1
|
Sun Y, Xiao L, Chen L, Wang X. Doxorubicin-Induced Cardiac Remodeling: Mechanisms and Mitigation Strategies. Cardiovasc Drugs Ther 2025:10.1007/s10557-025-07673-6. [PMID: 40009315 DOI: 10.1007/s10557-025-07673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND The therapeutic prowess of doxorubicin in oncology is marred by its cardiotoxic consequences, manifesting as cardiac remodeling. Pathophysiological alterations triggered by doxorubicin include inflammatory cascades, fibrotic tissue deposition, vascular and valvular changes, and finally cardiomyopathy. These multifarious consequences collectively orchestrate the deterioration of cardiac architecture and function. METHOD By charting the molecular underpinnings and remedial prospects, this review aspires to contribute a novel perspective using latest publications to the ongoing quest for cardioprotection in cancer therapy. RESULTS AND DISCUSSION Experimental analyses demonstrate the pivotal roles of oxidative stress and subsequent necrosis and apoptosis of cardiomyocytes, muscle cells, endothelial cells, and small muscle cells in different parts of the heart. In addition, severe and unusual infiltration of macrophages, mast cells, and neutrophils can amplify oxidative damage and subsequent impacts such as chronic inflammatory responses, vascular and valvular remodeling, and fibrosis. These modifications can render cardiomyopathy, ischemia, heart attack, and other disorders. In an endeavor to counteract these ramifications, a spectrum of emerging adjuvants and strategies are poised to fortify the heart against doxorubicin's deleterious effects. CONCLUSION The compendium of mitigation tactics such as innovative pharmacological agents hold the potential to attenuate the cardiotoxic burden.
Collapse
Affiliation(s)
- Yanna Sun
- Department of Cardiology, The First Affiliated of Zhengzhou University, Zhengzhou City Henan Province, 450052, China
| | - Lili Xiao
- Department of Cardiology, The First Affiliated of Zhengzhou University, Zhengzhou City Henan Province, 450052, China
| | - Linlin Chen
- Department of Cardiology, The First Affiliated of Zhengzhou University, Zhengzhou City Henan Province, 450052, China
| | - Xiaofang Wang
- Department of Cardiology, The First Affiliated of Zhengzhou University, Zhengzhou City Henan Province, 450052, China.
| |
Collapse
|
2
|
Wu YJ, Lei J, Zhao J, Cao XW, Wang FJ. Design and characterization of a novel tumor-homing cell-penetrating peptide for drug delivery in TGFBR3 high-expressing tumors. Chem Biol Drug Des 2023; 102:1421-1434. [PMID: 37620132 DOI: 10.1111/cbdd.14333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/03/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Targeted therapy has attracted more and more attention in cancer treatment in recent years. However, due to the diversity of tumor types and the mutation of target sites on the tumor surface, some existing targets are no longer suitable for tumor therapy. In addition, the long-term administration of a single targeted drug can also lead to drug resistance and attenuate drug potency, so it is important to develop new targets for tumor therapy. The expression of Type III transforming growth factor β receptor (TGFBR3) is upregulated in colon, breast, and prostate cancer cells, and plays an important role in the occurrence and development of these cancers, so TGFBR3 may be developed as a novel target for tumor therapy, but so far there is no report on this research. In this study, the structure of bone morphogenetic protein 4 (BMP4), one of the ligands of TGFBR3 was analyzed through the docking analysis with TGFBR3 and sequence charge characteristic analysis, and a functional tumor-targeting penetrating peptide T3BP was identified. The results of fluorescent labeling experiments showed that T3BP could target and efficiently enter tumor cells with high expression of TGFBR3, especially A549 cells. When the expression of TGFBR3 on the surface of tumor cells (HeLa) was knocked down by RNA interference, the high delivery efficiency of T3BP was correspondingly reduced by 40%, indicating that the delivery was TGFBR3-dependent. Trichosanthin (TCS, a plant-derived ribosome inactivating protein) fused with T3BP can enhance the inhibitory activity of the fusion protein on A549 cells by more than 200 times that of TCS alone. These results indicated that T3BP, as a novel targeting peptide that can efficiently bind TGFBR3 and be used for targeted therapy of tumors with high expression of TGFBR3. This study enriches the supply of tumor-targeting peptides and provides a new potential application option for the treatment of tumors with high expression of TGFBR3.
