1
|
Han R, Huang H, Zhu J, Jin X, Wang Y, Xu Y, Xia Z. Adipokines and their potential impacts on susceptibility to myocardial ischemia/reperfusion injury in diabetes. Lipids Health Dis 2024; 23:372. [PMID: 39538244 PMCID: PMC11558907 DOI: 10.1186/s12944-024-02357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Coronary artery disease has a high mortality rate and is a striking public health concern, affecting a substantial portion of the global population. On the early onset of myocardial ischemia, thrombolytic therapy and coronary revascularization could promptly restore the bloodstream and nutrient supply to the ischemic tissue, efficiently preserving less severely injured myocardium. However, the abrupt re-establishment of blood flow triggers the significant discharge of previously accumulated oxidative substances and inflammatory cytokines, leading to further harm referred to as ischemia/reperfusion (I/R) injury. Diabetes significantly raises the vulnerability of the heart to I/R injury due to disrupted glucose and lipid processing, impaired insulin sensitivity and metabolic signaling, and increased inflammatory responses. Numerous studies have indicated that adipokines are crucial in the etiology and pathogenesis of obesity, diabetes, hyperlipidemia, hypertension, and coronary artery disease. Adipokines such as adiponectin, adipsin, visfatin, chemerin, omentin, and apelin, which possess protective properties against inflammatory activity and insulin resistance, have been shown to confer myocardial protection in conditions such as atherosclerosis, myocardial hypertrophy, myocardial I/R injury, and diabetic complications. On the other hand, adipokines such as leptin and resistin, known for their pro-inflammatory characteristics, have been linked to elevated cardiac lipid deposition, insulin resistance, and fibrosis. Meteorin-like (metrnl) exhibits opposite effects in various pathological conditions. However, the data on adipokines in myocardial I/R, especially in diabetes, is still incomplete and controversial. This review focuses on recent research regarding the categorization and function of adipokines in the heart muscle, and the identification of different signaling pathways involved in myocardial I/R injury under diabetic conditions, aiming to facilitate the exploration of therapeutic strategies against myocardial I/R injury in diabetes.
Collapse
Affiliation(s)
- Ronghui Han
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Hemeng Huang
- Department of Emergency, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Jianyu Zhu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Xiaogao Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yongyan Wang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China.
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Hengqin, Zhuhai, People's Republic of China.
- Faculty of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, People's Republic of China.
| | - Zhengyuan Xia
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China.
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Yahyazadeh R, Baradaran Rahimi V, Askari VR. Stem cell and exosome therapies for regenerating damaged myocardium in heart failure. Life Sci 2024; 351:122858. [PMID: 38909681 DOI: 10.1016/j.lfs.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Finding novel treatments for cardiovascular diseases (CVDs) is a hot topic in medicine; cell-based therapies have reported promising news for controlling dangerous complications of heart disease such as myocardial infarction (MI) and heart failure (HF). Various progenitor/stem cells were tested in various in-vivo, in-vitro, and clinical studies for regeneration or repairing the injured tissue in the myocardial to accelerate the healing. Fetal, adult, embryonic, and induced pluripotent stem cells (iPSC) have revealed the proper potency for cardiac tissue repair. As an essential communicator among cells, exosomes with specific contacts (proteins, lncRNAs, and miRNAs) greatly promote cardiac rehabilitation. Interestingly, stem cell-derived exosomes have more efficiency than stem cell transplantation. Therefore, stem cells induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), cardiac stem cells (CDC), and skeletal myoblasts) and their-derived exosomes will probably be considered an alternative therapy for CVDs remedy. In addition, stem cell-derived exosomes have been used in the diagnosis/prognosis of heart diseases. In this review, we explained the advances of stem cells/exosome-based treatment, their beneficial effects, and underlying mechanisms, which will present new insights in the clinical field in the future.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Gill JK, Rehsia SK, Verma E, Sareen N, Dhingra S. Stem cell therapy for cardiac regeneration: past, present, and future. Can J Physiol Pharmacol 2024; 102:161-179. [PMID: 38226807 DOI: 10.1139/cjpp-2023-0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cardiac disorders remain the leading cause of mortality worldwide. Current clinical strategies, including drug therapy, surgical interventions, and organ transplantation offer limited benefits to patients without regenerating the damaged myocardium. Over the past decade, stem cell therapy has generated a keen interest owing to its unique self-renewal and immune privileged characteristics. Furthermore, the ability of stem cells to differentiate into specialized cell types, has made them a popular therapeutic tool against various diseases. This comprehensive review provides an overview of therapeutic potential of different types of stem cells in reference to cardiovascular diseases. Furthermore, it sheds light on the advantages and limitations associated with each cell type. An in-depth analysis of the challenges associated with stem cell research and the hurdles for its clinical translation and their possible solutions have also been elaborated upon. It examines the controversies surrounding embryonic stem cells and the emergence of alternative approaches, such as the use of induced pluripotent stem cells for cardiac therapeutic applications. Overall, this review serves as a valuable resource for researchers, clinicians, and policymakers involved in the field of regenerative medicine, guiding the development of safe and effective stem cell-based therapies to revolutionize patient care.
Collapse
Affiliation(s)
- Jaideep Kaur Gill
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Sargun Kaur Rehsia
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Elika Verma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| |
Collapse
|
4
|
Farhana S, Kai YC, Kadir R, Sulaiman WAW, Nordin NA, Nasir NAM. The fate of adipose tissue and adipose-derived stem cells in allograft. Cell Tissue Res 2023; 394:269-292. [PMID: 37624425 DOI: 10.1007/s00441-023-03827-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Utilizing adipose tissue and adipose-derived stem cells (ADSCs) turned into a promising field of allograft in recent years. The therapeutic potential of adipose tissue and ADSCs is governed by their molecular secretions, ability to sustain multi-differentiation and self-renewal which are pivotal in reconstructive, genetic diseases, and cosmetic goals. However, revisiting the existing functional capacity of adipose tissue and ADSCs and their intricate relationship with allograft is crucial to figure out the remarkable question of safety to use in allograft due to the growing evidence of interactions between tumor microenvironment and ADSCs. For instance, the molecular secretions of adipose tissue and ADSCs induce angiogenesis, create growth factors, and control the inflammatory response; it has now been well determined. Though the existing preclinical allograft studies gave positive feedback, ADSCs and adipose tissue are attracted by some factors of tumor stroma. Moreover, allorecognition is pivotal to allograft rejection which is carried out by costimulation in a complement-dependent way and leads to the destruction of the donor cells. However, extensive preclinical trials of adipose tissue and ADSCs in allograft at molecular level are still limited. Hence, comprehensive immunomodulatory analysis could ensure the successful allograft of adipose tissue and ADSCs avoiding the oncological risk.
Collapse
Affiliation(s)
- Sadia Farhana
- Reconstructive Sciences Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
| | - Yew Chun Kai
- Reconstructive Sciences Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
| | - Wan Azman Wan Sulaiman
- Reconstructive Sciences Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
| | - Nor Asyikin Nordin
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
| | - Nur Azida Mohd Nasir
- Reconstructive Sciences Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia.
| |
Collapse
|
5
|
Wang T, Li T, Niu X, Hu L, Cheng J, Guo D, Ren H, Zhao R, Ji Z, Liu P, Li Y, Guo Y. ADSC-derived exosomes attenuate myocardial infarction injury by promoting miR-205-mediated cardiac angiogenesis. Biol Direct 2023; 18:6. [PMID: 36849959 PMCID: PMC9972746 DOI: 10.1186/s13062-023-00361-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Acute myocardial infarction is a major health problem and is the leading cause of death worldwide. Myocardial apoptosis induced by myocardial infarction injury is involved in the pathophysiology of heart failure. Therapeutic stem cell therapy has the potential to be an effective and favorable treatment for ischemic heart disease. Exosomes derived from stem cells have been shown to effectively repair MI injury-induced cardiomyocyte damage. However, the cardioprotective benefits of adipose tissue-derived mesenchymal stem cell (ADSC)-Exos remain unknown. This study aimed to investigate the protective effects of exosomes from ADSC on the hearts of MI-treated mice and to explore the underlying mechanisms. METHODS Cellular and molecular mechanisms were investigated using cultured ADSCs. On C57BL/6J mice, we performed myocardial MI or sham operations and assessed cardiac function, fibrosis, and angiogenesis 4 weeks later. Mice were intramyocardially injected with ADSC-Exos or vehicle-treated ADSCs after 25 min following the MI operation. RESULTS Echocardiographic experiments showed that ADSC-Exos could significantly improve left ventricular ejection fraction, whereas ADSC-Exos administration could significantly alleviate MI-induced cardiac fibrosis. Additionally, ADSC-Exos treatment has been shown to reduce cardiomyocyte apoptosis while increasing angiogenesis. Molecular experiments found that exosomes extracted from ADSCs can promote the proliferation and migration of microvascular endothelial cells, facilitate angiogenesis, and inhibit cardiomyocytes apoptosis through miRNA-205. We then transferred isolated exosomes from ADSCs into MI-induced mice and observed decreased cardiac fibrosis, increased angiogenesis, and improved cardiac function. We also observed increased apoptosis and decreased expression of hypoxia-inducible factor-1α and vascular endothelial growth factor in HMEC-1 transfected with a miRNA-205 inhibitor. CONCLUSION In summary, these findings show that ADSC-Exos can alleviate cardiac injury and promote cardiac function recovery in MI-treated mice via the miRNA-205 signaling pathway. ADSC-Exos containing miRNA205 have a promising therapeutic potential in MI-induced cardiac injury.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tao Li
- Ultrasound Diagnostic and Treatment Center, Xijing Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xiaolin Niu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lang Hu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jin Cheng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dong Guo
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - He Ren
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ran Zhao
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhaole Ji
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Pengyun Liu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yanjie Guo
- Heart Hospital, Xi'an International Medical Center, Xi'an, 710038, China. .,Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
6
|
Solanes N, Bobi J, Arrieta M, Jimenez FR, Palacios C, Rodríguez JJ, Roqué M, Galán-Arriola C, Ibañez B, Freixa X, García-Álvarez A, Sabaté M, Rigol M. An open secret in porcine acute myocardial infarction models: The relevance of anaesthetic regime and breed in ischaemic outcomes. Front Vet Sci 2022; 9:919454. [PMID: 36353254 PMCID: PMC9637910 DOI: 10.3389/fvets.2022.919454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
Large animal models of acute myocardial infarction (AMI) play a crucial role in translating novel therapeutic approaches to patients as denoted by their use in the right-before-human testing platform. At present, the porcine model of AMI is used most frequently as it mimics the human condition and its anatomopathological features accurately. We want to describe to, and share with, the translational research community our experience of how different anaesthetic protocols (sevoflurane, midazolam, ketamine+xylazine+midazolam, and propofol) and pig breeds [Large White and Landrace x Large White (LLW)] can dramatically modify the outcomes of a well-established porcine model of closed-chest AMI. Our group has extensive experience with the porcine model of reperfused AMI and, over time, we reduced the time of ischaemia used to induce the disease from 90 to 50 min to increase the salvageable myocardium for cardioprotection studies. For logistical reasons, we changed both the anaesthetic protocol and the pig breed used, but these resulted in a dramatic reduction in the size of the myocardial infarct, to almost zero in some cases (sevoflurane, 50-min ischaemia, LLW, 2.4 ± 3.9% infarct size), and the cardiac function was preserved. Therefore, we had to re-validate the model by returning to 90 min of ischaemia. Here, we report the differences in infarct size and cardiac function, measured by different modalities, for each combination of anaesthetic protocol and pig breed we have used. Furthermore, we discuss these combinations and the limited literature pertaining to how these two factors influence cardiac function and infarct size in the porcine model of AMI.
