1
|
Lee Y, Kim H, Yoon H, Cho S, Kim J, Lee J, Choi S, Cho H, Woo D, Park J, Han C, Kim J. MFGE-8, a Corona Protein on Extracellular Vesicles, Mediates Self-Renewal and Survival of Human Pluripotent Stem Cells. J Extracell Vesicles 2025; 14:e70056. [PMID: 40130745 PMCID: PMC11934218 DOI: 10.1002/jev2.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 03/26/2025] Open
Abstract
Extracellular vesicles (EVs) and secretory factors play crucial roles in intercellular communication, but the molecular mechanisms and dynamics governing their interplay in human pluripotent stem cells (hPSCs) are poorly understood. Here, we demonstrate that hPSC-secreted milk fat globule-EGF factor 8 (MFGE-8) is the principal corona protein at the periphery of EVs, playing an essential role in controlling hPSC stemness. MFGE-8 depletion reduced EV-mediated self-renewal and survival in hPSC cultures. MFGE-8 in the EV corona bound to integrin αvβ5 expressed in the peripheral zone of hPSC colonies. It activated cyclin D1 and dynamin-1 via the AKT/GSK3β axis, promoting the growth of hPSCs and facilitating the endocytosis of EVs. Internalization of EVs alleviated oxidative stress and cell death by transporting redox and stress response proteins that increased GSH levels. Our findings demonstrate the critical role of the extracellular association of MFGE-8 and EVs in modulating the self-renewal and survival of hPSCs.
Collapse
Affiliation(s)
- Youngseok Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and BiotechnologyKorea UniversitySeoulSouth Korea
- Institute of Animal Molecular BiotechnologyKorea UniversitySeoulSouth Korea
| | - Hyojin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and BiotechnologyKorea UniversitySeoulSouth Korea
- Department of NeuroscienceYale School of MedicineNew HavenConnecticutUSA
| | - Heeseok Yoon
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and BiotechnologyKorea UniversitySeoulSouth Korea
| | - Seunghyun Cho
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and BiotechnologyKorea UniversitySeoulSouth Korea
| | - Jeongjun Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and BiotechnologyKorea UniversitySeoulSouth Korea
| | - Jihun Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and BiotechnologyKorea UniversitySeoulSouth Korea
| | - Sang‐Hun Choi
- Department of NeuroscienceYale School of MedicineNew HavenConnecticutUSA
| | - Hyesun Cho
- Department of NeuroscienceYale School of MedicineNew HavenConnecticutUSA
| | - Dong‐Hun Woo
- Department of New Drug DevelopmentNEXEL Co., Ltd.SeoulSouth Korea
| | - Jung‐Hyuck Park
- Department of New Drug DevelopmentNEXEL Co., Ltd.SeoulSouth Korea
| | - Choongseong Han
- Department of New Drug DevelopmentNEXEL Co., Ltd.SeoulSouth Korea
| | - Jong‐Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and BiotechnologyKorea UniversitySeoulSouth Korea
| |
Collapse
|
2
|
Aviani MG, Menard F. Emerging Roles for MFG-E8 in Synapse Elimination. J Neurochem 2025; 169:e70009. [PMID: 39891478 DOI: 10.1111/jnc.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/03/2025]
Abstract
Synapse elimination is an essential process in the healthy nervous system and is dysregulated in many neuropathologies. Yet, the underlying molecular mechanisms and under what conditions they occur remain unclear. MFG-E8 is a secreted glycoprotein well known to act as an opsonin, tagging stressed and dying cells for engulfment by phagocytes. Opsonization of cells and debris by MFG-E8 for microglial phagocytosis in the CNS is well established, and its role in astrocytic phagocytosis, and trogocytosis-like engulfment of synapses is beginning to be explored. However, MFG-E8's function in other tissues is highly diverse, and evidence suggests that its role in the nervous system and on synapse elimination in particular may be more complex and varied than opsonization. In this review, we outline the documented direct and indirect effects of MFG-E8 on synapse elimination, while also proposing potential roles to be explored further, in particular, cytoskeletal reorganization of neurites and glia leading to synapse elimination by various mechanisms. Finally, we demonstrate the need for several open questions to be answered-chiefly, under what conditions might MFG-E8-mediated synapse elimination occur in favor of other mechanisms, and when might its activity be dysregulated, increasing unwanted synapse elimination and neurotoxicity?
