1
|
Zheng Q, Cabrera JTO, Tsuji-Hosokawa A, Ramirez FJ, Cai H, Yuan JXJ, Wang J, Makino A. Enhanced lung endothelial glycolysis is implicated in the development of severe pulmonary hypertension in type 2 diabetes. Am J Physiol Lung Cell Mol Physiol 2025; 328:L430-L442. [PMID: 39437763 DOI: 10.1152/ajplung.00305.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Metabolic abnormalities in pulmonary endothelial cells are implicated in pulmonary hypertension (PH) while increasing evidence shows the influence of diabetes on progressing PH. In this study, we examined the effect of type 2 diabetes on hypoxia-induced PH and investigated its molecular mechanisms using hypoxia-induced diabetic male mice. Chronic hypoxia led to a more severe PH in type 2 diabetic mice than in control mice. Next, we compared gene expression patterns in isolated pulmonary endothelial cells (MPECs) from control mice in normoxia (CN), diabetic mice in normoxia (DN), control mice exposed to hypoxia (CH), and diabetic mice exposed to hypoxia (DH). The results showed that expression levels of 27 mRNAs, out of 92 mRNAs, were significantly different among the four groups. Two glycolysis-related proteins, GAPDH and HK2, were increased in MPECs of DH mice compared with those in DN or CH mice. In addition, the levels of pyruvate and lactate (glycolysis end products) were significantly increased in MPECs of DH mice, but not in CH mice, compared with MPECs of CN mice. Augmentation of glycolysis by terazosin exacerbated hypoxia-induced PH in CH mice but not in DH mice. On the contrary, inhibiting GAPDH (a key enzyme of the glycolytic pathway) by koningic acid ameliorated hypoxia-induced PH in DH mice but had no effect in CH mice. These data suggest that enhanced glycolysis in diabetic mice is involved in severe hypoxia-induced PH, and glycolysis inhibition is a potential target to reduce the severe progression of PH in patients with diabetes.NEW & NOTEWORTHY Increasing evidence shows that diabetes exacerbates the progression of pulmonary hypertension; however, its molecular mechanisms are understudied. In this study, we revealed that augmented glycolysis in diabetic pulmonary endothelial cells is involved in the development of severe PH in diabetes. Inhibition of glycolysis could be a therapeutic strategy for treating pulmonary hypertension in patients with diabetes.
Collapse
Affiliation(s)
- Qiuyu Zheng
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jody Tori O Cabrera
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | | | - Francisco J Ramirez
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim University of Florida/Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
| | - Hua Cai
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, California, United States
| | - Jason X-J Yuan
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | - Jian Wang
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ayako Makino
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim University of Florida/Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
| |
Collapse
|
2
|
Chen J, Zhang J, Chen Y, Zeng H. Knockout of Sirtuin 3 in endothelial cells impairs endothelial-dependent relaxation and myogenic response in mice. Physiol Rep 2024; 12:e70060. [PMID: 39425510 PMCID: PMC11489619 DOI: 10.14814/phy2.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024] Open
Abstract
Sirtuin 3 has been shown to regulate endothelial function and coronary flow reserve in mice. Knockout of SIRT3 reduced endothelial nitric oxide synthase expression in the mouse hearts. In this study, we investigate whether endothelial SIRT3 regulates vascular function and myogenic responses in distal intramural branches of the left anterior descending coronary artery (CA) and middle cerebral artery (MCA) of mice. Both male and female endothelial SIRT3 knockout (SIRT3ECKO) mice and control SIRT3LoxP mice were used and CA and MCA were dissected and mounted in a myograph system. The myogenic response was evaluated by measuring changes in inner diameter in response to 20 mmHg stepwise increases in intraluminal pressure in PSS (active diameter) and Ca2+-free PSS (passive diameter). Acetylcholine (Ach)-induced endothelial-dependent relaxation (EDR) and sodium nitroprusside (SNP)-induced endothelial-independent relaxation (EIR) were examined. Our results showed that the myogenic responses were significantly impaired in both the CA and MCA of SIRT3ECKO mice. Furthermore, female mice had worsened myogenic response in MCA. In CA, EDR was abolished in both male and female SIRT3ECKO mice. Intriguingly, EIR was only reduced in the female mice. In MCA, EDR was reduced in male SIRT3ECKO mice, whereas EIR was decreased in both male and female mice. Female SIRT3ECKO mice had profound dysfunction in CA, whereas male mice exhibited more dysfunction in MCA. These data revealed a sex and organ-specific role of endothelial SIRT3 in vascular function and myogenic responses. Our study suggests that endothelial SIRT3 is necessary for maintaining vascular function and blood flow autoregulation.
