1
|
Yu K, Fu L, Chao Y, Zeng X, Zhang Y, Chen Y, Gao J, Lu B, Zhu H, Gu L, Xiong X, Hu Z, Hong X, Xiao Y. Deep Learning Enhanced Near Infrared-II Imaging and Image-Guided Small Interfering Ribonucleic Acid Therapy of Ischemic Stroke. ACS NANO 2025; 19:10323-10336. [PMID: 40042964 DOI: 10.1021/acsnano.4c18035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Small interfering RNA (siRNA) targeting the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome has emerged as a promising therapeutic strategy to mitigate infarct volume and brain injury following ischemic stroke. However, the clinical translation of siRNA-based therapies is significantly hampered by the formidable blood-brain barrier (BBB), which restricts drug penetration into the central nervous system. To address this challenge, we have developed an innovative long-circulating near-infrared II (NIR-II) nanoparticle platform YWFC NPs, which is meticulously engineered to enhance BBB transcytosis and enable efficient delivery of siRNA targeting NLRP3 (siNLRP3@YWFC NPs) in preclinical models of ischemic stroke. Furthermore, we integrated advanced deep learning neural network algorithms to optimize in vivo NIR-II imaging of the cerebral infarct penumbra, achieving an improved signal-to-background ratio at 72 h poststroke. In vivo studies employing middle cerebral artery occlusion (MCAO) mouse models demonstrated that image-guided therapy with siNLRP3@YWFC NPs, guided by prolonged NIR-II imaging, resulted in significant therapeutic benefits.
Collapse
MESH Headings
- Animals
- Mice
- RNA, Small Interfering/therapeutic use
- RNA, Small Interfering/genetics
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/administration & dosage
- Ischemic Stroke/diagnostic imaging
- Ischemic Stroke/therapy
- Ischemic Stroke/drug therapy
- Deep Learning
- Nanoparticles/chemistry
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Blood-Brain Barrier/metabolism
- Mice, Inbred C57BL
- Male
- Disease Models, Animal
- Infrared Rays
- Infarction, Middle Cerebral Artery
Collapse
Affiliation(s)
- Kai Yu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Lidan Fu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Chao
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xiaodong Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Yonggang Zhang
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuanyuan Chen
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Jialu Gao
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Binchun Lu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Hua Zhu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Lijuan Gu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- National Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Xuechuan Hong
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Yuling Xiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
2
|
Gowtham A, Chauhan C, Rahi V, Kaundal RK. An update on the role of ferroptosis in ischemic stroke: from molecular pathways to Neuroprotection. Expert Opin Ther Targets 2024; 28:1149-1175. [PMID: 39710973 DOI: 10.1080/14728222.2024.2446319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Ischemic stroke (IS), a major cause of mortality and disability worldwide, remains a significant healthcare challenge due to limited therapeutic options. Ferroptosis, a distinct iron-dependent form of regulated cell death characterized by lipid peroxidation and oxidative stress, has emerged as a crucial mechanism in IS pathophysiology. This review explores the role of ferroptosis in IS and its potential for driving innovative therapeutic strategies. AREA COVERED This review delves into the practical implications of ferroptosis in IS, focusing on molecular mechanisms like lipid peroxidation, iron accumulation, and their interplay with inflammation, reactive oxygen species (ROS), and the Nrf2-ARE antioxidant system. It highlights ferroptotic proteins, small-molecule inhibitors, and non-coding RNA modulators as emerging therapeutic targets to mitigate neuroinflammation and neuronal cell death. Studies from PubMed (1982-2024) were identified using MeSH terms such as 'Ferroptosis' and 'Ischemic Stroke,' and only rigorously screened articles were included. EXPERT OPINION Despite preclinical evidence supporting the neuroprotective effects of ferroptosis inhibitors, clinical translation faces hurdles such as suboptimal pharmacokinetics and safety concerns. Advances in drug delivery systems, bioinformatics, and AI-driven drug discovery may optimize ferroptosis-targeting strategies, develop biomarkers, and improve therapeutic outcomes for IS patients.
Collapse
Affiliation(s)
- A Gowtham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Chandan Chauhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Vikrant Rahi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| |
Collapse
|
3
|
Dong YF, Li YS, Liu H, Li L, Zheng JJ, Yang ZF, Sun YK, Du ZW, Xu DH, Li N, Jiang XC, Gao JQ. Precisely targeted drug delivery by mesenchymal stem cells-based biomimetic liposomes to cerebral ischemia-reperfusion injured hemisphere. J Control Release 2024; 371:484-497. [PMID: 38851537 DOI: 10.1016/j.jconrel.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
The precise and targeted delivery of therapeutic agents to the lesion sites remains a major challenge in treating brain diseases represented by ischemic stroke. Herein, we modified liposomes with mesenchymal stem cells (MSC) membrane to construct biomimetic liposomes, termed MSCsome. MSCsome (115.99 ± 4.03 nm) exhibited concentrated accumulation in the cerebral infarcted hemisphere of mice with cerebral ischemia-reperfusion injury, while showing uniform distribution in the two cerebral hemispheres of normal mice. Moreover, MSCsome exhibited high colocalization with damaged nerve cells in the infarcted hemisphere, highlighting its advantageous precise targeting capabilities over liposomes at both the tissue and cellular levels. Leveraging its superior targeting properties, MSCsome effectively delivered Dl-3-n-butylphthalide (NBP) to the injured hemisphere, making a single-dose (15 mg/kg) intravenous injection of NBP-encapsulated MSCsome facilitate the recovery of motor functions in model mice by improving the damaged microenvironment and suppressing neuroinflammation. This study underscores that the modification of the MSC membrane notably enhances the capacity of liposomes for precisely targeting the injured hemisphere, which is particularly crucial in treating cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yun-Fei Dong
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yao-Sheng Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Hui Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Lu Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Juan-Juan Zheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Ze-Feng Yang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yuan-Kai Sun
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Zhi-Wei Du
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Dong-Hang Xu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Ni Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, PR China
| | - Xin-Chi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Jian-Qing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China.
| |
Collapse
|
4
|
Aliena-Valero A, Hernández-Jiménez M, López-Morales MA, Tamayo-Torres E, Castelló-Ruiz M, Piñeiro D, Ribó M, Salom JB. Cerebroprotective Effects of the TLR4-Binding DNA Aptamer ApTOLL in a Rat Model of Ischemic Stroke and Thrombectomy Recanalization. Pharmaceutics 2024; 16:741. [PMID: 38931862 PMCID: PMC11206667 DOI: 10.3390/pharmaceutics16060741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
ApTOLL, a TLR4 modulator aptamer, has demonstrated cerebroprotective effects in a permanent ischemic stroke mouse model, as well as safety and efficacy in early phase clinical trials. We carried out reverse translation research according to STAIR recommendations to further characterize the effects and mechanisms of ApTOLL after transient ischemic stroke in rats and to better inform the design of pivotal clinical trials. Adult male rats subjected to transient middle cerebral artery occlusion were treated either with ApTOLL or the vehicle intravenously at different doses and time-points. ApTOLL was compared with TAK-242 (a TLR4 inhibitor). Female rats were also studied. After neurofunctional evaluation, brains were removed for infarct/edema volume, hemorrhagic transformation, and histologic determinations. Peripheral leukocyte populations were assessed via flow cytometry. ApTOLL showed U-shaped dose-dependent cerebroprotective effects. The maximum effective dose (0.45 mg/kg) was cerebroprotective when given both before reperfusion and up to 12 h after reperfusion and reduced the hemorrhagic risk. Similar effects occurred in female rats. Both research and clinical ApTOLL batches induced slightly superior cerebroprotection when compared with TAK-242. Finally, ApTOLL modulated circulating leukocyte levels, reached the brain ischemic tissue to bind resident and infiltrated cell types, and reduced the neutrophil density. These results show the cerebroprotective effects of ApTOLL in ischemic stroke by reducing the infarct/edema volume, neurofunctional impairment, and hemorrhagic risk, as well as the peripheral and local immune response. They provide information about ApTOLL dose effects and its therapeutic time window and target population, as well as its mode of action, which should be considered in the design of pivotal clinical trials.
Collapse
Affiliation(s)
- Alicia Aliena-Valero
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.A.-V.); (M.A.L.-M.); (M.C.-R.)
| | - Macarena Hernández-Jiménez
- AptaTargets S.L., 28035 Madrid, Spain; (D.P.); (M.R.)
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mikahela A. López-Morales
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.A.-V.); (M.A.L.-M.); (M.C.-R.)
- Departamento de Fisioterapia, Universidad de Valencia, 46010 Valencia, Spain
| | - Eva Tamayo-Torres
- Departamento de Fisiología, Universidad de Valencia, 46010 Valencia, Spain;
| | - María Castelló-Ruiz
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.A.-V.); (M.A.L.-M.); (M.C.-R.)
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Valencia, Spain
| | - David Piñeiro
- AptaTargets S.L., 28035 Madrid, Spain; (D.P.); (M.R.)
| | - Marc Ribó
- AptaTargets S.L., 28035 Madrid, Spain; (D.P.); (M.R.)
- Unidad de Ictus, Departamento de Neurología, Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - Juan B. Salom
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.A.-V.); (M.A.L.-M.); (M.C.-R.)
- Departamento de Fisiología, Universidad de Valencia, 46010 Valencia, Spain;
| |
Collapse
|
5
|
Yin S, Hou J, Li J, Zeng C, Chen S, Zhang H, Tian X. Polydopamine-modified black phosphorus nanosheet drug delivery system for the treatment of ischemic stroke. Regen Biomater 2024; 11:rbae046. [PMID: 38769994 PMCID: PMC11105953 DOI: 10.1093/rb/rbae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Black phosphorus (BP), as a representative metal-free semiconductor, has been extensively explored. It has a higher drug loading capacity in comparison to conventional materials and also possesses excellent biocompatibility and biodegradability. Furthermore, BP nanosheets can enhance the permeability of the blood-brain barrier (BBB) upon near-infrared (NIR) irradiation, owing to their photothermal effect. However, the inherent instability of BP poses a significant limitation, highlighting the importance of surface modification to enhance its stability. Ischemic stroke (IS) is caused by the occlusion of blood vessels, and its treatment is challenging due to the hindrance caused by the BBB. Therefore, there is an urgent need to identify improved methods for bypassing the BBB for more efficient IS treatment. This research devised a novel drug delivery approach based on pterostilbene (Pte) supported by BP nanosheets, modified with polydopamine (PDA) to form BP-Pte@PDA. This system shows robust stability and traverses the BBB using effective photothermal mechanisms. This enables the release of Pte upon pH and NIR stimuli, offering potential therapeutic advantages for treating IS. In a middle cerebral artery occlusion mouse model, the BP-Pte@PDA delivery system significantly reduced infarct size, and brain water content, improved neurological deficits, reduced the TLR4 inflammatory factor expression, and inhibited cell apoptosis. In summary, the drug delivery system fabricated in this study thus demonstrated good stability, therapeutic efficacy, and biocompatibility, rendering it suitable for clinical application.