Collapse
Affiliation(s)
- Marisa G Aviani
- Department of Biochemistry and Molecular Biology, I.K. Barber Faculty of Science, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Fred Menard
- Department of Biochemistry and Molecular Biology, I.K. Barber Faculty of Science, The University of British Columbia, Kelowna, British Columbia, Canada
- Department of Chemistry, I.K. Barber Faculty of Science, The University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
3
|
He JH, Li XJ, Wang SP, Guo X, Chu HX, Xu HC, Wang YS. Eugenol Inhibits Ox-LDL-Induced Proliferation and Migration of Human Vascular Smooth Muscle Cells by Inhibiting the Ang II/MFG-E8/MCP-1 Signaling Cascade. J Inflamm Res 2024; 17:641-653. [PMID: 38328560 PMCID: PMC10847669 DOI: 10.2147/jir.s446960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/20/2024] [Indexed: 02/09/2024] Open
Abstract
Objective In this study, we investigated the effect and mechanism of action of eugenol on oxidized low-density lipoprotein (ox-LDL)-induced abnormal proliferation and migration of human vascular smooth muscle cells (HVSMCs). Methods HVSMCs were treated with 100 ug/mL ox-LDL for 24 hours to establish a cell model. After 1-hour pretreatment, eugenol at concentrations of 5, 25, and 50 uM was added. Cell viability was assessed using an MTT assay, PCNA expression was detected using Western blot, cell cycle distribution was analyzed using flow cytometry, and cell migration ability was evaluated using wound healing and Transwell migration assays. To investigate the mechanisms, Ang II receptors were inhibited by 1000 nM valsartan, MFG-E8 was knocked down by shRNA, MCP-1 was inhibited by siRNA, and MFG-E8 was overexpressed using plasmids. Results The findings from this study elucidated the stimulatory impact of ox-LDL on the proliferation and functionality of HVSMCs. Different concentrations of eugenol effectively mitigated the enhanced activity of HVSMCs induced by ox-LDL, with 50 uM eugenol exhibiting the most pronounced inhibitory effect. Flow cytometry and Western blot results showed ox-LDL reduced G1 phase cells and increased PCNA expression, while 50 uM eugenol inhibited ox-LDL-induced HVSMC proliferation. In wound healing and Transwell migration experiments, the ox-LDL group showed larger cell scratch filling and migration than the control group, both of which were inhibited by 50 uM eugenol. Inhibiting the Ang II/MFG-E8/MCP-1 signaling cascade mimicked eugenol's effects, while MFG-E8 overexpression reversed eugenol's inhibitory effect. Conclusion Eugenol can inhibit the proliferation and migration of ox-LDL-induced HVSMCs by inhibiting Ang II/MFG-E8/MCP-1 signaling cascade, making it a potential therapeutic drug for atherosclerosis.
