1
|
Yazaki K, Dewar M, Dauz J, Akazawa Y, Hui L, Sun M, Hui W, Kabir G, Dejardin JF, Connelly KA, Heximer SP, Friedberg MK. Serial and regional assessment of the right ventricular molecular and functional response to pressure loading. Am J Physiol Heart Circ Physiol 2025; 328:H58-H74. [PMID: 39422363 DOI: 10.1152/ajpheart.00322.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Right ventricular (RV) function determines outcomes in RV pressure loading. A better understanding of the time-course and regional distribution of RV remodeling may help optimize targets and timing for therapeutic intervention. We sought to characterize RV remodeling between zero and 6 wk after the initiation of RV pressure loading. Thirty-six rats were randomized to either sham surgery or to pulmonary artery banding (PAB). After echocardiography and conductance catheter studies, groups of rats were euthanized at 1 wk, 3 wk, and 6 wk after sham surgery, or induction of RV pressure loading, for RV histological, RNA, and molecular analysis. A vigorous inflammatory response characterized by increased RV inflammatory cytokines, chemokines, and macrophage markers was observed at 1 wk following PAB. Metabolic changes, transforming growth factor-β (TGF-β)1 canonical signaling, collagenous fibrosis deposition, and apoptosis were already significantly increased by 1 wk after PAB. Genes marking fibroblast activation were upregulated at 1 wk but not at 6 wk post-PAB surgery. Mitochondrial dysfunction was evidenced by increased pyruvate dehydrogenase kinase (PDK) activity and decreased pyruvate dehydrogenase (PDH) phosphorylation significantly at 6-wk post-PAB. These processes preceded the development of overt myocardial hypertrophy and impaired echo parameters of systolic and diastolic function that occurred significantly from 3 wk after PAB. RV myocardial inflammation, metabolic shift, metabolic gene transcription, and profibrotic signaling occur early after initiation of pressure loading when RV pressures are only moderately elevated, before the development of overt myocardial hypertrophy and dysfunction, suggesting that adaptive hypertrophy and maladaptive remodeling occur simultaneously. These results suggest that therapeutic intervention to reduce adverse RV remodeling may be needed earlier and at lower thresholds than currently used.NEW & NOTEWORTHY Exploring the dynamics of right ventricular remodeling: unveiling the intricate interplay between inflammation, metabolic shifts, and fibrotic signaling in response to pressure loading. Through a comprehensive study spanning from initiation to 6 wk post-pressure loading, our research sheds light on the early onset of crucial molecular processes preceding overt hypertrophy and dysfunction. These findings challenge conventional intervention timing, advocating for early, targeted therapeutic strategies to mitigate adverse remodeling in right ventricular pressure loading.
Collapse
MESH Headings
- Animals
- Ventricular Remodeling
- Male
- Ventricular Function, Right
- Rats, Sprague-Dawley
- Fibrosis
- Rats
- Ventricular Pressure
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Disease Models, Animal
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/genetics
- Ventricular Dysfunction, Right/etiology
- Time Factors
- Apoptosis
- Pulmonary Artery/physiopathology
- Pulmonary Artery/metabolism
- Signal Transduction
- Transforming Growth Factor beta1/metabolism
- Transforming Growth Factor beta1/genetics
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/pathology
- Cytokines/metabolism
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
Collapse
Affiliation(s)
- Kana Yazaki
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Michael Dewar
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John Dauz
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Yohei Akazawa
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Lucy Hui
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mei Sun
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Wei Hui
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Golam Kabir
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jean-Francois Dejardin
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kim A Connelly
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Scott P Heximer
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Konduri A, West C, Lowery R, Hunter T, Jarosz A, Yu S, Lim HM, McCormick AD, Schumacher KR, Peng DM. Experience with SGLT2 Inhibitors in Patients with Single Ventricle Congenital Heart Disease and Fontan Circulatory Failure. Pediatr Cardiol 2025; 46:81-88. [PMID: 37919530 DOI: 10.1007/s00246-023-03332-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Heart failure is the leading cause of morbidity and mortality in patients with Fontan circulation. Sodium-glucose-cotransporter 2 inhibitors (SGLT2i) have become a mainstay of heart failure therapy in adult patients, however, there remains a paucity of literature to describe its use in pediatric heart failure patients, especially those with single ventricle physiology. We describe our early experience using SGLT2i in patients with single ventricle congenital heart disease surgically palliated to the Fontan circulation. We conducted a single-center retrospective chart review of all patients with Fontan circulation who were initiated on an SGLT2i from January 1, 2022 to March 1, 2023. Patient demographics, diagnoses, clinical status, and other therapies were collected from the electronic medical record. During the study period, 14 patients (median age 14.5 years, range 2.0-26.4 years) with Fontan circulation were started on a SGLT2i. Mean weight was 54 kg (range 11.6-80.4 kg). Median follow-up since SGLT2i initiation was 4.1 months (range 13 days-7.7 months). Four patients had a systemic left ventricle and 10 had a systemic right ventricle. Half the patients had Fontan Circulatory Failure with reduced Ejection Fraction (FCFrEF) of the systemic ventricle and the other half had Fontan Circulatory Failure with preserved Ejection Fraction (FCFpEF) of the systemic ventricle. In addition, 3 patients experienced Protein Losing Enteropathy (PLE) and 2 patients had plastic bronchitis, one of whom also was diagnosed with chylothorax. There were no genitourinary infections, hypoglycemia, ketoacidosis, hypotension or other significant adverse effects noted in our patient population. One patient experienced significant diuresis and transient acute kidney injury. Patients with FCFrEF showed a decrease in natriuretic peptide levels. Given the lack of proven therapies, demonstrated benefits of SGLT2i in other populations, and some suggestion of efficacy in Fontan circulation, further study of SGTLT2i in patients with Fontan circulation is warranted.
Collapse
Affiliation(s)
- Anusha Konduri
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA.
| | - Caroline West
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Ray Lowery
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Tiffany Hunter
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Audrey Jarosz
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Sunkyung Yu
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Heang M Lim
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | | | | | - David M Peng
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Corboz MR, Nguyen TL, Stautberg A, Cipolla D, Perkins WR, Chapman RW. Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats. J Aerosol Med Pulm Drug Deliv 2024; 37:241-283. [PMID: 39388691 PMCID: PMC11502635 DOI: 10.1089/jamp.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/03/2024] [Indexed: 10/12/2024] Open
Abstract
The Sugen 5416/hypoxia (Su/Hx) rat model of pulmonary arterial hypertension (PAH) demonstrates most of the distinguishing features of PAH in humans, including increased wall thickness and obstruction of the small pulmonary arteries along with plexiform lesion formation. Recently, significant advancement has been made describing the epidemiology, genomics, biochemistry, physiology, and pharmacology in Su/Hx challenge in rats. For example, there are differences in the overall reactivity to Su/Hx challenge in different rat strains and only female rats respond to estrogen treatments. These conditions are also encountered in human subjects with PAH. Also, there is a good translation in both the biochemical and metabolic pathways in the pulmonary vasculature and right heart between Su/Hx rats and humans, particularly during the transition from the adaptive to the nonadaptive phase of right heart failure. Noninvasive techniques such as echocardiography and magnetic resonance imaging have recently been used to evaluate the progression of the pulmonary vascular and cardiac hemodynamics, which are important parameters to monitor the efficacy of drug treatment over time. From a pharmacological perspective, most of the compounds approved clinically for the treatment of PAH are efficacious in Su/Hx rats. Several compounds that show efficacy in Su/Hx rats have advanced into phase II/phase III studies in humans with positive results. Results from these drug trials, if successful, will provide additional treatment options for patients with PAH and will also further validate the excellent translation that currently exists between Su/Hx rats and the human PAH condition.