Collapse
Affiliation(s)
- Núria Solanes
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Bobi
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
- Experimental Cardiology Department, Erasmus MC University Medical Centre, Rotterdam, Netherlands
| | - Marta Arrieta
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
| | - Francisco Rafael Jimenez
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
| | - Carmen Palacios
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
| | - Juan José Rodríguez
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
| | - Mercè Roqué
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, CIBER de enfermedades cardiovasculares (CIBERCV), IIS- Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Borja Ibañez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, CIBER de enfermedades cardiovasculares (CIBERCV), IIS- Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Xavier Freixa
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
| | - Ana García-Álvarez
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
| | - Manel Sabaté
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Rigol
- Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) and Cardiology Department, Institut Clínic Cardiovascular, Universitat de Barcelona, Barcelona, Spain
- Bioresearch and Veterinary Services, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Montserrat Rigol
| |
Collapse
|
7
|
Ordoño J, Pérez-Amodio S, Ball K, Aguirre A, Engel E. The generation of a lactate-rich environment stimulates cell cycle progression and modulates gene expression on neonatal and hiPSC-derived cardiomyocytes. BIOMATERIALS ADVANCES 2022; 139:213035. [PMID: 35907761 PMCID: PMC11061846 DOI: 10.1016/j.bioadv.2022.213035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In situ tissue engineering strategies are a promising approach to activate the endogenous regenerative potential of the cardiac tissue helping the heart to heal itself after an injury. However, the current use of complex reprogramming vectors for the activation of reparative pathways challenges the easy translation of these therapies into the clinic. Here, we evaluated the response of mouse neonatal and human induced pluripotent stem cell-derived cardiomyocytes to the presence of exogenous lactate, thus mimicking the metabolic environment of the fetal heart. An increase in cardiomyocyte cell cycle activity was observed in the presence of lactate, as determined through Ki67 and Aurora-B kinase. Gene expression and RNA-sequencing data revealed that cardiomyocytes incubated with lactate showed upregulation of BMP10, LIN28 or TCIM in tandem with downregulation of GRIK1 or DGKK among others. Lactate also demonstrated a capability to modulate the production of inflammatory cytokines on cardiac fibroblasts, reducing the production of Fas, Fraktalkine or IL-12p40, while stimulating IL-13 and SDF1a. In addition, the generation of a lactate-rich environment improved ex vivo neonatal heart culture, by affecting the contractile activity and sarcomeric structures and inhibiting epicardial cell spreading. Our results also suggested a common link between the effect of lactate and the activation of hypoxia signaling pathways. These findings support a novel use of lactate in cardiac tissue engineering, modulating the metabolic environment of the heart and thus paving the way to the development of lactate-releasing platforms for in situ cardiac regeneration.
Collapse
Affiliation(s)
- Jesús Ordoño
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanotechnology, Spain
| | - Soledad Pérez-Amodio
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanotechnology, Spain; IMEM-BRT Group, Dpt. Material Science and Engineering, Universitat Politecnica de Catalunya (UPC), Barcelona, Spain
| | - Kristen Ball
- Regenerative Biology and cell Reprogramming Laboratory, Institute for Quantitative Health Sciences and Engineering (IQ), Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, MI, USA
| | - Aitor Aguirre
- Regenerative Biology and cell Reprogramming Laboratory, Institute for Quantitative Health Sciences and Engineering (IQ), Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, MI, USA
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanotechnology, Spain; IMEM-BRT Group, Dpt. Material Science and Engineering, Universitat Politecnica de Catalunya (UPC), Barcelona, Spain.
| |
Collapse
|
8
|
Efficacy of Stem Cell Therapy in Large Animal Models of Ischemic Cardiomyopathies: A Systematic Review and Meta-Analysis. Animals (Basel) 2022; 12:ani12060749. [PMID: 35327146 PMCID: PMC8944644 DOI: 10.3390/ani12060749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022] Open
Abstract
Stem-cell therapy provides a promising strategy for patients with ischemic heart disease. In recent years, numerous studies related to this therapeutic approach were performed; however, the results were often heterogeneous and contradictory. For this reason, we conducted a systematic review and meta-analysis of trials, reporting the use of stem-cell treatment against acute or chronic ischemic cardiomyopathies in large animal models with regard to Left Ventricular Ejection Fraction (LVEF). The defined research strategy was applied to the PubMed database to identify relevant studies published from January 2011 to July 2021. A random-effect meta-analysis was performed on LVEF mean data at follow-up between control and stem-cell-treated animals. In order to improve the definition of the effect measure and to analyze the factors that could influence the outcomes, a subgroup comparison was conducted. Sixty-six studies (n = 1183 animals) satisfied our inclusion criteria. Ischemia/reperfusion infarction was performed in 37 studies, and chronic occlusion in 29 studies; moreover, 58 studies were on a pig animal model. The meta-analysis showed that cell therapy increased LVEF by 7.41% (95% Confidence Interval 6.23−8.59%; p < 0.001) at follow-up, with significative heterogeneity and high inconsistency (I2 = 82%, p < 0.001). By subgroup comparison, the follow-up after 31−60 days (p = 0.025), the late cell injection (>7 days, p = 0.005) and the route of cellular delivery by surgical treatment (p < 0.001) were significant predictors of LVEF improvement. This meta-analysis showed that stem-cell therapy may improve heart function in large animal models and that the swine specie is confirmed as a relevant animal model in the cardiovascular field. Due to the significative heterogeneity and high inconsistency, future translational studies should be designed to take into account the evidenced predictors to allow for the reduction of the number of animals used.
Collapse
|
9
|
Sharma A, Gupta S, Archana S, Verma RS. Emerging Trends in Mesenchymal Stem Cells Applications for Cardiac Regenerative Therapy: Current Status and Advances. Stem Cell Rev Rep 2022; 18:1546-1602. [PMID: 35122226 DOI: 10.1007/s12015-021-10314-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 12/29/2022]
Abstract
Irreversible myocardium infarction is one of the leading causes of cardiovascular disease (CVD) related death and its quantum is expected to grow in coming years. Pharmacological intervention has been at the forefront to ameliorate injury-related morbidity and mortality. However, its outcomes are highly skewed. As an alternative, stem cell-based tissue engineering/regenerative medicine has been explored quite extensively to regenerate the damaged myocardium. The therapeutic modality that has been most widely studied both preclinically and clinically is based on adult multipotent mesenchymal stem cells (MSC) delivered to the injured heart. However, there is debate over the mechanistic therapeutic role of MSC in generating functional beating cardiomyocytes. This review intends to emphasize the role and use of MSC in cardiac regenerative therapy (CRT). We have elucidated in detail, the various aspects related to the history and progress of MSC use in cardiac tissue engineering and its multiple strategies to drive cardiomyogenesis. We have further discussed with a focus on the various therapeutic mechanism uncovered in recent times that has a significant role in ameliorating heart-related problems. We reviewed recent and advanced technologies using MSC to develop/create tissue construct for use in cardiac regenerative therapy. Finally, we have provided the latest update on the usage of MSC in clinical trials and discussed the outcome of such studies in realizing the full potential of MSC use in clinical management of cardiac injury as a cellular therapy module.