Collapse
Affiliation(s)
- Shujiang Yin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Jing Hou
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Jie Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Caiyun Zeng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Shuang Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Han Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| |
Collapse
|
6
|
Hernández-Jiménez M, Abad-Santos F, Cotgreave I, Gallego J, Jilma B, Flores A, Jovin TG, Vivancos J, Hernández-Pérez M, Molina CA, Montaner J, Casariego J, Dalsgaard M, Liebeskind DS, Cobo E, Castellanos M, Portela PC, Masjuán J, Moniche F, Tembl JI, Terceño Izaga M, Arenillas JF, Callejas P, Olivot JM, Calviere L, Henon H, Mazighi M, Piñeiro D, Pugliese M, González VM, Moro MA, Garcia-Tornel A, Lizasoain I, Ribo M. Safety and Efficacy of ApTOLL in Patients With Ischemic Stroke Undergoing Endovascular Treatment: A Phase 1/2 Randomized Clinical Trial. JAMA Neurol 2023; 80:779-788. [PMID: 37338893 PMCID: PMC10282959 DOI: 10.1001/jamaneurol.2023.1660] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/17/2023] [Indexed: 06/21/2023]
Abstract
IMPORTANCE ApTOLL is a TLR4 antagonist with proven preclinical neuroprotective effect and a safe profile in healthy volunteers. OBJECTIVE To assess the safety and efficacy of ApTOLL in combination with endovascular treatment (EVT) for patients with ischemic stroke. DESIGN, SETTING, AND PARTICIPANTS This phase 1b/2a, double-blind, randomized, placebo-controlled study was conducted at 15 sites in Spain and France from 2020 to 2022. Participants included patients aged 18 to 90 years who had ischemic stroke due to large vessel occlusion and were seen within 6 hours after stroke onset; other criteria were an Alberta Stroke Program Early CT Score of 6 to 10, estimated infarct core volume on baseline computed tomography perfusion of 5 to 70 mL, and the intention to undergo EVT. During the study period, 4174 patients underwent EVT. INTERVENTIONS In phase 1b, 0.025, 0.05, 0.1, or 0.2 mg/kg of ApTOLL or placebo; in phase 2a, 0.05 or 0.2 mg/kg of ApTOLL or placebo; and in both phases, treatment with EVT and intravenous thrombolysis if indicated. MAIN OUTCOMES AND MEASURES The primary end point was the safety of ApTOLL based on death, symptomatic intracranial hemorrhage (sICH), malignant stroke, and recurrent stroke. Secondary efficacy end points included final infarct volume (via MRI at 72 hours), NIHSS score at 72 hours, and disability at 90 days (modified Rankin Scale [mRS] score). RESULTS In phase Ib, 32 patients were allocated evenly to the 4 dose groups. After phase 1b was completed with no safety concerns, 2 doses were selected for phase 2a; these 119 patients were randomized to receive ApTOLL, 0.05 mg/kg (n = 36); ApTOLL, 0.2 mg/kg (n = 36), or placebo (n = 47) in a 1:1:√2 ratio. The pooled population of 139 patients had a mean (SD) age of 70 (12) years, 81 patients (58%) were male, and 58 (42%) were female. The primary end point occurred in 16 of 55 patients (29%) receiving placebo (10 deaths [18.2%], 4 sICH [7.3%], 4 malignant strokes [7.3%], and 2 recurrent strokes [3.6%]); in 15 of 42 patients (36%) receiving ApTOLL, 0.05 mg/kg (11 deaths [26.2%], 3 sICH [7.2%], 2 malignant strokes [4.8%], and 2 recurrent strokes [4.8%]); and in 6 of 42 patients (14%) receiving ApTOLL, 0.2 mg/kg (2 deaths [4.8%], 2 sICH [4.8%], and 3 recurrent strokes [7.1%]). ApTOLL, 0.2 mg/kg, was associated with lower NIHSS score at 72 hours (mean difference log-transformed vs placebo, -45%; 95% CI, -67% to -10%), smaller final infarct volume (mean difference log-transformed vs placebo, -42%; 95% CI, -66% to 1%), and lower degrees of disability at 90 days (common odds ratio for a better outcome vs placebo, 2.44; 95% CI, 1.76 to 5.00). CONCLUSIONS AND RELEVANCE In acute ischemic stroke, 0.2 mg/kg of ApTOLL administered within 6 hours of onset in combination with EVT was safe and associated with a potential meaningful clinical effect, reducing mortality and disability at 90 days compared with placebo. These preliminary findings await confirmation from larger pivotal trials. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04734548.
Collapse
Affiliation(s)
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ian Cotgreave
- Department of Chemical and Pharmaceutical Safety, Division of Bioeconomy and Health, Research Institutes of Sweden, Södertälje, Sweden
| | | | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alan Flores
- Stroke Unit, Hospital Joan XXIII, Tarragona, Spain
| | | | - José Vivancos
- Stroke Unit, Department of Neurology, Hospital La Princesa, Madrid, Spain
| | - María Hernández-Pérez
- Stroke Unit, Department of Neuroscience Hospital Germans Trias I Pujol, Barcelona, Spain
| | - Carlos A. Molina
- Stroke Unit, Department of Neurology, Hospital Vall d’Hebron, Barcelona, Spain
| | - Joan Montaner
- Department of Neurology, Hospital Macarena, Sevilla, Spain
| | | | | | - David S. Liebeskind
- Neurovascular Imaging Research Core, Department of Neurology, UCLA Stroke Center, Los Angeles, California
| | - Erik Cobo
- Statistics and Operations Research, Barcelona-Tech, Barcelona, Spain
| | - Mar Castellanos
- Department of Neurology, Complejo Hospitalario Universitario/Biomedical Research Institute, A Coruña, Spain
| | | | - Jaime Masjuán
- Stroke Unit, Department of Neurology, Ramón y Cajal University Hospital, Departamento de Medicina, Facultad de Medicina, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Francisco Moniche
- Stroke Unit, Department of Neurology, Virgen del Rocio University Hospital, Seville, Spain
| | | | - Mikel Terceño Izaga
- Stroke Unit, Department of Neurology, Institut d’Investigació Biomèdica de Girona, Hospital Doctor Josep Trueta de Girona, Spain
| | | | - Patricia Callejas
- Department of Neurology and Stroke Center, University Hospital 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Jean Marc Olivot
- Department of Vascular Neurology and Clinical Investigating Center 1435, Toulouse University Hospital, France
| | - Lionel Calviere
- Department of Vascular Neurology and Clinical Investigating Center 1435, Toulouse University Hospital, France
| | - Hilde Henon
- University Lille, Inserm, CHU Lille, U1172, Lille Neuroscience and Cognition, Lille, France
| | - Mikael Mazighi
- Université Paris Cité, INSERM 1148, Department of Neurology, Hopital Lariboisière-APHP Nord, and Interventional Neuroradiology, Hopital Fondation Adolphe Rothschild, FHU Neurovasc, Paris, France
| | | | | | - Victor M. González
- Aptus Biotech, Madrid, Spain
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria, Ramón y Cajal University Hospital, Madrid, Spain
| | - Maria Angeles Moro
- Unidad de Investigación Neurovascular, Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Marc Ribo
- aptaTargets, Madrid, Spain
- Stroke Unit, Department of Neurology, Hospital Vall d’Hebron, Barcelona, Spain
| |
Collapse
|
7
|
Krämer TJ, Pickart F, Pöttker B, Gölz C, Neulen A, Pantel T, Goetz H, Ritter K, Schäfer MKE, Thal SC. Early DNase-I therapy delays secondary brain damage after traumatic brain injury in adult mice. Sci Rep 2023; 13:4348. [PMID: 36928073 PMCID: PMC10018640 DOI: 10.1038/s41598-023-30421-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Traumatic brain injury (TBI) causes the release of danger-associated molecular patterns (DAMP) from damaged or dead cells, which contribute to secondary brain damage after TBI. Cell-free DNA (cfDNA) is a DAMP known to cause disruption of the blood-brain barrier (BBB), promote procoagulant processes, brain edema, and neuroinflammation. This study tested the hypothesis that administration of deoxyribonuclease-I (DNase-I) has a beneficial effect after TBI. Mice (n = 84) were subjected to controlled cortical impact (CCI) and posttraumatic intraperitoneal injections of low dose (LD) or high dose (HD) of DNase-I or vehicle solution at 30 min and 12 h after CCI. LD was most effective to reduce lesion volume (p = 0.003), brain water content (p < 0.0001) and to stabilize BBB integrity (p = 0.019) 1 day post-injury (dpi). At 6 h post injury LD-treated animals showed less cleavage of fibrin (p = 0.0014), and enhanced perfusion as assessed by micro-computer-tomography (p = 0.027). At 5 dpi the number of Iba1-positive cells (p = 0.037) were reduced, but the number of CD45-positive cells, motoric function and brain lesion volume was not different. Posttraumatic-treatment with DNase-I therefore stabilizes the BBB, reduces the formation of brain edema, immune response, and delays secondary brain damage. DNase-I might be a new approach to extend the treatment window after TBI.
Collapse
Affiliation(s)
- Tobias J Krämer
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany.
