People's Republic of China
| | - Yuan Wang
- Department of Neurosurgery, Wuhan No.1 Hospital, Wuhan, People's Republic of China
| | - Faliang Duan
- Department of Neurosurgery, Wuhan No.1 Hospital, Wuhan, People's Republic of China
| | - Ming Luo
- Department of Neurosurgery, Wuhan No.1 Hospital, Wuhan, People's Republic of China
| | - Chungang Zhao
- Jilin Jianda Modern Agricultural Research Institute, Changchun, People's Republic of China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Lei Wang
- Huanggang Central Hospital of Yangtze University, Huanggang, People's Republic of China
| | - Sha Liu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Department of General Practice, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
41
|
Sun F, Zhou J, Chen X, Yang T, Wang G, Ge J, Zhang Z, Mei Z. No-reflow after recanalization in ischemic stroke: From pathomechanisms to therapeutic strategies. J Cereb Blood Flow Metab 2024; 44:857-880. [PMID: 38420850 PMCID: PMC11318407 DOI: 10.1177/0271678x241237159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 01/07/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Endovascular reperfusion therapy is the primary strategy for acute ischemic stroke. No-reflow is a common phenomenon, which is defined as the failure of microcirculatory reperfusion despite clot removal by thrombolysis or mechanical embolization. It has been reported that up to 25% of ischemic strokes suffer from no-reflow, which strongly contributes to an increased risk of poor clinical outcomes. No-reflow is associated with functional and structural alterations of cerebrovascular microcirculation, and the injury to the microcirculation seriously hinders the neural functional recovery following macrovascular reperfusion. Accumulated evidence indicates that pathology of no-reflow is linked to adhesion, aggregation, and rolling of blood components along the endothelium, capillary stagnation with neutrophils, astrocytes end-feet, and endothelial cell edema, pericyte contraction, and vasoconstriction. Prevention or treatment strategies aim to alleviate or reverse these pathological changes, including targeted therapies such as cilostazol, adhesion molecule blocking antibodies, peroxisome proliferator-activated receptors (PPARs) activator, adenosine, pericyte regulators, as well as adjunctive therapies, such as extracorporeal counterpulsation, ischemic preconditioning, and alternative or complementary therapies. Herein, we provide an overview of pathomechanisms, predictive factors, diagnosis, and intervention strategies for no-reflow, and attempt to convey a new perspective on the clinical management of no-reflow post-ischemic stroke.
Collapse
Affiliation(s)
- Feiyue Sun
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiangyu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Zhanwei Zhang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
42
|
Cieślik M, Strobel SD, Bryniarski P, Twardowska H, Chmielowski A, Rudek M, Felkle D, Zięba K, Kaleta K, Jarczyński M, Nowak B, Bryniarski K, Nazimek K. Hypotensive drugs mitigate the high-sodium diet-induced pro-inflammatory activation of mouse macrophages in vivo. Biomed Pharmacother 2024; 175:116648. [PMID: 38677242 DOI: 10.1016/j.biopha.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
Nowadays, there is an increasing emphasis on the need to alleviate the chronic inflammatory response to effectively treat hypertension. However, there are still gaps in our understanding on how to achieve this. Therefore, research on interaction of antihypertensive drugs with the immune system is extremely interesting, since their therapeutic effect could partly result from amelioration of hypertension-related inflammation, in which macrophages seem to play a pivotal role. Thus, current comprehensive studies have investigated the impact of repeatedly administered hypotensive drugs (captopril, olmesartan, propranolol, carvedilol, amlodipine, verapamil) on macrophage functions in the innate and adaptive immunity, as well as if drug-induced effects are affected by a high-sodium diet (HSD), one of the key environmental risk factors of hypertension. Although the assayed medications increased the generation of reactive oxygen and nitrogen intermediates by macrophages from standard fed donors, they reversed HSD-induced enhancing effects on macrophage oxidative burst and secretion of pro-inflammatory cytokines. On the other hand, some drugs increased macrophage phagocytic activity and the expression of surface markers involved in antigen presentation, which translated into enhanced macrophage ability to activate B cells for antibody production. Moreover, the assayed medications augmented macrophage function and the effector phase of contact hypersensitivity reaction, but suppressed the sensitization phase of cell-mediated hypersensitivity under HSD conditions. Our current findings contribute to the recognition of mechanisms, by which excessive sodium intake affects macrophage immune activity in hypertensive individuals, and provide evidence that the assayed medications mitigate most of the HSD-induced adverse effects, suggesting their additional protective therapeutic activity.
