1
|
Tatekoshi Y, Chen C, Shapiro JS, Chang HC, Blancard M, Lyra-Leite DM, Burridge PW, Feinstein M, D'Aquila R, Hsue P, Ardehali H. Human induced pluripotent stem cell-derived cardiomyocytes to study inflammation-induced aberrant calcium transient. eLife 2024; 13:RP95867. [PMID: 39331464 PMCID: PMC11434618 DOI: 10.7554/elife.95867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is commonly found in persons living with HIV (PLWH) even when antiretroviral therapy suppresses HIV viremia. However, studying this condition has been challenging because an appropriate animal model is not available. In this article, we studied calcium transient in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in culture to simulate the cardiomyocyte relaxation defect noted in PLWH and HFpEF and assess whether various drugs have an effect. We show that treatment of hiPSC-CMs with inflammatory cytokines (such as interferon-γ or TNF-α) impairs their Ca2+ uptake into sarcoplasmic reticulum and that SGLT2 inhibitors, clinically proven as effective for HFpEF, reverse this effect. Additionally, treatment with mitochondrial antioxidants (like mito-Tempo) and certain antiretrovirals resulted in the reversal of the effects of these cytokines on calcium transient. Finally, incubation of hiPSC-CMs with serum from HIV patients with and without diastolic dysfunction did not alter their Ca2+-decay time, indicating that the exposure to the serum of these patients is not sufficient to induce the decrease in Ca2+ uptake in vitro. Together, our results indicate that hiPSC-CMs can be used as a model to study molecular mechanisms of inflammation-mediated abnormal cardiomyocyte relaxation and screen for potential new interventions.
Collapse
Affiliation(s)
- Yuki Tatekoshi
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
| | - Chunlei Chen
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
| | - Jason Solomon Shapiro
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
| | - Hsiang-Chun Chang
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
| | - Malorie Blancard
- Department of Pharmacology, Northwestern University, Chicago, United States
| | - Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University, Chicago, United States
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University, Chicago, United States
| | - Matthew Feinstein
- Department of Medicine, Northwestern University, Chicago, United States
| | - Richard D'Aquila
- Department of Medicine, Northwestern University, Chicago, United States
| | - Priscilla Hsue
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Hossein Ardehali
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
- Department of Pharmacology, Northwestern University, Chicago, United States
- Department of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
2
|
Hmiel L, Zhang S, Obare LM, Santana MADO, Wanjalla CN, Titanji BK, Hileman CO, Bagchi S. Inflammatory and Immune Mechanisms for Atherosclerotic Cardiovascular Disease in HIV. Int J Mol Sci 2024; 25:7266. [PMID: 39000373 PMCID: PMC11242562 DOI: 10.3390/ijms25137266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Atherosclerotic vascular disease disproportionately affects persons living with HIV (PLWH) compared to those without. The reasons for the excess risk include dysregulated immune response and inflammation related to HIV infection itself, comorbid conditions, and co-infections. Here, we review an updated understanding of immune and inflammatory pathways underlying atherosclerosis in PLWH, including effects of viral products, soluble mediators and chemokines, innate and adaptive immune cells, and important co-infections. We also present potential therapeutic targets which may reduce cardiovascular risk in PLWH.
Collapse
Affiliation(s)
- Laura Hmiel
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Suyu Zhang
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Boghuma K. Titanji
- Division of Infectious Diseases, Emory University, Atlanta, GA 30322, USA
| | - Corrilynn O. Hileman
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Shashwatee Bagchi
- Division of Infectious Diseases, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Obare LM, Temu T, Mallal SA, Wanjalla CN. Inflammation in HIV and Its Impact on Atherosclerotic Cardiovascular Disease. Circ Res 2024; 134:1515-1545. [PMID: 38781301 PMCID: PMC11122788 DOI: 10.1161/circresaha.124.323891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
People living with HIV have a 1.5- to 2-fold increased risk of developing cardiovascular disease. Despite treatment with highly effective antiretroviral therapy, people living with HIV have chronic inflammation that makes them susceptible to multiple comorbidities. Several factors, including the HIV reservoir, coinfections, clonal hematopoiesis of indeterminate potential (CHIP), microbial translocation, and antiretroviral therapy, may contribute to the chronic state of inflammation. Within the innate immune system, macrophages harbor latent HIV and are among the prominent immune cells present in atheroma during the progression of atherosclerosis. They secrete inflammatory cytokines such as IL (interleukin)-6 and tumor necrosis-α that stimulate the expression of adhesion molecules on the endothelium. This leads to the recruitment of other immune cells, including cluster of differentiation (CD)8+ and CD4+ T cells, also present in early and late atheroma. As such, cells of the innate and adaptive immune systems contribute to both systemic inflammation and vascular inflammation. On a molecular level, HIV-1 primes the NLRP3 (NLR family pyrin domain containing 3) inflammasome, leading to an increased expression of IL-1β, which is important for cardiovascular outcomes. Moreover, activation of TLRs (toll-like receptors) by HIV, gut microbes, and substance abuse further activates the NLRP3 inflammasome pathway. Finally, HIV proteins such as Nef (negative regulatory factor) can inhibit cholesterol efflux in monocytes and macrophages through direct action on the cholesterol transporter ABCA1 (ATP-binding cassette transporter A1), which promotes the formation of foam cells and the progression of atherosclerotic plaque. Here, we summarize the stages of atherosclerosis in the context of HIV, highlighting the effects of HIV, coinfections, and antiretroviral therapy on cells of the innate and adaptive immune system and describe current and future interventions to reduce residual inflammation and improve cardiovascular outcomes among people living with HIV.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
| | - Tecla Temu
- Department of Pathology, Harvard Medical School, Boston, MA (T.T.)
| | - Simon A. Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN (S.A.M.)
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (S.A.M.)
- Institute for Immunology and Infectious Diseases, Murdoch University, WA, Western Australia (S.A.M.)
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
| |
Collapse
|
4
|
Hudson JA, Ferrand RA, Gitau SN, Mureithi MW, Maffia P, Alam SR, Shah ASV. HIV-Associated Cardiovascular Disease Pathogenesis: An Emerging Understanding Through Imaging and Immunology. Circ Res 2024; 134:1546-1565. [PMID: 38781300 DOI: 10.1161/circresaha.124.323890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cardiac abnormalities were identified early in the epidemic of AIDS, predating the isolation and characterization of the etiologic agent, HIV. Several decades later, the causation and pathogenesis of cardiovascular disease (CVD) linked to HIV infection continue to be the focus of intense speculation. Before the widespread use of antiretroviral therapy, HIV-associated CVD was primarily characterized by HIV-associated cardiomyopathy linked to profound immunodeficiency. With increasing antiretroviral therapy use, viral load suppression, and establishment of immune competency, the effects of HIV on the cardiovascular system are more subtle. Yet, people living with HIV still face an increased incidence of cardiovascular pathology. Advances in cardiac imaging modalities and immunology have deepened our understanding of the pathogenesis of HIV-associated CVD. This review provides an overview of the pathogenesis of HIV-associated CVD integrating data from imaging and immunologic studies with particular relevance to the HIV population originating from high-endemic regions, such as sub-Saharan Africa. The review highlights key evidence gaps in the field and suggests future directions for research to better understand the complex HIV-CVD interactions.