- Faculty of Health, University Witten/Herdecke, Witten, Germany.
| | - Florian Pickart
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Bruno Pöttker
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Christina Gölz
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Axel Neulen
- Department of Neurosurgery, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tobias Pantel
- Department of Neurosurgery, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Hermann Goetz
- Cell Biology Unit, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Katharina Ritter
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Center for Molecular Surgical Research, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Center for Molecular Surgical Research, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Department of Anesthesiology, Helios University Hospital Wuppertal, University Witten/Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany
| |
Collapse
|
8
|
Hernández-Jiménez M, Abad-Santos F, Cotgreave I, Gallego J, Jilma B, Flores A, Jovin TG, Vivancos J, Molina CA, Montaner J, Casariego J, Dalsgaard M, Hernández-Pérez M, Liebeskind DS, Cobo E, Ribo M. APRIL: A double-blind, placebo-controlled, randomized, Phase Ib/IIa clinical study of ApTOLL for the treatment of acute ischemic stroke. Front Neurol 2023; 14:1127585. [PMID: 36908619 PMCID: PMC9999729 DOI: 10.3389/fneur.2023.1127585] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 02/26/2023] Open
Abstract
In the reperfusion era, a new paradigm of treating patients with endovascular treatment (EVT) and neuroprotective drugs is emerging as a promising therapeutic option for patients with acute ischemic stroke (AIS). In this context, ApTOLL, a Toll-like receptor 4 (TLR4) antagonist with proven neuroprotective effect in preclinical models of stroke and a very good pharmacokinetic and safety profile in healthy volunteers, is a promising first-in-class aptamer with the potential to address this huge unmet need. This protocol establishes the clinical trial procedures to conduct a Phase Ib/IIa clinical study (APRIL) to assess ApTOLL tolerability, safety, pharmacokinetics, and biological effect in patients with AIS who are eligible for EVT. This will be a multicenter, double-blind, randomized, placebo-controlled, Phase Ib/IIa clinical study to evaluate the administration of ApTOLL together with EVT in patients with AIS. The study population will be composed of men and non-pregnant women with confirmed AIS with a <6h window from symptoms onset to ApTOLL/placebo administration. The trial is currently being conducted and is divided into two parts: Phase Ib and Phase IIa. In Phase Ib, 32 patients will be allocated to four dose ascending levels to select, based on safety criteria, the best two doses to be administered in the following Phase IIa in which 119 patients will be randomized to three arms of treatment (dose A, dose B, and placebo). Identification of the trial EudraCT: 2020-002059-38 and ClinicalTrials.gov Identifier: NCT04734548 https://clinicaltrials.gov/ct2/show/NCT04734548?term=ApTOLL&cond=Stroke&draw=2&rank=1.
Collapse
Affiliation(s)
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Ian Cotgreave
- Division of Bioeconomy and Health, Department of Chemical and Pharmaceutical Safety, Research Institutes of Sweden, Södertälje, Sweden
| | | | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alan Flores
- Stroke Unit, Hospital Joan XXIII, Tarragona, Spain
| | - Tudor G Jovin
- Cooper Neurological Institute, Camden, AR, United States
| | - José Vivancos
- Stroke Unit, Department of Neurology, Hospital La Princesa, Madrid, Spain
| | - Carlos A Molina
- Stroke Unit, Department of Neurology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Joan Montaner
- Department of Neurology, Hospital Macarena, Sevilla, Spain
| | | | | | - María Hernández-Pérez
- Stroke Unit, Department of Neurology, Hospital Germans Trias I Pujol, Barcelona, Spain
| | - David S Liebeskind
- Neurovascular Imaging Research Core, Department of Neurology, UCLA Stroke Center, Los Angeles, CA, United States
| | - Erik Cobo
- Statistics and Operations Research, Barcelona-Tech (UPC), Barcelona, Spain
| | - Marc Ribo
- AptaTargets S.L., Madrid, Spain.,Stroke Unit, Department of Neurology, Hospital Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
9
|
Mutovina A, Ayriyants K, Mezhlumyan E, Ryabushkina Y, Litvinova E, Bondar N, Khantakova J, Reshetnikov V. Unique Features of the Immune Response in BTBR Mice. Int J Mol Sci 2022; 23:15577. [PMID: 36555219 PMCID: PMC9779573 DOI: 10.3390/ijms232415577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammation plays a considerable role in the pathogenesis of many diseases, including neurodegenerative and psychiatric ones. Elucidation of the specific features of an immune response in various model organisms, and studying the relation of these features with the behavioral phenotype, can improve the understanding of the molecular mechanisms of many psychopathologies. In this work, we focused on BTBR mice, which have a pronounced autism-like behavioral phenotype, elevated levels of oxidative-stress markers, an abnormal immune response, several structural aberrations in the brain, and other unique traits. Although some studies have already shown an abnormal immune response in BTBR mice, the existing literature data are still fragmentary. Here, we used inflammation induced by low-dose lipopolysaccharide, polyinosinic:polycytidylic acid, or their combinations, in mice of strains BTBR T+Itpr3tf/J (BTBR) and C57BL6/J. Peripheral inflammation was assessed by means of a complete blood count, lymphocyte immunophenotyping, and expression levels of cytokines in the spleen. Neuroinflammation was evaluated in the hypothalamus and prefrontal cortex by analysis of mRNA levels of proinflammatory cytokines (tumor necrosis factor, Tnf), (interleukin-1 beta, Il-1β), and (interleukin-6, Il-6) and of markers of microglia activation (allograft inflammatory factor 1, Aif1) and astroglia activation (glial fibrillary acidic protein, Gfap). We found that in both strains of mice, the most severe inflammatory response was caused by the administration of polyinosinic:polycytidylic acid, whereas the combined administration of the two toll-like receptor (TLR) agonists did not enhance this response. Nonetheless, BTBR mice showed a more pronounced response to low-dose lipopolysaccharide, an altered lymphocytosis ratio due to an increase in the number of CD4+ lymphocytes, and high expression of markers of activated microglia (Aif1) and astroglia (Gfap) in various brain regions as compared to C57BL6/J mice. Thus, in addition to research into mechanisms of autism-like behavior, BTBR mice can be used as a model of TLR3/TLR4-induced neuroinflammation and a unique model for finding and evaluating the effectiveness of various TLR antagonists aimed at reducing neuroinflammation.
Collapse
Affiliation(s)
- Anastasia Mutovina
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Kseniya Ayriyants
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Eva Mezhlumyan
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Yulia Ryabushkina
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Ekaterina Litvinova
- Physical Engineering Faculty, Novosibirsk State Technical University, Prospekt Karl Marx, 20, 630073 Novosibirsk, Russia
| | - Natalia Bondar
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| | - Julia Khantakova
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Vasiliy Reshetnikov
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia
| |
Collapse
|
10
|
Yu F, Wang Y, Stetler AR, Leak RK, Hu X, Chen J. Phagocytic microglia and macrophages in brain injury and repair. CNS Neurosci Ther 2022; 28:1279-1293. [PMID: 35751629 PMCID: PMC9344092 DOI: 10.1111/cns.13899] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 12/21/2022] Open
Abstract
AIMS Phagocytosis is the cellular digestion of extracellular particles, such as pathogens and dying cells, and is a key element in the evolution of central nervous system (CNS) disorders. Microglia and macrophages are the professional phagocytes of the CNS. By clearing toxic cellular debris and reshaping the extracellular matrix, microglia/macrophages help pilot the brain repair and functional recovery process. However, CNS resident and invading immune cells can also magnify tissue damage by igniting runaway inflammation and phagocytosing stressed-but viable-neurons. DISCUSSION Microglia/macrophages help mediate intercellular communication and react quickly to the "find-me" signals expressed by dead/dying neurons. The activated microglia/macrophages then migrate to the injury site to initiate the phagocytic process upon encountering "eat-me" signals on the surfaces of endangered cells. Thus, healthy cells attempt to avoid inappropriate engulfment by expressing "do not-eat-me" signals. Microglia/macrophages also have the capacity to phagocytose immune cells that invade the injured brain (e.g., neutrophils) and to regulate their pro-inflammatory properties. During brain recovery, microglia/macrophages engulf myelin debris, initiate synaptogenesis and neurogenesis, and sculpt a favorable extracellular matrix to support network rewiring, among other favorable roles. Here, we review the multilayered nature of phagocytotic microglia/macrophages, including the molecular and cellular mechanisms that govern microglia/macrophage-induced phagocytosis in acute brain injury, and discuss strategies that tap into the therapeutic potential of this engulfment process. CONCLUSION Identification of biological targets that can temper neuroinflammation after brain injury without hindering the essential phagocytic functions of microglia/macrophages will expedite better medical management of the stroke recovery stage.
Collapse
Affiliation(s)
- Fang Yu
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Yangfan Wang
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Anne R. Stetler
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rehana K. Leak
- Graduate School of Pharmaceutical SciencesSchool of Pharmacy, Duquesne UniversityPittsburghPennsylvaniaUSA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jun Chen
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
11
|
Sriram S, Mehkri Y, Quintin S, Lucke-Wold B. Shared pathophysiology: Understanding stroke and Alzheimer's disease. Clin Neurol Neurosurg 2022; 218:107306. [PMID: 35636382 DOI: 10.1016/j.clineuro.2022.107306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease and stroke share several known vascular risk factors. The pathophysiology and whether one predisposes to the other is a topic of ongoing investigation. In this critical review, we highlight what is known about each pathway and the shared potential mechanisms. We offer insight into topics that warrant further investigation. We address topics of both neurodegeneration and secondary cascades. Furthermore, the concept of targeting secondary mechanisms early might be a viable treatment option for ongoing preventative measures. The review is intended to serve as a catalyst for further scientific inquiry into this important topic.