Collapse
Affiliation(s)
- Martyna Cieślik
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Spencer D Strobel
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Paweł Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Hanna Twardowska
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Adam Chmielowski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Michał Rudek
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Dominik Felkle
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Katarzyna Zięba
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Konrad Kaleta
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Mateusz Jarczyński
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Bernadeta Nowak
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland.
| |
Collapse
|
43
|
Dupré N, Drieu A, Joutel A. Pathophysiology of cerebral small vessel disease: a journey through recent discoveries. J Clin Invest 2024; 134:e172841. [PMID: 38747292 PMCID: PMC11093606 DOI: 10.1172/jci172841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Cerebral small vessel disease (cSVD) encompasses a heterogeneous group of age-related small vessel pathologies that affect multiple regions. Disease manifestations range from lesions incidentally detected on neuroimaging (white matter hyperintensities, small deep infarcts, microbleeds, or enlarged perivascular spaces) to severe disability and cognitive impairment. cSVD accounts for approximately 25% of ischemic strokes and the vast majority of spontaneous intracerebral hemorrhage and is also the most important vascular contributor to dementia. Despite its high prevalence and potentially long therapeutic window, there are still no mechanism-based treatments. Here, we provide an overview of the recent advances in this field. We summarize recent data highlighting the remarkable continuum between monogenic and multifactorial cSVDs involving NOTCH3, HTRA1, and COL4A1/A2 genes. Taking a vessel-centric view, we discuss possible cause-and-effect relationships between risk factors, structural and functional vessel changes, and disease manifestations, underscoring some major knowledge gaps. Although endothelial dysfunction is rightly considered a central feature of cSVD, the contributions of smooth muscle cells, pericytes, and other perivascular cells warrant continued investigation.
Collapse
Affiliation(s)
- Nicolas Dupré
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Antoine Drieu
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Anne Joutel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| |
Collapse
|
44
|
Suarez CF, Harb OA, Robledo A, Largoza G, Ahn JJ, Alley EK, Wu T, Veeraragavan S, McClugage ST, Iacobas I, Fish JE, Kan PT, Marrelli SP, Wythe JD. MEK signaling represents a viable therapeutic vulnerability of KRAS-driven somatic brain arteriovenous malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594335. [PMID: 38766159 PMCID: PMC11101126 DOI: 10.1101/2024.05.15.594335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Brain arteriovenous malformations (bAVMs) are direct connections between arteries and veins that remodel into a complex nidus susceptible to rupture and hemorrhage. Most sporadic bAVMs feature somatic activating mutations within KRAS, and endothelial-specific expression of the constitutively active variant KRASG12D models sporadic bAVM in mice. By leveraging 3D-based micro-CT imaging, we demonstrate that KRASG12D-driven bAVMs arise in stereotypical anatomical locations within the murine brain, which coincide with high endogenous Kras expression. We extend these analyses to show that a distinct variant, KRASG12C, also generates bAVMs in predictable locations. Analysis of 15,000 human patients revealed that, similar to murine models, bAVMs preferentially occur in distinct regions of the adult brain. Furthermore, bAVM location correlates with hemorrhagic frequency. Quantification of 3D imaging revealed that G12D and G12C alter vessel density, tortuosity, and diameter within the mouse brain. Notably, aged G12D mice feature increased lethality, as well as impaired cognition and motor function. Critically, we show that pharmacological blockade of the downstream kinase, MEK, after lesion formation ameliorates KRASG12D-driven changes in the murine cerebrovasculature and may also impede bAVM progression in human pediatric patients. Collectively, these data show that distinct KRAS variants drive bAVMs in similar patterns and suggest MEK inhibition represents a non-surgical alternative therapy for sporadic bAVM.