Collapse
|
4
|
Lu X, Liu J, Feng L, Huang Y, Xu Y, Li C, Wang W, Kan Y, Yang J, Zhang M. BATF promotes tumor progression and association with FDG PET-derived parameters in colorectal cancer. J Transl Med 2024; 22:558. [PMID: 38862971 PMCID: PMC11165778 DOI: 10.1186/s12967-024-05367-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
PURPOSE The purpose of the study was to evaluate the expression and function of basic leucine zipper ATF-like transcription factor (BATF) in colorectal cancer (CRC), and its correlation with 2-deoxy-2[18F]fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) parameters. METHODS The TIMER database, GEPIA database, TCGA, and GEO database were used to analyze the expression profile of BATF in human cancers. The reverse transcription‑quantitative PCR and western blot analyses were used to evaluate the mRNA level and protein expression in different CRC cell lines. The expression of BATF in SW620 and HCT116 cells was silenced and cell counting kit-8 assays and clonogenic assay were utilized to evaluate the role of BATF in CRC proliferation. The expression of tumor BATF and glucose transporter 1 (GLUT-1) were examined using immunohistochemical tools in 37 CRC patients undergoing preoperative 18F-FDG PET/CT imaging. The correlation between the PET/CT parameters and immunohistochemical result was evaluated. RESULTS In database, BATF was highly expressed in pan-cancer analyses, including CRC, and was associated with poor prognosis in CRC. In vitro, the results showed that knocking down of BATF expression could inhibit the proliferation of SW620 and HCT116 cells. In CRC patients, BATF expression was upregulated in tumor tissues compared with matched para-tumoral tissues, and was related with gender and Ki-67 levels. BATF expression was positively related to GLUT-1 expression and PET/CT parameters, including tumor size, maximum standard uptake value, metabolic tumor volume, and total lesion glycolysis. The multiple logistic analyses showed that SUVmax was an independent predictor of BATF expression. With 15.96 g/cm3 as the cutoff, sensitivity was 85.71%, specificity 82.61%, and area-under-the-curve 0.854. CONCLUSION BATF may be an oncogene associated with 18F-FDG PET/CT parameters in CRC. SUVmax may be an independent predictor of BATF expression.
Collapse
Affiliation(s)
- Xia Lu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jun Liu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Lijuan Feng
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Yanfeng Xu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Cuicui Li
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wei Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yin Kan
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Mingyu Zhang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
5
|
Ma R, Li S, Mo Q, Chen X, Liang Y, Hu T, Hu H, He B, Li R, Kou J, Yu B. Preventive and Therapeutic Effects of Crocetin in Rats with Heart Failure. Pharmaceuticals (Basel) 2024; 17:496. [PMID: 38675456 PMCID: PMC11054188 DOI: 10.3390/ph17040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Gardenia is both a food and medicine plant. It is widely used for cardiovascular protection, and its main bioactive ingredient is crocetin. This study aims to observe the therapeutic effects of crocetin on chronic heart failure in rats induced by various etiologies. It further compares the efficacy differences between preventative and treatment administration, varying dosages, and treatment durations, to provide improved guidance for medication in heart failure rats and determine which categories of chronic heart failure rats might benefit most from crocetin. Chronic heart failure models induced by abdominal aorta constriction, renal hypertension, and coronary artery ligation were constructed. By examining cardiac function, blood biochemistry, and histopathology, the study assessed the preventive and therapeutic effects of crocetin on load-induced and myocardial ischemia-induced heart failure. The results showed that in all three models, both treatment and preventative administration of crocetin significantly improved chronic heart failure in rats, especially in preventative administration. The results indicate crocetin may be beneficial for improving symptoms and functional capacity in rats with heart failure. Furthermore, long-term administration was more effective than short-term administration across all three rat models, with therapeutic onset observed over 6 weeks.
Collapse
Affiliation(s)
- Renqiang Ma
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China; (R.M.); (Q.M.); (X.C.); (J.K.)
- Boji Pharmaceutical Research Center, Boji Medical Biotechnological Co., Ltd., Guangzhou 510663, China; (S.L.); (Y.L.); (T.H.); (H.H.); (B.H.)
| | - Sijia Li
- Boji Pharmaceutical Research Center, Boji Medical Biotechnological Co., Ltd., Guangzhou 510663, China; (S.L.); (Y.L.); (T.H.); (H.H.); (B.H.)
| | - Qingmei Mo
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China; (R.M.); (Q.M.); (X.C.); (J.K.)
- Boji Pharmaceutical Research Center, Boji Medical Biotechnological Co., Ltd., Guangzhou 510663, China; (S.L.); (Y.L.); (T.H.); (H.H.); (B.H.)
| | - Xiaojuan Chen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China; (R.M.); (Q.M.); (X.C.); (J.K.)
- Boji Pharmaceutical Research Center, Boji Medical Biotechnological Co., Ltd., Guangzhou 510663, China; (S.L.); (Y.L.); (T.H.); (H.H.); (B.H.)
| | - Yan Liang
- Boji Pharmaceutical Research Center, Boji Medical Biotechnological Co., Ltd., Guangzhou 510663, China; (S.L.); (Y.L.); (T.H.); (H.H.); (B.H.)
| | - Tao Hu
- Boji Pharmaceutical Research Center, Boji Medical Biotechnological Co., Ltd., Guangzhou 510663, China; (S.L.); (Y.L.); (T.H.); (H.H.); (B.H.)
| | - Hui Hu
- Boji Pharmaceutical Research Center, Boji Medical Biotechnological Co., Ltd., Guangzhou 510663, China; (S.L.); (Y.L.); (T.H.); (H.H.); (B.H.)
| | - Bao He
- Boji Pharmaceutical Research Center, Boji Medical Biotechnological Co., Ltd., Guangzhou 510663, China; (S.L.); (Y.L.); (T.H.); (H.H.); (B.H.)
| | - Renshi Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China; (R.M.); (Q.M.); (X.C.); (J.K.)
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China; (R.M.); (Q.M.); (X.C.); (J.K.)
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China; (R.M.); (Q.M.); (X.C.); (J.K.)
| |
Collapse
|
6
|
Ma W, Zhang P, Vang A, Zimmer A, Huck S, Nicely P, Wang E, Mancini TJ, Owusu-Sarfo J, Cavarsan CF, Belyvech AE, Campbell KS, Terentyev D, Choudhary G, Clements RT. Reduction in activity and abundance of mitochondrial electron transport chain supercomplexes in pulmonary hypertension-induced right ventricular dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584016. [PMID: 39005332 PMCID: PMC11245116 DOI: 10.1101/2024.03.08.584016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Pulmonary hypertension (PH) results in RV hypertrophy, fibrosis and dysfunction resulting in RV failure which is associated with impaired RV metabolism and mitochondrial respiration. Mitochondrial supercomplexes (mSC) are assemblies of multiple electron transport chain (ETC) complexes that consist of physically associated complex I, III and IV that may enhance respiration and lower ROS generation. The goal of this study was to determine if mSCs are reduced in RV dysfunction associated with PH. We induced PH in Sprague-Dawley rats by Sugen/Hypoxia (3 weeks) followed by normoxia (4 weeks). Control and PH rats were subjected to echocardiography, blue and clear native-PAGE to assess mSC abundance and activity, and cardiomyocyte isolation to assess mitochondrial reactive oxygen species (ROS). mSC formation was also assessed in explanted human hearts with and without RV dysfunction. RV activity of CI and CIV and abundance of CI, CIII and CIV in mitochondrial mSCs was severely reduced in PH rats compared to control. There were no differences in total CI or CIV activity or abundance in smaller ETC assemblies. There were no changes in both RV and LV of expression of representative ETC complex subunits. PAT, TAPSE and RV Wall thickness significantly correlated with CIV and CI activity in mSC, but not total CI and CIV activity in the RV. Consistent with reduced mSC activity, isolated PH RV myocytes had increased mitochondrial ROS generation compared to control. Reduced mSC activity was also demonstrated in explanted human RV tissue from patients undergoing cardiac transplant with RV dysfunction. The right atrial pressure/pulmonary capillary wedge pressure ratio (RAP/PCWP, an indicator of RV dysfunction) negatively correlated with RV mSC activity level. In conclusion, reduced assembly and activity of mitochondrial mSC is correlated with RV dysfunction in PH rats and humans with RV dysfunction.