Collapse
Affiliation(s)
- Jonathan A Hudson
- Kings College London BHF Centre, School of Cardiovascular and Metabolic Medicine & Sciences, United Kingdom (J.A.H.)
| | - Rashida A Ferrand
- Department of Clinical Research (R.A.F.), London School of Hygiene and Tropical Medicine, United Kingdom
- Biomedical Research and Training Institute, Harare, Zimbabwe (R.A.F.)
| | - Samuel N Gitau
- Department of Radiology, Aga Khan University Nairobi, Kenya (S.N.G.)
| | - Marianne Wanjiru Mureithi
- Department of Medical Microbiology and Immunology, Faculty of Health Sciences (M.W.M.), University of Nairobi, Kenya
| | - Pasquale Maffia
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom (P.M.)
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Italy (P.M.)
- Africa-Europe Cluster of Research Excellence in Non-Communicable Diseases and Multimorbidity, African Research Universities Alliance and The Guild of European Research-Intensive Universities, Glasgow, United Kingdom (P.M.)
| | - Shirjel R Alam
- Department of Cardiology, North Bristol NHS Trust, United Kingdom (S.R.A.)
| | - Anoop S V Shah
- Department of Non-Communicable Disease Epidemiology (A.S.V.S.), London School of Hygiene and Tropical Medicine, United Kingdom
- Department of Cardiology, Imperial College NHS Trust, London, United Kingdom (A.S.V.S.)
| |
Collapse
|
5
|
Hinton AO, N'jai AU, Vue Z, Wanjalla C. Connection Between HIV and Mitochondria in Cardiovascular Disease and Implications for Treatments. Circ Res 2024; 134:1581-1606. [PMID: 38781302 PMCID: PMC11122810 DOI: 10.1161/circresaha.124.324296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
HIV infection and antiretroviral therapy alter mitochondrial function, which can progressively lead to mitochondrial damage and accelerated aging. The interaction between persistent HIV reservoirs and mitochondria may provide insight into the relatively high rates of cardiovascular disease and mortality in persons living with HIV. In this review, we explore the intricate relationship between HIV and mitochondrial function, highlighting the potential for novel therapeutic strategies in the context of cardiovascular diseases. We reflect on mitochondrial dynamics, mitochondrial DNA, and mitochondrial antiviral signaling protein in the context of HIV. Furthermore, we summarize how toxicities related to early antiretroviral therapy and current highly active antiretroviral therapy can contribute to mitochondrial dysregulation, chronic inflammation, and poor clinical outcomes. There is a need to understand the mechanisms and develop new targeted therapies. We further consider current and potential future therapies for HIV and their interplay with mitochondria. We reflect on the next-generation antiretroviral therapies and HIV cure due to the direct and indirect effects of HIV persistence, associated comorbidities, coinfections, and the advancement of interdisciplinary research fields. This includes exploring novel and creative approaches to target mitochondria for therapeutic intervention.
Collapse
Affiliation(s)
- Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (A.O.H., Z.V.)
| | - Alhaji U N'jai
- Biological Sciences, Fourah Bay College and College of Medicine and Allied Health Sciences (COMAHS), University of Sierra Leone, Freetown, Sierra Leone and Koinadugu College, Kabala (A.U.N.)
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (A.O.H., Z.V.)
| | - Celestine Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.W.)
| |
Collapse
|
6
|
White KS, Walker JA, Wang J, Autissier P, Miller AD, Abuelezan NN, Burrack R, Li Q, Kim WK, Williams KC. Simian immunodeficiency virus-infected rhesus macaques with AIDS co-develop cardiovascular pathology and encephalitis. Front Immunol 2023; 14:1240946. [PMID: 37965349 PMCID: PMC10641955 DOI: 10.3389/fimmu.2023.1240946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023] Open
Abstract
Despite effective antiretroviral therapy, HIV co-morbidities remain where central nervous system (CNS) neurocognitive disorders and cardiovascular disease (CVD)-pathology that are linked with myeloid activation are most prevalent. Comorbidities such as neurocogntive dysfunction and cardiovascular disease (CVD) remain prevalent among people living with HIV. We sought to investigate if cardiac pathology (inflammation, fibrosis, cardiomyocyte damage) and CNS pathology (encephalitis) develop together during simian immunodeficiency virus (SIV) infection and if their co-development is linked with monocyte/macrophage activation. We used a cohort of SIV-infected rhesus macaques with rapid AIDS and demonstrated that SIV encephalitis (SIVE) and CVD pathology occur together more frequently than SIVE or CVD pathology alone. Their co-development correlated more strongly with activated myeloid cells, increased numbers of CD14+CD16+ monocytes, plasma CD163 and interleukin-18 (IL-18) than did SIVE or CVD pathology alone, or no pathology. Animals with both SIVE and CVD pathology had greater numbers of cardiac macrophages and increased collagen and monocyte/macrophage accumulation, which were better correlates of CVD-pathology than SIV-RNA. Animals with SIVE alone had higher levels of activated macrophage biomarkers and cardiac macrophage accumulation than SIVnoE animals. These observations were confirmed in HIV infected individuals with HIV encephalitis (HIVE) that had greater numbers of cardiac macrophages and fibrosis than HIV-infected controls without HIVE. These results underscore the notion that CNS and CVD pathologies frequently occur together in HIV and SIV infection, and demonstrate an unmet need for adjunctive therapies targeting macrophages.
Collapse
Affiliation(s)
- Kevin S. White
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Joshua A. Walker
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - John Wang
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Patrick Autissier
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Andrew D. Miller
- Department of Biomedical Sciences, Section of Anatomic Physiology, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| | - Nadia N. Abuelezan
- Connel School of Nursing, Boston College, Chestnut Hill, MA, United States
| | - Rachel Burrack
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Woong-Ki Kim
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| | | |
Collapse
|
7
|
Germano DB, Oliveira SB, Bachi ALL, Juliano Y, Novo NF, Bussador do Amaral J, França CN. Monocyte chemokine receptors as therapeutic targets in cardiovascular diseases. Immunol Lett 2023; 256-257:1-8. [PMID: 36893859 DOI: 10.1016/j.imlet.2023.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Chemokine receptors are fundamental in many processes related to cardiovascular diseases, such as monocyte migration to vessel walls, cell adhesion, and angiogenesis, among others. Even though many experimental studies have shown the utility of blocking these receptors or their ligands in the treatment of atherosclerosis, the findings in clinical research are still poor. Thus, in the current review we aimed to describe some promising results concerning the blockade of chemokine receptors as therapeutic targets in the treatment of cardiovascular diseases and also to discuss some challenges that need to be overcome before using these strategies in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Yára Juliano
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | - Neil Ferreira Novo
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | - Jônatas Bussador do Amaral
- ENT Research Laboratory, Otorhinolaryngology -Head and Neck Surgery Department, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Carolina Nunes França
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil.