Collapse
Affiliation(s)
- Sai Sriram
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Yusuf Mehkri
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Stephan Quintin
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | | |
Collapse
|
12
|
Kim S, Park ES, Chen PR, Kim E. Dysregulated Hypothalamic–Pituitary–Adrenal Axis Is Associated With Increased Inflammation and Worse Outcomes After Ischemic Stroke in Diabetic Mice. Front Immunol 2022; 13:864858. [PMID: 35784349 PMCID: PMC9243263 DOI: 10.3389/fimmu.2022.864858] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023] Open
Abstract
Diabetic patients have larger infarcts, worse neurological deficits, and higher mortality rate after an ischemic stroke. Evidence shows that in diabetes, the hypothalamic–pituitary–adrenal (HPA) axis was dysregulated and levels of cortisol increased. Based on the role of the HPA axis in immunity, we hypothesized that diabetes-dysregulated stress response exacerbates stroke outcomes via regulation of inflammation. To test this hypothesis, we assessed the regulation of the HPA axis in diabetic mice before and after stroke and determined its relevance in the regulation of post-stroke injury and inflammation. Diabetes was induced in C57BL/6 mice by feeding a high-fat diet and intraperitoneal injection of streptozotocin (STZ), and then the mice were subjected to 30 min of middle cerebral artery occlusion (MCAO). Infarct volume and neurological scores were measured in the ischemic mice. The inflammatory cytokine and chemokine levels were also determined in the ischemic brain. To assess the effect of diabetes on the stroke-modulated HPA axis, we measured the expression of components in the HPA axis including corticotropin-releasing hormone (CRH) in the hypothalamus, proopiomelanocortin (POMC) in the pituitary, and plasma adrenocorticotropic hormone (ACTH) and corticosterone. Diabetic mice had larger infarcts and worse neurological scores after stroke. The exacerbated stroke outcomes in diabetic mice were accompanied by the upregulated expression of inflammatory factors (including IL-1β, TNF-α, IL-6, CCR2, and MCP-1) in the ischemic brain. We also confirmed increased levels of hypothalamic CRH, pituitary POMC, and plasma corticosterone in diabetic mice before and after stroke, suggesting the hyper-activated HPA axis in diabetic conditions. Finally, we confirmed that post-stroke treatment of metyrapone (an inhibitor of glucocorticoid synthesis) reduced IL-6 expression and the infarct size in the ischemic brain of diabetic mice. These results elucidate the mechanisms in which the HPA axis in diabetes exacerbates ischemic stroke. Maintaining an optimal level of the stress response by regulating the HPA axis may be an effective approach to improving stroke outcomes in patients with diabetes.
Collapse
|
13
|
Hu W, Kong X, Wang H, Li Y, Luo Y. Ischemic stroke and intestinal flora: an insight into brain-gut axis. Eur J Med Res 2022; 27:73. [PMID: 35614480 PMCID: PMC9131669 DOI: 10.1186/s40001-022-00691-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/21/2022] [Indexed: 11/10/2022] Open
Abstract
Stroke is a type of cerebrovascular disease that significantly endangers human health and lowers quality of life. This understandably places a heavy burden on society and families. In recent years, intestinal flora has attracted increasing attention from scholars worldwide, and its association with ischemic stroke is becoming a hot topic of research amongst researchers in field of stroke. After suffering from a stroke, intestinal microbial dysbiosis leads to increased intestinal permeability and activation of the intestinal immune system, which in turn leads to ectopic intestinal bacteria and pro-inflammatory cells that enter brain tissue through the damaged blood-brain barrier. This exacerbates ischemia-reperfusion injury. Interestingly, after a stroke, some metabolites produced by the intestinal flora attenuate ischemia-reperfusion injury by suppressing the post-stroke inflammatory response and promotes the repair of neurological function. Here we elucidate the changes in gut flora after occurrence of a stroke and highlight the immunomodulatory processes of the post-stroke gut flora.
Collapse
Affiliation(s)
- Wenjie Hu
- Department of Biological Science, Jining Medical University, Rizhao, Shandong, China.,Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
| | - Xiangyi Kong
- Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
| | - Hui Wang
- Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
| | - Yunqing Li
- Department of Pathogenic Biology, Jining Medical University, Jining, Shandong, China
| | - Yimin Luo
- Department of Biological Science, Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
14
|
Vanillin attenuates proinflammatory factors in a tMCAO mouse model via inhibition of TLR4/NF-kB signaling pathway. Neuroscience 2022; 491:65-74. [PMID: 35276304 DOI: 10.1016/j.neuroscience.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023]
Abstract
Vanillin has been reported to reduce hippocampal neuronal death in rat models of global cerebral ischemia. However, the immunoregulatory mechanism of vanillin in ischemic stroke is still unclear. To investigate the role of vanillin in a mouse model of ischemic stroke, we administered vanillin to mice after transient middle cerebral artery occlusion (tMCAO) by tail vein injection. Vanillin reduced infarct volume and improved motor function in mice after ischemia and reperfusion. IL-1β and TNF-α were decreased in ischemic brain tissue of tMCAO mice after vanillin treatment compared with saline treatment. Similar effects were observed using the in vitro LPS-stimulated microglia cell model. Moreover, the reduced expression of proinflammatory cytokines in the vanillin group was related to TLR4/NF-κB signaling. Taken together, the findings suggest that vanillin decreased microglial activation by inhibiting the TLR4 /NF-κB signaling pathway, which reduced expression of proinflammatory cytokines IL-1β and TNF-α, and finally reduced the infarct volume and improved motor function in tMCAO mice.
Collapse
|
15
|
New Drug Targets to Prevent Death Due to Stroke: A Review Based on Results of Protein-Protein Interaction Network, Enrichment, and Annotation Analyses. Int J Mol Sci 2021; 22:ijms222212108. [PMID: 34829993 PMCID: PMC8619767 DOI: 10.3390/ijms222212108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
This study used established biomarkers of death from ischemic stroke (IS) versus stroke survival to perform network, enrichment, and annotation analyses. Protein-protein interaction (PPI) network analysis revealed that the backbone of the highly connective network of IS death consisted of IL6, ALB, TNF, SERPINE1, VWF, VCAM1, TGFB1, and SELE. Cluster analysis revealed immune and hemostasis subnetworks, which were strongly interconnected through the major switches ALB and VWF. Enrichment analysis revealed that the PPI immune subnetwork of death due to IS was highly associated with TLR2/4, TNF, JAK-STAT, NOD, IL10, IL13, IL4, and TGF-β1/SMAD pathways. The top biological and molecular functions and pathways enriched in the hemostasis network of death due to IS were platelet degranulation and activation, the intrinsic pathway of fibrin clot formation, the urokinase-type plasminogen activator pathway, post-translational protein phosphorylation, integrin cell-surface interactions, and the proteoglycan-integrin extracellular matrix complex (ECM). Regulation Explorer analysis of transcriptional factors shows: (a) that NFKB1, RELA and SP1 were the major regulating actors of the PPI network; and (b) hsa-mir-26-5p and hsa-16-5p were the major regulating microRNA actors. In conclusion, prevention of death due to IS should consider that current IS treatments may be improved by targeting VWF, the proteoglycan-integrin-ECM complex, TGF-β1/SMAD, NF-κB/RELA and SP1.
Collapse
|
16
|
Chen W, Jiang L, Hu Y, Fang G, Yang B, Li J, Liang N, Wu L, Hussain Z. Nanomedicines, an emerging therapeutic regimen for treatment of ischemic cerebral stroke: A review. J Control Release 2021; 340:342-360. [PMID: 34695522 DOI: 10.1016/j.jconrel.2021.10.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
Owing to its intricate pathophysiology, cerebral stroke is a serious medical condition caused by interruption or obstruction of blood supply (blockage of vasculature) to the brain tissues which results in diminished supply of essential nutrients and oxygen (hypoxia) and ultimate necrosis of neuronal tissues. A prompt risks assessment and immediate rational therapeutic plan with proficient neuroprotection play critically important role in the effective management of this neuronal emergency. Various conventional medications are being used for treatment of acute ischemic cerebral stroke but fibrinolytic agents, alone or in combination with other agents are considered the mainstay. These clot-busting agents effectively restore blood supply (reperfusion) to ischemic regions of the brain; however, their clinical significance is hampered due to various factors such as short plasma half-life, limited distribution to brain tissues due to the presence of highly efficient physiological barrier, blood brain barrier (BBB), and lacking of target-specific delivery to the ischemic brain regions. To alleviate these issues, various types of nanomedicines such as polymeric nanoparticles (NPs), liposomes, nanoemulsion, micelles and dendrimers have been designed and evaluated. The implication of these newer therapies (nanomedicines) have revolutionized the therapeutic outcomes by improving the plasma half-life, permeation across BBB, efficient distribution to ischemic cerebral tissues and neuroprotection. Furthermore, the adaptation of some diverse techniques including PEGylation, tethering of targeting ligands on the surfaces of nanomedicines, and pH responsive features have also been pondered. The implication of these emerging adaptations have shown remarkable potential in maximizing the targeting efficiency of drugs to ischemic brain tissues, simultaneous delivery of drugs and imaging agents (for early prognosis as well as monitoring of therapy), and therapeutic outcomes such as long-term neuroprotection.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Lingfei Jiang
- Graduate College, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Yueqiang Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China.
| | - Gang Fang
- Guangxi Zhuang and Yao Medicine Engineering Technology Research Center, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Bilin Yang
- Graduate College, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Junhong Li
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Ni Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Lin Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China.
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
17
|
Griciuc A, Federico AN, Natasan J, Forte AM, McGinty D, Nguyen H, Volak A, LeRoy S, Gandhi S, Lerner EP, Hudry E, Tanzi RE, Maguire CA. Gene therapy for Alzheimer's disease targeting CD33 reduces amyloid beta accumulation and neuroinflammation. Hum Mol Genet 2021; 29:2920-2935. [PMID: 32803224 DOI: 10.1093/hmg/ddaa179] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/03/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is a key contributor to the pathology of Alzheimer's disease (AD). CD33 (Siglec-3) is a transmembrane sialic acid-binding receptor on the surface of microglial cells. CD33 is upregulated on microglial cells from post-mortem AD patient brains, and high levels of CD33 inhibit uptake and clearance of amyloid beta (Aβ) in microglial cell cultures. Furthermore, knockout of CD33 reduces amyloid plaque burden in mouse models of AD. Here, we tested whether a gene therapy strategy to reduce CD33 on microglia in AD could decrease Aβ plaque load. Intracerebroventricular injection of an adeno-associated virus (AAV) vector-based system encoding an artificial microRNA targeting CD33 (miRCD33) into APP/PS1 mice reduced CD33 mRNA and TBS-soluble Aβ40 and Aβ42 levels in brain extracts. Treatment of APP/PS1 mice with miRCD33 vector at an early age (2 months) was more effective at reducing Aβ plaque burden than intervening at later times (8 months). Furthermore, early intervention downregulated several microglial receptor transcripts (e.g. CD11c, CD47 and CD36) and pro-inflammatory activation genes (e.g. Tlr4 and Il1b). Marked reductions in the chemokine Ccl2 and the pro-inflammatory cytokine Tnfα were observed at the protein level in the brain of APP/PS1 mice treated with miRCD33 vector. Overall, our data indicate that CD33 is a viable target for AAV-based knockdown strategies to reduce AD pathology. One Sentence Summary: A gene therapy approach for Alzheimer's disease using adeno-associated virus vector-based knockdown of CD33 reduced amyloid beta accumulation and neuroinflammation.