Collapse
|
7
|
Jin J, Zhao Q, Wei Z, Chen K, Su Y, Hu X, Peng X. Glycolysis-cholesterol metabolic axis in immuno-oncology microenvironment: emerging role in immune cells and immunosuppressive signaling. Cell Biosci 2023; 13:189. [PMID: 37828561 PMCID: PMC10571292 DOI: 10.1186/s13578-023-01138-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Cell proliferation and function require nutrients, energy, and biosynthesis activity to duplicate repertoires for each daughter. It is therefore not surprising that tumor microenvironment (TME) metabolic reprogramming primarily orchestrates the interaction between tumor and immune cells. Tumor metabolic reprogramming affords bioenergetic, signaling intermediates, and biosynthesis requirements for both malignant and immune cells. Different immune cell subsets are recruited into the TME, and these manifestations have distinct effects on tumor progression and therapeutic outcomes, especially the mutual contribution of glycolysis and cholesterol metabolism. In particularly, glycolysis-cholesterol metabolic axis interconnection plays a critical role in the TME modulation, and their changes in tumor metabolism appear to be a double-edged sword in regulating various immune cell responses and immunotherapy efficacy. Hence, we discussed the signature manifestation of the glycolysis-cholesterol metabolic axis and its pivotal role in tumor immune regulation. We also highlight how hypothetical combinations of immunotherapy and glycolysis/cholesterol-related metabolic interventions unleash the potential of anti-tumor immunotherapies, as well as developing more effective personalized treatment strategies.
Collapse
Affiliation(s)
- Jing Jin
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Qijie Zhao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhigong Wei
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Keliang Chen
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yonglin Su
- Department of Rehabilitation, Cancer Center, West China Hospital, Sichuan University, Sichuan, People's Republic of China.
| | - Xiaolin Hu
- Department of Nursing, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
8
|
Packer M. Foetal recapitulation of nutrient surplus signalling by O-GlcNAcylation and the failing heart. Eur J Heart Fail 2023; 25:1199-1212. [PMID: 37434410 DOI: 10.1002/ejhf.2972] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/13/2023] Open
Abstract
The development of the foetal heart is driven by increased glucose uptake and activation of mammalian target of rapamycin (mTOR) and hypoxia-inducible factor-1α (HIF-1α), which drives glycolysis. In contrast, the healthy adult heart is governed by sirtuin-1 (SIRT1) and adenosine monophosphate-activated protein kinase (AMPK), which promote fatty-acid oxidation and the substantial mitochondrial ATP production required for survival in a high-workload normoxic environment. During cardiac injury, the heart recapitulates the foetal signalling programme, which (although adaptive in the short term) is highly deleterious if sustained for long periods of time. Prolonged increases in glucose uptake in cardiomyocytes under stress leads to increased flux through the hexosamine biosynthesis pathway; its endproduct - uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) - functions as a critical nutrient surplus sensor. UDP-GlcNAc drives the post-translational protein modification known as O-GlcNAcylation, which rapidly and reversibly modifies thousands of intracellular proteins. Both O-GlcNAcylation and phosphorylation act at serine/threonine residues, but whereas phosphorylation is regulated by hundreds of specific kinases and phosphatases, O-GlcNAcylation is regulated by only two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which adds or removes GlcNAc (N-acetylglucosamine), respectively, from target proteins. Recapitulation of foetal programming in heart failure (regardless of diabetes) is accompanied by marked increases in O-GlcNAcylation, both experimentally and clinically. Heightened O-GlcNAcylation in the heart leads to impaired calcium kinetics and contractile derangements, arrhythmias related to activation of voltage-gated sodium channels and Ca2+ /calmodulin-dependent protein kinase II, mitochondrial dysfunction, and maladaptive hypertrophy, microvascular dysfunction, fibrosis and cardiomyopathy. These deleterious effects can be prevented by suppression of O-GlcNAcylation, which can be achieved experimentally by upregulation of AMPK and SIRT1 or by pharmacological inhibition of OGT or stimulation of OGA. The effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors on the heart are accompanied by reduced O-GlcNAcylation, and their cytoprotective effects are reportedly abrogated if their action to suppress O-GlcNAcylation is blocked. Such an action may represent one of the many mechanisms by which enhanced AMPK and SIRT1 signalling following SGLT2 inhibition leads to cardiovascular benefits. These observations, taken collectively, suggest that UDP-GlcNAc functions as a critical nutrient surplus sensor (which acting in concert with mTOR and HIF-1α) can promote the development of cardiomyopathy.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA
- Imperial College, London, UK
| |
Collapse
|
9
|
Bruns DR, McNair BD, Peelor FF, Borowik AK, Pranay A, Yusifov A, Miller BF. Skeletal and cardiac muscle have different protein turnover responses in a model of right heart failure. GeroScience 2023; 45:2545-2557. [PMID: 37118350 PMCID: PMC10651599 DOI: 10.1007/s11357-023-00777-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/20/2023] [Indexed: 04/30/2023] Open
Abstract
Right heart failure (RHF) is a common and deadly disease in aged populations. Extra-cardiac outcomes of RHF such as skeletal muscle atrophy contribute to morbidity and mortality. Despite the significance of maintaining right ventricular (RV) and muscle function, the mechanisms of RHF and muscle atrophy are unclear. Metformin (MET) improves cardiac and muscle function through the regulation of metabolism and the cellular stress response. However, whether MET is a viable therapeutic for RHF and muscle atrophy is not yet known. We used deuterium oxide labeling to measure individual protein turnover in the RV as well as subcellular skeletal muscle proteostasis in aged male mice subjected to 4 weeks of hypobaric hypoxia (HH)-induced RHF. Mice exposed to HH had elevated RV mass and impaired RV systolic function, neither of which was prevented by MET. HH resulted in a higher content of glycolytic, cardiac, and antioxidant proteins in the RV, most of which were inhibited by MET. The synthesis of these key RV proteins was generally unchanged by MET, suggesting MET accelerated protein breakdown. HH resulted in a loss of skeletal muscle mass due to inhibited protein synthesis alongside myofibrillar protein breakdown. MET did not impact HH-induced muscle protein turnover and did not prevent muscle wasting. Together, we show tissue-dependent responses to HH-induced RHF where the RV undergoes hypertrophic remodeling with higher expression of metabolic and stress response proteins. Skeletal muscle undergoes loss of protein mass and atrophy, primarily due to myofibrillar protein breakdown. MET did not prevent HH-induced RV dysfunction or muscle wasting, suggesting that the identification of other therapies to attenuate RHF and concomitant muscle atrophy is warranted.
Collapse
Affiliation(s)
- Danielle R Bruns
- Division of Kinesiology & Health, University of Wyoming, 1000 E. University Ave, Dept. 3196, Laramie, WY, 82071, USA.
- Wyoming WWAMI Medical Education, Laramie, WY, USA.
| | - Benjamin D McNair
- Division of Kinesiology & Health, University of Wyoming, 1000 E. University Ave, Dept. 3196, Laramie, WY, 82071, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Atul Pranay
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Aykhan Yusifov
- Division of Kinesiology & Health, University of Wyoming, 1000 E. University Ave, Dept. 3196, Laramie, WY, 82071, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
10
|
Babu G, Annis JS, Garry JD, Freiberg MS, Hemnes AR, Brittain EL. Clinical features do not identify risk of progression from isolated postcapillary pulmonary hypertension to combined pre- and postcapillary pulmonary hypertension. Pulm Circ 2023; 13:e12249. [PMID: 37332851 PMCID: PMC10271598 DOI: 10.1002/pul2.12249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
Pulmonary hypertension is a common sequelae of left heart failure and may present as isolated postcapillary pulmonary hypertension (Ipc-PH) or combined pre- and postcapillary pulmonary hypertension (Cpc-PH). Clinical features associated with progression from Ipc-PH to Cpc-PH have not yet been described. We extracted clinical data from patients who underwent right heart catheterizations (RHC) on two separate occasions. Ipc-PH was defined as mean pulmonary pressure >20 mmHg, pulmonary capillary wedge pressure >15 mmHg, and pulmonary vascular resistance (PVR) < 3 WU. Progression to Cpc-PH required an increase in PVR to ≥3 WU. We performed a retrospective cohort study with repeated assessments comparing subjects that progressed to Cpc-PH to subjects that remained with Ipc-PH. Of 153 patients with Ipc-PH at baseline who underwent a repeat RHC after a median of 0.7 years (IQR 0.2, 2.1), 33% (50/153) had developed Cpc-PH. In univariate analysis comparing the two groups at baseline, body mass index (BMI) and right atrial pressure were lower, while the prevalence of moderate or worse mitral regurgitation (MR) was higher among those who progressed. In age- and sex-adjusted multivariable analysis, only BMI (OR 0.94, 95% CI 0.90-0.99, p = 0.017, C = 0.655) and moderate or worse MR (OR 3.00, 95% CI 1.37-6.60, p = 0.006, C = 0.654) predicted progression, but with poor discriminatory power. This study suggests that clinical features alone cannot distinguish patients at risk for development of Cpc-PH and support the need for molecular and genetic studies to identify biomarkers of progression.