Collapse
Affiliation(s)
- Yi-Jie Wu
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jin Lei
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jian Zhao
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, Shanghai, China
| | - Xue-Wei Cao
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, Shanghai, China
| | - Fu-Jun Wang
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, Shanghai, China
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd, Dongyang, China
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Tan X, Dai Q, Sun H, Jiang W, Lu S, Wang R, Lv M, Sun X, Lv N, Dai Q. Systematic Bioinformatics Analysis Based on Public and Second-Generation Sequencing Transcriptome Data: A Study on the Diagnostic Value and Potential Mechanisms of Immune-Related Genes in Acute Myocardial Infarction. Front Cardiovasc Med 2022; 9:863248. [PMID: 35498008 PMCID: PMC9046674 DOI: 10.3389/fcvm.2022.863248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 12/05/2022] Open
Abstract
Acute myocardial infarction (AMI) is one of the most serious cardiovascular diseases worldwide. Advances in genomics have provided new ideas for the development of novel molecular biomarkers of potential clinical value for AMI.
Collapse
Affiliation(s)
- Xiaobing Tan
- Department of Center of Stomatology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Qingli Dai
- Department of Ultrasound, Dali Bai Autonomous Prefecture People's Hospital, The Third Affiliated Hospital of Dali University, Dali, China
| | - Huang Sun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenqing Jiang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Si Lu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruxian Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meirong Lv
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xianfeng Sun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Naying Lv
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qingyuan Dai
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Qingyuan Dai
| |
Collapse
|
4
|
Abstract
Transforming growth factor-β (TGFβ) isoforms are upregulated and activated in myocardial diseases and have an important role in cardiac repair and remodelling, regulating the phenotype and function of cardiomyocytes, fibroblasts, immune cells and vascular cells. Cardiac injury triggers the generation of bioactive TGFβ from latent stores, through mechanisms involving proteases, integrins and specialized extracellular matrix (ECM) proteins. Activated TGFβ signals through the SMAD intracellular effectors or through non-SMAD cascades. In the infarcted heart, the anti-inflammatory and fibroblast-activating actions of TGFβ have an important role in repair; however, excessive or prolonged TGFβ signalling accentuates adverse remodelling, contributing to cardiac dysfunction. Cardiac pressure overload also activates TGFβ cascades, which initially can have a protective role, promoting an ECM-preserving phenotype in fibroblasts and preventing the generation of injurious, pro-inflammatory ECM fragments. However, prolonged and overactive TGFβ signalling in pressure-overloaded cardiomyocytes and fibroblasts can promote cardiac fibrosis and dysfunction. In the atria, TGFβ-mediated fibrosis can contribute to the pathogenic substrate for atrial fibrillation. Overactive or dysregulated TGFβ responses have also been implicated in cardiac ageing and in the pathogenesis of diabetic, genetic and inflammatory cardiomyopathies. This Review summarizes the current evidence on the role of TGFβ signalling in myocardial diseases, focusing on cellular targets and molecular mechanisms, and discussing challenges and opportunities for therapeutic translation.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
5
|
Liu Y, Hu R, Shen H, Mo Q, Wang X, Zhang G, Li S, Liang G, Hou N, Luo J. Endophilin A2-mediated alleviation of endoplasmic reticulum stress-induced cardiac injury involves the suppression of ERO1α/IP 3R signaling pathway. Int J Biol Sci 2021; 17:3672-3688. [PMID: 34512174 PMCID: PMC8416715 DOI: 10.7150/ijbs.60110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/11/2021] [Indexed: 01/14/2023] Open
Abstract