Collapse
Affiliation(s)
- Akriti Sharma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - Santosh Gupta
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - S Archana
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
10
|
Peláez P, Damiá E, Torres-Torrillas M, Chicharro D, Cuervo B, Miguel L, del Romero A, Carrillo JM, Sopena JJ, Rubio M. Cell and Cell Free Therapies in Osteoarthritis. Biomedicines 2021; 9:1726. [PMID: 34829953 PMCID: PMC8615373 DOI: 10.3390/biomedicines9111726] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is the most common articular disease in adults and has a current prevalence of 12% in the population over 65 years old. This chronic disease causes damage to articular cartilage and synovial joints, causing pain and leading to a negative impact on patients' function, decreasing quality of life. There are many limitations regarding OA conventional therapies-pharmacological therapy can cause gastrointestinal, renal, and cardiac adverse effects, and some of them could even be a threat to life. On the other hand, surgical options, such as microfracture, have been used for the last 20 years, but hyaline cartilage has a limited regeneration capacity. In recent years, the interest in new therapies, such as cell-based and cell-free therapies, has been considerably increasing. The purpose of this review is to describe and compare bioregenerative therapies' efficacy for OA, with particular emphasis on the use of mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP). In OA, these therapies might be an alternative and less invasive treatment than surgery, and a more effective option than conventional therapies.
Collapse
Affiliation(s)
- Pau Peláez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Elena Damiá
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Belén Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Laura Miguel
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Ayla del Romero
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Jose Maria Carrillo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Joaquín J. Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Mónica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| |
Collapse
|
11
|
Crisóstomo V, Baéz-Diaz C, Blanco-Blázquez V, Álvarez V, López-Nieto E, Maestre J, Bayes-Genis A, Gálvez-Montón C, Casado JG, Sánchez-Margallo FM. The epicardial delivery of cardiosphere derived cells or their extracellular vesicles is safe but of limited value in experimental infarction. Sci Rep 2021; 11:22155. [PMID: 34772964 PMCID: PMC8590017 DOI: 10.1038/s41598-021-01728-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023] Open
Abstract
The epicardial administration of therapeutics via the pericardial sac offers an attractive route, since it is minimally invasive and carries no risks of coronary embolization. The aim of this study was to assess viability, safety and effectiveness of cardiosphere-derived cells (CDCs), their extracellular vesicles (EVs) or placebo administered via a mini-thoracotomy 72 h after experimental infarction in swine. The epicardial administration was completed successfully in all cases in a surgery time (knife-to-skin) below 30 min. No significant differences between groups were found in cardiac function parameters evaluated using magnetic resonance imaging before therapy and at the end of the study, despite a trend towards improved function in CDC-treated animals. Moreover, infarct size at 10 weeks was smaller in treated animals, albeit not significantly. Arrhythmia inducibility did not differ between groups. Pathological examination showed no differences, nor were there any pericardial adhesions evidenced in any case 10 weeks after surgery. These results show that the epicardial delivery of CDCs or their EVs is safe and technically easy 3 days after experimental myocardial infarction in swine, but it does not appear to have any beneficial effect on cardiac function. Our results do not support clinical translation of these therapies as implemented in this work.
Collapse
Affiliation(s)
- Verónica Crisóstomo
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain. .,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.
| | - Claudia Baéz-Diaz
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Virginia Blanco-Blázquez
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Verónica Álvarez
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain
| | - Esther López-Nieto
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain
| | - Juan Maestre
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Bayes-Genis
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,ICREC Research Group (Insuficiència Cardíaca i REgeneració Cardíaca), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Carolina Gálvez-Montón
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,ICREC Research Group (Insuficiència Cardíaca i REgeneració Cardíaca), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Javier G Casado
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Immunology Unit, University of Extremadura, Cáceres, Spain.,Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Francisco M Sánchez-Margallo
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Mytsyk M, Cerino G, Reid G, Sole LG, Eckstein FS, Santer D, Marsano A. Long-Term Severe In Vitro Hypoxia Exposure Enhances the Vascularization Potential of Human Adipose Tissue-Derived Stromal Vascular Fraction Cell Engineered Tissues. Int J Mol Sci 2021; 22:ijms22157920. [PMID: 34360685 PMCID: PMC8348696 DOI: 10.3390/ijms22157920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
The therapeutic potential of mesenchymal stromal/stem cells (MSC) for treating cardiac ischemia strongly depends on their paracrine-mediated effects and their engraftment capacity in a hostile environment such as the infarcted myocardium. Adipose tissue-derived stromal vascular fraction (SVF) cells are a mixed population composed mainly of MSC and vascular cells, well known for their high angiogenic potential. A previous study showed that the angiogenic potential of SVF cells was further increased following their in vitro organization in an engineered tissue (patch) after perfusion-based bioreactor culture. This study aimed to investigate the possible changes in the cellular SVF composition, in vivo angiogenic potential, as well as engraftment capability upon in vitro culture in harsh hypoxia conditions. This mimics the possible delayed vascularization of the patch upon implantation in a low perfused myocardium. To this purpose, human SVF cells were seeded on a collagen sponge, cultured for 5 days in a perfusion-based bioreactor under normoxia or hypoxia (21% and <1% of oxygen tension, respectively) and subcutaneously implanted in nude rats for 3 and 28 days. Compared to ambient condition culture, hypoxic tension did not alter the SVF composition in vitro, showing similar numbers of MSC as well as endothelial and mural cells. Nevertheless, in vitro hypoxic culture significantly increased the release of vascular endothelial growth factor (p < 0.001) and the number of proliferating cells (p < 0.00001). Moreover, compared to ambient oxygen culture, exposure to hypoxia significantly enhanced the vessel length density in the engineered tissues following 28 days of implantation. The number of human cells and human proliferating cells in hypoxia-cultured constructs was also significantly increased after 3 and 28 days in vivo, compared to normoxia. These findings show that a possible in vivo delay in oxygen supply might not impair the vascularization potential of SVF- patches, which qualifies them for evaluation in a myocardial ischemia model.
Collapse
Affiliation(s)
- Myroslava Mytsyk
- Department of Cardiac Surgery, University Hospital Basel, 4031 Basel, Switzerland; (M.M.); (G.C.); (G.R.); (L.G.S.); (F.S.E.); (D.S.)
- Department of Biomedicine, University Basel, 4031 Basel, Switzerland
| | - Giulia Cerino
- Department of Cardiac Surgery, University Hospital Basel, 4031 Basel, Switzerland; (M.M.); (G.C.); (G.R.); (L.G.S.); (F.S.E.); (D.S.)
- Department of Biomedicine, University Basel, 4031 Basel, Switzerland
| | - Gregory Reid
- Department of Cardiac Surgery, University Hospital Basel, 4031 Basel, Switzerland; (M.M.); (G.C.); (G.R.); (L.G.S.); (F.S.E.); (D.S.)
- Department of Biomedicine, University Basel, 4031 Basel, Switzerland
| | - Laia Gili Sole
- Department of Cardiac Surgery, University Hospital Basel, 4031 Basel, Switzerland; (M.M.); (G.C.); (G.R.); (L.G.S.); (F.S.E.); (D.S.)
- Department of Biomedicine, University Basel, 4031 Basel, Switzerland
| | - Friedrich S. Eckstein
- Department of Cardiac Surgery, University Hospital Basel, 4031 Basel, Switzerland; (M.M.); (G.C.); (G.R.); (L.G.S.); (F.S.E.); (D.S.)
- Department of Biomedicine, University Basel, 4031 Basel, Switzerland
| | - David Santer
- Department of Cardiac Surgery, University Hospital Basel, 4031 Basel, Switzerland; (M.M.); (G.C.); (G.R.); (L.G.S.); (F.S.E.); (D.S.)
- Department of Biomedicine, University Basel, 4031 Basel, Switzerland
| | - Anna Marsano
- Department of Cardiac Surgery, University Hospital Basel, 4031 Basel, Switzerland; (M.M.); (G.C.); (G.R.); (L.G.S.); (F.S.E.); (D.S.)
- Department of Biomedicine, University Basel, 4031 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-265-29-79
| |
Collapse
|
13
|
Naumova AV, Kicska G, Pimentel K, Neidig LE, Tsuchida H, Nakamura K, Murry CE. Quantitative Analyses of the Left Ventricle Volume and Cardiac Function in Normal and Infarcted Yucatan Minipigs. J Imaging 2021; 7:107. [PMID: 39080895 PMCID: PMC8321358 DOI: 10.3390/jimaging7070107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The accuracy of the left ventricular volume (LVV) and contractility measurements with cardiac magnetic resonance imaging (CMRI) is decreased if the papillary muscles are abnormally enlarged, such as in hypertrophic cardiomyopathy in human patients or in pig models of human diseases. The purpose of this work was to establish the best method of LVV quantification with CMRI in pigs. (2) Methods: The LVV in 29 Yucatan minipig hearts was measured using two different techniques: the "standard method", which uses smooth contouring along the endocardial surface and adds the papillary volume to the ventricular cavity volume, and the "detailed method", which traces the papillary muscles and trabeculations and adds them to the ventricular mass. (3) Results: Papillary muscles add 21% to the LV mass in normal and infarcted hearts of Yucatan minipigs. The inclusion or exclusion of these from the CMRI analysis significantly affected the study results. In the normal pig hearts, the biggest differences were found in measurements of the LVV, ejection fraction (EF), LV mass and indices derived from the LV mass (p < 0.001). The EF measurement in the normal pig heart was 11% higher with the detailed method, and 19% higher in the infarcted pig hearts (p < 0.0001). The detailed method of endocardium tracing with CMRI closely represented the LV mass measured ex vivo. (4) Conclusions: The detailed method, which accounts for the large volume of the papillary muscles in the pig heart, provides better accuracy and interobserver consistency in the assessment of LV mass and ejection fraction, and might therefore be preferable for these analyses.