Collapse
Affiliation(s)
- Gautam Babu
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jeffrey S. Annis
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jonah D. Garry
- Department of Medicine, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Matthew S. Freiberg
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Anna R. Hemnes
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Evan L. Brittain
- Department of Medicine, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Division of Cardiovascular Medicine, Vanderbilt Translational and Clinical Research CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
11
|
Alipour Symakani RS, van Genuchten WJ, Zandbergen LM, Henry S, Taverne YJHJ, Merkus D, Helbing WA, Bartelds B. The right ventricle in tetralogy of Fallot: adaptation to sequential loading. Front Pediatr 2023; 11:1098248. [PMID: 37009270 PMCID: PMC10061113 DOI: 10.3389/fped.2023.1098248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/27/2023] [Indexed: 04/04/2023] Open
Abstract
Right ventricular dysfunction is a major determinant of outcome in patients with complex congenital heart disease, as in tetralogy of Fallot. In these patients, right ventricular dysfunction emerges after initial pressure overload and hypoxemia, which is followed by chronic volume overload due to pulmonary regurgitation after corrective surgery. Myocardial adaptation and the transition to right ventricular failure remain poorly understood. Combining insights from clinical and experimental physiology and myocardial (tissue) data has identified a disease phenotype with important distinctions from other types of heart failure. This phenotype of the right ventricle in tetralogy of Fallot can be described as a syndrome of dysfunctional characteristics affecting both contraction and filling. These characteristics are the end result of several adaptation pathways of the cardiomyocytes, myocardial vasculature and extracellular matrix. As long as the long-term outcome of surgical correction of tetralogy of Fallot remains suboptimal, other treatment strategies need to be explored. Novel insights in failure of adaptation and the role of cardiomyocyte proliferation might provide targets for treatment of the (dysfunctional) right ventricle under stress.
Collapse
Affiliation(s)
- Rahi S. Alipour Symakani
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, Netherlands
- Department of Cardiology, Division of Experimental Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, Netherlands
| | - Wouter J. van Genuchten
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Lotte M. Zandbergen
- Department of Cardiology, Division of Experimental Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
- Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, Munich, Germany
| | - Surya Henry
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Daphne Merkus
- Department of Cardiology, Division of Experimental Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
- Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Willem A. Helbing
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Beatrijs Bartelds
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, Netherlands
| |
Collapse
|
12
|
Samaja M, Ottolenghi S. The Oxygen Cascade from Atmosphere to Mitochondria as a Tool to Understand the (Mal)adaptation to Hypoxia. Int J Mol Sci 2023; 24:ijms24043670. [PMID: 36835089 PMCID: PMC9960749 DOI: 10.3390/ijms24043670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Hypoxia is a life-threatening challenge for about 1% of the world population, as well as a contributor to high morbidity and mortality scores in patients affected by various cardiopulmonary, hematological, and circulatory diseases. However, the adaptation to hypoxia represents a failure for a relevant portion of the cases as the pathways of potential adaptation often conflict with well-being and generate diseases that in certain areas of the world still afflict up to one-third of the populations living at altitude. To help understand the mechanisms of adaptation and maladaptation, this review examines the various steps of the oxygen cascade from the atmosphere to the mitochondria distinguishing the patterns related to physiological (i.e., due to altitude) and pathological (i.e., due to a pre-existing disease) hypoxia. The aim is to assess the ability of humans to adapt to hypoxia in a multidisciplinary approach that correlates the function of genes, molecules, and cells with the physiologic and pathological outcomes. We conclude that, in most cases, it is not hypoxia by itself that generates diseases, but rather the attempts to adapt to the hypoxia condition. This underlies the paradigm shift that when adaptation to hypoxia becomes excessive, it translates into maladaptation.
Collapse
Affiliation(s)
- Michele Samaja
- MAGI GROUP, San Felice del Benaco, 25010 Brescia, Italy
- Correspondence:
| | - Sara Ottolenghi
- School of Medicine and Surgery, University of Milano Bicocca, 20126 Milan, Italy
| |
Collapse
|
13
|
van der Laarse WJ, Bogaards SJP, Schalij I, Vonk Noordegraaf A, Vaz FM, van Groen D. Work and oxygen consumption of isolated right ventricular papillary muscle in experimental pulmonary hypertension. J Physiol 2022; 600:4465-4484. [PMID: 35993114 DOI: 10.1113/jp282991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022] Open
Abstract
Right-sided myocardial mechanical efficiency (work output/metabolic energy input) in pulmonary hypertension can be severely reduced. We determined the contribution of intrinsic myocardial determinants of efficiency using papillary muscle preparations from monocrotaline-induced pulmonary hypertensive (MCT-PH) rats. The hypothesis tested was that efficiency is reduced by mitochondrial dysfunction in addition to increased activation heat reported previously. Right ventricular muscle preparations were subjected to 5 Hz sinusoidal length changes at 37°C. Work and suprabasal oxygen consumption (V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ ) were measured before and after cross-bridge inhibition by blebbistatin. Cytosolic cytochrome c concentration, myocyte cross-sectional area, proton permeability of the inner mitochondrial membrane and monoamine oxidase and glucose 6-phosphate dehydrogenase activities and phosphatidylglycerol/cardiolipin contents were determined. Mechanical efficiency ranged from 23% to 11% in control (n = 6) and from 22% to 1% in MCT-PH (n = 15) and correlated with work (r2 = 0.68, P < 0.0001) but not withV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ (r2 = 0.004, P = 0.7919).V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ for cross-bridge cycling was proportional to work (r2 = 0.56, P = 0.0005). Blebbistatin-resistantV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ (r2 = 0.32, P = 0.0167) and proton permeability of the mitochondrial inner membrane (r2 = 0.36, P = 0.0110) correlated inversely with efficiency. Together, these variables explained the variance of efficiency (coefficient of multiple determination r2 = 0.79, P = 0.0001). Cytosolic cytochrome c correlated inversely with work (r2 = 0.28, P = 0.0391), but not with efficiency (r2 = 0.20, P = 0.0867). Glucose 6-phosphate dehydrogenase, monoamine oxidase and phosphatidylglycerol/cardiolipin increased in the right ventricular wall of MCT-PH but did not correlate with efficiency. Reduced myocardial efficiency in MCT-PH is a result of activation processes and mitochondrial dysfunction. The variance of work and the ratio of activation heat reported previously and blebbistatin-resistantV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ are discussed. KEY POINTS: Mechanical efficiency of right ventricular myocardium is reduced in pulmonary hypertension. Increased energy use for activation processes has been demonstrated previously, but the contribution of mitochondrial dysfunction is unknown. Work and oxygen consumption are determined during work loops. Oxygen consumption for activation and cross-bridge cycling confirm the previous heat measurements. Cytosolic cytochrome c concentration, proton permeability of the mitochondrial inner membrane and phosphatidylglycerol/cardiolipin are increased in experimental pulmonary hypertension. Reduced work and mechanical efficiency are related to mitochondrial dysfunction. Upregulation of the pentose phosphate pathway and a potential gap in the energy balance suggest mitochondrial dysfunction in right ventricular overload is a resiult of the excessive production of reactive oxygen species.