| |
Collapse
|
8
|
Zhu H, Galdos FX, Lee D, Waliany S, Huang YV, Ryan J, Dang K, Neal JW, Wakelee HA, Reddy SA, Srinivas S, Lin LL, Witteles RM, Maecker HT, Davis MM, Nguyen PK, Wu SM. Identification of Pathogenic Immune Cell Subsets Associated With Checkpoint Inhibitor-Induced Myocarditis. Circulation 2022; 146:316-335. [PMID: 35762356 PMCID: PMC9397491 DOI: 10.1161/circulationaha.121.056730] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are monoclonal antibodies used to activate the immune system against tumor cells. Despite therapeutic benefits, ICIs have the potential to cause immune-related adverse events such as myocarditis, a rare but serious side effect with up to 50% mortality in affected patients. Histologically, patients with ICI myocarditis have lymphocytic infiltrates in the heart, implicating T cell-mediated mechanisms. However, the precise pathological immune subsets and molecular changes in ICI myocarditis are unknown. METHODS To identify immune subset(s) associated with ICI myocarditis, we performed time-of-flight mass cytometry on peripheral blood mononuclear cells from 52 individuals: 29 patients with autoimmune adverse events (immune-related adverse events) on ICI, including 8 patients with ICI myocarditis, and 23 healthy control subjects. We also used multiomics single-cell technology to immunophenotype 30 patients/control subjects using single-cell RNA sequencing, single-cell T-cell receptor sequencing, and cellular indexing of transcriptomes and epitopes by sequencing with feature barcoding for surface marker expression confirmation. To correlate between the blood and the heart, we performed single-cell RNA sequencing/T-cell receptor sequencing/cellular indexing of transcriptomes and epitopes by sequencing on MRL/Pdcd1-/- (Murphy Roths large/programmed death-1-deficient) mice with spontaneous myocarditis. RESULTS Using these complementary approaches, we found an expansion of cytotoxic CD8+ T effector cells re-expressing CD45RA (Temra CD8+ cells) in patients with ICI myocarditis compared with control subjects. T-cell receptor sequencing demonstrated that these CD8+ Temra cells were clonally expanded in patients with myocarditis compared with control subjects. Transcriptomic analysis of these Temra CD8+ clones confirmed a highly activated and cytotoxic phenotype. Longitudinal study demonstrated progression of these Temra CD8+ cells into an exhausted phenotype 2 months after treatment with glucocorticoids. Differential expression analysis demonstrated elevated expression levels of proinflammatory chemokines (CCL5/CCL4/CCL4L2) in the clonally expanded Temra CD8+ cells, and ligand receptor analysis demonstrated their interactions with innate immune cells, including monocytes/macrophages, dendritic cells, and neutrophils, as well as the absence of key anti-inflammatory signals. To complement the human study, we performed single-cell RNA sequencing/T-cell receptor sequencing/cellular indexing of transcriptomes and epitopes by sequencing in Pdcd1-/- mice with spontaneous myocarditis and found analogous expansions of cytotoxic clonal effector CD8+ cells in both blood and hearts of such mice compared with controls. CONCLUSIONS Clonal cytotoxic Temra CD8+ cells are significantly increased in the blood of patients with ICI myocarditis, corresponding to an analogous increase in effector cytotoxic CD8+ cells in the blood/hearts of Pdcd1-/- mice with myocarditis. These expanded effector CD8+ cells have unique transcriptional changes, including upregulation of chemokines CCL5/CCL4/CCL4L2, which may serve as attractive diagnostic/therapeutic targets for reducing life-threatening cardiac immune-related adverse events in ICI-treated patients with cancer.
Collapse
Affiliation(s)
- Han Zhu
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA,Division of Cardiovascular Medicine, Stanford University School of Medicine; Stanford, California 94305, USA
| | - Francisco X. Galdos
- Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine; Stanford, California 94305
| | - Daniel Lee
- Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA
| | - Sarah Waliany
- Department of Medicine, Stanford University; Stanford, California 94305, USA
| | | | - Julia Ryan
- Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA
| | - Katherine Dang
- University of California, Santa Barbara, California, 93106
| | - Joel W. Neal
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Oncology, Stanford University School of Medicine; Stanford, California 94305, USA.,Stanford Cancer Institute, Stanford University; Stanford, California 94305, USA
| | - Heather A. Wakelee
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Oncology, Stanford University School of Medicine; Stanford, California 94305, USA.,Stanford Cancer Institute, Stanford University; Stanford, California 94305, USA
| | - Sunil A. Reddy
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Oncology, Stanford University School of Medicine; Stanford, California 94305, USA.,Stanford Cancer Institute, Stanford University; Stanford, California 94305, USA
| | - Sandy Srinivas
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Oncology, Stanford University School of Medicine; Stanford, California 94305, USA.,Stanford Cancer Institute, Stanford University; Stanford, California 94305, USA
| | - Lih-Ling Lin
- Checkpoint Immunology Cluster, Immunology and Inflammation, Sanofi US, Cambridge, MA, USA
| | - Ronald M. Witteles
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Cardiovascular Medicine, Stanford University School of Medicine; Stanford, California 94305, USA
| | - Holden T. Maecker
- Department of Microbiology & Immunology, Stanford University School of Medicine; Stanford, California 94305, USA.,Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine; Stanford, California 94305, USA
| | - Mark M. Davis
- Department of Microbiology & Immunology, Stanford University School of Medicine; Stanford, California 94305, USA.,Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine; Stanford, California 94305, USA.,Howard Hughes Medical Institute, Stanford University; Stanford, California 94035
| | - Patricia K. Nguyen
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA,Division of Cardiovascular Medicine, Stanford University School of Medicine; Stanford, California 94305, USA
| | - Sean M. Wu
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA,Division of Cardiovascular Medicine, Stanford University School of Medicine; Stanford, California 94305, USA
| |
Collapse
|
9
|
Lu X, Wang Z, Ye D, Feng Y, Liu M, Xu Y, Wang M, Zhang J, Liu J, Zhao M, Xu S, Ye J, Wan J. The Role of CXC Chemokines in Cardiovascular Diseases. Front Pharmacol 2022; 12:765768. [PMID: 35668739 PMCID: PMC9163960 DOI: 10.3389/fphar.2021.765768] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/08/2021] [Indexed: 01/07/2023] Open
Abstract
Cardiovascular disease (CVD) is a class of diseases with high disability and mortality rates. In the elderly population, the incidence of cardiovascular disease is increasing annually. Between 1990 and 2016, the age-standardised prevalence of CVD in China significantly increased by 14.7%, and the number of cardiovascular disease deaths increased from 2.51 million to 3.97 million. Much research has indicated that cardiovascular disease is closely related to inflammation, immunity, injury and repair. Chemokines, which induce directed chemotaxis of reactive cells, are divided into four subfamilies: CXC, CC, CX3C, and XC. As cytokines, CXC chemokines are similarly involved in inflammation, immunity, injury, and repair and play a role in many cardiovascular diseases, such as atherosclerosis, myocardial infarction, cardiac ischaemia-reperfusion injury, hypertension, aortic aneurysm, cardiac fibrosis, postcardiac rejection, and atrial fibrillation. Here, we explored the relationship between the chemokine CXC subset and cardiovascular disease and its mechanism of action with the goal of further understanding the onset of cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jing Ye
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jun Wan
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Sil S, Thangaraj A, Chivero ET, Niu F, Kannan M, Liao K, Silverstein PS, Periyasamy P, Buch S. HIV-1 and drug abuse comorbidity: Lessons learned from the animal models of NeuroHIV. Neurosci Lett 2021; 754:135863. [PMID: 33794296 DOI: 10.1016/j.neulet.2021.135863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Various research studies that have investigated the association between HIV infection and addiction underpin the role of various drugs of abuse in impairing immunological and non-immunological pathways of the host system, ultimately leading to augmentation of HIV infection and disease progression. These studies have included both in vitro and in vivo animal models wherein investigators have assessed the effects of various drugs on several disease parameters to decipher the impact of drugs on both HIV infection and progression of HIV-associated neurocognitive disorders (HAND). However, given the inherent limitations in the existing animal models of HAND, these investigations only recapitulated specific aspects of the disease but not the complex human syndrome. Despite the inability of HIV to infect rodents over the last 30 years, multiple strategies have been employed to develop several rodent models of HAND. While none of these models can accurately mimic the overall pathophysiology of HAND, they serve the purpose of modeling some unique aspects of HAND. This review provides an overview of various animal models used in the field and a careful evaluation of methodological strengths and limitations inherent in both the model systems and study designs to understand better how the various animal models complement one another.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter S Silverstein
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
11
|
HIV-1-Associated Left Ventricular Cardiac Dysfunction in Humanized Mice. Sci Rep 2020; 10:9746. [PMID: 32546795 PMCID: PMC7297773 DOI: 10.1038/s41598-020-65943-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/27/2020] [Indexed: 12/25/2022] Open
Abstract
The molecular cause(s) for early onset heart failure in people living with HIV-1 infection (PLWH) remains poorly defined. Herein, longitudinal echocardiography was used to assess whether NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice reconstituted with human hematopoietic stem cells (Hu-NSG mice) and infected with HIV-1ADA can recapitulate the salient features of this progressive human disease. Four weeks post infection, Hu-NSG mice of both sexes developed left ventricular (LV) diastolic dysfunction (DD), with 25% exhibiting grade III/IV restrictive DD with mitral regurgitation. Increases in global longitudinal and circumferential strains and declines in LV ejection fraction and fractional shortening were observed eight weeks post infection. After twelve weeks of infection, 33% of Hu-NSG mice exhibited LV dyskinesia and dyssynchrony. Histopathological analyses of hearts seventeen weeks post infection revealed coronary microvascular leakage, fibrosis and immune cell infiltration into the myocardium. These data show for the first time that HIV-1ADA-infected Hu-NSG mice can recapitulate key left ventricular cardiac deficits and pathophysiological changes reported in humans with progressive HIV-1 infection. The results also suggest that HIV-1 infected Hu-NSG mice may be a useful model to screen for pharmacological agents to blunt LV dysfunction and associated pathophysiologic causes reported in PLWH.