Cardiac injury upon myocardial infarction (MI) is the leading cause of heart failure. The present study aims to investigate the role of EndoA2 in ischemia-induced cardiomyocyte apoptosis and cardiac injury. In vivo, we established an MI mouse model by ligating the left anterior descending (LAD) coronary artery, and intramyocardial injection of adenoviral EndoA2 (Ad-EndoA2) was used to overexpress EndoA2. In vitro, we used the siRNA and Ad-EndoA2 transfection strategies. Here, we reported that EndoA2 expression was remarkably elevated in the infarct border zone of MI mouse hearts and neonatal rat cardiomyocytes (NRCMs) stimulated with oxygen and glucose deprivation (OGD) which mimicked ischemia. We showed that intramyocardial injection of Ad-EndoA2 attenuated cardiomyocyte apoptosis and reduced endoplasmic reticulum (ER) stress in response to MI injury. Using siRNA for knockdown and Ad-EndoA2 for overexpression, we validated that knockdown of EndoA2 in NRCMs exacerbated OGD-induced NRCM apoptosis, whereas overexpression of EndoA2 attenuates OGD-induced cardiomyocyte apoptosis. Mechanistically, knockdown of EndoA2 activated ER stress response, which increases ER oxidoreductase 1α (ERO1α) and inositol 1, 4, 5-trisphosphate receptor (IP3R) activity, thus led to increased intracellular Ca2+ accumulation, followed by elevated calcineurin activity and nuclear factor of activated T-cells (NFAT) dephosphorylation. Pretreatment with the IP3R inhibitor 2-Aminoethoxydiphenylborate (2-APB) attenuated intracellular Ca2+ accumulation, and pretreatment with the Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) or the calcineurin inhibitor Cyclosporin A (CsA) inhibited EndoA2-knockdown-induced NRCM apoptosis. Overexpression of EndoA2 led to the opposite effects by suppressing ER-stress-mediated ERO1α/IP3R signaling pathway. This study demonstrated that EndoA2 protected cardiac function in response to MI via attenuating ER-stress-mediated ERO1α/IP3R signaling pathway. Targeting EndoA2 is a potential therapeutic strategy for the prevention of postinfarction-induced cardiac injury and heart failure.
Collapse
Affiliation(s)
- Yun Liu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Ruixiang Hu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Huanjia Shen
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Qinxin Mo
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Xinqiuyue Wang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Guiping Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Sujuan Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Guanfeng Liang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Ning Hou
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Jiandong Luo
- Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P.R. China
| |
Collapse
|
6
|
Li X, Liu S, Qu L, Chen Y, Yuan C, Qin A, Liang J, Huang Q, Jiang M, Zou W. Dioscin and diosgenin: Insights into their potential protective effects in cardiac diseases. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114018. [PMID: 33716083 DOI: 10.1016/j.jep.2021.114018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/07/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND ETHNOPHARMACOLOGICAL RELEVANCE Dioscin and diosgenin derived from plants of the genus Dioscoreaceae such as D. nipponica and D. panthaica Prain et Burk. Were utilized as the main active ingredients of traditional herbal medicinal products for coronary heart disease in the former Soviet Union and China since 1960s. A growing number of research showed that dioscin and diosgenin have a wide range of pharmacological activities in heart diseases. AIM OF THE STUDY To summarize the evidence of the effectiveness of dioscin and diosgenin in cardiac diseases, and to provide a basis and reference for future research into their clinical applications and drug development in the field of cardiac disease. METHODS Literatures in this review were searched in PubMed, ScienceDirect, Google Scholar, China National Knowledge Infrastructure (CNKI) and Web of Science. All eligible studies are analyzed and summarized in this review. RESULTS The pharmacological activities and therapeutic potentials of dioscin and diosgenin in cardiac diseases are similar, can effectively improve hypertrophic cardiomyopathy, arrhythmia, myocardial I/R injury and cardiotoxicity caused by doxorubicin. But the bioavailability of dioscin and diosgenin may be too low as a result of poor absorption and slow metabolism, which hinders their development and utilization. CONCLUSION Dioscin and diosgenin need further in-depth experimental research, clinical transformation and structural modification or research of new preparations before they can be expected to be developed into new therapeutic drugs in the field of cardiac disease.