Collapse
Affiliation(s)
- Willem J van der Laarse
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Sylvia J P Bogaards
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ingrid Schalij
- Department of Pulmonology, Amsterdam Cardiovascular Sciences, VU University Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Anton Vonk Noordegraaf
- Department of Pulmonology, Amsterdam Cardiovascular Sciences, VU University Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Amsterdam Cardiovascular Sciences, VU University Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands and Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Amsterdam Gastroentrology Endocrinology Metabolism, Amsterdam, Department of Pediatrics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Emma Children's Hospital, Amsterdam University Medical Centers, Core Facility Metabolomics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Duncan van Groen
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Agrawal V, Hemnes AR, Shelburne NJ, Fortune N, Fuentes JL, Colvin D, Calcutt MW, Talati M, Poovey E, West JD, Brittain EL. l-Carnitine therapy improves right heart dysfunction through Cpt1-dependent fatty acid oxidation. Pulm Circ 2022; 12:e12107. [PMID: 35911183 PMCID: PMC9326551 DOI: 10.1002/pul2.12107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/27/2022] [Accepted: 06/16/2022] [Indexed: 11/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a fatal vasculopathy that ultimately leads to elevated pulmonary pressure and death by right ventricular (RV) failure, which occurs in part due to decreased fatty acid oxidation and cytotoxic lipid accumulation. In this study, we tested the hypothesis that decreased fatty acid oxidation and increased lipid accumulation in the failing RV is driven, in part, by a relative carnitine deficiency. We then tested whether supplementation of l-carnitine can reverse lipotoxic RV failure through augmentation of fatty acid oxidation. In vivo in transgenic mice harboring a human BMPR2 mutation, l-carnitine supplementation reversed RV failure by increasing RV cardiac output, improving RV ejection fraction, and decreasing RV lipid accumulation through increased PPARγ expression and augmented fatty acid oxidation of long chain fatty acids. These findings were confirmed in a second model of pulmonary artery banding-induced RV dysfunction. In vitro, l-carnitine supplementation selectively increased fatty acid oxidation in mitochondria and decreased lipid accumulation through a Cpt1-dependent pathway. l-Carnitine supplementation improves right ventricular contractility in the stressed RV through augmentation of fatty acid oxidation and decreases lipid accumulation. Correction of carnitine deficiency through l-carnitine supplementation in PAH may reverse RV failure.
Collapse
Affiliation(s)
- Vineet Agrawal
- Department of Medicine, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Anna R. Hemnes
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Nicholas J. Shelburne
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Niki Fortune
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Julio L. Fuentes
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Dan Colvin
- Vanderbilt University Institute of ImagingVanderbilt UniversityNashvilleTennesseeUSA
| | - Marion W. Calcutt
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
| | - Megha Talati
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Emily Poovey
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - James D. West
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Evan L. Brittain
- Department of Medicine, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
15
|
Jiang L, Goncharov DA, Shen Y, Lin D, Chang B, Pena A, DeLisser H, Goncharova EA, Kudryashova TV. Akt-Dependent Glycolysis-Driven Lipogenesis Supports Proliferation and Survival of Human Pulmonary Arterial Smooth Muscle Cells in Pulmonary Hypertension. Front Med (Lausanne) 2022; 9:886868. [PMID: 35836951 PMCID: PMC9274086 DOI: 10.3389/fmed.2022.886868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hyper-proliferation of pulmonary arterial vascular smooth muscle cells (PAVSMC) is an important pathological component of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). Lipogenesis is linked to numerous proliferative diseases, but its role in PAVSMC proliferation in PAH remains to be elucidated. We found that early-passage human PAH PAVSMC had significant up-regulation of key fatty acids synthesis enzymes ATP-citrate lyase (ACLY), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FASN), and increased unstimulated proliferation compared to control human PAVSMC. Treatment with an allosteric ACC inhibitor 5-tetradecyloxy-2-furoic acid (TOFA) significantly decreased proliferation and induced apoptosis of human PAH PAVSMC. Intracellular lipid content and proliferation of PAH PAVSMC were not reduced by incubation in lipid-depleted media but suppressed by a non-metabolizable analog of glucose 2-Deoxy-D-glucose (2-DG) and partially restored by addition of pyruvate. Protein kinase Akt was upregulated in human PAH PAVSMC in a sirtuin 7 (SIRT7)- and c-Jun N-terminal kinase (JNK)-dependent manner. Pharmacological inhibition of Akt down-regulated ACLY and ACC, significantly reduced intracellular lipid content, inhibited proliferation and induced apoptosis of human PAH PAVSMC. Taken together, these data demonstrate that human PAH PAVSMC have up-regulated lipogenesis, which is supported in an Akt- and glycolysis-dependent manner and is required for increased proliferation and survival. Our data suggest that there is a mechanistic link between glycolysis, lipogenesis, and the proliferation of human PAH PAVSMC and call for further studies to determine the potential attractiveness of a SIRT7/JNK-Akt-lipogenesis axis as a target pathway to inhibit PAVSMC hyper-proliferation in PAH.
Collapse
Affiliation(s)
- Lifeng Jiang
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Dmitry A Goncharov
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Yuanjun Shen
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Derek Lin
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Baojun Chang
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andressa Pena
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Horace DeLisser
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Elena A Goncharova
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Tatiana V Kudryashova
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
16
|
Cole LK, Sparagna GC, Dolinsky VW, Hatch GM. Altered cardiolipin metabolism is associated with cardiac mitochondrial dysfunction in pulmonary vascular remodeled perinatal rat pups. PLoS One 2022; 17:e0263520. [PMID: 35143544 PMCID: PMC8830687 DOI: 10.1371/journal.pone.0263520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
Pulmonary vascular remodeling (PVR) in utero results in the development of heart failure. The alterations that occur in cardiac lipid and mitochondrial bioenergetics during the development of in utero PVR was unknown. In this study, PVR was induced in pups in utero by exposure of pregnant dams to indomethacin and hypoxia and cardiac lipids, echocardiographic function and cardiomyocyte mitochondrial function were subsequently examined. Perinatal rat pups with PVR exhibited elevated left and right cardiac ventricular internal dimensions and reduced ejection fraction and fractional shortening compared to controls. Cardiac myocytes from these pups exhibited increased glycolytic capacity and glycolytic reserve compared to controls. However, respiration with glucose as substrate was unaltered. Fatty acid oxidation and ATP-insensitive respiration were increased in isolated cardiac myocytes from these pups compared to controls indicating a mitochondrial dysfunction. Although abundance of mitochondrial respiratory chain complexes was unaltered, increased trilinoleoyl-lysocardiolipin levels in these pups was observed. A compensatory increase in both cardiolipin and phosphatidylethanolamine content were observed due to increased synthesis of these phospholipids. These data indicate that alterations in cardiac cardiolipin and phospholipid metabolism in PVR rat pups is associated with the mitochondrial bioenergetic and cardiac functional defects observed in their hearts.
Collapse
Affiliation(s)
- Laura K. Cole
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Genevieve C. Sparagna
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado, United States of America
| | - Vernon W. Dolinsky
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Grant M. Hatch
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
- * E-mail:
| |
Collapse
|
17
|
Metabolism, Mitochondrial Dysfunction, and Redox Homeostasis in Pulmonary Hypertension. Antioxidants (Basel) 2022; 11:antiox11020428. [PMID: 35204311 PMCID: PMC8869288 DOI: 10.3390/antiox11020428] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023] Open
Abstract
Pulmonary hypertension (PH) represents a group of disorders characterized by elevated mean pulmonary artery (PA) pressure, progressive right ventricular failure, and often death. Some of the hallmarks of pulmonary hypertension include endothelial dysfunction, intimal and medial proliferation, vasoconstriction, inflammatory infiltration, and in situ thrombosis. The vascular remodeling seen in pulmonary hypertension has been previously linked to the hyperproliferation of PA smooth muscle cells. This excess proliferation of PA smooth muscle cells has recently been associated with changes in metabolism and mitochondrial biology, including changes in glycolysis, redox homeostasis, and mitochondrial quality control. In this review, we summarize the molecular mechanisms that have been reported to contribute to mitochondrial dysfunction, metabolic changes, and redox biology in PH.
Collapse
|
18
|
Zhang J, Xiao X, Guo Q, Wei Z, Hua W. Identification of Four Metabolic Subtypes of Glioma Based on Glycolysis-Cholesterol Synthesis Genes. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9448144. [PMID: 35242216 PMCID: PMC8886743 DOI: 10.1155/2022/9448144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/21/2022]
Abstract
Based on alterations in gene expression associated with the production of glycolysis and cholesterol, this research classified glioma into prognostic metabolic subgroups. In this study, data from the CGGA325 and The Cancer Genome Atlas (TCGA) datasets were utilized to extract single nucleotide variants (SNVs), RNA-seq expression data, copy number variation data, short insertions and deletions (InDel) mutation data, and clinical follow-up information from glioma patients. Glioma metabolic subtypes were classified using the ConsensusClusterPlus algorithm. This study determined four metabolic subgroups (glycolytic, cholesterogenic, quiescent, and mixed). Cholesterogenic patients had a higher survival chance. Genome-wide investigation revealed that inappropriate amplification of MYC and TERT was associated with improper cholesterol anabolic metabolism. In glioma metabolic subtypes, the mRNA levels of mitochondrial pyruvate carriers 1 and 2 (MPC1/2) presented deletion and amplification, respectively. Differentially upregulated genes in the glycolysis group were related to pathways, including IL-17, HIF-1, and TNF signaling pathways and carbon metabolism. Downregulated genes in the glycolysis group were enriched in terpenoid backbone biosynthesis, nitrogen metabolism, butanoate metabolism, and fatty acid metabolism pathway. Cox analysis of univariate and multivariate survival showed that risks of glycolysis subtypes were significantly higher than other subtypes. Those results were validated in the CGGA325 dataset. The current findings greatly contribute to a comprehensive understanding of glioma and personalized treatment.