Collapse
Affiliation(s)
- Jian‐Xiong Chen
- Department of Pharmacology and Toxicology, School of MedicineUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Jin Zhang
- Department of Pharmacology and Toxicology, School of MedicineUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Yingjie Chen
- Department of Physiology and Biophysics, School of MedicineUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, School of MedicineUniversity of Mississippi Medical CenterJacksonMississippiUSA
| |
Collapse
|
3
|
Behringer EJ. Impact of aging on vascular ion channels: perspectives and knowledge gaps across major organ systems. Am J Physiol Heart Circ Physiol 2023; 325:H1012-H1038. [PMID: 37624095 PMCID: PMC10908410 DOI: 10.1152/ajpheart.00288.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Individuals aged ≥65 yr will comprise ∼20% of the global population by 2030. Cardiovascular disease remains the leading cause of death in the world with age-related endothelial "dysfunction" as a key risk factor. As an organ in and of itself, vascular endothelium courses throughout the mammalian body to coordinate blood flow to all other organs and tissues (e.g., brain, heart, lung, skeletal muscle, gut, kidney, skin) in accord with metabolic demand. In turn, emerging evidence demonstrates that vascular aging and its comorbidities (e.g., neurodegeneration, diabetes, hypertension, kidney disease, heart failure, and cancer) are "channelopathies" in large part. With an emphasis on distinct functional traits and common arrangements across major organs systems, the present literature review encompasses regulation of vascular ion channels that underlie blood flow control throughout the body. The regulation of myoendothelial coupling and local versus conducted signaling are discussed with new perspectives for aging and the development of chronic diseases. Although equipped with an awareness of knowledge gaps in the vascular aging field, a section has been included to encompass general feasibility, role of biological sex, and additional conceptual and experimental considerations (e.g., cell regression and proliferation, gene profile analyses). The ultimate goal is for the reader to see and understand major points of deterioration in vascular function while gaining the ability to think of potential mechanistic and therapeutic strategies to sustain organ perfusion and whole body health with aging.
Collapse
Affiliation(s)
- Erik J Behringer
- Basic Sciences, Loma Linda University, Loma Linda, California, United States
| |
Collapse
|
4
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
5
|
Qin X, Gao A, Hou X, Xu X, Chen L, Sun L, Hao Y, Shi Y. Connexins may play a critical role in cigarette smoke-induced pulmonary hypertension. Arch Toxicol 2022; 96:1609-1621. [PMID: 35344070 DOI: 10.1007/s00204-022-03274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 11/02/2022]
Abstract
Pulmonary hypertension (PH) is a chronic progressive disease characterized by pulmonary vasoconstriction and remodeling. It causes a gradual increase in pulmonary vascular resistance leading to right-sided heart failure, and may be fatal. Chronic exposure to cigarette smoke (CS) is an essential risk factor for PH group 3; however, smoking continues to be prevalent and smoking cessation is reported to be difficult. A majority of smokers exhibit PH, which leads to a concomitant increase in the risk of mortality. The current treatments for PH group 3 focus on vasodilation and long-term oxygen supplementation, and fail to stop or reverse PH-associated continuous vascular remodeling. Recent studies have suggested that pulmonary vascular endothelial dysfunction induced by CS exposure may be an initial event in the natural history of PH, which in turn may be associated with abnormal alterations in connexin (Cx) expression. The relationship between Cx and CS-induced PH development has not yet been directly investigated. Therefore, this review will describe the roles of CS and Cx in the development of PH and discuss the related downstream pathways. We also discuss the possible role of Cx in CS-induced PH. It is hoped that this review may provide new perspectives for early intervention.