Collapse
Affiliation(s)
- Xiaofen Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Sili Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Liping Qu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yang Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chuqiao Yuan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Anquan Qin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jiyi Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qianqian Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Miao Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
7
|
Lozano-Prieto M, Adlam D, García-Guimaraes M, Sanz-García A, Vera-Tomé P, Rivero F, Cuesta J, Bastante T, Baranowska-Clarke AA, Vara A, Martin-Gayo E, Vicente-Manzanares M, Martín P, Samani NJ, Sánchez-Madrid F, Alfonso F, de la Fuente H. Differential miRNAs in acute spontaneous coronary artery dissection: Pathophysiological insights from a potential biomarker. EBioMedicine 2021; 66:103338. [PMID: 33866193 PMCID: PMC8079473 DOI: 10.1016/j.ebiom.2021.103338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spontaneous Coronary Artery Dissection (SCAD) is an important cause of acute coronary syndromes, particularly in young to middle-aged women. Differentiating acute SCAD from coronary atherothrombosis remains a major clinical challenge. METHODS A case-control study was used to explore the usefulness of circulating miRNAs to discriminate both clinical entities. The profile of miRNAs was evaluated using an unbiased human RT-PCR platform and confirmed using individual primers. miRNAs were evaluated in plasma samples from acute SCAD and atherothrombotic acute myocardial infarction (AT-AMI) from two independent cohorts; discovery cohort (SCAD n = 15, AT-AMI n = 15), and validation cohort (SCAD n = 11, AT-AMI n = 41) with 9 healthy control subjects. Plasma levels of IL-8, TGFB1, TGBR1, Endothelin-1 and MMP2 were analysed by ELISA assays. FINDINGS From 15 differentially expressed miRNAs detected in cohort 1, we confirmed in cohort 2 the differential expression of 4 miRNAs: miR-let-7f-5p, miR-146a-5p, miR-151a-3p and miR-223-5p, whose expression was higher in SCAD compared to AT-AMI. The combined expression of these 4 miRNAs showed the best predictive value to distinguish between both entities (AUC: 0.879, 95% CI 0.72-1.0) compared to individual miRNAs. Functional profiling of target genes identified an association with blood vessel biology, TGF-beta pathway and cytoskeletal traction force. ELISA assays showed high plasma levels of IL-8, TGFB1, TGFBR1, Endothelin-1 and MMP2 in SCAD patients compared to AT-AMI. INTERPRETATION We present a novel signature of plasma miRNAs in patients with SCAD. miR-let-7f-5p, miR-146a-5p, miR-151a-3p and miR-223-5p discriminate SCAD from AT-AMI patients and also shed light on the pathological mechanisms underlying this condition. FUNDING Spanish Ministry of Economy and Competitiveness (MINECO): Plan Nacional de Salud SAF2017-82886-R, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV). Fundación BBVA a equipos de Investigación Científica 2018 and from Caixa Banking Foundation under the project code HR17-00016 to F.S.M. Instituto de Salud Carlos III (AES 2019): PI19/00565 to F.R, PI19/00545 to P.M. CAM (S2017/BMD-3671-INFLAMUNE-CM) from Comunidad de Madrid to FSM and PM. The UK SCAD study was supported by BeatSCAD, the British Heart Foundation (BHF) PG/13/96/30608 the NIHR rare disease translational collaboration and the Leicester NIHR Biomedical Research Centre.
Collapse
Affiliation(s)
- Marta Lozano-Prieto
- Department of Immunology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - David Adlam
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Marcos García-Guimaraes
- Department of Cardiology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain; Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Ancor Sanz-García
- Data Analysis Unit, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain
| | - Paula Vera-Tomé
- Department of Immunology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fernando Rivero
- Department of Cardiology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain
| | - Javier Cuesta
- Department of Cardiology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain
| | - Teresa Bastante
- Department of Cardiology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain
| | - Anna A Baranowska-Clarke
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Alicia Vara
- Department of Immunology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Enrique Martin-Gayo
- Department of Immunology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain; Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Pilar Martín
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares,; CIBER de Enfermedades Cardiovasculares, Spain
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Francisco Sánchez-Madrid
- Department of Immunology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares,; CIBER de Enfermedades Cardiovasculares, Spain
| | - Fernando Alfonso
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK; CIBER de Enfermedades Cardiovasculares, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain.