Collapse
Affiliation(s)
- Anna V. Naumova
- Department of Radiology, University of Washington, Seattle, WA 98109, USA; (G.K.); (K.P.)
- Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; (L.E.N.); (H.T.); (K.N.); (C.E.M.)
| | - Gregory Kicska
- Department of Radiology, University of Washington, Seattle, WA 98109, USA; (G.K.); (K.P.)
| | - Kiana Pimentel
- Department of Radiology, University of Washington, Seattle, WA 98109, USA; (G.K.); (K.P.)
| | - Lauren E. Neidig
- Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; (L.E.N.); (H.T.); (K.N.); (C.E.M.)
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
- Department of Comparative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Hiroshi Tsuchida
- Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; (L.E.N.); (H.T.); (K.N.); (C.E.M.)
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
| | - Kenta Nakamura
- Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; (L.E.N.); (H.T.); (K.N.); (C.E.M.)
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Charles E. Murry
- Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; (L.E.N.); (H.T.); (K.N.); (C.E.M.)
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
14
|
Ostovaneh MR, Makkar RR, Ambale-Venkatesh B, Ascheim D, Chakravarty T, Henry TD, Kowalchuk G, Aguirre FV, Kereiakes DJ, Povsic TJ, Schatz R, Traverse JH, Pogoda J, Smith RD, Marbán L, Marbán E, Lima JAC. Effect of cardiosphere-derived cells on segmental myocardial function after myocardial infarction: ALLSTAR randomised clinical trial. Open Heart 2021; 8:e001614. [PMID: 34233913 PMCID: PMC8264869 DOI: 10.1136/openhrt-2021-001614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Most cell therapy trials failed to show an improvement in global left ventricular (LV) function measures after myocardial infarction (MI). Myocardial segments are heterogeneously impacted by MI. Global LV function indices are not able to detect the small treatment effects on segmental myocardial function which may have prognostic implications for cardiac events. We aimed to test the efficacy of allogeneic cardiosphere-derived cells (CDCs) for improving regional myocardial function and contractility. METHODS In this exploratory analysis of a randomised clinical trial, 142 patients with post-MI with LVEF <45% and 15% or greater LV scar size were randomised in 2:1 ratio to receive intracoronary infusion of allogenic CDCs or placebo, respectively. Change in segmental myocardial circumferential strain (Ecc) by MRI from baseline to 6 months was compared between CDCs and placebo groups. RESULTS In total, 124 patients completed the 6-month follow-up (mean (SD) age 54.3 (10.8) and 108 (87.1%) men). Segmental Ecc improvement was significantly greater in patients receiving CDC (-0.5% (4.0)) compared with placebo (0.2% (3.7), p=0.05). The greatest benefit for improvement in segmental Ecc was observed in segments containing scar tissue (change in segmental Ecc of -0.7% (3.5) in patients receiving CDC vs 0.04% (3.7) in the placebo group, p=0.04). CONCLUSIONS In patients with post-MI LV dysfunction, CDC administration resulted in improved segmental myocardial function. Our findings highlight the importance of segmental myocardial function indices as an endpoint in future clinical trials of patients with post-MI. TRIAL REGISTRATION NUMBER NCT01458405.
Collapse
Affiliation(s)
- Mohammad R Ostovaneh
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine, Penn State Milton S Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Raj R Makkar
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angles, California, USA
| | | | | | - Tarun Chakravarty
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angles, California, USA
| | | | - Glen Kowalchuk
- Sanger Heart and Vascular Institute, Charlotte, North Carolina, USA
| | | | | | - Thomas J Povsic
- Duke Clinical Research Institute and Duke Medicine, Durham, North Carolina, USA
| | | | - Jay H Traverse
- Minneapolis Heart Institute Foundation, Minneapolis, Minnesota, USA
| | - Janice Pogoda
- Cipher Biostatistics and Reporting, Reno, Nevada, USA
| | | | - Linda Marbán
- Capricor Therapeutics Inc, Los Angles, California, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angles, California, USA
| | - Joao A C Lima
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Li Q, Hou H, Li M, Yu X, Zuo H, Gao J, Zhang M, Li Z, Guo Z. CD73 + Mesenchymal Stem Cells Ameliorate Myocardial Infarction by Promoting Angiogenesis. Front Cell Dev Biol 2021; 9:637239. [PMID: 34055772 PMCID: PMC8152667 DOI: 10.3389/fcell.2021.637239] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/12/2021] [Indexed: 01/16/2023] Open
Abstract
With multipotent differentiation potential and paracrine capacity, mesenchymal stem cells (MSCs) have been widely applied in clinical practice for the treatment of ischemic heart disease. MSCs are a heterogeneous population and the specific population of MSCs may exhibit a selective ability for tissue repair. The aim of our research was to adapt the CD73+ subgroup of adipose derived MSCs (AD-MSCs) for the therapy of myocardial infarction (MI). In this research, AD-MSCs were isolated from adipose tissue surrounding the groin of mice and CD73+ AD-MSCs were sorted using flow cytometry. To investigate the therapeutic effects of CD73+ AD-MSCs, 1.2 × 106 CD73+ AD-MSCs were transplanted into rat model of MI, and CD73– AD-MSCs, normal AD-MSCs transplantation served as control. Our results revealed that CD73+ AD-MSCs played a more effective role in the acceleration function of cardiac recovery by promoting angiogenesis in a rat model of MI compared with mixed AD-MSCs and CD73– AD-MSCs. Moreover, with the expression of CD73 in AD-MSCs, the secretion of VEGF, SDF-1α, and HGF factors could be promoted. It also shows differences between CD73+ and CD73– AD-MSCs when the transcription profiles of these two subgroups were compared, especially in VEGF pathway. These findings raise an attractive outlook on CD73+ AD-MSCs as a dominant subgroup for treating MI-induced myocardial injury. CD73, a surface marker, can be used as a MSCs cell quality control for the recovery of MI by accelerating angiogenesis.
Collapse
Affiliation(s)
- Qiong Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Huifang Hou
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Meng Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Xia Yu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Hongbo Zuo
- Xinxiang Central Hospital, Xinxiang, China
| | - Jianhui Gao
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Min Zhang
- Department of Hepatobiliary Surgery, Affiliated of Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongjin Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.,Nankai University School of Medicine, Tianjin, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
16
|
Extracellular Vesicle-Based Therapeutics for Heart Repair. NANOMATERIALS 2021; 11:nano11030570. [PMID: 33668836 PMCID: PMC7996323 DOI: 10.3390/nano11030570] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are constituted by a group of heterogeneous membrane vesicles secreted by most cell types that play a crucial role in cell–cell communication. In recent years, EVs have been postulated as a relevant novel therapeutic option for cardiovascular diseases, including myocardial infarction (MI), partially outperforming cell therapy. EVs may present several desirable features, such as no tumorigenicity, low immunogenic potential, high stability, and fine cardiac reparative efficacy. Furthermore, the natural origin of EVs makes them exceptional vehicles for drug delivery. EVs may overcome many of the limitations associated with current drug delivery systems (DDS), as they can travel long distances in body fluids, cross biological barriers, and deliver their cargo to recipient cells, among others. Here, we provide an overview of the most recent discoveries regarding the therapeutic potential of EVs for addressing cardiac damage after MI. In addition, we review the use of bioengineered EVs for targeted cardiac delivery and present some recent advances for exploiting EVs as DDS. Finally, we also discuss some of the most crucial aspects that should be addressed before a widespread translation to the clinical arena.
Collapse
|
17
|
Shi W, Xin Q, Yuan R, Yuan Y, Cong W, Chen K. Neovascularization: The Main Mechanism of MSCs in Ischemic Heart Disease Therapy. Front Cardiovasc Med 2021; 8:633300. [PMID: 33575274 PMCID: PMC7870695 DOI: 10.3389/fcvm.2021.633300] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation after myocardial infarction (MI) has been shown to effectively limit the infarct area in numerous clinical and preclinical studies. However, the primary mechanism associated with this activity in MSC transplantation therapy remains unclear. Blood supply is fundamental for the survival of myocardial tissue, and the formation of an efficient vascular network is a prerequisite for blood flow. The paracrine function of MSCs, which is throughout the neovascularization process, including MSC mobilization, migration, homing, adhesion and retention, regulates angiogenesis and vasculogenesis through existing endothelial cells (ECs) and endothelial progenitor cells (EPCs). Additionally, MSCs have the ability to differentiate into multiple cell lineages and can be mobilized and migrate to ischemic tissue to differentiate into ECs, pericytes and smooth muscle cells in some degree, which are necessary components of blood vessels. These characteristics of MSCs support the view that these cells improve ischemic myocardium through angiogenesis and vasculogenesis. In this review, the results of recent clinical and preclinical studies are discussed to illustrate the processes and mechanisms of neovascularization in ischemic heart disease.
Collapse
Affiliation(s)
- Weili Shi
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Yahui Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Keji Chen
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
18
|
Lin Y, Ding S, Chen Y, Xiang M, Xie Y. Cardiac Adipose Tissue Contributes to Cardiac Repair: a Review. Stem Cell Rev Rep 2021; 17:1137-1153. [PMID: 33389679 DOI: 10.1007/s12015-020-10097-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Cardiac adipose tissue is a metabolically active adipose tissue in close proximity to heart. Recent studies emphasized the benefits of cardiac adipose tissue in heart remodeling, such as reducing infarction size, enhancing neovascularization and regulating immune response, through a series of cellular mechanisms. In the present manuscript, we provide a comprehensive review regarding the role of cardiac adipose tissue in cardiac repair. We focus on different cardiac adipose tissues according to their distinguished anatomical structures. This review summarizes the latest evidence on the relationship between cardiac adipose tissue and cardiac repair. Cardiac adipose tissues (CAT) were systematically reviewed in the current manuscript which focused on the components of CAT, debates about cardiac adipose stem cells and their effect on heart.