Collapse
Affiliation(s)
- Xiaojiang Qin
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.
- China Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.
| | - Anqi Gao
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
- China Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Xinrong Xu
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Liangjin Chen
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Lin Sun
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Yuxuan Hao
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Yiwei Shi
- Department of Respiratory and Critical Care Medicine, Shanxi Medical University Affiliated First Hospital, 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
6
|
Yang Y, Yang B, Li X, Xue L, Liu B, Liang Y, Zhao Z, Luo Q, Liu Z, Zeng Q, Xiong C. Higher circulating Trimethylamine N-oxide levels are associated with worse severity and prognosis in pulmonary hypertension: a cohort study. Respir Res 2022; 23:344. [PMID: 36517838 PMCID: PMC9749156 DOI: 10.1186/s12931-022-02282-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO), the gut microbiota-dependent metabolite, is a potential biomarker in several cardiovascular diseases. However, no study has investigated its value in pulmonary hypertension (PH). Therefore, this study aimed to explore the association between plasma TMAO levels and prognosis in patients with PH. METHODS Inpatients with idiopathic/heritable pulmonary arterial hypertension (IPAH/HPAH), PAH associated with congenital heart disease (CHD-PAH), and chronic thromboembolic pulmonary hypertension (CTEPH) at Fuwai Hospital were enrolled after excluding those with relative comorbidities. The endpoint was defined as a composite outcome including death, rehospitalisation due to heart failure, and at least 15% decreased 6-min walk distance from the baseline. Fasting blood samples were collected to measure plasma levels of TMAO and other clinical indicators. The associations between TMAO levels with disease severity and patients' prognosis were investigated. RESULTS In total, 163 patients with PH were included, with a mean follow-up duration of 1.3 years. After adjusting for confounding factors, elevated TMAO levels were still associated with severe disease conditions. TMAO levels dynamically decreased in stable and improved patients after treatment [ΔTMAO = - 0.2 (- 1.6, 0.7) μmol/L, P = 0.006]. Moreover, high plasma TMAO levels predicted a poor prognosis in the PH cohort (P < 0.001), and the association remained significant after adjusting the confounders, including treatment, risk stratification, and PH subtypes. CONCLUSION Elevated plasma TMAO levels were associated with severe disease conditions and poor prognosis in patients with PH, indicating its potential biomarker role in PH.
Collapse
Affiliation(s)
- Yicheng Yang
- grid.506261.60000 0001 0706 7839Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Road, Xicheng District, Beijing, 100037 China
| | - Beilan Yang
- grid.506261.60000 0001 0706 7839Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Road, Xicheng District, Beijing, 100037 China
| | - Xin Li
- grid.506261.60000 0001 0706 7839Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Road, Xicheng District, Beijing, 100037 China
| | - Lin Xue
- grid.506261.60000 0001 0706 7839Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Road, Xicheng District, Beijing, 100037 China
| | - Bingyang Liu
- grid.506261.60000 0001 0706 7839Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Road, Xicheng District, Beijing, 100037 China
| | - Yanru Liang
- grid.506261.60000 0001 0706 7839Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Road, Xicheng District, Beijing, 100037 China
| | - Zhihui Zhao
- grid.506261.60000 0001 0706 7839Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Road, Xicheng District, Beijing, 100037 China
| | - Qin Luo
- grid.506261.60000 0001 0706 7839Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Road, Xicheng District, Beijing, 100037 China
| | - Zhihong Liu
- grid.506261.60000 0001 0706 7839Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Road, Xicheng District, Beijing, 100037 China
| | - Qixian Zeng
- grid.506261.60000 0001 0706 7839Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Road, Xicheng District, Beijing, 100037 China
| | - Changming Xiong
- grid.506261.60000 0001 0706 7839Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Road, Xicheng District, Beijing, 100037 China
| |
Collapse
|
7
|
New Insights into Pulmonary Hypertension: A Role for Connexin-Mediated Signalling. Int J Mol Sci 2021; 23:ijms23010379. [PMID: 35008804 PMCID: PMC8745497 DOI: 10.3390/ijms23010379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Pulmonary hypertension is a serious clinical condition characterised by increased pulmonary arterial pressure. This can lead to right ventricular failure which can be fatal. Connexins are gap junction-forming membrane proteins which serve to exchange small molecules of less than 1 kD between cells. Connexins can also form hemi-channels connecting the intracellular and extracellular environments. Hemi-channels can mediate adenosine triphosphate release and are involved in autocrine and paracrine signalling. Recently, our group and others have identified evidence that connexin-mediated signalling may be involved in the pathogenesis of pulmonary hypertension. In this review, we discuss the evidence that dysregulated connexin-mediated signalling is associated with pulmonary hypertension.