Collapse
Affiliation(s)
- Jinsen Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
| | - Xing Xiao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
| | - Qinglong Guo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
| | - Zixuan Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
| |
Collapse
|
19
|
Gronda E, Lopaschuk GD, Arduini A, Santoro A, Benincasa G, Palazzuoli A, Gabrielli D, Napoli C. Mechanisms of action of SGLT2 inhibitors and their beneficial effects on the cardiorenal axis. Can J Physiol Pharmacol 2022; 100:93-106. [PMID: 35112597 DOI: 10.1139/cjpp-2021-0399] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Large clinical studies conducted with sodium-glucose co-transporter 2 inhibitors (SGLT2i) in patients with type 2 diabetes and heart failure with reduced ejection fraction have demonstrated their ability to achieve both cardiac and kidney benefits. Although there is huge evidence on SGLT2i-mediated clinical benefits both in diabetic and non-diabetic patients, the pathophysiological mechanisms underlying their efficacy are still poorly understood. Some favorable mechanisms are likely due to the prompt glycosuric action which is associated with natriuretic effects leading to hemodynamic benefits as well as a reduction in glomerular hyperfiltration and renin-angiotensin-aldosterone system activation. In addition to the renal mechanisms, SGLT2i may play a relevant role in cardiorenal axis protection by improving the cardiomyocyte metabolism, by exerting anti-fibrotic and anti-inflammatory actions, and by increasing cardioprotective adipokine expression. New studies will be needed to better understand the specific molecular mechanisms that mediate the SGLT2i favorable effects in patients suffering diabetes. Our aim is to first discuss about the molecular mechanisms underlying the cardiovascular benefits of SGLT2i in each of the main organs involved in the cardiorenal axis. Furthermore, we update on the most recent clinical trials evaluating the beneficial effects of SGLT2i in treatment of both diabetic and non-diabetic patients suffering heart failure.
Collapse
Affiliation(s)
- Edoardo Gronda
- Dipartimento di Medicina e Specialità Mediche, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico di Milano UOC di Nefrologia, Dialisi e Trapianto Renale dell'adulto, Milan, Italy
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, AB T6G 2S2, Canada
| | - Arduino Arduini
- Department of Research and Development, CoreQuest Sagl, Tecnopolo, 6934 Bioggio, Switzerland
| | - Antonio Santoro
- Nephrology Unit, S. Orsola-Malpighi Hospital, University of Bologna, Italy
| | - Giuditta Benincasa
- Clinical Department of Internal Medicine and Specialistic Units, Azienda Ospedaliera Universitaria and Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Alberto Palazzuoli
- Cardiovascular Diseases Unit, Department of Medical Sciences, Le Scotte Hospital University of Siena, Italy
| | - Domenico Gabrielli
- Division of Cardiology, San Camillo Hospital, Rome, Italy and Associazione Nazionale Medici Cardiologi Ospedalieri (ANMCO)
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistic Units, Azienda Ospedaliera Universitaria and Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
20
|
King NE, Brittain E. Emerging therapies: The potential roles SGLT2 inhibitors, GLP1 agonists, and ARNI therapy for ARNI pulmonary hypertension. Pulm Circ 2022; 12:e12028. [PMID: 35506082 PMCID: PMC9052991 DOI: 10.1002/pul2.12028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a highly morbid condition. PH due to left heart disease (PH-LHD) has no specific therapies and pulmonary arterial hypertension (PAH) has substantial residual risk despite several approved therapies. Multiple lines of experimental evidence link metabolic dysfunction to the pathogenesis and outcomes in PH-LHD and PAH, and novel metabolic agents hold promise to improve outcomes in these populations. The antidiabetic sodium-glucose cotransporter 2 (SGLT2) inhibitors and glucagon-like peptide-1 (GLP1) agonists targeting metabolic dysfunction and improve outcomes in patients with LHD but have not been tested specifically in patients with PH. The angiotensin receptor/neprilysin inhibitors (ARNIs) produce significant improvements in cardiac hemodynamics and may improve metabolic dysfunction that could benefit the pulmonary circulation and right ventricle function. On the basis of promising preclinical work with these medications and clinical rationale, we explore the potential of SGLT2 inhibitors, GLP1 agonists, and ARNIs as therapies for both PH-LHD and PAH.
Collapse
Affiliation(s)
| | - Evan Brittain
- Department of Medicine, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
21
|
Vilskersts R, Kigitovica D, Korzh S, Videja M, Vilks K, Cirule H, Skride A, Makrecka-Kuka M, Liepinsh E, Dambrova M. Protective Effects of Meldonium in Experimental Models of Cardiovascular Complications with a Potential Application in COVID-19. Int J Mol Sci 2021; 23:45. [PMID: 35008470 PMCID: PMC8744985 DOI: 10.3390/ijms23010045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Right ventricular (RV) and left ventricular (LV) dysfunction is common in a significant number of hospitalized coronavirus disease 2019 (COVID-19) patients. This study was conducted to assess whether the improved mitochondrial bioenergetics by cardiometabolic drug meldonium can attenuate the development of ventricular dysfunction in experimental RV and LV dysfunction models, which resemble ventricular dysfunction in COVID-19 patients. Effects of meldonium were assessed in rats with pulmonary hypertension-induced RV failure and in mice with inflammation-induced LV dysfunction. Rats with RV failure showed decreased RV fractional area change (RVFAC) and hypertrophy. Treatment with meldonium attenuated the development of RV hypertrophy and increased RVFAC by 50%. Mice with inflammation-induced LV dysfunction had decreased LV ejection fraction (LVEF) by 30%. Treatment with meldonium prevented the decrease in LVEF. A decrease in the mitochondrial fatty acid oxidation with a concomitant increase in pyruvate metabolism was noted in the cardiac fibers of the rats and mice with RV and LV failure, respectively. Meldonium treatment in both models restored mitochondrial bioenergetics. The results show that meldonium treatment prevents the development of RV and LV systolic dysfunction by enhancing mitochondrial function in experimental models of ventricular dysfunction that resembles cardiovascular complications in COVID-19 patients.
Collapse
Affiliation(s)
- Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rigas Stradins University, LV-1007 Riga, Latvia
| | - Dana Kigitovica
- Department of Internal Diseases, Faculty of Medicine, Rigas Stradins University, LV-1007 Riga, Latvia; (D.K.); (A.S.)
- Department of Nephrology, Pauls Stradins Clinical University Hospital, LV-1012 Riga, Latvia
| | - Stanislava Korzh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Melita Videja
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rigas Stradins University, LV-1007 Riga, Latvia
| | - Karlis Vilks
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Molecular Biology, Faculty of Biology, University of Latvia, LV-1050 Riga, Latvia
| | - Helena Cirule
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Andris Skride
- Department of Internal Diseases, Faculty of Medicine, Rigas Stradins University, LV-1007 Riga, Latvia; (D.K.); (A.S.)