Collapse
Affiliation(s)
- Jia-Huan He
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 13000, People’s Republic of China
| | - Xiang-Jun Li
- Department of Experimental Pharmacology and Toxicology, College of Pharmacy, Jilin University, Changchun, 130000, People’s Republic of China
| | - Shi-Peng Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 13000, People’s Republic of China
| | - Xia Guo
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 13000, People’s Republic of China
| | - Hao-Xuan Chu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 13000, People’s Republic of China
| | - Han-Chi Xu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 13000, People’s Republic of China
| | - Yu-Shi Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 13000, People’s Republic of China
| |
Collapse
|
4
|
Santinha D, Vilaça A, Estronca L, Schüler SC, Bartoli C, De Sandre-Giovannoli A, Figueiredo A, Quaas M, Pompe T, Ori A, Ferreira L. Remodeling of the Cardiac Extracellular Matrix Proteome During Chronological and Pathological Aging. Mol Cell Proteomics 2024; 23:100706. [PMID: 38141925 PMCID: PMC10828820 DOI: 10.1016/j.mcpro.2023.100706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023] Open
Abstract
Impaired extracellular matrix (ECM) remodeling is a hallmark of many chronic inflammatory disorders that can lead to cellular dysfunction, aging, and disease progression. The ECM of the aged heart and its effects on cardiac cells during chronological and pathological aging are poorly understood across species. For this purpose, we first used mass spectrometry-based proteomics to quantitatively characterize age-related remodeling of the left ventricle (LV) of mice and humans during chronological and pathological (Hutchinson-Gilford progeria syndrome (HGPS)) aging. Of the approximately 300 ECM and ECM-associated proteins quantified (named as Matrisome), we identified 13 proteins that were increased during aging, including lactadherin (MFGE8), collagen VI α6 (COL6A6), vitronectin (VTN) and immunoglobulin heavy constant mu (IGHM), whereas fibulin-5 (FBLN5) was decreased in most of the data sets analyzed. We show that lactadherin accumulates with age in large cardiac blood vessels and when immobilized, triggers phosphorylation of several phosphosites of GSK3B, MAPK isoforms 1, 3, and 14, and MTOR kinases in aortic endothelial cells (ECs). In addition, immobilized lactadherin increased the expression of pro-inflammatory markers associated with an aging phenotype. These results extend our knowledge of the LV proteome remodeling induced by chronological and pathological aging in different species (mouse and human). The lactadherin-triggered changes in the proteome and phosphoproteome of ECs suggest a straight link between ECM component remodeling and the aging process of ECs, which may provide an additional layer to prevent cardiac aging.
Collapse
Affiliation(s)
- Deolinda Santinha
- Faculty of Medicine, University of Coimbra, Celas, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Andreia Vilaça
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal; CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Luís Estronca
- Faculty of Medicine, University of Coimbra, Celas, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Svenja C Schüler
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France; Molecular genetics laboratory, La Timone children's hospital, Marseille, France
| | - Arnaldo Figueiredo
- Serviço de Urologia e Transplantação Renal, Centro Hospitalar Universitário Coimbra EPE, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maximillian Quaas
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.
| | - Lino Ferreira
- Faculty of Medicine, University of Coimbra, Celas, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal.
| |
Collapse
|
5
|
Li J, Li X, Song S, Sun Z, Li Y, Yang L, Xie Z, Cai Y, Zhao Y. Mitochondria spatially and temporally modulate VSMC phenotypes via interacting with cytoskeleton in cardiovascular diseases. Redox Biol 2023; 64:102778. [PMID: 37321061 DOI: 10.1016/j.redox.2023.102778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
Cardiovascular diseases caused by atherosclerosis (AS) seriously endanger human health, which is closely related to vascular smooth muscle cell (VSMC) phenotypes. VSMC phenotypic transformation is marked by the alteration of phenotypic marker expression and cellular behaviour. Intriguingly, the mitochondrial metabolism and dynamics altered during VSMC phenotypic transformation. Firstly, this review combs VSMC mitochondrial metabolism in three aspects: mitochondrial ROS generation, mutated mitochondrial DNA (mtDNA) and calcium metabolism respectively. Secondly, we summarized the role of mitochondrial dynamics in regulating VSMC phenotypes. We further emphasized the association between mitochondria and cytoskelton via presenting cytoskeletal support during mitochondrial dynamics process, and discussed its impact on their respective dynamics. Finally, considering that both mitochondria and cytoskeleton are mechano-sensitive organelles, we demonstrated their direct and indirect interaction under extracellular mechanical stimuli through several mechano-sensitive signaling pathways. We additionally discussed related researches in other cell types in order to inspire deeper thinking and reasonable speculation of potential regulatory mechanism in VSMC phenotypic transformation.