Collapse
|
12
|
Affiliation(s)
- Leah Rethy
- Division of Cardiology Department of Medicine Northwestern University Feinberg School of Medicine Chicago IL
| | - Matthew J Feinstein
- Division of Cardiology Department of Medicine Northwestern University Feinberg School of Medicine Chicago IL
| | - Arjun Sinha
- Division of Cardiology Department of Medicine Northwestern University Feinberg School of Medicine Chicago IL
| | - Chad Achenbach
- Division of Infectious Diseases Department of Medicine Northwestern University Feinberg School of Medicine Chicago IL
| | - Sanjiv J Shah
- Division of Cardiology Department of Medicine Northwestern University Feinberg School of Medicine Chicago IL
| |
Collapse
|
13
|
Gao R, Fang Q, Zhang X, Xu Q, Ye H, Guo W, He J, Chen Y, Wang R, Wu Z, Yu J. R5 HIV-1 gp120 Activates p38 MAPK to Induce Rat Cardiomyocyte Injury by the CCR5 Coreceptor. Pathobiology 2019; 86:274-284. [PMID: 31574524 DOI: 10.1159/000502238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/18/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Effective antiretroviral therapy extends the survival of patients with human immunodeficiency virus (HIV)/acquired immune deficiency syndrome, but these patients remain at higher risk for heart diseases compared with the general population. Previous studies have suggested that HIV-1 glycoprotein 120 (gp120) may be associated with heart disease. However, the underlying mechanisms by which HIV-1 gp120-mediated myocardial injury occurs remain unknown. OBJECTIVE The current study aimed to uncover the mechanism of C-C chemokine receptor 5 (CCR5) coreceptor (R5) HIV-1 gp120-induced myocardial injury. METHODS Morphology analysis, determination of the percentage of cell apoptosis, as well as lactate dehydrogenase (LDH) and creatine kinase (CK) assays were used to analyze whether R5 HIV-1 gp120 induced myocardial cell injury. We analyzed the phosphorylation of p38 mitogen-activated protein kinase (MAPK) with the CCR5 antagonist D-Ala-peptide T-amide (DAPTA) and NMDA receptor antagonist MK801, detected LDH and CK assays with p38 MAPK antagonist SB203580 (SB), and detected the percentage of cell apoptosis and death with DAPTA to investigate the mechanism of R5 HIV-1 gp120-induced myocardial cell injury. RESULTS R5 HIV-1 gp120 damaged myocardial cells and induced p38 MAPK phosphorylation. SB blocked R5 HIV-1 gp120-induced myocardial cell injury. DAPTA blocked R5 HIV-1 gp120-mediated p38 MAPK phosphorylation, while MK801 did not. DAPTA inhibited R5 HIV-1 gp120-induced myocardial cell injury. CONCLUSION Our data indicate that R5 HIV-1 gp120 activated p38 MAPK to trigger myocardial cell injury by the CCR5 coreceptor.
Collapse
Affiliation(s)
- Rui Gao
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Pathology, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Qiujuan Fang
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China,
| | - Xi Zhang
- Department of Nursing, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Qin Xu
- School of Nursing, Fujian Medical University, Fuzhou, China
| | - Hanhui Ye
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Wenyan Guo
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jiao He
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yahong Chen
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Ruixing Wang
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhijuan Wu
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jing Yu
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
14
|
Hu HL, Kang Y, Zeng Y, Zhang M, Liao Q, Rong MQ, Zhang Q, Lai R. Region-resolved proteomics profiling of monkey heart. J Cell Physiol 2019; 234:13720-13734. [PMID: 30644093 PMCID: PMC7166496 DOI: 10.1002/jcp.28052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/06/2018] [Indexed: 02/05/2023]
Abstract
Nonhuman primates (NHPs) play an indispensable role in biomedical research because of their similarities in genetics, physiological, and neurological function to humans. Proteomics profiling of monkey heart could reveal significant cardiac biomarkers and help us to gain a better understanding of the pathogenesis of heart disease. However, the proteomic study of monkey heart is relatively lacking. Here, we performed the proteomics profiling of the normal monkey heart by measuring three major anatomical regions (vessels, valves, and chambers) based on iTRAQ‐coupled LC‐MS/MS analysis. Over 3,200 proteins were identified and quantified from three heart tissue samples. Furthermore, multiple bioinformatics analyses such as gene ontology analysis, protein–protein interaction analysis, and gene‐diseases association were used to investigate biological network of those proteins from each area. More than 60 genes in three heart regions are implicated with heart diseases such as hypertrophic cardiomyopathy, heart failure, and myocardial infarction. These genes associated with heart disease are mainly enriched in citrate cycle, amino acid degradation, and glycolysis pathway. At the anatomical level, the revelation of molecular characteristics of the healthy monkey heart would be an important starting point to investigate heart disease. As a unique resource, this study can serve as a reference map for future in‐depth research on cardiac disease‐related NHP model and novel biomarkers of cardiac injury.