Collapse
|
45
|
Rodríguez-Pérez AI, Garrido-Gil P, García-Garrote M, Muñoz A, Parga JA, Labandeira-García JL, Rodríguez-Pallares J. Non-HLA angiotensin-type-1 receptor autoantibodies mediate the long-term loss of grafted neurons in Parkinson's disease models. Stem Cell Res Ther 2024; 15:138. [PMID: 38735991 PMCID: PMC11089721 DOI: 10.1186/s13287-024-03751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Clinical trials have provided evidence that transplants of dopaminergic precursors, which may be replaced by new in vitro stem cell sources, can integrate into the host tissue, and alleviate motor symptoms in Parkinson´s disease (PD). In some patients, deterioration of graft function occurred several months after observing a graft-derived functional improvement. Rejection of peripheral organs was initially related to HLA-specific antibodies. However, the role of non-HLA antibodies is now considered also relevant for rejection. Angiotensin-II type-1 receptor autoantibodies (AT1-AA) act as agonists of the AT1 receptors. AT1-AA are the non-HLA antibodies most widely associated with graft dysfunction or rejection after transplantation of different solid organs and hematopoietic stem cells. However, it is not known about the presence and possible functional effects of AT1-AA in dopaminergic grafts, and the effects of treatment with AT1 receptor blockers (ARBs) such as candesartan on graft survival. METHODS In a 6-hydroxydopamine PD rat model, we studied the short-term (10 days)- and long-term (3 months) effects of chronic treatment with the ARB candesartan on survival of grafted dopaminergic neurons and microglial graft infiltration, as well as the effects of dopaminergic denervation and grafting on serum and CSF AT1-AA levels. The expression of AT1 receptors in grafted neurons was determined by laser capture microdissection. RESULTS At the early period post-grafting, the number of grafted dopaminergic neurons that survived was not significantly different between treated and untreated hosts (i.e., control rats and rats treated with candesartan), probably because, just after grafting, other deleterious factors are predominant for dopaminergic cell death, such as mechanical trauma, lack of growth factors/nutrients and ischemia. However, several months post-grafting, we observed a significantly higher number of surviving dopaminergic neurons and a higher density of striatal dopaminergic terminals in the candesartan-treated group. For several months, grafted rats showed blood and cerebrospinal fluid levels of AT1-AA higher than normal controls, and also higher AT1-AA levels than non-grafted parkinsonian rats. CONCLUSIONS The results suggest the use of ARBs such as candesartan in PD patients, particularly before and after dopaminergic grafts, and the need to monitor AT1-AA levels in PD patients, particularly in those candidates for dopaminergic grafting.
Collapse
Affiliation(s)
- Ana I Rodríguez-Pérez
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo Garrido-Gil
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria García-Garrote
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana Muñoz
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Juan A Parga
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose Luis Labandeira-García
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Jannette Rodríguez-Pallares
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
46
|
Pacholko A, Iadecola C. Hypertension, Neurodegeneration, and Cognitive Decline. Hypertension 2024; 81:991-1007. [PMID: 38426329 PMCID: PMC11023809 DOI: 10.1161/hypertensionaha.123.21356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Elevated blood pressure is a well-established risk factor for age-related cognitive decline. Long linked to cognitive impairment on vascular bases, increasing evidence suggests a potential association of hypertension with the neurodegenerative pathology underlying Alzheimer disease. Hypertension is well known to disrupt the structural and functional integrity of the cerebral vasculature. However, the mechanisms by which these alterations lead to brain damage, enhance Alzheimer pathology, and promote cognitive impairment remain to be established. Furthermore, critical questions concerning whether lowering blood pressure by antihypertensive medications prevents cognitive impairment have not been answered. Recent developments in neurovascular biology, brain imaging, and epidemiology, as well as new clinical trials, have provided insights into these critical issues. In particular, clinical and basic findings on the link between neurovascular dysfunction and the pathobiology of neurodegeneration have shed new light on the overlap between vascular and Alzheimer pathology. In this review, we will examine the progress made in the relationship between hypertension and cognitive impairment and, after a critical evaluation of the evidence, attempt to identify remaining knowledge gaps and future research directions that may advance our understanding of one of the leading health challenges of our time.