| |
Collapse
|
8
|
Elhadad MA, Jonasson C, Huth C, Wilson R, Gieger C, Matias P, Grallert H, Graumann J, Gailus-Durner V, Rathmann W, von Toerne C, Hauck SM, Koenig W, Sinner MF, Oprea TI, Suhre K, Thorand B, Hveem K, Peters A, Waldenberger M. Deciphering the Plasma Proteome of Type 2 Diabetes. Diabetes 2020; 69:2766-2778. [PMID: 32928870 PMCID: PMC7679779 DOI: 10.2337/db20-0296] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022]
Abstract
With an estimated prevalence of 463 million affected, type 2 diabetes represents a major challenge to health care systems worldwide. Analyzing the plasma proteomes of individuals with type 2 diabetes may illuminate hitherto unknown functional mechanisms underlying disease pathology. We assessed the associations between type 2 diabetes and >1,000 plasma proteins in the Cooperative Health Research in the Region of Augsburg (KORA) F4 cohort (n = 993, 110 cases), with subsequent replication in the third wave of the Nord-Trøndelag Health Study (HUNT3) cohort (n = 940, 149 cases). We computed logistic regression models adjusted for age, sex, BMI, smoking status, and hypertension. Additionally, we investigated associations with incident type 2 diabetes and performed two-sample bidirectional Mendelian randomization (MR) analysis to prioritize our results. Association analysis of prevalent type 2 diabetes revealed 24 replicated proteins, of which 8 are novel. Proteins showing association with incident type 2 diabetes were aminoacylase-1, growth hormone receptor, and insulin-like growth factor-binding protein 2. Aminoacylase-1 was associated with both prevalent and incident type 2 diabetes. MR analysis yielded nominally significant causal effects of type 2 diabetes on cathepsin Z and rennin, both known to have roles in the pathophysiological pathways of cardiovascular disease, and of sex hormone-binding globulin on type 2 diabetes. In conclusion, our high-throughput proteomics study replicated previously reported type 2 diabetes-protein associations and identified new candidate proteins possibly involved in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Mohamed A Elhadad
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Jonasson
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health, Norwegian University of Science and Technology, Levanger, Norway
| | - Cornelia Huth
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Pamela Matias
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- The German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Koenig
- German Research Center for Cardiovascular Disease (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Deutsches Herzzentrum München, Technische Universitat München, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Moritz F Sinner
- German Research Center for Cardiovascular Disease (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University, Munich, Germany
| | - Tudor I Oprea
- Department of Internal Medicine and UNM Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karsten Suhre
- Department of Biophysics and Physiology, Weill Cornell Medicine - Qatar, Education City, Doha, Qatar
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health, Norwegian University of Science and Technology, Levanger, Norway
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Medical Information Sciences, Biometry and Epidemiology, Ludwig Maximilian University, Munich, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
9
|
Chakraborti S, Pramanick A, Saha S, Sarkar S, Singh LP, Stewart A, Maity B. Biphasic changes in TGF-β1 signaling drive NSAID-induced multi-organ damage. Free Radic Biol Med 2020; 160:125-140. [PMID: 32750407 DOI: 10.1016/j.freeradbiomed.2020.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/04/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022]
Abstract
The clinical utility of non-steroidal anti-inflammatory drugs (NSAIDs), used extensively worldwide, is limited by adverse cardiac events resulting from chronic drug exposure. Here, we provide evidence identifying transforming growth factor β (TGF-β1), released from multiple tissues, as a critical driver of NSAID-induced multi-organ damage. Biphasic changes in TGF-β1 levels in liver and heart were accompanied by ROS generation, cell death, fibrotic remodeling, compromised cardiac contractility and elevated liver enzymes. Pharmacological inhibition of TGF-βRI signaling markedly improved heart and liver function and increased overall survival of animals exposed to multiple NSAIDs, effects likely mediated by reductions in NOX-dependent ROS generation. Notably, the beneficial impact of TGF-βRI blockade was confined to a critical window wherein consecutive, but not concurrent, inhibitor administration improved cardiac and hepatic endpoints. Remarkably, in addition to ameliorating indomethacin-mediated myofilament disruptions, cardiac TGF-βRI knockdown lead to drastic reductions in TGF-β1 production accompanied by lessening in intestinal lesioning underscoring the importance of endocrine TGF-β1 signaling in NSAID-driven tissue injury. Indeed, gastric ulceration was associated with a higher incidence of cardiac complications in a human cohort underscoring the critical importance of circulation-facilitated peripheral organ system interconnectedness in efforts seeking to mitigate the toxic side effects of chronic NSAID use.
Collapse
Affiliation(s)
- Sreemoyee Chakraborti
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Arnab Pramanick
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Subhasish Sarkar
- Department of Surgery, College of Medicine and Sagore Dutta Hospital, B.T. Road, Kamarhati, Kolkata, West Bengal, 700058, India
| | | | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA.
| | - Biswanath Maity
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India.
| |
Collapse
|
10
|
Guo W, Li Y, Pang W, Shen H. Exosomes: A Potential Therapeutic Tool Targeting Communications between Tumor Cells and Macrophages. Mol Ther 2020; 28:1953-1964. [PMID: 32563274 PMCID: PMC7474264 DOI: 10.1016/j.ymthe.2020.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/21/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes comprise extracellular vesicles (EVs) with diameters between 30 and 150 nm. They transfer proteins, RNA, and other molecules from cell to cell, playing an important role in the interactions between cells. The tumor microenvironment (TME) has been found to contain various cells and molecules that have an important impact on tumor development. In the TME, macrophages have been found to have an important relationship with tumor cells, with tumors recruiting and inducing macrophages to become tumor-associated macrophages (TAMs), which promote tumor development. Recently, exosomes have been found to play a critical role in the interaction between tumor cells and macrophages. Thus, in this review, we summarize the roles and mechanisms of exosomes in the interaction between tumor cells and macrophages and the potential methods by which exosomes are used to target the communication between tumor cells and macrophages to treat cancer.