Collapse
Affiliation(s)
- Hao-Liang Hu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu Kang
- Division of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yong Zeng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ming Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences &Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, China
| | - Qiong Liao
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ming-Qiang Rong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qin Zhang
- Division of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences &Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, China
| |
Collapse
|
15
|
Manickam C, Shah SV, Lucar O, Ram DR, Reeves RK. Cytokine-Mediated Tissue Injury in Non-human Primate Models of Viral Infections. Front Immunol 2018; 9:2862. [PMID: 30568659 PMCID: PMC6290327 DOI: 10.3389/fimmu.2018.02862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
Viral infections trigger robust secretion of interferons and other antiviral cytokines by infected and bystander cells, which in turn can tune the immune response and may lead to viral clearance or immune suppression. However, aberrant or unrestricted cytokine responses can damage host tissues, leading to organ dysfunction, and even death. To understand the cytokine milieu and immune responses in infected host tissues, non-human primate (NHP) models have emerged as important tools. NHP have been used for decades to study human infections and have played significant roles in the development of vaccines, drug therapies and other immune treatment modalities, aided by an ability to control disease parameters, and unrestricted tissue access. In addition to the genetic and physiological similarities with humans, NHP have conserved immunologic properties with over 90% amino acid similarity for most cytokines. For example, human-like symptomology and acute respiratory syndrome is found in cynomolgus macaques infected with highly pathogenic avian influenza virus, antibody enhanced dengue disease is common in neotropical primates, and in NHP models of viral hepatitis cytokine-induced inflammation induces severe liver damage, fibrosis, and hepatocellular carcinoma recapitulates human disease. To regulate inflammation, anti-cytokine therapy studies in NHP are underway and will provide important insights for future human interventions. This review will provide a comprehensive outline of the cytokine-mediated exacerbation of disease and tissue damage in NHP models of viral infections and therapeutic strategies that can aid in prevention/treatment of the disease syndromes.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Spandan V. Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Olivier Lucar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Daniel R. Ram
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
16
|
Vajen T, Koenen RR, Werner I, Staudt M, Projahn D, Curaj A, Sönmez TT, Simsekyilmaz S, Schumacher D, Möllmann J, Hackeng TM, Hundelshausen PV, Weber C, Liehn EA. Blocking CCL5-CXCL4 heteromerization preserves heart function after myocardial infarction by attenuating leukocyte recruitment and NETosis. Sci Rep 2018; 8:10647. [PMID: 30006564 PMCID: PMC6045661 DOI: 10.1038/s41598-018-29026-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/29/2018] [Indexed: 12/13/2022] Open
Abstract
Myocardial infarction (MI) is a major cause of death in Western countries and finding new strategies for its prevention and treatment is thus of high priority. In a previous study, we have demonstrated a pathophysiologic relevance for the heterophilic interaction of CCL5 and CXCL4 in the progression of atherosclerosis. A specifically designed compound (MKEY) to block this CCL5-CXCR4 interaction is investigated as a potential therapeutic in a model of myocardial ischemia/reperfusion (I/R) damage. 8 week-old male C57BL/6 mice were intravenously treated with MKEY or scrambled control (sMKEY) from 1 day before, until up to 7 days after I/R. By using echocardiography and intraventricular pressure measurements, MKEY treatment resulted in a significant decrease in infarction size and preserved heart function as compared to sMKEY-treated animals. Moreover, MKEY treatment significantly reduced the inflammatory reaction following I/R, as revealed by specific staining for neutrophils and monocyte/macrophages. Interestingly, MKEY treatment led to a significant reduction of citrullinated histone 3 in the infarcted tissue, showing that MKEY can prevent neutrophil extracellular trap formation in vivo. Disrupting chemokine heterodimers during myocardial I/R might have clinical benefits, preserving the therapeutic benefit of blocking specific chemokines, and in addition, reducing the inflammatory side effects maintaining normal immune defence.
Collapse
Affiliation(s)
- Tanja Vajen
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Rory R Koenen
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands.
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany.
| | - Isabella Werner
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Mareike Staudt
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Delia Projahn
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Adelina Curaj
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Department of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Tolga Taha Sönmez
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Department of Oral and Maxillofacial Surgery, Karlsruhe City Hospital of Freiburg University, Freiburg, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sakine Simsekyilmaz
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - David Schumacher
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Julia Möllmann
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Department of Cardiology, Pulmonology, Angiology and Intensive Care, University Hospital Aachen, Aachen, Germany
| | - Tilman M Hackeng
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Elisa A Liehn
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Department of Cardiology, Pulmonology, Angiology and Intensive Care, University Hospital Aachen, Aachen, Germany
- Human Genetic Laboratory, University of Medicine and Pharmacy, Craiova, Romania
| |
Collapse
|
17
|
A novel dual-luciferase assay for anti-HIV drug screening based on the CCR5/CXCR4 promoters. J Virol Methods 2018; 256:17-23. [PMID: 29481882 DOI: 10.1016/j.jviromet.2018.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
Abstract
Acquired immunodeficiency syndrome (AIDS) is a serious worldwide disease caused by infection with the human immunodeficiency virus (HIV). C-C chemokine receptor 5 (CCR5) and C-X-C chemokine receptor 4 (CXCR4) are important coreceptors mediating HIV-1 cell entry. Many new anti-HIV drugs are currently in preclinical and clinical trials; however, drug development has proceeded slowly partly because of the lack of a high-throughput system to screen these drugs. Here, we describe the development of a novel dual-luciferase assay using a CCR5/CXCR4 promoter-driven firefly and Renilla luciferase vector (pGL4.10-RLUC-CCR5/CXCR4). Drugs were screened for the ability to regulate CCR5 and CXCR4 promoter activities. The CCR5 and CXCR4 promoters were inserted separately into the recombinant vector and transfected into the acute T lymphocyte leukemia cell line H9. Treatment of stable transfected cells with four traditional Chinese medicine compounds resulted in the dose-dependent inhibition of the CXCR4 and CCR5 promoter activities. The dual-luciferase reporter assay provides a rapid and direct method to screen anti-AIDS/HIV drugs.
Collapse
|
18
|
Brain Macrophages in Simian Immunodeficiency Virus-Infected, Antiretroviral-Suppressed Macaques: a Functional Latent Reservoir. mBio 2017; 8:mBio.01186-17. [PMID: 28811349 PMCID: PMC5559639 DOI: 10.1128/mbio.01186-17] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A human immunodeficiency virus (HIV) infection cure requires an understanding of the cellular and anatomical sites harboring virus that contribute to viral rebound upon treatment interruption. Despite antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) are reported in HIV-infected individuals on ART. Biomarkers for macrophage activation and neuronal damage in cerebrospinal fluid (CSF) of HIV-infected individuals demonstrate continued effects of HIV in brain and suggest that the central nervous system (CNS) may serve as a viral reservoir. Using a simian immunodeficiency virus (SIV)/macaque model for HIV encephalitis and AIDS, we evaluated whether infected cells persist in brain despite ART. Eight SIV-infected pig-tailed macaques were virally suppressed with ART, and plasma and CSF viremia levels were analyzed longitudinally. To assess whether virus persisted in brain macrophages (BrMΦ) in these macaques, we used a macrophage quantitative viral outgrowth assay (MΦ-QVOA), PCR, and in situ hybridization (ISH) to measure the frequency of infected cells and the levels of viral RNA and DNA in brain. Viral RNA in brain tissue of suppressed macaques was undetectable, although viral DNA was detected in all animals. The MΦ-QVOA demonstrated that the majority of suppressed animals contained latently infected BrMΦ. We also showed that virus produced in the MΦ-QVOAs was replication competent, suggesting that latently infected BrMΦ are capable of reestablishing productive infection upon treatment interruption. This report provides the first confirmation of the presence of replication-competent SIV in BrMΦ of ART-suppressed macaques and suggests that the highly debated issue of viral latency in macrophages, at least in brain, has been addressed in SIV-infected macaques treated with ART. Resting CD4+ T cells are currently the only cells that fit the definition of a latent reservoir. However, recent evidence suggests that HIV/SIV-infected macrophages persist despite ART. Markers of macrophage activation and neuronal damage are observed in the CSF of HIV-infected individuals and of SIV-infected macaques on suppressive ART regimens, suggesting that the CNS has continued virus infection and latent infection. A controversy exists as to whether brain macrophages represent a latent source of replication-competent virus capable of reestablishing infection upon treatment interruption. In this study, we demonstrated the presence of the latent macrophage reservoir in brains of SIV-infected ART-treated macaques and analyzed the reservoir using our established outgrowth assay to quantitate macrophages harboring replication-competent SIV genomes. Our results support the idea of the existence of other latent reservoirs in addition to resting CD4+ T cells and underscore the importance of macrophages in developing strategies to eradicate HIV.