Collapse
|
8
|
Perez-Vizcaino F, Cogolludo A, Mondejar-Parreño G. Transcriptomic profile of cationic channels in human pulmonary arterial hypertension. Sci Rep 2021; 11:15829. [PMID: 34349187 PMCID: PMC8338963 DOI: 10.1038/s41598-021-95196-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
The dysregulation of K+ channels is a hallmark of pulmonary arterial hypertension (PAH). Herein, the channelome was analyzed in lungs of patients with PAH in a public transcriptomic database. Sixty six (46%) mRNA encoding cationic channels were dysregulated in PAH with most of them downregulated (83%). The principal component analysis indicated that dysregulated cationic channel expression is a signature of the disease. Changes were very similar in idiopathic, connective tissue disease and congenital heart disease associated PAH. This analysis 1) is in agreement with the widely recognized pathophysiological role of TASK1 and KV1.5, 2) supports previous preliminary reports pointing to the dysregulation of several K+ channels including the downregulation of KV1.1, KV1.4, KV1.6, KV7.1, KV7.4, KV9.3 and TWIK2 and the upregulation of KCa1.1 and 3) points to other cationic channels dysregulated such as Kv7.3, TALK2, CaV1 and TRPV4 which might play a pathophysiological role in PAH. The significance of other changes found in Na+ and TRP channels remains to be investigated.
Collapse
Affiliation(s)
- Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, Madrid, Spain. .,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain. .,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Gema Mondejar-Parreño
- Department of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| |
Collapse
|
9
|
Mondéjar-Parreño G, Cogolludo A, Perez-Vizcaino F. Potassium (K +) channels in the pulmonary vasculature: Implications in pulmonary hypertension Physiological, pathophysiological and pharmacological regulation. Pharmacol Ther 2021; 225:107835. [PMID: 33744261 DOI: 10.1016/j.pharmthera.2021.107835] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
The large K+ channel functional diversity in the pulmonary vasculature results from the multitude of genes expressed encoding K+ channels, alternative RNA splicing, the post-transcriptional modifications, the presence of homomeric or heteromeric assemblies of the pore-forming α-subunits and the existence of accessory β-subunits modulating the functional properties of the channel. K+ channels can also be regulated at multiple levels by different factors controlling channel activity, trafficking, recycling and degradation. The activity of these channels is the primary determinant of membrane potential (Em) in pulmonary artery smooth muscle cells (PASMC), providing an essential regulatory mechanism to dilate or contract pulmonary arteries (PA). K+ channels are also expressed in pulmonary artery endothelial cells (PAEC) where they control resting Em, Ca2+ entry and the production of different vasoactive factors. The activity of K+ channels is also important in regulating the population and phenotype of PASMC in the pulmonary vasculature, since they are involved in cell apoptosis, survival and proliferation. Notably, K+ channels play a major role in the development of pulmonary hypertension (PH). Impaired K+ channel activity in PH results from: 1) loss of function mutations, 2) downregulation of its expression, which involves transcription factors and microRNAs, or 3) decreased channel current as a result of increased vasoactive factors (e.g., hypoxia, 5-HT, endothelin-1 or thromboxane), exposure to drugs with channel-blocking properties, or by a reduction in factors that positively regulate K+ channel activity (e.g., NO and prostacyclin). Restoring K+ channel expression, its intracellular trafficking and the channel activity is an attractive therapeutic strategy in PH.