Collapse
Affiliation(s)
- Ana Griciuc
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Anthony N Federico
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jeyashree Natasan
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02114, USA
| | - Angela M Forte
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Danielle McGinty
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Huong Nguyen
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Adrienn Volak
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02114, USA
| | - Stanley LeRoy
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02114, USA
| | - Sheetal Gandhi
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Eli P Lerner
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Eloise Hudry
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Casey A Maguire
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02114, USA
| |
Collapse
|
18
|
Targeting Common Signaling Pathways for the Treatment of Stroke and Alzheimer's: a Comprehensive Review. Neurotox Res 2021; 39:1589-1612. [PMID: 34169405 DOI: 10.1007/s12640-021-00381-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 12/30/2022]
Abstract
Neurodegenerative diseases such as stroke and Alzheimer's disease (AD) are two inter-related disorders that affect the neurons in the brain and central nervous system. Alzheimer's is a disease by undefined origin and causes. Stroke and its most common type, ischemic stroke (IS), occurs due to the blockade of cerebral blood vessels. As an important feature, both of disorders are associated with irreversible damages to the brain and nervous system. In this regard, finding common signaling pathways and the same molecular origin between these two diseases may be a promising way for their solution. On the basis of literature appraisal, the most common signaling cascades implicated in the pathogenesis of AD and stroke including notch, autophagy, inflammatory, and insulin signaling pathways were reviewed. Furthermore, current therapeutic strategies including natural and synthetic pharmaceuticals aiming modulation of respective signaling factors were scrutinized to ameliorate neural deficits in AD and stroke. Taken together, digging deeper in the common connections and signal targeting can be greatly helpful in understanding and unified treating of these disorders.
Collapse
|
19
|
Hou K, Li G, Yu J, Xu K, Wu W. Receptors, Channel Proteins, and Enzymes Involved in Microglia-mediated Neuroinflammation and Treatments by Targeting Microglia in Ischemic Stroke. Neuroscience 2021; 460:167-180. [PMID: 33609636 DOI: 10.1016/j.neuroscience.2021.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Stroke is the largest contributor to global neurological disability-adjusted life-years, posing a huge economic and social burden to the world. Though pharmacological recanalization with recombinant tissue plasminogen activator and mechanical thrombectomy have greatly improved the prognosis of patients with ischemic stroke, clinically, there is still no effective treatment for the secondary injury caused by cerebral ischemia. In recent years, more and more evidences show that neuroinflammation plays a pivotal role in the pathogenesis and progression of ischemic cerebral injury. Microglia are brain resident innate immune cells and act the role peripheral macrophages. They play critical roles in mediating neuroinflammation after ischemic stroke. Microglia-mediated neuroinflammation is not an isolated process and has complex relationships with other pathophysiological processes as oxidative/nitrative stress, excitotoxicity, necrosis, apoptosis, pyroptosis, autophagy, and adaptive immune response. Upon activation, microglia differentially express various receptors, channel proteins, and enzymes involved in promoting or inhibiting the inflammatory processes, making them the targets of intervention for ischemic stroke. To inhibit microglia-related neuroinflammation and promote neurological recovery after ischemic stroke, numerous biochemical agents, cellular therapies, and physical methods have been demonstrated to have therapeutic potentials. Though accumulating experimental evidences have demonstrated that targeting microglia is a promising approach in the treatment of ischemic stroke, the clinical progress is slow. Till now, no clinical study could provide convincing evidence that any biochemical or physical therapies could exert neuroprotective effect by specifically targeting microglia following ischemic stroke.
Collapse
Affiliation(s)
- Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Guichen Li
- Department of Neurology, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Jinlu Yu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Kan Xu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Wei Wu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| |
Collapse
|
20
|
Huang C, Zhang Y, Deng S, Ren Y, Lu W. Trauma-Related Guillain-Barré Syndrome: Systematic Review of an Emerging Concept. Front Neurol 2020; 11:588290. [PMID: 33240210 PMCID: PMC7681248 DOI: 10.3389/fneur.2020.588290] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/02/2020] [Indexed: 02/05/2023] Open
Abstract
Guillain-Barré syndrome (GBS) is mainly associated with preceding exposure to an infectious agent, although the precise pathogenic mechanisms and causes remain unknown. Increasing evidence indicates an association between trauma-related factors and GBS. Here, we performed a systematic review, summarized the current scientific literature related to the onset of GBS associated with trauma, and explored the possible pathogenesis. A literature search of various electronic databases was performed up to May 2020 to identify studies reporting diverse trauma-related triggers of GBS. Data were extracted, summarized descriptively, and evaluated with respect to possible mechanisms. In total, 100 publications, including 136 cases and 6 case series involving GBS triggered by injury, surgery, intracranial hemorrhage, and heatstroke, met our eligibility criteria. The median age of the patients was 53 [interquartile range (IQR) 45-63] years, and 72.1% of the patients were male. The median number of days between the trigger to onset of GBS symptoms was 9 (IQR 6.5-13). Overall, 121 patients (89.0%) developed post-injury/surgical GBS, whereas 13 (9.6%) and 2 (1.5%) patients had preexisting spontaneous intracranial hemorrhage and heatstroke, respectively. The main locations of injury or surgeries preceding GBS were the spine and brain. Based on available evidence, we highlight possible mechanisms of GBS induced by these triggers. Moreover, we propose the concept of "trauma-related GBS" as a new research direction, which may help uncover more pathogenic mechanisms than previously considered for typical GBS triggered by infection or vaccination.
Collapse
Affiliation(s)
- Chuxin Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiliu Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yijun Ren
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Yang LX, Chen FY, Yu HL, Liu PY, Bao XY, Xia SN, Gu Y, Xu Y, Cao X. Poncirin suppresses lipopolysaccharide (LPS)-induced microglial inflammation and ameliorates brain ischemic injury in experimental stroke in mice. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1344. [PMID: 33313089 PMCID: PMC7723616 DOI: 10.21037/atm-20-3470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Based on accumulating evidence, excessive activation of microglia-mediated inflammatory responses plays an essential role in ischemic stroke. Poncirin (Pon) exerts anti-hyperalgesic, anti-osteoporotic and anti-tumor effects on various diseases. However, the roles of Pon in microglial activation and the underlying mechanism have not been elucidated. This study aimed to explore whether Pon inhibits lipopolysaccharide (LPS)-induced microglial neuroinflammation and protects against brain ischemic injury in experimental stroke in mice. Methods Primary microglia cells were prepared from the cerebral cortices of 1- to 2-day-old C57BL/6J mice. Murine BV2 cells and primary microglia were stimulated with LPS and the effects of a non-cytotoxic concentration of Pon on LPS-stimulated pro-inflammatory factors were measured using real-time PCR and enzyme-linked immunosorbent assays (ELISAs). Western blot analyses were used for mechanistic studies. In an in vivo study, 8-week-old male C57BL/6J mice were subjected to focal cerebral ischemia through middle cerebral artery occlusion (MCAO). Pon (30 mg/kg, i.p.) or the same volume of saline was administered after the MCAO model was established, and the infarct volume was evaluated using 2,3,5-triphenyltetrazolium chloride (TTC) staining. We also evaluated animal behaviours, the expression of pro-inflammatory cytokines and microglial activation in the ischemic hemisphere. Results Pon prevented the release of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6 and tumor necrosis factor-alpha (TNF-α) in both BV2 cells and primary microglia stimulated with LPS. The inhibitory effects of Pon were associated with the regulation of the ERK1/2, JNK and nuclear factor kappa B (NF-κB) signaling pathways. In mice that underwent MCAO, Pon administration decreased the lesion size and improved neurological deficits. Furthermore, Pon attenuated the production of inflammatory cytokines mainly by restraining microglial activation after ischemic stroke. Conclusions Based on the findings from the present study, Pon provides neuroprotection through its anti-inflammatory effects on microglia and it may be a useful treatment for ischemic stroke.
Collapse
Affiliation(s)
- Li-Xuan Yang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Fang-Yu Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Hai-Long Yu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Pin-Yi Liu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xin-Yu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Sheng-Nan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
22
|
Ardaya M, Joya A, Padro D, Plaza-García S, Gómez-Vallejo V, Sánchez M, Garbizu M, Cossío U, Matute C, Cavaliere F, Llop J, Martín A. In vivo PET Imaging of Gliogenesis After Cerebral Ischemia in Rats. Front Neurosci 2020; 14:793. [PMID: 32848565 PMCID: PMC7406641 DOI: 10.3389/fnins.2020.00793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/06/2020] [Indexed: 11/13/2022] Open
Abstract
In vivo positron emission tomography of neuroinflammation has mainly focused on the evaluation of glial cell activation using radiolabeled ligands. However, the non-invasive imaging of neuroinflammatory cell proliferation has been scarcely evaluated so far. In vivo and ex vivo assessment of gliogenesis after transient middle cerebral artery occlusion (MCAO) in rats was carried out using PET imaging with the marker of cell proliferation 3′-Deoxy-3′-[18F] fluorothymidine ([18F]FLT), magnetic resonance imaging (MRI) and fluorescence immunohistochemistry. MRI-T2W studies showed the presence of the brain infarction at 24 h after MCAO affecting cerebral cortex and striatum. In vivo PET imaging showed a significant increase in [18F]FLT uptake in the ischemic territory at day 7 followed by a progressive decline from day 14 to day 28 after ischemia onset. In addition, immunohistochemistry studies using Ki67, CD11b, and GFAP to evaluate proliferation of microglia and astrocytes confirmed the PET findings showing the increase of glial proliferation at day 7 after ischemia followed by decrease later on. Hence, these results show that [18F]FLT provides accurate quantitative information on the time course of glial proliferation in experimental stroke. Finally, this novel brain imaging method might guide on the imaging evaluation of the role of gliogenesis after stroke.