Collapse
|
19
|
Prevedel L, Morocho C, Bennett MVL, Eugenin EA. HIV-Associated Cardiovascular Disease: Role of Connexin 43. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1960-1970. [PMID: 28688235 DOI: 10.1016/j.ajpath.2017.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/11/2017] [Accepted: 05/01/2017] [Indexed: 12/18/2022]
Abstract
Chronic HIV infection due to effective antiretroviral treatment has resulted in a broad range of clinical complications, including accelerated heart disease. Individuals with HIV infection have a 1.5 to 2 times higher incidence of cardiovascular diseases than their uninfected counterparts; however, the underlying mechanisms are poorly understood. To explore the link between HIV infection and cardiovascular diseases, we used postmortem human heart tissues obtained from HIV-infected and control uninfected individuals to examine connexin 43 (Cx43) expression and distribution and HIV-associated inflammation. Here, we demonstrate that Cx43 is dysregulated in the hearts of HIV-infected individuals. In all HIV heart samples analyzed, there were areas where Cx43 was overexpressed and found along the lateral membrane of the cardiomyocyte and in the intercalated disks. Areas of HIV tissue with anomalous Cx43 expression and localization also showed calcium overload, sarcofilamental atrophy, and accumulation of collagen. All these changes were independent of viral replication, CD4 counts, inflammation, and type of antiretroviral treatment. Overall, we propose that HIV infection increases Cx43 expression in heart, resulting in tissue damage that likely contributes to the high rates of cardiovascular disease in HIV-infected individuals.
Collapse
Affiliation(s)
- Lisa Prevedel
- Public Health Research Institute (PHRI), Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, New Jersey; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, New Jersey
| | - Camilla Morocho
- Public Health Research Institute (PHRI), Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, New Jersey; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, New Jersey
| | - Michael V L Bennett
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Eliseo A Eugenin
- Public Health Research Institute (PHRI), Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, New Jersey; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, New Jersey.
| |
Collapse
|
20
|
Direct Targeting of Macrophages With Methylglyoxal-Bis-Guanylhydrazone Decreases SIV-Associated Cardiovascular Inflammation and Pathology. J Acquir Immune Defic Syndr 2017; 74:583-592. [PMID: 28141779 DOI: 10.1097/qai.0000000000001297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Despite effective combination antiretroviral therapy, HIV-infected individuals develop comorbidities, including cardiovascular disease, where activated macrophages play a key role. To date, few therapies target activated monocytes and macrophages. METHODS We evaluated a novel oral form of the polyamine biosynthesis inhibitor methylglyoxal-bis-guanylhydrazone (MGBG) on cardiovascular inflammation, carotid artery intima-media thickness (cIMT), and fibrosis in a simian immunodeficiency virus infection model of AIDS. Eleven simian immunodeficiency virus-infected animals received MGBG (30 mg/kg) once daily and 8 received a placebo control both beginning at 21 days postinfection (dpi). Animals were time sacrificed at 49 days post infection (dpi), when their matched placebo controls developed AIDS (63, 70, 77, 80), or at the study end-point (84 dpi). Aorta, carotid artery, and cardiac tissues were analyzed. Quantitative analyses of macrophage populations and T lymphocytes were done and correlated with cIMT and fibrosis. RESULTS MGBG treatment resulted in 2.19-fold (CD163), 1.86-fold (CD68), 2.31-fold (CD206), and 2.12-fold (MAC387) decreases in macrophages in carotid arteries and significant 2.07-fold (CD163), 1.61-fold (CD68), 1.95-fold (MAC387), and 1.62-fold (CD206) decreases in macrophages in cardiac tissues. cIMT (1.49-fold) and fibrosis (2.05-fold) also were significantly decreased with MGBG treatment. Numbers of macrophage and the degree of fibrosis in treated animals were similar to uninfected animals. A positive correlation between decreased macrophage in the carotid artery and cIMT, and cardiac macrophages and fibrosis was found. CONCLUSIONS These data demonstrate that directly targeting macrophages with MGBG can reduce cardiovascular inflammation, cIMT, and fibrosis. They suggest that therapies targeting macrophages with HIV could be used in conjunction with combination antiretroviral therapy.
Collapse
|
21
|
O'Dwyer EJ, Bhamra-Ariza P, Rao S, Emmanuel S, Carr A, Holloway CJ. Lower coronary plaque burden in patients with HIV presenting with acute coronary syndrome. Open Heart 2016; 3:e000511. [PMID: 28123757 PMCID: PMC5237750 DOI: 10.1136/openhrt-2016-000511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/20/2016] [Accepted: 11/17/2016] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Treated HIV infection is associated with a higher incidence of coronary artery disease and myocardial infarction, although the mechanisms remain unclear. We sought to characterise the burden of coronary artery disease in men with HIV using retrospective data from invasive coronary angiograms in patients presenting with acute coronary syndrome (ACS). METHODS Demographic and coronary angiographic data were obtained from 160 men with ST elevation myocardial infarction, non-STEMI or high-risk chest pain; 73 HIV-infected cases and 87 age-matched controls. The burden of coronary disease was calculated using the Gensini Angiographic Scoring System by 2 independent cardiologists blinded to HIV status. RESULTS The 2 groups were matched for age, sex and cardiac event subtype and there was no difference in rates of smoking or cholesterol levels. Compared with control participants, patients with HIV had higher usage of antihypertensives (46 (63%) vs 30 (35%), p<0.001) and statins (47 (64%) vs 29 (33%), p<0.001). There was no difference in plaque distribution between both groups; however, the Gensini score was 42% lower in cases with HIV than in controls (p<0.03). C reactive protein was higher in cases with HIV (13.4±15.4 vs 3.7±3.6). CONCLUSIONS Men with HIV presenting with ACS paradoxically had a lower burden of coronary plaque than matched controls, despite more aggressive risk factor management, suggesting that plaque vulnerability, rather than total burden of atherosclerosis, may be important in the pathophysiology of coronary artery disease in men with HIV.
Collapse
Affiliation(s)
- E J O'Dwyer
- St. Vincent's Hospital Darlinghurst and the University of New South Wales, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - P Bhamra-Ariza
- St. Vincent's Hospital Darlinghurst and the University of New South Wales, Sydney, New South Wales, Australia; Frimley Health NHS Foundation, Surrey, UK
| | - S Rao
- St. Vincent's Hospital Darlinghurst and the University of New South Wales, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - S Emmanuel
- St. Vincent's Hospital Darlinghurst and the University of New South Wales, Sydney, New South Wales, Australia; University of Notre Dame, Sydney, New South Wales, Australia
| | - A Carr
- St. Vincent's Hospital Darlinghurst and the University of New South Wales, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - C J Holloway
- St. Vincent's Hospital Darlinghurst and the University of New South Wales, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Frimley Health NHS Foundation, Surrey, UK
| |
Collapse
|
22
|
Chang TT, Chen JW. Emerging role of chemokine CC motif ligand 4 related mechanisms in diabetes mellitus and cardiovascular disease: friends or foes? Cardiovasc Diabetol 2016; 15:117. [PMID: 27553774 PMCID: PMC4995753 DOI: 10.1186/s12933-016-0439-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/12/2016] [Indexed: 12/14/2022] Open
Abstract
Chemokines are critical components in pathology. The roles of chemokine CC motif ligand 4 (CCL4) and its receptor are associated with diabetes mellitus (DM) and atherosclerosis cardiovascular diseases. However, due to the complexity of these diseases, the specific effects of CCL4 remain unclear, although recent reports have suggested that multiple pathways are related to CCL4. In this review, we provide an overview of the role and potential mechanisms of CCL4 and one of its major receptors, fifth CC chemokine receptor (CCR5), in DM and cardiovascular diseases. CCL4-related mechanisms, including CCL4 and CCR5, might provide potential therapeutic targets in DM and/or atherosclerosis cardiovascular diseases.