Collapse
Affiliation(s)
- Anthony Pacholko
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
47
|
Wang Y, Xie D, Ma S, Shao N, Zhang X, Wang X. Exploring the common mechanism of vascular dementia and inflammatory bowel disease: a bioinformatics-based study. Front Immunol 2024; 15:1347415. [PMID: 38736878 PMCID: PMC11084673 DOI: 10.3389/fimmu.2024.1347415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Objective Emerging evidence has shown that gut diseases can regulate the development and function of the immune, metabolic, and nervous systems through dynamic bidirectional communication on the brain-gut axis. However, the specific mechanism of intestinal diseases and vascular dementia (VD) remains unclear. We designed this study especially, to further clarify the connection between VD and inflammatory bowel disease (IBD) from bioinformatics analyses. Methods We downloaded Gene expression profiles for VD (GSE122063) and IBD (GSE47908, GSE179285) from the Gene Expression Omnibus (GEO) database. Then individual Gene Set Enrichment Analysis (GSEA) was used to confirm the connection between the two diseases respectively. The common differentially expressed genes (coDEGs) were identified, and the STRING database together with Cytoscape software were used to construct protein-protein interaction (PPI) network and core functional modules. We identified the hub genes by using the Cytohubba plugin. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were applied to identify pathways of coDEGs and hub genes. Subsequently, receiver operating characteristic (ROC) analysis was used to identify the diagnostic ability of these hub genes, and a training dataset was used to verify the expression levels of the hub genes. An alternative single-sample gene set enrichment (ssGSEA) algorithm was used to analyze immune cell infiltration between coDEGs and immune cells. Finally, the correlation between hub genes and immune cells was analyzed. Results We screened 167 coDEGs. The main articles of coDEGs enrichment analysis focused on immune function. 8 shared hub genes were identified, including PTPRC, ITGB2, CYBB, IL1B, TLR2, CASP1, IL10RA, and BTK. The functional categories of hub genes enrichment analysis were mainly involved in the regulation of immune function and neuroinflammatory response. Compared to the healthy controls, abnormal infiltration of immune cells was found in VD and IBD. We also found the correlation between 8 shared hub genes and immune cells. Conclusions This study suggests that IBD may be a new risk factor for VD. The 8 hub genes may predict the IBD complicated with VD. Immune-related coDEGS may be related to their association, which requires further research to prove.
Collapse
Affiliation(s)
- Yujiao Wang
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Daojun Xie
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shijia Ma
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Nan Shao
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiaoyan Zhang
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xie Wang
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
48
|
Labandeira-Garcia JL, Labandeira CM, Guerra MJ, Rodriguez-Perez AI. The role of the brain renin-angiotensin system in Parkinson´s disease. Transl Neurodegener 2024; 13:22. [PMID: 38622720 PMCID: PMC11017622 DOI: 10.1186/s40035-024-00410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
The renin-angiotensin system (RAS) was classically considered a circulating hormonal system that regulates blood pressure. However, different tissues and organs, including the brain, have a local paracrine RAS. Mutual regulation between the dopaminergic system and RAS has been observed in several tissues. Dysregulation of these interactions leads to renal and cardiovascular diseases, as well as progression of dopaminergic neuron degeneration in a major brain center of dopamine/angiotensin interaction such as the nigrostriatal system. A decrease in the dopaminergic function induces upregulation of the angiotensin type-1 (AT1) receptor activity, leading to recovery of dopamine levels. However, AT1 receptor overactivity in dopaminergic neurons and microglial cells upregulates the cellular NADPH-oxidase-superoxide axis and Ca2+ release, which mediate several key events in oxidative stress, neuroinflammation, and α-synuclein aggregation, involved in Parkinson's disease (PD) pathogenesis. An intraneuronal antioxidative/anti-inflammatory RAS counteracts the effects of the pro-oxidative AT1 receptor overactivity. Consistent with this, an imbalance in RAS activity towards the pro-oxidative/pro-inflammatory AT1 receptor axis has been observed in the substantia nigra and striatum of several animal models of high vulnerability to dopaminergic degeneration. Interestingly, autoantibodies against angiotensin-converting enzyme 2 and AT1 receptors are increased in PD models and PD patients and contribute to blood-brain barrier (BBB) dysregulation and nigrostriatal pro-inflammatory RAS upregulation. Therapeutic strategies addressed to the modulation of brain RAS, by AT1 receptor blockers (ARBs) and/or activation of the antioxidative axis (AT2, Mas receptors), may be neuroprotective for individuals with a high risk of developing PD or in prodromal stages of PD to reduce progression of the disease.