- Department of Rare Diseases, Pauls Stradins Clinical University Hospital, LV-1012 Riga, Latvia
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rigas Stradins University, LV-1007 Riga, Latvia
| |
Collapse
|
22
|
Oknińska M, Zambrowska Z, Zajda K, Paterek A, Brodaczewska K, Mackiewicz U, Szczylik C, Torbicki A, Kieda C, Mączewski M. Right ventricular myocardial oxygen tension is reduced in monocrotaline-induced pulmonary hypertension in the rat and restored by myo-inositol trispyrophosphate. Sci Rep 2021; 11:18002. [PMID: 34504231 PMCID: PMC8429755 DOI: 10.1038/s41598-021-97470-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) initially results in compensatory right ventricular (RV) hypertrophy, but eventually in RV failure. This transition is poorly understood, but may be triggered by hypoxia. Measurements of RV oxygen tension (pO2) in PH are lacking. We hypothesized that RV hypoxia occurs in monocrotaline-induced PH in rats and that myo-inositol trispyrophosphate (ITPP), facilitating oxygen dissociation from hemoglobin, can relieve it. Rats received monocrotaline (PH) or saline (control) and 24 days later echocardiograms, pressure–volume loops were obtained and myocardial pO2 was measured using a fluorescent probe. In PH mean pulmonary artery pressure more than doubled (35 ± 5 vs. 15 ± 2 in control), RV was hypertrophied, though its contractility was augmented. RV and LV pO2 was 32 ± 5 and 15 ± 8 mmHg, respectively, in control rats. In PH RV pO2 was reduced to 18 ± 9 mmHg, while LV pO2 was unchanged. RV pO2 correlated with RV diastolic wall stress (negatively) and LV systolic pressure (positively). Acute ITPP administration did not affect RV or LV pO2 in control animals, but increased RV pO2 to 26 ± 5 mmHg without affecting LV pO2 in PH. RV oxygen balance is impaired in PH and as such can be an important target for PH therapy. ITPP may be one of such potential therapies.
Collapse
Affiliation(s)
- Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Zuzanna Zambrowska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Karolina Zajda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Aleksandra Paterek
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Cezary Szczylik
- Department of Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Adam Torbicki
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Centre for Molecular Biophysics, CNRS, UPR, 4301, Orléans Cedex 2, France
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland.
| |
Collapse
|
23
|
Havlenova T, Skaroupkova P, Miklovic M, Behounek M, Chmel M, Jarkovska D, Sviglerova J, Stengl M, Kolar M, Novotny J, Benes J, Cervenka L, Petrak J, Melenovsky V. Right versus left ventricular remodeling in heart failure due to chronic volume overload. Sci Rep 2021; 11:17136. [PMID: 34429479 PMCID: PMC8384875 DOI: 10.1038/s41598-021-96618-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Mechanisms of right ventricular (RV) dysfunction in heart failure (HF) are poorly understood. RV response to volume overload (VO), a common contributing factor to HF, is rarely studied. The goal was to identify interventricular differences in response to chronic VO. Rats underwent aorto-caval fistula (ACF)/sham operation to induce VO. After 24 weeks, RV and left ventricular (LV) functions, gene expression and proteomics were studied. ACF led to biventricular dilatation, systolic dysfunction and hypertrophy affecting relatively more RV. Increased RV afterload contributed to larger RV stroke work increment compared to LV. Both ACF ventricles displayed upregulation of genes of myocardial stress and metabolism. Most proteins reacted to VO in a similar direction in both ventricles, yet the expression changes were more pronounced in RV (pslope: < 0.001). The most upregulated were extracellular matrix (POSTN, NRAP, TGM2, CKAP4), cell adhesion (NCAM, NRAP, XIRP2) and cytoskeletal proteins (FHL1, CSRP3) and enzymes of carbohydrate (PKM) or norepinephrine (MAOA) metabolism. Downregulated were MYH6 and FAO enzymes. Therefore, when exposed to identical VO, both ventricles display similar upregulation of stress and metabolic markers. Relatively larger response of ACF RV compared to the LV may be caused by concomitant pulmonary hypertension. No evidence supports RV chamber-specific regulation of protein expression in response to VO.
Collapse
Affiliation(s)
- Tereza Havlenova
- grid.418930.70000 0001 2299 1368Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Videnska 1958/9, 140 21 Prague 4, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petra Skaroupkova
- grid.418930.70000 0001 2299 1368Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Videnska 1958/9, 140 21 Prague 4, Czech Republic
| | - Matus Miklovic
- grid.418930.70000 0001 2299 1368Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Videnska 1958/9, 140 21 Prague 4, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Matej Behounek
- grid.4491.80000 0004 1937 116XBIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Chmel
- grid.4491.80000 0004 1937 116XBIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dagmar Jarkovska
- grid.4491.80000 0004 1937 116XFaculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Jitka Sviglerova
- grid.4491.80000 0004 1937 116XFaculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Milan Stengl
- grid.4491.80000 0004 1937 116XFaculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Michal Kolar
- grid.418827.00000 0004 0620 870XInstitute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Novotny
- grid.418827.00000 0004 0620 870XInstitute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Benes
- grid.418930.70000 0001 2299 1368Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Videnska 1958/9, 140 21 Prague 4, Czech Republic
| | - Ludek Cervenka
- grid.418930.70000 0001 2299 1368Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Videnska 1958/9, 140 21 Prague 4, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Petrak
- grid.4491.80000 0004 1937 116XBIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vojtech Melenovsky
- grid.418930.70000 0001 2299 1368Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Videnska 1958/9, 140 21 Prague 4, Czech Republic
| |
Collapse
|
24
|
Zhu Z, Qin J, Dong C, Yang J, Yang M, Tian J, Zhong X. Identification of four gastric cancer subtypes based on genetic analysis of cholesterogenic and glycolytic pathways. Bioengineered 2021; 12:4780-4793. [PMID: 34346836 PMCID: PMC8806458 DOI: 10.1080/21655979.2021.1956247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Warburg phenomenon refers to the development of unique metabolic patterns during the growth of tumor cells. This study stratified gastric cancer into prognostic metabolic subgroups according to changes in gene expressions related to glycolysis and cholesterol synthesis. The RNA-seq expression data, single nucleotide variants (SNV), short insertions and deletions (InDel) mutation data, copy number variation (CNV) data and clinical follow-up information data of gastric cancer tissues were downloaded from The Cancer Genome Atlas (TCGA) database. ConsensusClusterPlus was used to stratify the metabolic subtypes of gastric cancer. Four metabolic subtypes (Cholesterogenic, Glycolytic, Mixed and Quiescent) of gastric cancer were identified, and patients with cholesterogenic tumors had the longest disease-specific survival (DSS). Genome-wide analysis showed that aberrant amplification of TP53 and MYC in gastric cancer was associated with abnormal cholesterol anabolic metabolism. The mRNA levels of mitochondrial pyruvate carriers 1 and 2 (MPC1/2) differed among the four subtypes. Tumors in the glycolytic group showed a higher PDCD1. A genomic signature based on tumor metabolism of different cancer types was established. This study showed that genes related to glucose and lipid metabolism play an important role in gastric cancer and facilitate a personalized treatment of gastric cancer.
Collapse
Affiliation(s)
- Zhou Zhu
- Department of Gastrointestinal Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jian Qin
- Department of Radiation Oncology of Clinical Cancer Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chencheng Dong
- Department of Gastrointestinal Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jin Yang
- Strategic Operations Department, YuceBio Technology Co., Ltd, Guangzhou, China
| | - Maughan Yang
- Strategy DevelopmentDepartment, Meta Health Sector of Yuanzhi Technology Group, Beijing, China
| | - Jana Tian
- Strategy DevelopmentDepartment, Meta Health Sector of Yuanzhi Technology Group, Beijing, China
| | - Xiaogang Zhong
- Department of Gastrointestinal Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
25
|
Liu C, Li R, Liu Y, Li Z, Sun Y, Yin P, Huang R. Characteristics of Blood Metabolic Profile in Coronary Heart Disease, Dilated Cardiomyopathy and Valvular Heart Disease Induced Heart Failure. Front Cardiovasc Med 2021; 7:622236. [PMID: 33553267 PMCID: PMC7856915 DOI: 10.3389/fcvm.2020.622236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose: Metabolic impairment is one key contributor to heart failure (HF) pathogenesis and progression. The major causes of HF, coronary heart disease (CHD), dilated cardiomyopathy (DCM), and valvular heart disease (VHD) remains poorly characterized in patients with HF from the view of metabolic profile. We sought to determine metabolic differences in CHD-, VHD-, and DCM-induced HF patients and identify significantly altered metabolites and their correlations. Procedure: In this study, a total of 96 HF cases and 97 controls were enrolled. The contents of 23 amino acids and 26 carnitines in fasting plasma were measured by a targeted liquid chromatography and mass spectrometry (LC-MS) approach. Results: Nine metabolites (Histidine, Arginine, Citrulline, Glutamine, Valine, hydroxyhexadecenyl-carnitine, acylcarnitine C22, hydroxytetradecanoyl-carnitine, and carnitine) were found to be related with the occurrence of HF. Arginine, Glutamine and hydroxytetradecanoyl-carnitine could effectively distinguish CHD and DCM patients, and hydroxytetradecanoyl-carnitine and aspartic acid were able to classify CHD and VHD cohorts. Conclusion: This study indicated that circulating amino acids and long-chain acylcarnitine levels were closely associated with progression of heart failure. Monitoring these metabolic alterations by LC-MS may help the differentiation of CHD, VHD, and DCM in the early stage, and provide new diagnostics targets or therapeutic interventions.