Collapse
Affiliation(s)
- Ting-Ting Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Jaw-Wen Chen
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, R.O.C. .,Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C. .,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan, R.O.C. .,Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C.
| |
Collapse
|
23
|
Non-human primate models of SIV infection and CNS neuropathology. Curr Opin Virol 2016; 19:92-8. [PMID: 27544476 DOI: 10.1016/j.coviro.2016.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/15/2016] [Accepted: 07/29/2016] [Indexed: 02/03/2023]
Abstract
Non-human primate models of AIDS and neuroAIDS are the premiere model of HIV infection of the CNS and neuropathogenesis. This review discusses current SIV infection models of neuroAIDS emphasizing findings in the last two years. Consistent in these findings is the interplay between host factors that regulate immune responses to virus and viral replication. Several rapid models of AIDS with consistent CNS pathogenesis exist, each of which modulates by antibody treatment or viruses that cause rapid immune suppression and replicate well in macrophages. Consistent in all of these models are data underscoring the importance of monocyte and macrophage activation, infection and accumulation in the CNS.
Collapse
|
24
|
Ntusi N, O’Dwyer E, Dorrell L, Wainwright E, Piechnik S, Clutton G, Hancock G, Ferreira V, Cox P, Badri M, Karamitsos T, Emmanuel S, Clarke K, Neubauer S, Holloway C. HIV-1–Related Cardiovascular Disease Is Associated With Chronic Inflammation, Frequent Pericardial Effusions, and Probable Myocardial Edema. Circ Cardiovasc Imaging 2016; 9:e004430. [DOI: 10.1161/circimaging.115.004430] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background—
Patients with treated HIV infection have clear survival benefits although with increased cardiac morbidity and mortality. Mechanisms of heart disease may be partly related to untreated chronic inflammation. Cardiovascular magnetic resonance imaging allows a comprehensive assessment of myocardial structure, function, and tissue characterization. We investigated, using cardiovascular magnetic resonance, subclinical inflammation and myocardial disease in asymptomatic HIV-infected individuals.
Methods and Results—
Myocardial structure and function were assessed using cardiovascular magnetic resonance at 1.5-T in treated HIV-infected individuals without known cardiovascular disease (n=103; mean age, 45±10 years) compared with healthy controls (n=92; mean age, 44±10 years). Assessments included left ventricular volumes, ejection fraction, strain, regional systolic, diastolic function, native T1 mapping, edema, and gadolinium enhancement. Compared with controls, subjects with HIV infection had 6% lower left ventricular ejection fraction (
P
<0.001), 7% higher myocardial mass (
P
=0.02), 29% lower peak diastolic strain rate (
P
<0.001), 4% higher short-tau inversion recovery values (
P
=0.02), and higher native T1 values (969 versus 956 ms in controls;
P
=0.01). Pericardial effusions and myocardial fibrosis were 3 and 4× more common, respectively, in subjects with HIV infection (both
P
<0.001).
Conclusions—
Treated HIV infection is associated with changes in myocardial structure and function in addition to higher rates of subclinical myocardial edema and fibrosis and frequent pericardial effusions. Chronic systemic inflammation in HIV, which involves the myocardium and pericardium, may explain the high rate of myocardial fibrosis and increased cardiac dysfunction in people living with HIV.
Collapse
Affiliation(s)
- Ntobeko Ntusi
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, United Kingdom (N.N., S.P., V.F., T.K., S.N., C.H.); Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa (N.N., M.B.); Department of Cardiology, St.Vincent’s Hospital, Darlinghurst, New South Wales, Australia (E.O., S.E., C.H.); Department of
| | - Eoin O’Dwyer
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, United Kingdom (N.N., S.P., V.F., T.K., S.N., C.H.); Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa (N.N., M.B.); Department of Cardiology, St.Vincent’s Hospital, Darlinghurst, New South Wales, Australia (E.O., S.E., C.H.); Department of
| | - Lucy Dorrell
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, United Kingdom (N.N., S.P., V.F., T.K., S.N., C.H.); Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa (N.N., M.B.); Department of Cardiology, St.Vincent’s Hospital, Darlinghurst, New South Wales, Australia (E.O., S.E., C.H.); Department of
| | - Emma Wainwright
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, United Kingdom (N.N., S.P., V.F., T.K., S.N., C.H.); Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa (N.N., M.B.); Department of Cardiology, St.Vincent’s Hospital, Darlinghurst, New South Wales, Australia (E.O., S.E., C.H.); Department of
| | - Stefan Piechnik
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, United Kingdom (N.N., S.P., V.F., T.K., S.N., C.H.); Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa (N.N., M.B.); Department of Cardiology, St.Vincent’s Hospital, Darlinghurst, New South Wales, Australia (E.O., S.E., C.H.); Department of
| | - Genevieve Clutton
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, United Kingdom (N.N., S.P., V.F., T.K., S.N., C.H.); Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa (N.N., M.B.); Department of Cardiology, St.Vincent’s Hospital, Darlinghurst, New South Wales, Australia (E.O., S.E., C.H.); Department of
| | - Gemma Hancock
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, United Kingdom (N.N., S.P., V.F., T.K., S.N., C.H.); Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa (N.N., M.B.); Department of Cardiology, St.Vincent’s Hospital, Darlinghurst, New South Wales, Australia (E.O., S.E., C.H.); Department of
| | - Vanessa Ferreira
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, United Kingdom (N.N., S.P., V.F., T.K., S.N., C.H.); Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa (N.N., M.B.); Department of Cardiology, St.Vincent’s Hospital, Darlinghurst, New South Wales, Australia (E.O., S.E., C.H.); Department of
| | - Pete Cox
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, United Kingdom (N.N., S.P., V.F., T.K., S.N., C.H.); Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa (N.N., M.B.); Department of Cardiology, St.Vincent’s Hospital, Darlinghurst, New South Wales, Australia (E.O., S.E., C.H.); Department of
| | - Motasim Badri
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, United Kingdom (N.N., S.P., V.F., T.K., S.N., C.H.); Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa (N.N., M.B.); Department of Cardiology, St.Vincent’s Hospital, Darlinghurst, New South Wales, Australia (E.O., S.E., C.H.); Department of
| | - Theodoros Karamitsos
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, United Kingdom (N.N., S.P., V.F., T.K., S.N., C.H.); Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa (N.N., M.B.); Department of Cardiology, St.Vincent’s Hospital, Darlinghurst, New South Wales, Australia (E.O., S.E., C.H.); Department of
| | - Sam Emmanuel
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, United Kingdom (N.N., S.P., V.F., T.K., S.N., C.H.); Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa (N.N., M.B.); Department of Cardiology, St.Vincent’s Hospital, Darlinghurst, New South Wales, Australia (E.O., S.E., C.H.); Department of
| | - Kieran Clarke
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, United Kingdom (N.N., S.P., V.F., T.K., S.N., C.H.); Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa (N.N., M.B.); Department of Cardiology, St.Vincent’s Hospital, Darlinghurst, New South Wales, Australia (E.O., S.E., C.H.); Department of
| | - Stefan Neubauer
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, United Kingdom (N.N., S.P., V.F., T.K., S.N., C.H.); Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa (N.N., M.B.); Department of Cardiology, St.Vincent’s Hospital, Darlinghurst, New South Wales, Australia (E.O., S.E., C.H.); Department of
| | - Cameron Holloway
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, United Kingdom (N.N., S.P., V.F., T.K., S.N., C.H.); Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa (N.N., M.B.); Department of Cardiology, St.Vincent’s Hospital, Darlinghurst, New South Wales, Australia (E.O., S.E., C.H.); Department of
| |
Collapse
|
25
|
Woollard SM, Kanmogne GD. Maraviroc: a review of its use in HIV infection and beyond. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5447-68. [PMID: 26491256 PMCID: PMC4598208 DOI: 10.2147/dddt.s90580] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human immunodeficiency virus-1 (HIV-1) enters target cells by binding its envelope glycoprotein gp120 to the CD4 receptor and/or coreceptors such as C-C chemokine receptor type 5 (CCR5; R5) and C-X-C chemokine receptor type 4 (CXCR4; X4), and R5-tropic viruses predominate during the early stages of infection. CCR5 antagonists bind to CCR5 to prevent viral entry. Maraviroc (MVC) is the only CCR5 antagonist currently approved by the United States Food and Drug Administration, the European Commission, Health Canada, and several other countries for the treatment of patients infected with R5-tropic HIV-1. MVC has been shown to be effective at inhibiting HIV-1 entry into cells and is well tolerated. With expanding MVC use by HIV-1-infected humans, different clinical outcomes post-approval have been observed with MVC monotherapy or combination therapy with other antiretroviral drugs, with MVC use in humans infected with dual-R5- and X4-tropic HIV-1, infected with different HIV-1 genotype or infected with HIV-2. This review discuss the role of CCR5 in HIV-1 infection, the development of the CCR5 antagonist MVC, its pharmacokinetics, pharmacodynamics, drug–drug interactions, and the implications of these interactions on treatment outcomes, including viral mutations and drug resistance, and the mechanisms associated with the development of resistance to MVC. This review also discusses available studies investigating the use of MVC in the treatment of other diseases such as cancer, graft-versus-host disease, and inflammatory diseases.