Collapse
Affiliation(s)
- Yan Lin
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Siyin Ding
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yuwen Chen
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Meixiang Xiang
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Yao Xie
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
19
|
Galow AM, Goldammer T, Hoeflich A. Xenogeneic and Stem Cell-Based Therapy for Cardiovascular Diseases: Genetic Engineering of Porcine Cells and Their Applications in Heart Regeneration. Int J Mol Sci 2020; 21:ijms21249686. [PMID: 33353186 PMCID: PMC7766969 DOI: 10.3390/ijms21249686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular diseases represent a major health concern worldwide with few therapy options for ischemic injuries due to the limited regeneration potential of affected cardiomyocytes. Innovative cell replacement approaches could facilitate efficient regenerative therapy. However, despite extensive attempts to expand primary human cells in vitro, present technological limitations and the lack of human donors have so far prevented their broad clinical use. Cell xenotransplantation might provide an ethically acceptable unlimited source for cell replacement therapies and bridge the gap between waiting recipients and available donors. Pigs are considered the most suitable candidates as a source for xenogeneic cells and tissues due to their anatomical and physiological similarities with humans. The potential of porcine cells in the field of stem cell-based therapy and regenerative medicine is under intensive investigation. This review outlines the current progress and highlights the most promising approaches in xenogeneic cell therapy with a focus on the cardiovascular system.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany; (T.G.); (A.H.)
- Correspondence: ; Tel.: +49-38208-68-723
| | - Tom Goldammer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany; (T.G.); (A.H.)
- Molecular Biology and Fish Genetics Unit, Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany; (T.G.); (A.H.)
| |
Collapse
|
20
|
Adipose-Derived Stem Cells: Current Applications and Future Directions in the Regeneration of Multiple Tissues. Stem Cells Int 2020; 2020:8810813. [PMID: 33488736 PMCID: PMC7787857 DOI: 10.1155/2020/8810813] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/04/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) can maintain self-renewal and enhanced multidifferentiation potential through the release of a variety of paracrine factors and extracellular vesicles, allowing them to repair damaged organs and tissues. Consequently, considerable attention has increasingly been paid to their application in tissue engineering and organ regeneration. Here, we provide a comprehensive overview of the current status of ADSC preparation, including harvesting, isolation, and identification. The advances in preclinical and clinical evidence-based ADSC therapy for bone, cartilage, myocardium, liver, and nervous system regeneration as well as skin wound healing are also summarized. Notably, the perspectives, potential challenges, and future directions for ADSC-related researches are discussed. We hope that this review can provide comprehensive and standardized guidelines for the safe and effective application of ADSCs to achieve predictable and desired therapeutic effects.
Collapse
|
21
|
Weatherall EL, Avilkina V, Cortes-Araya Y, Dan-Jumbo S, Stenhouse C, Donadeu FX, Esteves CL. Differentiation Potential of Mesenchymal Stem/Stromal Cells Is Altered by Intrauterine Growth Restriction. Front Vet Sci 2020; 7:558905. [PMID: 33251256 PMCID: PMC7676910 DOI: 10.3389/fvets.2020.558905] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Consistency in clinical outcomes is key to the success of therapeutic Mesenchymal Stem/Stromal cells (MSCs) in regenerative medicine. MSCs are used to treat both humans and companion animals (horses, dogs, and cats). The properties of MSC preparations can vary significantly with factors including tissue of origin, donor age or health status. We studied the effects of developmental programming associated with intrauterine growth restriction (IUGR) on MSC properties, particularly related to multipotency. IUGR results from inadequate uterine capacity and placental insufficiency of multifactorial origin. Both companion animals (horses, dogs, cats) and livestock (pigs, sheep, cattle) can be affected by IUGR resulting in decreased body size and other associated changes that can include, alterations in musculoskeletal development and composition, and increased adiposity. Therefore, we hypothesized that this dysregulation occurs at the level of MSCs, with the cells from IUGR animals being more prone to differentiate into adipocytes and less to other lineages such as chondrocytes and osteocytes compared to those obtained from normal animals. IUGR has consequences on health and performance in adult life and in the case of farm animals, on meat quality. In humans, IUGR is linked to increased risk of metabolic (type 2 diabetes) and other diseases (cardiovascular), later in life. Here, we studied porcine MSCs where IUGR occurs spontaneously, and shows features that recapitulate human IUGR. We compared the properties of adipose-derived MSCs from IUGR (IUGR-MSCs) and Normal (Normal-MSCs) new-born pig littermates. Both MSC types grew clonally and expressed typical MSC markers (CD105, CD90, CD44) at similar levels. Importantly, tri-lineage differentiation capacity was significantly altered by IUGR. IUGR-MSCs had higher adipogenic capacity than Normal-MSCs as evidenced by higher adipocyte content and expression of the adipogenic transcripts, PPARγ and FABP4 (P < 0.05). A similar trend was observed for fibrogenesis, where, upon differentiation, IUGR-MSCs expressed significantly higher levels of COL1A1 (P < 0.03) than Normal-MSCs. In contrast, chondrogenic and osteogenic potential were decreased in IUGR-MSCs as shown by a smaller chondrocyte pellet and osteocyte staining, and lower expression of SOX9 (P < 0.05) and RUNX2 (P < 0.02), respectively. In conclusion, the regenerative potential of MSCs appears to be determined prenatally in IUGR and this should be taken into account when selecting cell donors in regenerative therapy programmes both in humans and companion animals.
Collapse
Affiliation(s)
- Emma L Weatherall
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Viktorija Avilkina
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Yennifer Cortes-Araya
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Susan Dan-Jumbo
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Claire Stenhouse
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Francesc X Donadeu
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom.,The Euan Macdonald Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Cristina L Esteves
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Bukowska J, Szóstek-Mioduchowska AZ, Kopcewicz M, Walendzik K, Machcińska S, Gawrońska-Kozak B. Adipose-Derived Stromal/Stem Cells from Large Animal Models: from Basic to Applied Science. Stem Cell Rev Rep 2020; 17:719-738. [PMID: 33025392 PMCID: PMC8166671 DOI: 10.1007/s12015-020-10049-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
Adipose-derived stem cells (ASCs) isolated from domestic animals fulfill the qualitative criteria of mesenchymal stem cells, including the capacity to differentiate along multiple lineage pathways and to self-renew, as well as immunomodulatory capacities. Recent findings on human diseases derived from studying large animal models, have provided evidence that administration of autologous or allogenic ASCs can improve the process of healing. In a narrow group of large animals used in bioresearch studies, pigs and horses have been shown to be the best suited models for study of the wound healing process, cardiovascular and musculoskeletal disorders. To this end, current literature demonstrates that ASC-based therapies bring considerable benefits to animal health in both spontaneously occurring and experimentally induced clinical cases. The purpose of this review is to provide an overview of the diversity, isolation, and characterization of ASCs from livestock. Particular attention has been paid to the functional characteristics of the cells that facilitate their therapeutic application in large animal models of human disease. In this regard, we describe outcomes of ASCs utilization in translational research with pig and horse models of disease. Furthermore, we evaluate the current status of ASC-based therapy in veterinary practice, particularly in the rapidly developing field of equine regenerative medicine. In conclusion, this review presents arguments that support the relevance of animal ASCs in the field of regenerative medicine and it provides insights into the future perspectives of ASC utilization in animal husbandry.
Collapse
Affiliation(s)
- Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | | | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Sylwia Machcińska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Barbara Gawrońska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|
23
|
Sid-Otmane C, Perrault LP, Ly HQ. Mesenchymal stem cell mediates cardiac repair through autocrine, paracrine and endocrine axes. J Transl Med 2020; 18:336. [PMID: 32873307 PMCID: PMC7466793 DOI: 10.1186/s12967-020-02504-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
In the past decade, despite key advances in therapeutic strategies following myocardial infarction, none can directly address the loss of cardiomyocytes following ischemic injury. Cardiac cell-based therapy is at the cornerstone of regenerative medicine that has shown potential for tissue repair. Mesenchymal stem cells (MSC) represent a strong candidate to heal the infarcted myocardium. While differentiation potential has been described as a possible avenue for MSC-based repair, their secreted mediators are responsible for the majority of the ascribed prohealing effects. MSC can either promote their own survival and proliferation through autocrine effect or secrete trophic factors that will act on adjacent cells through a paracrine effect. Prior studies have also documented beneficial effects even when MSCs were remotely delivered, much akin to an endocrine mechanism. This review aims to distinguish the paracrine activity of MSCs from an endocrine-like effect, where remotely transplanted cells can promote healing of the injured myocardium.