Collapse
Affiliation(s)
- Weihua Guo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yashan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Pang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
11
|
Qiu F, Han Y, Shao X, Paulo P, Li W, Zhu M, Tang N, Guo S, Chen Y, Wu H, Zhao D, Liu Y, Chu W. Knockdown of endogenous RNF4 exacerbates ischaemia-induced cardiomyocyte apoptosis in mice. J Cell Mol Med 2020; 24:9545-9559. [PMID: 32722882 PMCID: PMC7520334 DOI: 10.1111/jcmm.15363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/13/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
RNF4, a poly‐SUMO‐specific E3 ubiquitin ligase, is associated with protein degradation, DNA damage repair and tumour progression. However, the effect of RNF4 in cardiomyocytes remains to be explored. Here, we identified the alteration of RNF4 from ischaemic hearts and oxidative stress‐induced apoptotic cardiomyocytes. Upon myocardial infarction (MI) or H2O2/ATO treatment, RNF4 increased rapidly and then decreased gradually. PML SUMOylation and PML nuclear body (PML‐NB) formation first enhanced and then degraded upon oxidative stress. Reactive oxygen species (ROS) inhibitor was able to attenuate the elevation of RNF4 expression and PML SUMOylation. PML overexpression and RNF4 knockdown by small interfering RNA (siRNA) enhanced PML SUMOylation, promoted p53 recruitment and activation and exacerbated H2O2/ATO‐induced cardiomyocyte apoptosis which could be partially reversed by knockdown of p53. In vivo, knockdown of endogenous RNF4 via in vivo adeno‐associated virus infection deteriorated post‐MI structure remodelling including more extensive interstitial fibrosis and severely fractured and disordered structure. Furthermore, knockdown of RNF4 worsened ischaemia‐induced cardiac dysfunction of MI models. Our results reveal a novel myocardial apoptosis regulation model that is composed of RNF4, PML and p53. The modulation of these proteins may provide a new approach to tackling cardiac ischaemia.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Yanna Han
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xiaoqi Shao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China.,Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Petro Paulo
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Wenyue Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Mengying Zhu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Nannan Tang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Shuaili Guo
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Yibing Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Han Wu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Dan Zhao
- Departments of Clinical Pharmacy and Cardiology, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P.R. China
| | - Yu Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Wenfeng Chu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
12
|
Sozen E, Yazgan B, Tok OE, Demirel T, Ercan F, Proto JD, Ozer NK. Cholesterol induced autophagy via IRE1/JNK pathway promotes autophagic cell death in heart tissue. Metabolism 2020; 106:154205. [PMID: 32184090 DOI: 10.1016/j.metabol.2020.154205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cardiovascular diseases (CVDs), with highest mortality and morbidity rates, are the major cause of death in the world. Due to the limited information on heart tissue changes, mediated by hypercholesterolemia, we planned to investigate molecular mechanisms of endoplasmic reticulum (ER) stress and related cell death in high cholesterol fed rabbit model and possible beneficial effects of α-tocopherol. METHODS Molecular changes in rabbit heart tissue and cultured cardiomyocytes (H9c2 cells) were measured by western blotting, qRT-PCR, immunflouresence and flow cytometry experiments. Histological modifications were assessed by light and electron microscopes, while degradation of mitochondria was quantified through confocal microscope. RESULTS Feeding rabbits 2% cholesterol diet for 8 weeks and treatment of cultured cardiomyocytes with 10 μg/mL cholesterol for 3 h induced excessive autophagic activity via IRE1/JNK pathway. While no change in ER-associated degradation (ERAD) and apoptotic cell death were determined, electron and confocal microscopy analyses in cholesterol supplemented rabbits revealed significant parameters of autophagic cell death, including cytoplasmic autophagosomes, autolysosomes and organelle loss in juxtanuclear area as well as mitochondria engulfment by autophagosome. Either inhibition of ER stress or JNK in cultured cardiomyocytes or α-tocopherol supplementation in rabbits could counteract the effects of cholesterol. CONCLUSION Our findings underline the essential role of hypercholesterolemia in stimulating IRE1/JNK branch of ER stress response which then leads to autophagic cell death in heart tissue. Results also showed α-tocopherol as a promising regulator of autophagic cell death in cardiomyocytes.