Collapse
Affiliation(s)
- Chang Liu
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ruihua Li
- Medical Laboratory Science, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yang Liu
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhenguo Li
- Medical Laboratory Science, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yujiao Sun
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peiyuan Yin
- First Affiliated Hospital of Dalian Medical University, Dalian, China.,College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Rihong Huang
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
26
|
Possible immune regulation mechanisms for the progression of chronic thromboembolic pulmonary hypertension. Thromb Res 2020; 198:122-131. [PMID: 33316641 DOI: 10.1016/j.thromres.2020.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 01/27/2023]
Abstract
PURPOSE This study aimed to screen key genes significantly associated with chronic thromboembolic pulmonary hypertension (CTEPH) and predicted suitable drugs for the treatment of CTEPH from the perspective of immune cells. METHODS The dataset GSE130391 was used for this analysis. Differentially expressed genes (DEGs) between the CTEPH and control groups were screened. Abundance of infiltrating immune cells was analyzed and immune-related DEGs were identified. Next, the circular RNA (circRNA)-micro RNA (miRNA)-mRNA network was constructed, followed by functional enrichment analysis. Then, the protein-protein interaction (PPI) network was constructed and drug-gene interactions were predicted. Finally, miRNA and circRNA prediction results were verified by our previously published studies. RESULTS Five key immune cell-related DEGs [CD83 molecule (CD83), complement c5a receptor 1 (C5AR1), atypical chemokine receptor 1 (ACKR1), profilin 2 (PFN2), and solute carrier family 2 member 3 (SLC2A3)] were identified. Several circRNA-miRNA-mRNA interactions were obtained, including circ_0022342miR-503-5pSLC2A3 and circ_0002062miR-92b-3p/miR-92a-3pmannosidase alpha class 2A member 1 (MAN2A1). Immune cell for SLC2A3 was eosinophils and for MAN2A1 was regulatory T cells (Tregs). Additionally, Glufosfamide and Kifunensine might be suitable as candidate drugs for CTEPH treatment. CONCLUSIONS SLC2A3 and MAN2A1 may be important genes for the pathogenesis of CTEPH. Possible immune regulation mechanisms in CTEPH may be circ_0022342miR-503-5pSLC2A3 and circ_0002062miR-92b-3p/miR-92a-3pMAN2A1. These results may be helpful for the diagnosis and treatment of CTEPH from the perspective of immunology.
Collapse
|
27
|
Thayer TE, Levinson RT, Huang S, Assad T, Farber-Eger E, Wells QS, Mosley JD, Brittain EL. BMI Is Causally Associated With Pulmonary Artery Pressure But Not Hemodynamic Evidence of Pulmonary Vascular Remodeling. Chest 2020; 159:302-310. [PMID: 32712226 DOI: 10.1016/j.chest.2020.07.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There is an unclear relationship of obesity to the pathogenesis and severity of pulmonary arterial hypertension (PAH) and pulmonary venous hypertension (PVH). RESEARCH QUESTION Is BMI casually associated with pulmonary artery pressure (PAP) and/or markers of pulmonary vascular remodeling? STUDY DESIGN AND METHODS The study design was a two-sample inverse-variance weighted Mendelian randomization. We constructed two BMI genetic risk scores from genome-wide association study summary data and deployed them in nonoverlapping cohorts of subjects referred for right heart catheterization (RHC) or echocardiography. A BMI highly polygenic risk score (hpGRS) optimally powered to detect shared genetic architecture of obesity with other traits was tested for association with RHC parameters including markers of pulmonary vascular remodeling. A BMI strict genetic risk score (sGRS) composed of high-confidence genetic variants was used for Mendelian randomization analyses to assess if higher BMI causes higher PAP. RESULTS Among all subjects, both directly measured BMI and hpGRS were positively associated with pulmonary arterial pressures but not markers of pulmonary vascular remodeling. Categorical analyses revealed BMI and hpGRS were associated with PVH but not PAH. Mendelian randomization of the sGRS supported that higher BMI is causal of higher systolic pulmonary artery pressure (sPAP). Sensitivity analyses showed sPAP-BMI sGRS relationship was preserved when either individuals with PAH or PVH were excluded. In the echocardiographic cohort, BMI and hpGRS were positively associated with estimated PAP and markers of left heart remodeling. INTERPRETATION BMI is a modifier of pulmonary hypertension severity in both PAH and PVH but is only involved in the pathogenesis of PVH.
Collapse
Affiliation(s)
- Timothy E Thayer
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Rebecca T Levinson
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Shi Huang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Tufik Assad
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Eric Farber-Eger
- Vanderbilt Translational and Clinical Research Center, Vanderbilt University Medical Center, Nashville, TN
| | - Quinn S Wells
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan D Mosley
- Departments of Medicine and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Evan L Brittain
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
28
|
Koop AMC, Bossers GPL, Ploegstra MJ, Hagdorn QAJ, Berger RMF, Silljé HHW, Bartelds B. Metabolic Remodeling in the Pressure-Loaded Right Ventricle: Shifts in Glucose and Fatty Acid Metabolism-A Systematic Review and Meta-Analysis. J Am Heart Assoc 2019; 8:e012086. [PMID: 31657265 PMCID: PMC6898858 DOI: 10.1161/jaha.119.012086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Right ventricular (RV) failure because of chronic pressure load is an important determinant of outcome in pulmonary hypertension. Progression towards RV failure is characterized by diastolic dysfunction, fibrosis and metabolic dysregulation. Metabolic modulation has been suggested as therapeutic option, yet, metabolic dysregulation may have various faces in different experimental models and disease severity. In this systematic review and meta‐analysis, we aimed to identify metabolic changes in the pressure loaded RV and formulate recommendations required to optimize translation between animal models and human disease. Methods and Results Medline and EMBASE were searched to identify original studies describing cardiac metabolic variables in the pressure loaded RV. We identified mostly rat‐models, inducing pressure load by hypoxia, Sugen‐hypoxia, monocrotaline (MCT), pulmonary artery banding (PAB) or strain (fawn hooded rats, FHR), and human studies. Meta‐analysis revealed increased Hedges’ g (effect size) of the gene expression of GLUT1 and HK1 and glycolytic flux. The expression of MCAD was uniformly decreased. Mitochondrial respiratory capacity and fatty acid uptake varied considerably between studies, yet there was a model effect in carbohydrate respiratory capacity in MCT‐rats. Conclusions This systematic review and meta‐analysis on metabolic remodeling in the pressure‐loaded RV showed a consistent increase in glucose uptake and glycolysis, strongly suggest a downregulation of beta‐oxidation, and showed divergent and model‐specific changes regarding fatty acid uptake and oxidative metabolism. To translate metabolic results from animal models to human disease, more extensive characterization, including function, and uniformity in methodology and studied variables, will be required.
Collapse
Affiliation(s)
- Anne-Marie C Koop
- Department of Pediatric Cardiology University Medical Center Groningen Center for Congenital Heart Diseases University of Groningen The Netherlands
| | - Guido P L Bossers
- Department of Pediatric Cardiology University Medical Center Groningen Center for Congenital Heart Diseases University of Groningen The Netherlands
| | - Mark-Jan Ploegstra
- Department of Pediatric Cardiology University Medical Center Groningen Center for Congenital Heart Diseases University of Groningen The Netherlands
| | - Quint A J Hagdorn
- Department of Pediatric Cardiology University Medical Center Groningen Center for Congenital Heart Diseases University of Groningen The Netherlands
| | - Rolf M F Berger
- Department of Pediatric Cardiology University Medical Center Groningen Center for Congenital Heart Diseases University of Groningen The Netherlands
| | - Herman H W Silljé
- Department of Cardiology University Medical Center Groningen University of Groningen The Netherlands
| | - Beatrijs Bartelds
- Department of Pediatric Cardiology University Medical Center Groningen Center for Congenital Heart Diseases University of Groningen The Netherlands
| |
Collapse
|