Collapse
Affiliation(s)
- Shawna M Woollard
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Georgette D Kanmogne
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
26
|
Walker JA, Beck GA, Campbell JH, Miller AD, Burdo TH, Williams KC. Anti-α4 Integrin Antibody Blocks Monocyte/Macrophage Traffic to the Heart and Decreases Cardiac Pathology in a SIV Infection Model of AIDS. J Am Heart Assoc 2015; 4:JAHA.115.001932. [PMID: 26185285 PMCID: PMC4608078 DOI: 10.1161/jaha.115.001932] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Cardiovascular disease (CVD), myocarditis and fibrosis are comorbidities of HIV+ individuals on durable antiretroviral therapy (ART). Although mechanisms for these vary, monocytes/macrophages are increasingly demonstrated to be key players. Methods and Results We directly blocked monocyte/macrophage traffic to the heart in an SIV model of AIDS using an anti-alpha-4 integrin antibody (natalizumab). Nineteen Rhesus macaques were SIVmac251 infected and CD8-lymphocyte depleted for the development of rapid AIDS. Ten animals received natalizumab once a week, for 3 weeks, and were sacrificed 1 week later. Six animals began treatment at the time of infection (early) and the remaining 4 began treatment 28 days post-infection (late), a time point we have previously established when significant cardiac inflammation occurs. Nine animals were untreated controls; of these, 3 were sacrificed early and 6 were sacrificed late. At necropsy, we found decreased SIV-associated cardiac pathology in late natalizumab-treated animals, compared to untreated controls. Early and late treatment resulted in significant reductions in numbers of CD163+ and CD68+ macrophages in cardiac tissues, compared to untreated controls, and a trend in decreasing numbers of newly recruited MAC387+ and BrdU+ (recruited) monocytes/macrophages. In late treated animals, decreased macrophage numbers in cardiac tissues correlated with decreased fibrosis. Early and late treatment resulted in decreased cardiomyocyte damage. Conclusions These data demonstrate a role for macrophages in the development of cardiac inflammation and fibrosis, and suggest that blocking monocyte/macrophage traffic to the heart can alleviate HIV- and SIV-associated myocarditis and fibrosis. They underscore the importance of targeting macrophage activation and traffic as an adjunctive therapy in HIV infection.
Collapse
Affiliation(s)
- Joshua A Walker
- Department of Biology, Boston College, Chestnut Hill, MA (J.A.W., G.A.B., J.H.C., T.H.B., K.C.W.)
| | - Graham A Beck
- Department of Biology, Boston College, Chestnut Hill, MA (J.A.W., G.A.B., J.H.C., T.H.B., K.C.W.)
| | - Jennifer H Campbell
- Department of Biology, Boston College, Chestnut Hill, MA (J.A.W., G.A.B., J.H.C., T.H.B., K.C.W.)
| | - Andrew D Miller
- Section of Anatomic Pathology, Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (A.D.M.)
| | - Tricia H Burdo
- Department of Biology, Boston College, Chestnut Hill, MA (J.A.W., G.A.B., J.H.C., T.H.B., K.C.W.)
| | - Kenneth C Williams
- Department of Biology, Boston College, Chestnut Hill, MA (J.A.W., G.A.B., J.H.C., T.H.B., K.C.W.)
| |
Collapse
|
27
|
Yu J, Lu Y, Li Y, Xiao L, Xing Y, Li Y, Wu L. Role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes via TLR4/ROS/NF-κB pathway. J Pharm Pharmacol 2015; 67:1240-50. [PMID: 25880347 DOI: 10.1111/jphp.12415] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/27/2015] [Indexed: 01/28/2023]
Abstract
Abstract
Objectives
S100A1 plays a crucial role in hypoxia-induced inflammatory response in cardiomyocytes. However, the role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes is still unknown.
Methods
enzyme-linked immunosorbent assay (ELISA) was performed for the determination of inflammatory cytokines. Immunocytochemistry and immunofluorescence, Western blot analysis and Real-time polymerase chain reaction (RT-PCR) were conducted to assess protein or mRNA expressions. Fluorogenic probe dihydroethidium (DHE) was used to evaluate the generation of reactive oxygen species (ROS) while Hoechst 33342 staining for apoptosis. Small interfering RNA (siRNA) for S100A1 was used to evaluate the role of S100A1.
Key findings
The levels of ROS and inflammatory cytokine including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-8 in H9c2 cells were increased remarkably by hypoxia. However, IL-37 protein or mRNA levels were decreased significantly. Both Toll-like receptor 4 (TLR4) inhibitor Ethyl (6R)-6-[N-(2-Chloro-4fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242) treatment or siRNA S100A1 downregulated TLR4 expression and inflammatory cytokine level and mRNA in H9c2 cells, as well as weakening ROS and phospho-p65 Nuclear factor (NF)-κB levels. Further, S100A1 treatment significantly reduced TNF-α protein or mRNA level whereas enhanced IL-37 protein or mRNA level, and could attenuate ROS and phospho-p65 NF-κB levels.
Conclusions
Our results demonstrate that S100A1 can regulate the inflammatory response and oxidative stress in H9C2 cells via TLR4/ROS/NF-κB pathway. These findings provide an interesting strategy for protecting cardiomyocytes from hypoxia-induced inflammatory response.
Collapse
Affiliation(s)
- Jiangkun Yu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanyu Lu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yapeng Li
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lili Xiao
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Xing
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanshen Li
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Leiming Wu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|