Collapse
Affiliation(s)
- María Ardaya
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain
| | - Ana Joya
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Daniel Padro
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Sandra Plaza-García
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | | | | | | | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain
| | - Fabio Cavaliere
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain.,Centro de Investigación Biomédica en Red - Enfermedades Respiratorias, CIBERES, Madrid, Spain
| | - Abraham Martín
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
23
|
Wang H, Song X, Li M, Wang X, Tao Y, Xiya X, Liu H, Zhao Y, Chang D, Sha Q. The role of TLR4/NF-κB signaling pathway in activated microglia of rats with chronic high intraocular pressure and vitro scratch injury-induced microglia. Int Immunopharmacol 2020; 83:106395. [PMID: 32199351 DOI: 10.1016/j.intimp.2020.106395] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/12/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
Glaucoma is a kind of blind-causing disease with structural damages of optic nerve and defection of visual field. It is believed that the death of retinal ganglion cell (RGC) is a consequential event of over-reactive immune orchestral cells such as microglia. Previous evidences in animal and clinical studies show the innate immunity plays a pivotal role in neuro-inflammation of glaucoma. Toll-like receptor 4 (TLR4) is expressed on microglia and mediates many neuroinflammatory diseases. We aimed to explore the impacts of high intraocular pressure (IOP) on rat microglia in retina and the regulation of TLR4/NF-κB signaling pathway in scratched microglia cells. In our study, we successfully established chronic high IOP rat model by episcleral vein cauterization (EVC) which behaved like the chronic glaucoma. Besides, we set up an in vitro scratch-induced injury model in rat microglia cells. We found the level of activated microglia cells were significantly increased in the retina of chronic high IOP groups. Moreover, the inhibition of TLR4/NF-κB signaling pathway suppressed the expression of TLR4 protein and mRNA levels of P50, IL-6 and TNF-α. Our original study provided a theoretical basis on targeting TLR4/NF-κB to suppress pro-inflammatory factors releasing in activated microglia and it might be a good treatment target to prevent glaucoma from progressing.
Collapse
Affiliation(s)
- Hongjun Wang
- Department of Medical, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xiangyuan Song
- Department of Ophthalmology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Mingzhe Li
- Department of Ophthalmology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xuefei Wang
- Department of Ophthalmology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yi Tao
- Department of Ophthalmology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xiamu Xiya
- Department of Ophthalmology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Hui Liu
- Department of Ophthalmology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yini Zhao
- Department of Ophthalmology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dong Chang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Qian Sha
- Department of Ophthalmology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| |
Collapse
|
24
|
Tao X, Yang W, Zhu S, Que R, Liu C, Fan T, Wang J, Mo D, Zhang Z, Tan J, Jin K, Yenari MA, Song T, Wang Q. Models of poststroke depression and assessments of core depressive symptoms in rodents: How to choose? Exp Neurol 2019; 322:113060. [PMID: 31505162 DOI: 10.1016/j.expneurol.2019.113060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/09/2019] [Accepted: 09/05/2019] [Indexed: 01/22/2023]
Abstract
Our previous studies have indicated that depression and declined cognition have been involved in some neurodegenerative diseases including Stroke, Parkinson's diseases and Vascular Parkinsonism. Post-stroke depression (PSD) is the most common psychiatric disorder following a stroke and has high morbidity and mortality. Studies on PSD are increasingly common, but the specific mechanisms remain unknown. Current research mainly includes clinical and animal aspects. Questionnaires and peripheral blood examination are two of the most common methods used to study clinical PSD. The results of questionnaires are influenced by multiple factors such as disease history, education background, occupation, economic status, family relationships and social support. There are certain limitations to blood sample testing; for example, it is influenced by cerebrovascular diseases and some other disruptions of the internal environment. It is difficult for either method to fully clarify the pathophysiological mechanism of PSD. Animal models provide alternative methods to further understand the pathophysiological mechanisms of PSD, such as the involvement of neuronal circuits and cytokines. More than ten animal models of PSD have been developed, and new models are constantly being introduced. Therefore, it is important to choose the appropriate model for any given study. In this paper, we will discuss the characteristics of the different models of PSD and comment on the advantages and disadvantages of each model, drawing from research on model innovation. Finally, we briefly describe the current assessment methods for the core symptoms of PSD models, point out the shortcomings, and present the improved sucrose preference test as a rational evaluation of anhedonia.
Collapse
Affiliation(s)
- Xi Tao
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rongfang Que
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chujuan Liu
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Tao Fan
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jia Wang
- Department of Scientific Research, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Danheng Mo
- Department of Neurology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Zhuohua Zhang
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Jieqiong Tan
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco & the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Tao Song
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
25
|
Xue J, Yu Y, Zhang X, Zhang C, Zhao Y, Liu B, Zhang L, Wang L, Chen R, Gao X, Jiao P, Song G, Jiang XC, Qin S. Sphingomyelin Synthase 2 Inhibition Ameliorates Cerebral Ischemic Reperfusion Injury Through Reducing the Recruitment of Toll-Like Receptor 4 to Lipid Rafts. J Am Heart Assoc 2019; 8:e012885. [PMID: 31718447 PMCID: PMC6915272 DOI: 10.1161/jaha.119.012885] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Inflammation is recognized as an important contributor of ischemia/reperfusion (I/R) damage after ischemic stroke. Sphingomyelin synthase 2 (SMS2), the key enzyme for the biosynthesis of sphingomyelin, can function as a critical mediator of inflammation. In the present study, we investigated the role of SMS2 in a mouse model of cerebral I/R. Methods and Results Cerebral I/R was induced by 60‐minute transient middle cerebral artery occlusion in SMS2 knockout (SMS2‐/‐) mice and wild‐type mice. Brain injury was determined by neurological deficits and infarct volume at 24 and 72 hours after transient middle cerebral artery occlusion. Microglia activation and inflammatory factors were detected by immunofluorescence staining, flow cytometry, western blot, and RT‐PCR. SMS2 deficiency significantly improved neurological function and minimized infarct volume at 72 hours after transient middle cerebral artery occlusion. The neuroprotective effects of SMS2 deficiency were associated with (1) suppression of microglia activation through Toll‐like receptor 4/nuclear factor kappa‐light‐chain‐enhancer of activated B cells pathway and (2) downregulation of the level of galactin‐3 and other proinflammatory cytokines. The mechanisms underlying the beneficial effects of SMS2 deficiency may include altering sphingomyelin components in lipid raft fractions, thus impairing the recruitment of Toll‐like receptor 4 to lipid rafts and subsequently reducing Toll‐like receptor 4/myeloid differentiation factor 2 complex formation on the surface of microglia. Conclusions SMS2 deficiency ameliorated inflammatory injury after cerebral I/R in mice, and SMS2 may be a key modulator of Toll‐like receptor 4/nuclear factor kappa‐light‐chain‐enhancer of activated B cells activation by disturbing the membrane component homeostasis during cerebral I/R.
Collapse
Affiliation(s)
- Jing Xue
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Yang Yu
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Xiangjian Zhang
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Cong Zhang
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Yanan Zhao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Boyan Liu
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Lan Zhang
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Lina Wang
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Rong Chen
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Xuan Gao
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Peng Jiao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Guohua Song
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Xian-Cheng Jiang
- Department of Anatomy and Cell Biology SUNY Downstate Medical Center Brooklyn NY
| | - Shucun Qin
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| |
Collapse
|
26
|
Khedr LH, Nassar NN, Rashed L, El-Denshary ED, Abdel-Tawab AM. TLR4 signaling modulation of PGC1-α mediated mitochondrial biogenesis in the LPS-Chronic mild stress model: Effect of fluoxetine and pentoxiyfylline. Life Sci 2019; 239:116869. [PMID: 31678277 DOI: 10.1016/j.lfs.2019.116869] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 11/15/2022]
Abstract
AIM The addition of repeated lipopolysaccharide (LPS) to chronic mild stress was recently proposed in our lab as an alternative model of depression, highlighting the possible interaction between stress and immune-inflammatory pathways in predisposing depression. Given that CMS-induced depressive behavior was previously related to impaired hippocampal energy metabolism and mitochondrial dysfunction, our current study aimed to investigate the interplay between toll-like receptor 4 (TLR4) signaling and peroxisome proliferator-activated receptor gamma coactivators-1-alpha (PGC1-α) as a physiological regulator of energy metabolism and mitochondrial biogenesis in the combined LPS/CMS model. MAIN METHODS Male Wistar rats were exposed to either LPS (50 μg/kg i.p.) over 2 weeks, CMS protocol for 4 weeks or LPS over 2 weeks followed by 4 weeks of CMS (LPS/CMS). Three additional groups of rats were exposed to LPS/CMS protocol and treated with either pentoxifylline (PTX), fluoxetine (FLX) or a combination of both. Rats were examined for behavioral, neurochemical, gene expression and mitochondrial ultra-structural changes. KEY FINDINGS LPS/CMS increased the expression of TLR4 and its downstream players; MyD88, NFκB and TNF-α along with an escalation in hippocampal-energy metabolism and p-AMPK. Simultaneously LPS/CMS attenuated the expression of PGC1-α/NRF1/Tfam and mt-DNA. The antidepressant (AD) 'FLX', the TNF-α inhibitor 'PTX' and their combination ameliorated the LPS/CMS-induced changes. Interestingly, all the aforementioned changes induced by the LPS/CMS combined model were significantly less than those induced by CMS alone. SIGNIFICANCE Blocking the TLR4/NFκB signaling enhanced the activation of the PGC1-α/NRF1/Tfam and mt-DNA content independent on the activation of the energy-sensing kinase AMPK.