Collapse
Affiliation(s)
- Celia Sid-Otmane
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada.,Research Centre, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, QC, H1T 1C8, Canada
| | - Louis P Perrault
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada.,Research Centre, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, QC, H1T 1C8, Canada.,Department of Cardiovascular Surgery, Montreal Heart Institute and Université de Montréal, Montreal, QC, Canada
| | - Hung Q Ly
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada. .,Department of Medicine, Université de Montréal, Montreal, QC, Canada. .,Research Centre, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, QC, H1T 1C8, Canada.
| |
Collapse
|
24
|
Zhao Y, Zhu J, Zhang N, Liu Q, Wang Y, Hu X, Chen J, Zhu W, Yu H. GDF11 enhances therapeutic efficacy of mesenchymal stem cells for myocardial infarction via YME1L-mediated OPA1 processing. Stem Cells Transl Med 2020; 9:1257-1271. [PMID: 32515551 PMCID: PMC7519765 DOI: 10.1002/sctm.20-0005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) has been shown to promote stem cell activity, but little is known about the effect of GDF11 on viability and therapeutic efficacy of cardiac mesenchymal stem cells (MSCs) for cardiac injury. To understand the roles of GDF11 in MSCs, mouse heart‐derived MSCs were transduced with lentiviral vector carrying genes for both GDF11 and green fluorescent protein (GFP) (MSCsLV‐GDF11) or cultured with recombinant GDF11 (MSCsrGDF11). Either MSCsrGDF11 or MSCs LV‐GDF11 displayed less cell apoptosis and better paracrine function, as well as preserved mitochondrial morphology and function under hypoxic condition as compared with control MSCs. GDF11 enhanced phosphorylation of Smad2/3, which upregulated expression of YME1L, a mitochondria protease that balances OPA1 processing. Inhibitors of TGF‐β receptor (SB431542) or Smad2/3 (SIS3) attenuated the effects of GDF11 on cell viability, mitochondrial function, and expression of YME1L. Transplantation of MSCsGDF11 into infarct heart resulted in improved cell survival and retention, leading to more angiogenesis, smaller scar size, and better cardiac function in comparison with control MSCs. GDF11 enhanced viability and therapeutic efficiency of MSCs by promoting mitochondrial fusion through TGF‐β receptor/Smad2/3/YME1L‐OPA1 signaling pathway. This novel role of GDF11 may be used for a new approach of stem cell therapy for myocardial infarction.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jinyun Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Ning Zhang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Qi Liu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yingchao Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jinghai Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Wei Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Hong Yu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
25
|
Translational large animal model of hibernating myocardium: characterization by serial multimodal imaging. Basic Res Cardiol 2020; 115:33. [PMID: 32291522 DOI: 10.1007/s00395-020-0788-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 01/08/2023]
Abstract
Nonrevascularizable coronary artery disease is a frequent cause of hibernating myocardium leading to heart failure (HF). Currently, there is a paucity of therapeutic options for patients with this condition. There is a lack of animal models resembling clinical features of hibernating myocardium. Here we present a large animal model of hibernating myocardium characterized by serial multimodality imaging. Yucatan minipigs underwent a surgical casein ameroid implant around the proximal left anterior descending coronary artery (LAD), resulting in a progressive obstruction of the vessel. Pigs underwent serial multimodality imaging including invasive coronary angiography, cardiac magnetic resonance (CMR), and hybrid 18F-Fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT). A total of 43 pigs were operated on and were followed for 120 ± 37 days with monthly multimodality imaging. 24 pigs (56%) died during the follow-up. Severe LAD luminal stenosis was documented in all survivors. In the group of 19 long-term survivors, 17 (90%) developed left ventricular systolic dysfunction [median LVEF of 35% (IQR 32.5-40.5%)]. In 17/17, at-risk territory was viable on CMR and 14 showed an increased glucose uptake in the at-risk myocardium on 18FDG-PET/CT. The present pig model resembles most of the human hibernated myocardium characteristics and associated heart failure (systolic dysfunction, viable myocardium, and metabolic switch to glucose). This human-like model might be used to test novel interventions for nonrevascularizable coronary artery disease and ischemia heart failure as a previous stage to clinical trials.
Collapse
|
26
|
Bobi J, Solanes N, Dantas AP, Ishida K, Regueiro A, Castillo N, Sabaté M, Rigol M, Freixa X. Moderate Hypothermia Modifies Coronary Hemodynamics and Endothelium-Dependent Vasodilation in a Porcine Model of Temperature Management. J Am Heart Assoc 2020; 9:e014035. [PMID: 32009525 PMCID: PMC7033898 DOI: 10.1161/jaha.119.014035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/04/2019] [Indexed: 01/03/2023]
Abstract
Background Hypothermia has been associated with therapeutic benefits including reduced mortality and better neurologic outcomes in survivors of cardiac arrest. However, undesirable side effects have been reported in patients undergoing coronary interventions. Using a large animal model of temperature management, we aimed to describe how temperature interferes with the coronary vasculature. Methods and Results Coronary hemodynamics and endothelial function were studied in 12 pigs at various core temperatures. Left circumflex coronary artery was challenged with intracoronary nitroglycerin, bradykinin, and adenosine at normothermia (38°C) and mild hypothermia (34°C), followed by either rewarming (38°C; n=6) or moderate hypothermia (MoHT; 32°C, n=6). Invasive coronary hemodynamics by Doppler wire revealed a slower coronary blood velocity at 32°C in the MoHT protocol (normothermia 20.2±11.2 cm/s versus mild hypothermia 18.7±4.3 cm/s versus MoHT 11.3±5.3 cm/s, P=0.007). MoHT time point was also associated with high values of hyperemic microvascular resistance (>3 mm Hg/cm per second) (normothermia 2.0±0.6 mm Hg/cm per second versus mild hypothermia 2.0±0.8 mm Hg/cm per second versus MoHT 3.4±1.6 mm Hg/cm per second, P=0.273). Assessment of coronary vasodilation by quantitative coronary analysis showed increased endothelium-dependent (bradykinin) vasodilation at 32°C when compared with normothermia (normothermia 6.96% change versus mild hypothermia 9.01% change versus MoHT 25.42% change, P=0.044). Results from coronary reactivity in vitro were in agreement with angiography data and established that endothelium-dependent relaxation in MoHT completely relies on NO production. Conclusions In this porcine model of temperature management, 34°C hypothermia and rewarming (38°C) did not affect coronary hemodynamics or endothelial function. However, 32°C hypothermia altered coronary vasculature physiology by slowing coronary blood flow, increasing microvascular resistance, and exacerbating endothelium-dependent vasodilatory response.
Collapse
Affiliation(s)
- Joaquim Bobi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Cardiology DepartmentInstitut Clínic CardiovascularHospital Clínic de BarcelonaUniversity of BarcelonaSpain
| | - Núria Solanes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Cardiology DepartmentInstitut Clínic CardiovascularHospital Clínic de BarcelonaUniversity of BarcelonaSpain
| | - Ana Paula Dantas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Cardiology DepartmentInstitut Clínic CardiovascularHospital Clínic de BarcelonaUniversity of BarcelonaSpain
| | - Kohki Ishida
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Cardiology DepartmentInstitut Clínic CardiovascularHospital Clínic de BarcelonaUniversity of BarcelonaSpain
- Department of Internal Medicine and CardiologyKitasato University School of MedicineSagamiharaJapan
| | - Ander Regueiro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Cardiology DepartmentInstitut Clínic CardiovascularHospital Clínic de BarcelonaUniversity of BarcelonaSpain
| | - Nadia Castillo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Cardiology DepartmentInstitut Clínic CardiovascularHospital Clínic de BarcelonaUniversity of BarcelonaSpain
| | - Manel Sabaté
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Cardiology DepartmentInstitut Clínic CardiovascularHospital Clínic de BarcelonaUniversity of BarcelonaSpain
| | - Montserrat Rigol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Cardiology DepartmentInstitut Clínic CardiovascularHospital Clínic de BarcelonaUniversity of BarcelonaSpain
| | - Xavier Freixa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Cardiology DepartmentInstitut Clínic CardiovascularHospital Clínic de BarcelonaUniversity of BarcelonaSpain
| |
Collapse
|
27
|
Chen Y, Li C, Li C, Chen J, Li Y, Xie H, Lin C, Fan M, Guo Y, Gao E, Yan W, Tao L. Tailorable Hydrogel Improves Retention and Cardioprotection of Intramyocardial Transplanted Mesenchymal Stem Cells for the Treatment of Acute Myocardial Infarction in Mice. J Am Heart Assoc 2020; 9:e013784. [PMID: 31955638 PMCID: PMC7033822 DOI: 10.1161/jaha.119.013784] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Poor engraftment of intramyocardial stem cells limits their therapeutic efficiency against myocardial infarction (MI)‐induced cardiac injury. Transglutaminase cross‐linked Gelatin (Col‐Tgel) is a tailorable collagen‐based hydrogel that is becoming an excellent biomaterial scaffold for cellular delivery in vivo. Here, we tested the hypothesis that Col‐Tgel increases retention of intramyocardially‐injected stem cells, and thereby reduces post‐MI cardiac injury. Methods and Results Adipose‐derived mesenchymal stem cells (ADSCs) were co‐cultured with Col‐Tgel in a 3‐dimensional system in vitro, and Col‐Tgel encapsulated ADSCs were observed using scanning electron microscopy and confocal microscopy. Vitality, proliferation, and migration of co‐cultured ADSCs were evaluated. In addition, mice were subjected to MI and were intramyocardially injected with ADSCs, Col‐Tgel, or a combination thereof. ADSCs engraftment, survival, cardiac function, and fibrosis were assessed. In vitro MTT and Cell Counting Kit‐8 assays demonstrated that ADSCs survive and proliferate up to 4 weeks in the Col‐Tgel. In addition, MTT and transwell assays showed that ADSCs migrate outside the edge of the Col‐Tgel sphere. Furthermore, when compared with ADSCs alone, Col‐Tgel‐encapsulated ADSCs significantly enhanced the long‐term retention and cardioprotective effect of ADSCs against MI‐induced cardiac injury. Conclusions In the current study, we successfully established a 3‐dimensional co‐culture system using ADSCs and Col‐Tgel. The Col‐Tgel creates a suitable microenvironment for long‐term retention of ADSCs in an ischemic area, and thereby enhances their cardioprotective effects. Taken together, this study may provide an alternative biomaterial for stem cell‐based therapy to treat ischemic heart diseases.