Collapse
Affiliation(s)
- Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Maltepe, Istanbul 34854, Turkey
| | - Burak Yazgan
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Maltepe, Istanbul 34854, Turkey
| | - Olgu Enis Tok
- Department of Histology and Embryology, Faculty of Medicine, Marmara University, Maltepe, Istanbul 34854, Turkey
| | - Tugce Demirel
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Maltepe, Istanbul 34854, Turkey
| | - Feriha Ercan
- Department of Histology and Embryology, Faculty of Medicine, Marmara University, Maltepe, Istanbul 34854, Turkey
| | - Jonathan D Proto
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Maltepe, Istanbul 34854, Turkey.
| |
Collapse
|
13
|
Wu H, Zhu H, Zhuang Y, Zhang J, Ding X, Zhan L, Luo S, Zhang Q, Sun F, Zhang M, Pan Z, Lu Y. LncRNA ACART protects cardiomyocytes from apoptosis by activating PPAR-γ/Bcl-2 pathway. J Cell Mol Med 2019; 24:737-746. [PMID: 31749326 PMCID: PMC6933347 DOI: 10.1111/jcmm.14781] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/18/2019] [Accepted: 09/26/2019] [Indexed: 11/30/2022] Open
Abstract
Cardiomyocyte apoptosis is an important process occurred during cardiac ischaemia‐reperfusion injury. Long non‐coding RNAs (lncRNA) participate in the regulation of various cardiac diseases including ischaemic reperfusion (I/R) injury. In this study, we explored the potential role of lncRNA ACART (anti‐cardiomyocyte apoptosis‐related transcript) in cardiomyocyte injury and the underlying mechanism for the first time. We found that ACART was significantly down‐regulated in cardiac tissue of mice subjected to I/R injury or cultured cardiomyocytes treated with hydrogen peroxide (H2O2). Knockdown of ACART led to significant cardiomyocyte injury as indicated by reduced cell viability and increased apoptosis. In contrast, overexpression of ACART enhanced cell viability and reduced apoptosis of cardiomyocytes treated with H2O2. Meanwhile, ACART increased the expression of the B cell lymphoma 2 (Bcl‐2) and suppressed the expression of Bcl‐2‐associated X (Bax) and cytochrome‐C (Cyt‐C). In addition, PPAR‐γ was up‐regulated by ACART and inhibition of PPAR‐γ abolished the regulatory effects of ACART on cell apoptosis and the expression of Bcl‐2, Bax and Cyt‐C under H2O2 treatment. However, the activation of PPAR‐γ reversed the effects of ACART inhibition. The results demonstrate that ACART protects cardiomyocyte injury through modulating the expression of Bcl‐2, Bax and Cyt‐C, which is mediated by PPAR‐γ activation. These findings provide a new understanding of the role of lncRNA ACART in regulation of cardiac I/R injury.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Haixia Zhu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuting Zhuang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jifan Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin Ding
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Linfeng Zhan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shenjian Luo
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qi Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fei Sun
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Mingyu Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yanjie Lu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Yan Q, He B, Hao G, Liu Z, Tang J, Fu Q, Jiang C. KLF9 aggravates ischemic injury in cardiomyocytes through augmenting oxidative stress. Life Sci 2019; 233:116641. [DOI: 10.1016/j.lfs.2019.116641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 01/12/2023]
|
15
|
Deficiency of mouse mast cell protease 4 mitigates cardiac dysfunctions in mice after myocardium infarction. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1170-1181. [PMID: 30639224 DOI: 10.1016/j.bbadis.2019.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/26/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