Collapse
Affiliation(s)
- L H Khedr
- Departmment of Pharmacology, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - N N Nassar
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Laila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - E D El-Denshary
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - A M Abdel-Tawab
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
27
|
Haage V, Elmadany N, Roll L, Faissner A, Gutmann DH, Semtner M, Kettenmann H. Tenascin C regulates multiple microglial functions involving TLR4 signaling and HDAC1. Brain Behav Immun 2019; 81:470-483. [PMID: 31271872 DOI: 10.1016/j.bbi.2019.06.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 01/15/2023] Open
Abstract
Tenascin C (Tnc) is an extracellular matrix glycoprotein, expressed in the CNS during development, as well as in the setting of inflammation, fibrosis and cancer, which operates as an activator of Toll-like receptor 4 (TLR4). Although TLR4 is highly expressed in microglia, the effect of Tnc on microglia has not been elucidated to date. Herein, we demonstrate that Tnc regulates microglial phagocytic activity at an early postnatal age (P4), and that this process is partially dependent on microglial TLR4 expression. We further show that Tnc regulates proinflammatory cytokine/chemokine production, chemotaxis and phagocytosis in primary microglia in a TLR4-dependent fashion. Moreover, Tnc induces histone-deacetylase 1 (HDAC1) expression in microglia, such that HDAC1 inhibition by MS-275 decreases Tnc-induced microglial IL-6 and TNF-α production. Finally, Tnc-/- cortical microglia have reduced HDAC1 expression levels at P4. Taken together, these findings establish Tnc as a regulator of microglia function during early postnatal development.
Collapse
Affiliation(s)
- Verena Haage
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Nirmeen Elmadany
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Lars Roll
- Zellmorphologie und Molekulare Neurobiologie, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Bochum, Nordrhein-Wastfalen 44801, Germany
| | - Andreas Faissner
- Zellmorphologie und Molekulare Neurobiologie, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Bochum, Nordrhein-Wastfalen 44801, Germany
| | - David H Gutmann
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcus Semtner
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Helmut Kettenmann
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.
| |
Collapse
|
28
|
Jiang X, Kuang G, Gong X, Jiang R, Xie T, Tie H, Wu S, Wang T, Wan J, Wang B. Glycyrrhetinic acid pretreatment attenuates liver ischemia/reperfusion injury via inhibiting TLR4 signaling cascade in mice. Int Immunopharmacol 2019; 76:105870. [PMID: 31493667 DOI: 10.1016/j.intimp.2019.105870] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/29/2022]
Abstract
Glycyrrhetinic acid (GA), the main bioactive substances of glycyrrhiza uralensis Fisch, has been reported to exhibit hepatoprotective and anti-inflammatory properties. However, the effects and underlying mechanisms of GA in liver ischemia/reperfusion (I/R) injury remain elusive. In this study, mice were pretreated with GA (100 mg/kg) three times a day by gavage prior to I/R injury, and then hepatic histopathological damages, biochemical parameters and inflammatory molecules were evaluated. We found that mice performed with liver I/R showed a significantly increase in plasma aminotransferase (ALT), aspartate aminotransferase (AST), liver cell apoptosis and infiltration of neutrophils compared with the control group. GA pretreatment notably improved liver function, histopathology of liver tissues, and lowered liver cell apoptosis and infiltration of neutrophils. Besides, further analysis indicated that GA pretreatment reduced I/R-induced expression of extracellular HMGB1, inhibited activation of TLR4 and following phosphorylation of IRAK1, ERK, P38 and NF-κB, and attenuated TNF-α and IL-1β production. These data suggested that GA protected against liver I/R injury through a HMGB1-TLR4 signaling pathway and it might be a promising drug for future clinical use in liver transplantation.
Collapse
Affiliation(s)
- Xujie Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ge Kuang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Rong Jiang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Tianjun Xie
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Hongtao Tie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shengwang Wu
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Ting Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jingyuan Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China.
| | - Bin Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
29
|
Shah FA, Kury LA, Li T, Zeb A, Koh PO, Liu F, Zhou Q, Hussain I, Khan AU, Jiang Y, Li S. Polydatin Attenuates Neuronal Loss via Reducing Neuroinflammation and Oxidative Stress in Rat MCAO Models. Front Pharmacol 2019; 10:663. [PMID: 31293416 PMCID: PMC6606791 DOI: 10.3389/fphar.2019.00663] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is characterized by permanent or transient obstruction of blood flow, which initiates a cascading pathological process, starting from acute ATP loss and ionic imbalance to subsequent membrane depolarization, glutamate excitotoxicity, and calcium overload. These initial events are followed by neuroinflammation and oxidative stress, eventually causing neuronal neurosis and apoptosis. Complicated interplays exist between these steps happening across various stages, which not only represent the complicated nature of ischemic pathology but also warrant a detailed delineation of the underlying molecular mechanisms to develop better therapeutic options. In the present study, we examined the neuroprotective effects of polydatin against ischemic brain injury using a rat model of permanent middle cerebral artery occlusion (MCAO). Our results demonstrated that polydatin treatment reduced the infarction volume and mitigated the neurobehavioral deficits, sequentially rescued neuronal apoptosis. Ischemic stroke induced an elevation of neuroinflammation and reactive oxygen species, which could be attenuated by polydatin via the reduced activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase. In addition, polydatin upregulated the endogenous antioxidant nuclear factor erythroid 2-related factor 2, heme oxygenase-1, the thioredoxin pathway, and eventually reversed ischemic-stroke-induced elevation of ROS and inflammation in ischemic cortical tissue. The diverse and broad actions of polydatin suggested that it could be a multiple targeting neuroprotective agent in ameliorating the detrimental effects of MCAO, such as neuroinflammation, oxidative stress, and neuronal apoptosis. As repetitive clinical trials of neuroprotectants targeting a single step of stroke pathological process have failed previously, our results suggested that a neuroprotective strategy of acting at different stages may be more advantageous to intervene in the vicious cycles in MCAO.
Collapse
Affiliation(s)
- Fawad Ali Shah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China.,Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Lina Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Tao Li
- Department of Forensic Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Phil Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Fang Liu
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Qiang Zhou
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| | | | - Arif Ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Yuhua Jiang
- Cancer Centre, The Second Hospital of Shandong University, Jinan, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China.,Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Guo LT, Wang SQ, Su J, Xu LX, Ji ZY, Zhang RY, Zhao QW, Ma ZQ, Deng XY, Ma SP. Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway. J Neuroinflammation 2019; 16:95. [PMID: 31068207 PMCID: PMC6507025 DOI: 10.1186/s12974-019-1474-8] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 04/01/2019] [Indexed: 12/27/2022] Open
Abstract
Background Baicalin, which is isolated from Radix Scutellariae, possesses strong biological activities including an anti-inflammation property. Recent studies have shown that the anti-inflammatory effect of baicalin is linked to toll-like receptor 4 (TLR4), which participates in pathological changes of central nervous system diseases such as depression. In this study, we explored whether baicalin could produce antidepressant effects via regulation of TLR4 signaling in mice and attempted to elucidate the underlying mechanisms. Methods A chronic unpredictable mild stress (CUMS) mice model was performed to explore whether baicalin could produce antidepressant effects via the inhibition of neuroinflammation. To clarify the role of TLR4 in the anti-neuroinflammatory efficacy of baicalin, a lipopolysaccharide (LPS) was employed in mice to specially activate TLR4 and the behavioral changes were determined. Furthermore, we used LY294002 to examine the molecular mechanisms of baicalin in regulating the expression of TLR4 in vivo and in vitro using western blot, ELISA kits, and immunostaining. In the in vitro tests, the BV2 microglia cell lines and primary microglia cultures were pretreated with baicalin and LY292002 for 1 h and then stimulated 24 h with LPS. The primary microglial cells were transfected with the forkhead transcription factor forkhead box protein O 1 (FoxO1)-specific siRNA for 5 h and then co-stimulated with baicalin and LPS to investigate whether FoxO1 participated in the effect of baicalin on TLR4 expression. Results The administration of baicalin (especially 60 mg/kg) dramatically ameliorated CUMS-induced depressive-like symptoms; substantially decreased the levels of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) in the hippocampus; and significantly decreased the expression of TLR4. The activation of TLR4 by the LPS triggered neuroinflammation and evoked depressive-like behaviors in mice, which were also alleviated by the treatment with baicalin (60 mg/kg). Furthermore, the application of baicalin significantly increased the phosphorylation of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and FoxO1. The application of baicalin also promoted FoxO1 nuclear exclusion and contributed to the inhibition of the FoxO1 transactivation potential, which led to the downregulation of the expression of TLR4 in CUMS mice or LPS-treated BV2 cells and primary microglia cells. However, prophylactic treatment of LY294002 abolished the above effects of baicalin. In addition, we found that FoxO1 played a vital role in baicalin by regulating the TLR4 and TLR4-mediating neuroinflammation triggered by the LPS via knocking down the expression of FoxO1 in the primary microglia. Conclusion Collectively, these results demonstrate that baicalin ameliorated neuroinflammation-induced depressive-like behaviors through the inhibition of TLR4 expression via the PI3K/AKT/FoxO1 pathway. Electronic supplementary material The online version of this article (10.1186/s12974-019-1474-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Ting Guo
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Si-Qi Wang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jing Su
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Li-Xing Xu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Zhou-Ye Ji
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Ru-Yi Zhang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Qin-Wen Zhao
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Zhan-Qiang Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China.
| | - Xue-Yang Deng
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China.
| | - Shi-Ping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China. .,Qinba Traditional Chinese Medicine Resources Research and Development Center, AnKang University, AnKang, 725000, People's Republic of China.
| |
Collapse
|
31
|
Varodayan FP, Khom S, Patel RR, Steinman MQ, Hedges DM, Oleata CS, Homanics GE, Roberto M, Bajo M. Role of TLR4 in the Modulation of Central Amygdala GABA Transmission by CRF Following Restraint Stress. Alcohol Alcohol 2019; 53:642-649. [PMID: 29309503 PMCID: PMC6203127 DOI: 10.1093/alcalc/agx114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022] Open
Abstract
Aims Stress induces neuroimmune responses via Toll-like receptor 4 (TLR4) activation. Here, we investigated the role of TLR4 in the effects of the stress peptide corticotropin-releasing factor (CRF) on GABAergic transmission in the central nucleus of the amygdala (CeA) following restraint stress. Methods Tlr4 knock out (KO) and wild-type rats were exposed to no stress (naïve), a single restraint stress (1 h) or repeated restraint stress (1 h per day for 3 consecutive days). After 1 h recovery from the final stress session, whole-cell patch-clamp electrophysiology was used to investigate the effects of CRF (200 nM) on CeA GABAA-mediated spontaneous inhibitory postsynaptic currents (sIPSCs). Results TLR4 does not regulate baseline GABAergic transmission in the CeA of naive and stress-treated animals. However, CRF significantly increased the mean sIPSC frequencies (indicating enhanced GABA release) across all genotypes and stress treatments, except for the Tlr4 KO rats that experienced repeated restraint stress. Conclusions Overall, our results suggest a limited role for TLR4 in CRF's modulation of CeA GABAergic synapses in naïve and single stress rats, though TLR4-deficient rats that experienced repeated psychological stress exhibit a blunted CRF cellular response. Short Summary TLR4 has a limited role in CRF's activation of the CeA under basal conditions, but interacts with the CRF system to regulate GABAergic synapse function in animals that experience repeated psychological stress.