Collapse
Affiliation(s)
- Jose Luis Labandeira-Garcia
- Cellular and Molecular Neurobiology of Parkinson´S Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain.
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | | | - Maria J Guerra
- Cellular and Molecular Neurobiology of Parkinson´S Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Cellular and Molecular Neurobiology of Parkinson´S Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain.
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
49
|
Uchikawa H, Uekawa K, Hasegawa Y. Perivascular macrophages in cerebrovascular diseases. Exp Neurol 2024; 374:114680. [PMID: 38185314 DOI: 10.1016/j.expneurol.2024.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Cerebrovascular diseases are a major cause of stroke and dementia, both requiring long-term care. These diseases involve multiple pathophysiologies, with mitochondrial dysfunction being a crucial contributor to the initiation of inflammation, apoptosis, and oxidative stress, resulting in injuries to neurovascular units that include neuronal cell death, endothelial cell death, glial activation, and blood-brain barrier disruption. To maintain brain homeostasis against these pathogenic conditions, brain immune cells, including border-associated macrophages and microglia, play significant roles as brain innate immunity cells in the pathophysiology of cerebrovascular injury. Although microglia have long been recognized as significant contributors to neuroinflammation, attention has recently shifted to border-associated macrophages, such as perivascular macrophages (PVMs), which have been studied based on their crucial roles in the brain. These cells are strategically positioned around the walls of brain vessels, where they mainly perform critical functions, such as perivascular drainage, cerebrovascular flexibility, phagocytic activity, antigen presentation, activation of inflammatory responses, and preservation of blood-brain barrier integrity. Although PVMs act as scavenger and surveillant cells under normal conditions, these cells exert harmful effects under pathological conditions. PVMs detect mitochondrial dysfunction in injured cells and implement pathological changes to regulate brain homeostasis. Therefore, PVMs are promising as they play a significant role in mitochondrial dysfunction and, in turn, disrupt the homeostatic condition. Herein, we summarize the significant roles of PVMs in cerebrovascular diseases, especially ischemic and hemorrhagic stroke and dementia, mainly in correlation with inflammation. A better understanding of the biology and pathobiology of PVMs may lead to new insights on and therapeutic strategies for cerebrovascular diseases.
Collapse
Affiliation(s)
- Hiroki Uchikawa
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ, USA; Department of Neurosurgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| | - Ken Uekawa
- Department of Neurosurgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| | - Yu Hasegawa
- Department of Pharmaceutical Science, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan.
| |
Collapse
|
50
|
Hu Y, Zhang F, Ikonomovic M, Yang T. The Role of NRF2 in Cerebrovascular Protection: Implications for Vascular Cognitive Impairment and Dementia (VCID). Int J Mol Sci 2024; 25:3833. [PMID: 38612642 PMCID: PMC11012233 DOI: 10.3390/ijms25073833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Vascular cognitive impairment and dementia (VCID) represents a broad spectrum of cognitive decline secondary to cerebral vascular aging and injury. It is the second most common type of dementia, and the prevalence continues to increase. Nuclear factor erythroid 2-related factor 2 (NRF2) is enriched in the cerebral vasculature and has diverse roles in metabolic balance, mitochondrial stabilization, redox balance, and anti-inflammation. In this review, we first briefly introduce cerebrovascular aging in VCID and the NRF2 pathway. We then extensively discuss the effects of NRF2 activation in cerebrovascular components such as endothelial cells, vascular smooth muscle cells, pericytes, and perivascular macrophages. Finally, we summarize the clinical potential of NRF2 activators in VCID.
Collapse
Affiliation(s)
- Yizhou Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Department of Internal Medicine, University of Pittsburgh Medical Center (UPMC) McKeesport, McKeesport, PA 15132, USA
| | - Feng Zhang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Milos Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Tuo Yang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Department of Internal Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15216, USA
| |
Collapse
|