Collapse
Affiliation(s)
- Jingwen Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Xinyue Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Sijie Song
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Zhengwen Sun
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yuanzhu Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Long Yang
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Zhenhong Xie
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yikui Cai
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yinping Zhao
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
6
|
Ma N, Xu E, Luo Q, Song G. Rac1: A Regulator of Cell Migration and A Potential Target for Cancer Therapy. Molecules 2023; 28:molecules28072976. [PMID: 37049739 PMCID: PMC10096471 DOI: 10.3390/molecules28072976] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Cell migration is crucial for physiological and pathological processes such as morphogenesis, wound repair, immune response and cancer invasion/metastasis. There are many factors affecting cell migration, and the regulatory mechanisms are complex. Rac1 is a GTP-binding protein with small molecular weight belonging to the Rac subfamily of the Rho GTPase family. As a key molecule in regulating cell migration, Rac1 participates in signal transduction from the external cell to the actin cytoskeleton and promotes the establishment of cell polarity which plays an important role in cancer cell invasion/metastasis. In this review, we firstly introduce the molecular structure and activity regulation of Rac1, and then summarize the role of Rac1 in cancer invasion/metastasis and other physiological processes. We also discuss the regulatory mechanisms of Rac1 in cell migration and highlight it as a potential target in cancer therapy. Finally, the current state as well as the future challenges in this area are considered. Understanding the role and the regulatory mechanism of Rac1 in cell migration can provide fundamental insights into Rac1-related cancer progression and further help us to develop novel intervention strategies for cancer therapy in clinic.
Collapse
|
7
|
Buckler AJ, Marlevi D, Skenteris NT, Lengquist M, Kronqvist M, Matic L, Hedin U. In silico model of atherosclerosis with individual patient calibration to enable precision medicine for cardiovascular disease. Comput Biol Med 2023; 152:106364. [PMID: 36525832 DOI: 10.1016/j.compbiomed.2022.106364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Guidance for preventing myocardial infarction and ischemic stroke by tailoring treatment for individual patients with atherosclerosis is an unmet need. Such development may be possible with computational modeling. Given the multifactorial biology of atherosclerosis, modeling must be based on complete biological networks that capture protein-protein interactions estimated to drive disease progression. Here, we aimed to develop a clinically relevant scale model of atherosclerosis, calibrate it with individual patient data, and use it to simulate optimized pharmacotherapy for individual patients. APPROACH AND RESULTS The study used a uniquely constituted plaque proteomic dataset to create a comprehensive systems biology disease model for simulating individualized responses to pharmacotherapy. Plaque tissue was collected from 18 patients with 6735 proteins at two locations per patient. 113 pathways were identified and included in the systems biology model of endothelial cells, vascular smooth muscle cells, macrophages, lymphocytes, and the integrated intima, altogether spanning 4411 proteins, demonstrating a range of 39-96% plaque instability. After calibrating the systems biology models for individual patients, we simulated intensive lipid-lowering, anti-inflammatory, and anti-diabetic drugs. We also simulated a combination therapy. Drug response was evaluated as the degree of change in plaque stability, where an improvement was defined as a reduction of plaque instability. In patients with initially unstable lesions, simulated responses varied from high (20%, on combination therapy) to marginal improvement, whereas patients with initially stable plaques showed generally less improvement. CONCLUSION In this pilot study, proteomics-based system biology modeling was shown to simulate drug response based on atherosclerotic plaque instability with a power of 90%, providing a potential strategy for improved personalized management of patients with cardiovascular disease.
Collapse
Affiliation(s)
- Andrew J Buckler
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Elucid Bioimaging Inc., Boston, MA, USA
| | - David Marlevi
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Nikolaos T Skenteris
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Malin Kronqvist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|