Collapse
Affiliation(s)
- Youhu Chen
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Congye Li
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Chengxiang Li
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jiangwei Chen
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Yan Li
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Huaning Xie
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Chen Lin
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Miaomiao Fan
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Yongzhen Guo
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Erhe Gao
- Center for Translational MedicineTemple UniversityPhiladelphiaPA
| | - Wenjun Yan
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Ling Tao
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| |
Collapse
|
28
|
Abstract
Accumulating knowledge on the biology and function of the adipose tissue has led to a major shift in our understanding of its role in health and disease. The adipose tissue is now recognized as a crucial regulator of cardiovascular health, mediated by the secretion of several bioactive products, including adipocytokines, microvesicles and gaseous messengers, with a wide range of endocrine and paracrine effects on the cardiovascular system. The adipose tissue function and secretome are tightly controlled by complex homeostatic mechanisms and local cell-cell interactions, which can become dysregulated in obesity. Systemic or local inflammation and insulin resistance lead to a shift in the adipose tissue secretome from anti-inflammatory and anti-atherogenic towards a pro-inflammatory and pro-atherogenic profile. Moreover, the interplay between the adipose tissue and the cardiovascular system is bidirectional, with vascular-derived and heart-derived signals directly affecting adipose tissue biology. In this Review, we summarize the current knowledge of the biology and regional variability of adipose tissue in humans, deciphering the complex molecular mechanisms controlling the crosstalk between the adipose tissue and the cardiovascular system, and their possible clinical translation. In addition, we highlight the latest developments in adipose tissue imaging for cardiovascular risk stratification and discuss how therapeutic targeting of the adipose tissue can improve prevention and treatment of cardiovascular disease.
Collapse
|
29
|
Synergistic effects of adipose-derived stem cells combined with decellularized myocardial matrix on the treatment of myocardial infarction in rats. Life Sci 2019; 239:116891. [DOI: 10.1016/j.lfs.2019.116891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/09/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022]
|
30
|
Adipose-Derived Mesenchymal Stem Cells Isolated from Patients with Abdominal Aortic Aneurysm Exhibit Senescence Phenomena. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1305049. [PMID: 31885770 PMCID: PMC6899325 DOI: 10.1155/2019/1305049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have shown beneficial effects in the treatment of abdominal aortic aneurysm (AAA). Nonetheless, the biological properties of adipose-derived MSCs (ASCs) from patients with AAA (AAA-ASCs) remain unclear. This study is aimed at investigating the properties of cell phenotype and function of AAA-ASCs compared with ASCs from age-matched healthy donors (H-ASCs). H-ASCs and AAA-ASCs were studied for cell phenotype, differentiation capacity, senescence, and mitochondrial and autophagic functions. Cellular senescence was examined by senescence-associated β-galactosidase (SA-β-gal) staining. Mitochondrial morphology was determined by MitoTracker staining. Despite the similar surface markers of AAA-ASCs and H-ASCs, AAA-ASCs exhibited altered multidifferentiation potential. Compared with H-ASCs, AAA-ASCs displayed enhanced senescence manifested by increased SA-β-gal activity and decreased proliferation and migration ability. Furthermore, AAA-ASCs showed increased mitochondrial fusion, reactive oxygen species (ROS) production, and decreased mitochondrial membrane potential. In addition, AAA-ASCs exhibited decreased autophagy level, upregulation of IL-6 and TNF-α secretion, and downregulation of IL-10 secretion compared with H-ASCs. Nonetheless, treatment of AAA-ASCs with rapamycin (an autophagy activator) dramatically reduced secretion of IL-6 and TNF-α and enhanced secretion of IL-10. In conclusion, our study showed that AAA-ASCs exhibit senescence phenomena and decreased cell function. Understanding the specific alterations in AAA-ASCs will help explore novel strategies to restore cell function for AAA treatment.
Collapse
|
31
|
Xu H, Wang Z, Liu L, Zhang B, Li B. Exosomes derived from adipose tissue, bone marrow, and umbilical cord blood for cardioprotection after myocardial infarction. J Cell Biochem 2019; 121:2089-2102. [PMID: 31736169 DOI: 10.1002/jcb.27399] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023]
Abstract
Human mesenchymal stem cells (MSCs) have the potential for improving cardiac function following myocardial infarction (MI). This study was performed to explore the cardioprotection of bone marrow mesenchymal stem cells (BMMSCs), adipose tissue-derived mesenchymal stem cells (ADMSCs), and umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) for myocardium in rats after MI. MI models were established in rats, which were injected with PBS, BMMSCs, ADMSCs, and UCMSCs. Cardiac function was detected by ultrasonic cardiogram. TTC staining, TUNEL staining, and immunohistochemistry were adopted to determine infarction area, cardiomyocyte apoptosis, and microvascular density (MVD), respectively. Exosomes were derived from BMMSCs, ADMSCs, and UCBMSCs, and identified by morphological observation and CD63 expression detection. Neonatal rat cardiomyocytes (NRCMs) were isolated and cultured with hypoxia, subjected to PBS and exosomes derived from BMMSCs, ADMSCs, and UCMSCs. Flow cytometry and enzyme-linked immunosorbent assay were used to determine NRCM apoptosis and the levels of angiogenesis-related markers (VEGF, bFGF, and HGF). According to ultrasonic cardiogram, BMMSCs, ADMSCs, and UCMSCs facilitated the cardiac function of MI rats. Furthermore, three kinds of MSCs inhibited cardiomyocyte apoptosis, infarction area, and increased MVD. NRCMs treated with exosomes derived from BMMSCs, ADMSCs, and UCMSCs reduced the NRCM apoptosis and promoted angiogenesis by increasing levels of VEGF, bFGF, and HGF. Notably, exosomes from ADMSCs had the most significant effect. On the basis of the results obtained from this study, exosomes derived from BMMSCs, ADMSCs, and UCBMSCs inhibited the cardiomyocyte apoptosis and promoted angiogenesis, thereby improving cardiac function and protecting myocardium. Notably, exosomes from ADMSCs stimulated most of the cardioprotection factors.
Collapse
Affiliation(s)
- Huiyu Xu
- Shanxi Medical University, Taiyuan, Shanxi, China.,Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Zhongchao Wang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Longmei Liu
- Department of Cardiovascular laboratory, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Baoxia Zhang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Bao Li
- Shanxi Medical University, Taiyuan, Shanxi, China.,Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
32
|
Tompkins BA, Balkan W, Winkler J, Gyöngyösi M, Goliasch G, Fernández-Avilés F, Hare JM. Preclinical Studies of Stem Cell Therapy for Heart Disease. Circ Res 2019; 122:1006-1020. [PMID: 29599277 DOI: 10.1161/circresaha.117.312486] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As part of the TACTICS (Transnational Alliance for Regenerative Therapies in Cardiovascular Syndromes) series to enhance regenerative medicine, here, we discuss the role of preclinical studies designed to advance stem cell therapies for cardiovascular disease. The quality of this research has improved over the past 10 to 15 years and overall indicates that cell therapy promotes cardiac repair. However, many issues remain, including inability to provide complete cardiac recovery. Recent studies question the need for intact cells suggesting that harnessing what the cells release is the solution. Our contribution describes important breakthroughs and current directions in a cell-based approach to alleviating cardiovascular disease.
Collapse
Affiliation(s)
- Bryon A Tompkins
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Wayne Balkan
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Johannes Winkler
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Mariann Gyöngyösi
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Georg Goliasch
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Francisco Fernández-Avilés
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.).
| |
Collapse
|
33
|
Perspectives for Clinical Translation of Adipose Stromal/Stem Cells. Stem Cells Int 2019; 2019:5858247. [PMID: 31191677 PMCID: PMC6525805 DOI: 10.1155/2019/5858247] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Adipose stromal/stem cells (ASCs) are an ideal cell type for regenerative medicine applications, as they can easily be harvested from adipose tissue in large quantities. ASCs have excellent proliferation, differentiation, and immunoregulatory capacities that have been demonstrated in numerous studies. Great interest and investment have been placed in efforts to exploit the allogeneic use and immunomodulatory and anti-inflammatory effects of ASCs. However, bridging the gap between in vitro and in vivo studies and moving into clinical practice remain a challenge. For the clinical translation of ASCs, several issues must be considered, including how to characterise such a heterogenic cell population and how to ensure their safety and efficacy. This review explores the different phases of in vitro and preclinical ASC characterisation and describes the development of appropriate potency assays. In addition, good manufacturing practice requirements are discussed, and cell-based medicinal products holding marketing authorisation in the European Union are reviewed. Moreover, the current status of clinical trials applying ASCs and the patent landscape in the field of ASC research are presented. Overall, this review highlights the applicability of ASCs for clinical cell therapies and discusses their potential.