Collapse
Affiliation(s)
- Gema Mondéjar-Parreño
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain.
| |
Collapse
|
10
|
Witzenrath M, Kuebler WM. Connecting the dots: the role of connexins in the pulmonary vascular response to hypoxia. Eur Respir J 2021; 57:57/3/2004573. [PMID: 33664100 DOI: 10.1183/13993003.04573-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/20/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Martin Witzenrath
- Dept of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Si R, Zhang Q, Cabrera JTO, Zheng Q, Tsuji-Hosokawa A, Watanabe M, Hosokawa S, Xiong M, Jain PP, Ashton AW, Yuan JXJ, Wang J, Makino A. Chronic Hypoxia Decreases Endothelial Connexin 40, Attenuates Endothelium-Dependent Hyperpolarization-Mediated Relaxation in Small Distal Pulmonary Arteries, and Leads to Pulmonary Hypertension. J Am Heart Assoc 2020; 9:e018327. [PMID: 33307937 PMCID: PMC7955394 DOI: 10.1161/jaha.120.018327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022]
Abstract
Background Abnormal endothelial function in the lungs is implicated in the development of pulmonary hypertension; however, there is little information about the difference of endothelial function between small distal pulmonary artery (PA) and large proximal PA and their contribution to the development of pulmonary hypertension. Herein, we investigate endothelium-dependent relaxation in different orders of PAs and examine the molecular mechanisms by which chronic hypoxia attenuates endothelium-dependent pulmonary vasodilation, leading to pulmonary hypertension. Methods and Results Endothelium-dependent relaxation in large proximal PAs (second order) was primarily caused by releasing NO from the endothelium, whereas endothelium-dependent hyperpolarization (EDH)-mediated vasodilation was prominent in small distal PAs (fourth-fifth order). Chronic hypoxia abolished EDH-mediated relaxation in small distal PAs without affecting smooth muscle-dependent relaxation. RNA-sequencing data revealed that, among genes related to EDH, the levels of Cx37, Cx40, Cx43, and IK were altered in mouse pulmonary endothelial cells isolated from chronically hypoxic mice in comparison to mouse pulmonary endothelial cells from normoxic control mice. The protein levels were significantly lower for connexin 40 (Cx40) and higher for connexin 37 in mouse pulmonary endothelial cells from hypoxic mice than normoxic mice. Cx40 knockout mice exhibited significant attenuation of EDH-mediated relaxation and marked increase in right ventricular systolic pressure. Interestingly, chronic hypoxia led to a further increase in right ventricular systolic pressure in Cx40 knockout mice without altering EDH-mediated relaxation. Furthermore, overexpression of Cx40 significantly decreased right ventricular systolic pressure in chronically hypoxic mice. Conclusions These data suggest that chronic hypoxia-induced downregulation of endothelial Cx40 results in impaired EDH-mediated relaxation in small distal PAs and contributes to the development of pulmonary hypertension.
Collapse
Affiliation(s)
- Rui Si
- Department of Physiology The University of Arizona Tucson AZ
| | - Qian Zhang
- Department of Physiology The University of Arizona Tucson AZ
- State Key Laboratory of Respiratory Disease The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | | | - Qiuyu Zheng
- Department of Medicine University of California San Diego CA
- State Key Laboratory of Respiratory Disease The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | | | - Makiko Watanabe
- Department of Physiology The University of Arizona Tucson AZ
| | | | - Mingmei Xiong
- Department of Medicine University of California San Diego CA
- State Key Laboratory of Respiratory Disease The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Pritesh P Jain
- Department of Medicine University of California San Diego CA
| | - Anthony W Ashton
- Division of Perinatal Research Kolling Institute of Medical ResearchUniversity of Sydney New South Wales Australia
| | - Jason X-J Yuan
- Department of Medicine The University of Arizona Tucson AZ
- Department of Medicine University of California San Diego CA
| | - Jian Wang
- Department of Medicine The University of Arizona Tucson AZ
- Department of Medicine University of California San Diego CA
- State Key Laboratory of Respiratory Disease The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Ayako Makino
- Department of Physiology The University of Arizona Tucson AZ
- Department of Medicine The University of Arizona Tucson AZ
- Department of Medicine University of California San Diego CA
| |
Collapse
|