Mouse mast cell protease-4 (mMCP4) is a chymase that has been implicated in cardiovascular diseases, including myocardial infarction (MI). This study tested a direct role of mMCP4 in mouse post-MI cardiac dysfunction and myocardial remodeling. Immunoblot and immunofluorescent double staining demonstrated mMCP4 expression in cardiomyocytes from the infarct zone from mouse heart at 28 day post-MI. At this time point, mMCP4-deficient Mcpt4-/- mice showed no difference in survival from wild-type (WT) control mice, yet demonstrated smaller infarct size, improved cardiac functions, reduced macrophage content but increased T-cell accumulation in the infarct region compared with those of WT littermates. mMCP4-deficiency also reduced cardiomyocyte apoptosis and expression of TGF-β1, p-Smad2, and p-Smad3 in the infarct region, but did not affect collagen deposition or α-smooth muscle actin expression in the same area. Gelatin gel zymography and immunoblot analysis revealed reduced activities of matrix metalloproteinases and expression of cysteinyl cathepsins in the myocardium, macrophages, and T cells from Mcpt4-/- mice. Immunoblot analysis also found reduced p-Smad2 and p-Smad3 in the myocardium from Mcpt4-/- mice, yet fibroblasts from Mcpt4-/- mice showed comparable levels of p-Smad2 and p-Smad3 to those of WT fibroblasts. Flow cytometry, immunoblot analysis, and immunofluorescent staining demonstrated that mMCP4-deficiency reduced the expression of proapoptotic cathepsins in cardiomyocytes and protected cardiomyocytes from H2O2-induced apoptosis. This study established a role of mMCP4 in mouse post-MI dysfunction by regulating myocardial protease expression and cardiomyocyte death without significant impact on myocardial fibrosis or survival post-MI in mice.
Collapse
|
16
|
Emerging roles of proteoglycans in cardiac remodeling. Int J Cardiol 2018; 278:192-198. [PMID: 30528626 DOI: 10.1016/j.ijcard.2018.11.125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023]
Abstract
Cardiac remodeling is the response of the heart to a range of pathological stimuli. Cardiac remodeling is initially adaptive; however, if sustained, it ultimately causes adverse clinical outcomes. Cardiomyocyte loss or hypertrophy, inflammation and fibrosis are hallmarks of cardiac remodeling. Proteoglycans, which are composed of glycosaminoglycans and a core protein, are a non-structural component of the extracellular matrix. The lack of proteoglycans results in cardiovascular defects during development. Moreover, emerging evidence has indicated that proteoglycans act as significant modifiers in ischemia and pressure overload-related cardiac remodeling. Proteoglycans may also provide novel therapeutic strategies for further improvement in the prognosis of cardiovascular diseases.
Collapse
|
17
|
Yu H, Wang X, Kang F, Chen Z, Meng Y, Dai M. Neuroprotective effects of midazolam on focal cerebral ischemia in rats through anti‑apoptotic mechanisms. Int J Mol Med 2018; 43:443-451. [PMID: 30431057 DOI: 10.3892/ijmm.2018.3973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 02/02/2018] [Indexed: 11/05/2022] Open
Abstract
Stroke is a cerebrovascular circulatory disorder and its high mortality rate represents a prominent threat to human health. Subsequent apoptosis and cytotoxicity are the main causes underlying the poor prognosis. Midazolam (MDZ) is a benzodiazepine drug that is clinically used during surgical procedures and for the treatment of insomnia, with a potential ability to treat stroke. The protective effect of MDZ was investigated on glutamate‑induced cortical neuronal injuries in vitro and transient middle cerebral artery occlusion (tMCAO) rat models in vivo. Western blot analysis and semi quantitative RT‑PCR were used to evaluate the potential underlying mechanisms. In vitro studies revealed that MDZ regulated apoptosis‑associated gene expression and inhibited lactate dehydrogenase (LDH) release, protecting against neuronal damage. In vivo studies revealed that MDZ reduced LDH‑induced neuronal damage by reducing LDH release from the peripheral blood, and brain tissue staining revealed that MDZ protected neurons during tMCAO. MDZ protected neurons under an ischemic environment by inhibiting LDH release and regulating apoptosis‑associated gene expression to reduce cytotoxicity and apoptosis. These results provide a reliable basis for further studies on the effect of MDZ, to improve the prognosis of cerebral infarction.
Collapse
Affiliation(s)
- Hang Yu
- Intensive Care Unit, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Xiaozhi Wang
- Intensive Care Unit, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Fuxin Kang
- Intensive Care Unit, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Zhile Chen
- Intensive Care Unit, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Yunxia Meng
- Intensive Care Unit, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Mingming Dai
- Department of Internal Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| |
Collapse
|