Collapse
|
34
|
Rethinking Regenerative Medicine From a Transplant Perspective (and Vice Versa). Transplantation 2019; 103:237-249. [DOI: 10.1097/tp.0000000000002370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Yadav SK, Mishra PK. Isolation, Characterization, and Differentiation of Cardiac Stem Cells from the Adult Mouse Heart. J Vis Exp 2019. [PMID: 30663680 DOI: 10.3791/58448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Myocardial infarction (MI) is a leading cause of morbidity and mortality around the world. A major goal of regenerative medicine is to replenish the dead myocardium after MI. Although several strategies have been used to regenerate myocardium, stem cell therapy remains a major approach to replenish the dead myocardium of an MI heart. Accumulating evidence suggests the presence of resident cardiac stem cells (CSCs) in the adult heart and their endocrine and/or paracrine effects on cardiac regeneration. However, CSC isolation and their characterization and differentiation toward myocardial cells, especially cardiomyocytes, remains a technical challenge. In the present study, we provided a simple method for the isolation, characterization, and differentiation of CSCs from the adult mouse heart. Here, we describe a density gradient method for the isolation of CSCs, where the heart is digested by a 0.2% collagenase II solution. To characterize the isolated CSCs, we evaluated the expression of CSCs/cardiac markers Sca-1, NKX2-5, and GATA4, and pluripotency/stemness markers OCT4, SOX2, and Nanog. We also determined the proliferation potential of isolated CSCs by culturing them in a Petri dish and assessing the expression of the proliferation marker Ki-67. For evaluating the differentiation potential of CSCs, we selected seven- to ten-days cultured CSCs. We transferred them to a new plate with a cardiomyocyte differentiation medium. They are incubated in a cell culture incubator for 12 days, while the differentiation medium is changed every three days. The differentiated CSCs express cardiomyocyte-specific markers: actinin and troponin I. Thus, CSCs isolated with this protocol have stemness and cardiac markers, and they have a potential for proliferation and differentiation toward cardiomyocyte lineage.
Collapse
Affiliation(s)
- Santosh K Yadav
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center; Department of Anesthesiology, University of Nebraska Medical Center;
| |
Collapse
|
36
|
He Y, Guo Y, Xia Y, Guo Y, Wang R, Zhang F, Guo L, Liu Y, Yin T, Gao C, Gao E, Li C, Wang S, Zhang L, Yan W, Tao L. Resistin promotes cardiac homing of mesenchymal stem cells and functional recovery after myocardial ischemia-reperfusion via the ERK1/2-MMP-9 pathway. Am J Physiol Heart Circ Physiol 2019; 316:H233-H244. [PMID: 30412442 DOI: 10.1152/ajpheart.00457.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stem cell therapy is a potentially effective and promising treatment for ischemic heart disease. Resistin, a type of adipokine, has been found to bind to adipose-derived mesenchymal stem cells (ADSCs). However, the effects of resistin on cardiac homing by ADSCs and on ADSC-mediated cardioprotective effects have not been investigated. ADSCs were obtained from enhanced green fluorescent protein transgenic mice. C57BL/6J mice were subjected to myocardial ischemia-reperfusion (I/R) or sham operations. Six hours after the I/R operation, mice were intravenously injected with resistin-treated ADSCs (ADSC-resistin) or vehicle-treated ADSCs (ADSC-vehicle). Cardiac homing by ADSCs and cardiomyocyte apoptosis were investigated 3 days after I/R. Cardiac function, fibrosis, and angiogenesis were evaluated 4 wk after I/R. Cellular and molecular mechanisms were investigated in vitro using cultured ADSCs. Both immunostaining and flow cytometric experiments showed that resistin treatment promoted ADSC myocardial homing 3 days after intravenous injection. Echocardiographic experiments showed that ADSC-resistin, but not ADSC-vehicle, significantly improved left ventricular ejection fraction. ADSC-resistin transplantation significantly mitigated I/R-induced fibrosis and reduced atrial natriuretic peptide/brain natriuretic peptide mRNA expression. In addition, cardiomyocyte apoptosis was reduced, whereas angiogenesis was increased by ADSC-resistin treatment. At the cellular level, resistin promoted ADSC proliferation and migration but did not affect H2O2-induced apoptosis. Molecular experiments identified the ERK1/2-matrix metalloproteinase-9 pathway as a key component mediating the effects of resistin on ADSC proliferation and migration. These results demonstrate that resistin can promote homing of injected ADSCs into damaged heart tissue and stimulate functional recovery, an effect mediated through the ERK1/2 signaling pathway and matrix metalloproteinase-9. NEW & NOTEWORTHY First, intravenous injection of adipose-derived mesenchymal stem cells (ADSCs) treated with resistin significantly increased angiogenesis and reduced myocardial apoptosis and fibrosis in a murine model of ischemia-reperfusion, resulting in improved cardiac performance. Second, resistin treatment significantly increased myocardial homing of intravenously delivered ADSCs. Finally, the ERK1/2-matrix metalloproteinase 9 pathway contributed to the higher proliferative and migratory capacities of ADSCs treated with resistin.
Collapse
Affiliation(s)
- Yuan He
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanjie Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yongzhen Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Rutao Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lanyan Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yi Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Tao Yin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chao Gao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
37
|
Abstract
Pigs have traditionally been used for preclinical experiments, and body size-matching is important for cell therapy in animal models used for preclinical trials. It has been shown that the efficacy of the transplanted cells is dependent on the response of the host heart and the age of experimental pigs.
Collapse
Affiliation(s)
- Shugo Tohyama
- 1 Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan.,2 Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Kobayashi
- 1 Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Panina YA, Yakimov AS, Komleva YK, Morgun AV, Lopatina OL, Malinovskaya NA, Shuvaev AN, Salmin VV, Taranushenko TE, Salmina AB. Plasticity of Adipose Tissue-Derived Stem Cells and Regulation of Angiogenesis. Front Physiol 2018; 9:1656. [PMID: 30534080 PMCID: PMC6275221 DOI: 10.3389/fphys.2018.01656] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue is recognized as an important organ with metabolic, regulatory, and plastic roles. Adipose tissue-derived stem cells (ASCs) with self-renewal properties localize in the stromal vascular fraction (SVF) being present in a vascular niche, thereby, contributing to local regulation of angiogenesis and vessel remodeling. In the past decades, ASCs have attracted much attention from biologists and bioengineers, particularly, because of their multilineage differentiation potential, strong proliferation, and migration abilities in vitro and high resistance to oxidative stress and senescence. Current data suggest that the SVF serves as an important source of endothelial progenitors, endothelial cells, and pericytes, thereby, contributing to vessel remodeling and growth. In addition, ASCs demonstrate intriguing metabolic and interlineage plasticity, which makes them good candidates for creating regenerative therapeutic protocols, in vitro tissue models and microphysiological systems, and tissue-on-chip devices for diagnostic and regeneration-supporting purposes. This review covers recent achievements in understanding the metabolic activity within the SVF niches (lactate and NAD+ metabolism), which is critical for maintaining the pool of ASCs, and discloses their pro-angiogenic potential, particularly, in the complex therapy of cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Yulia A Panina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Anton S Yakimov
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yulia K Komleva
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Andrey V Morgun
- Department of Pediatrics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Olga L Lopatina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Natalia A Malinovskaya
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Anton N Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Vladimir V Salmin
- Department of Medical and Biological Physics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Tatiana E Taranushenko
- Department of Pediatrics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
39
|
Perea-Gil I, Gálvez-Montón C, Prat-Vidal C, Jorba I, Segú-Vergés C, Roura S, Soler-Botija C, Iborra-Egea O, Revuelta-López E, Fernández MA, Farré R, Navajas D, Bayes-Genis A. Head-to-head comparison of two engineered cardiac grafts for myocardial repair: From scaffold characterization to pre-clinical testing. Sci Rep 2018; 8:6708. [PMID: 29712965 PMCID: PMC5928167 DOI: 10.1038/s41598-018-25115-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/12/2018] [Indexed: 01/09/2023] Open
Abstract
Cardiac tissue engineering, which combines cells and supportive scaffolds, is an emerging treatment for restoring cardiac function after myocardial infarction (MI), although, the optimal construct remains a challenge. We developed two engineered cardiac grafts, based on decellularized scaffolds from myocardial and pericardial tissues and repopulated them with adipose tissue mesenchymal stem cells (ATMSCs). The structure, macromechanical and micromechanical scaffold properties were preserved upon the decellularization and recellularization processes, except for recellularized myocardium micromechanics that was ∼2-fold stiffer than native tissue and decellularized scaffolds. Proteome characterization of the two acellular matrices showed enrichment of matrisome proteins and major cardiac extracellular matrix components, considerably higher for the recellularized pericardium. Moreover, the pericardial scaffold demonstrated better cell penetrance and retention, as well as a bigger pore size. Both engineered cardiac grafts were further evaluated in pre-clinical MI swine models. Forty days after graft implantation, swine treated with the engineered cardiac grafts showed significant ventricular function recovery. Irrespective of the scaffold origin or cell recolonization, all scaffolds integrated with the underlying myocardium and showed signs of neovascularization and nerve sprouting. Collectively, engineered cardiac grafts -with pericardial or myocardial scaffolds- were effective in restoring cardiac function post-MI, and pericardial scaffolds showed better structural integrity and recolonization capability.
Collapse
Affiliation(s)
- Isaac Perea-Gil
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Cristina Prat-Vidal
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Centre of Regenerative Medicine in Barcelona, Barcelona, Spain
| | - Ignasi Jorba
- Biophysics and Bioengineering Unit, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | | | - Santiago Roura
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Carolina Soler-Botija
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Oriol Iborra-Egea
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain
| | - Elena Revuelta-López
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain
| | - Marco A Fernández
- Flow Cytometry Facility, Germans Trias i Pujol Research Institute, Campus Can Ruti, Badalona, Spain
| | - Ramon Farré
- Biophysics and Bioengineering Unit, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Daniel Navajas
- Biophysics and Bioengineering Unit, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Badalona, Spain. .,CIBER de Enfermedades Cardiovasculares, Madrid, Spain. .,Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain. .,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|