Collapse
Affiliation(s)
- F P Varodayan
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - S Khom
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - R R Patel
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - M Q Steinman
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - D M Hedges
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - C S Oleata
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - G E Homanics
- Departments of Anesthesiology, Pharmacology & Chemical Biology, and Neurobiology, University of 6060 Biomedical Science Tower 3, Pittsburgh, Pittsburgh, PA, USA
| | - M Roberto
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - M Bajo
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| |
Collapse
|
32
|
Tajalli-Nezhad S, Karimian M, Beyer C, Atlasi MA, Azami Tameh A. The regulatory role of Toll-like receptors after ischemic stroke: neurosteroids as TLR modulators with the focus on TLR2/4. Cell Mol Life Sci 2019; 76:523-537. [PMID: 30377701 PMCID: PMC11105485 DOI: 10.1007/s00018-018-2953-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is the most common cerebrovascular disease and considered as a worldwide leading cause of death. After cerebral ischemia, different pathophysiological processes including neuroinflammation, invasion and aggregation of inflammatory cells and up-regulation of cytokines occur simultaneously. In this respect, Toll-like receptors (TLRs) are the first identified important mediators for the activation of the innate immune system and are widely expressed in glial cells and neurons following brain trauma. TLRs are also able to interact with endogenous and exogenous molecules released during ischemia and can increase tissue damage. Particularly, TLR2 and TLR4 activate different downstream inflammatory signaling pathways. In addition, TLR signaling can alternatively play a role for endogenous neuroprotection. In this review, the gene and protein structures, common genetic polymorphisms of TLR2 and TLR4, TLR-related molecular pathways and their putative role after ischemic stroke are delineated. Furthermore, the relationship between neurosteroids and TLRs as neuroprotective mechanism is highlighted in the context of brain ischemia.
Collapse
Affiliation(s)
- Saeedeh Tajalli-Nezhad
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
33
|
Bekhbat M, Howell PA, Rowson SA, Kelly SD, Tansey MG, Neigh GN. Chronic adolescent stress sex-specifically alters central and peripheral neuro-immune reactivity in rats. Brain Behav Immun 2019; 76:248-257. [PMID: 30550932 PMCID: PMC6886374 DOI: 10.1016/j.bbi.2018.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/09/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Adversity during development is a reliable predictor of psychiatric disorders such as depression and anxiety which are increasingly recognized to have an immune component. We have previously demonstrated that chronic adolescent stress (CAS) in rats leads to depressive-like behavior in adulthood along with long-lasting changes to the hypothalamic-pituitary-adrenal axis and pro-inflammatory cytokine induction in the hippocampus. However, the mechanisms by which CAS promotes hippocampal inflammation are not yet defined. Here we tested the hypothesis that a history of CAS exaggerates induction of the pro-inflammatory NFκB pathway in the adult rat hippocampus without compromising the peripheral immune response. We also assessed potential sex differences because it is unclear whether females, who are twice as likely to suffer from mood disorders as males, are disproportionally affected by stress-primed inflammation. Male and female adolescent rats underwent a CAS paradigm or received no stress. Six weeks following the last stressor, all rats received a single systemic injection of either lipopolysaccharide or vehicle to unmask possible immune-priming effects of CAS. An NFκB signaling PCR array demonstrated that CAS exaggerated the expression of NFκB-related genes in the hippocampus of both males and females. Interestingly, targeted qPCR demonstrated that CAS potentiated the induction of hippocampal IL1B and REL mRNA in female rats only, suggesting that some immune effects of CAS are indeed sex-specific. In contrast to the hippocampal findings, indices of peripheral inflammation such as NFκB activity in the spleen, plasma IL-1β, IL-6, TNF-α, and corticosterone were not impacted by CAS in female rats. Despite showing no pro-inflammatory changes to hippocampal mRNA, male CAS rats displayed lower plasma corticosterone response to LPS at 2 h after injection followed by an exaggerated plasma IL-1β response at 4 h. This potentially blunted corticosterone response coupled with excessive innate immune signaling in the periphery is consistent with possible glucocorticoid resistance in males. In contrast, the effects of CAS manifested as excessive hippocampal immune reactivity in females. We conclude that while a history of exposure to chronic adolescent stress enhances adult immune reactivity in both males and females, the mechanism and manifestation of such alterations are sex-specific.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Emory University Graduate Division of Biological Sciences Neuroscience Graduate Program
| | - Paul A. Howell
- Virginia Commonwealth University, Department of Anatomy & Neurobiology
| | - Sydney A. Rowson
- Emory University Graduate Division of Biological Sciences Molecular and Systems Pharmacology Graduate Studies Program
| | | | | | - Gretchen N. Neigh
- Virginia Commonwealth University, Department of Anatomy & Neurobiology,Corresponding Author: Gretchen N. Neigh, PhD, Virginia Commonwealth University, 1101 East Marshall Street, PO Box 980709, Richmond, VA 23298, V: 804-628-5152, F: 804-828-9477,
| |
Collapse
|
34
|
Schaftoside ameliorates oxygen glucose deprivation-induced inflammation associated with the TLR4/Myd88/Drp1-related mitochondrial fission in BV2 microglia cells. J Pharmacol Sci 2019; 139:15-22. [DOI: 10.1016/j.jphs.2018.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022] Open
|
35
|
The Traditional Chinese Medicine MLC901 inhibits inflammation processes after focal cerebral ischemia. Sci Rep 2018; 8:18062. [PMID: 30584250 PMCID: PMC6305383 DOI: 10.1038/s41598-018-36138-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023] Open
Abstract
Inflammation is considered as a major contributor to brain injury following cerebral ischemia. The therapeutic potential of both MLC601/MLC901, which are herbal extract preparations derived from Chinese Medicine, has been reported both in advanced stroke clinical trials and also in animal and cellular models. The aim of this study was to investigate the effects of MLC901 on the different steps of post-ischemic inflammation in focal ischemia in mice. In vivo injury was induced by 60 minutes of middle cerebral artery occlusion (MCAO) followed by reperfusion. MLC901 was administered in post-treatment 90 min after the onset of ischemia and once a day during reperfusion. MLC901 treatment resulted in a reduction in infarct volume, a decrease of Blood Brain Barrier leakage and brain swelling, an improvement in neurological scores and a reduction of mortality rate at 24 hours after MCAO. These beneficial effects of MLC901 were accompanied by an inhibition of astrocytes and microglia/macrophage activation, a drastically decreased neutrophil invasion into the ischemic brain as well as by a negative regulation of pro-inflammatory mediator expression (cytokines, chemokines, matrix metalloproteinases). MLC901 significantly inhibited the expression of Prx6 as well as the transcriptional activity of NFκB and the activation of Toll-like receptor 4 (TLR4) signaling, an important pathway in the immune response in the ischemic brain. MLC901 effects on the neuroinflammation cascade induced by cerebral ischemia probably contribute, in a very significant way, in its potential therapeutic value.
Collapse
|
36
|
Aptamer Chimeras for Therapeutic Delivery: The Challenging Perspectives. Genes (Basel) 2018; 9:genes9110529. [PMID: 30384431 PMCID: PMC6266988 DOI: 10.3390/genes9110529] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
Nucleic acid-based aptamers have emerged as efficient delivery carriers of therapeutics. Thanks to their unique features, they can be, to date, considered one of the best targeting moieties, allowing the specific recognition of diseased cells and avoiding unwanted off-target effects on healthy tissues. In this review, we revise the most recent contributes on bispecific and multifunctional aptamer therapeutic chimeras. We will discuss key examples of aptamer-mediated delivery of nucleic acid and peptide-based therapeutics underlying their great potentiality and versatility. Achieved objectives and challenges will be highlighted as well.
Collapse
|
37
|
Fernández G, Moraga A, Cuartero MI, García-Culebras A, Peña-Martínez C, Pradillo JM, Hernández-Jiménez M, Sacristán S, Ayuso MI, Gonzalo-Gobernado R, Fernández-López D, Martín ME, Moro MA, González VM, Lizasoain I. TLR4-Binding DNA Aptamers Show a Protective Effect against Acute Stroke in Animal Models. Mol Ther 2018; 26:2047-2059. [PMID: 29910175 PMCID: PMC6094477 DOI: 10.1016/j.ymthe.2018.05.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023] Open
Abstract
Since Toll-like receptor 4 (TLR4) mediates brain damage after stroke, development of TLR4 antagonists is a promising therapeutic strategy for this disease. Our aim was to generate TLR4-blocking DNA aptamers to be used for stroke treatment. From a random oligonucleotide pool, we identified two aptamers (ApTLR#1R, ApTLR#4F) with high affinity for human TLR4 by systematic evolution of ligands by exponential enrichment (SELEX). Optimized truncated forms (ApTLR#1RT, ApTLR#4FT) were obtained. Our data demonstrate specific binding of both aptamers to human TLR4 as well as a TLR4 antagonistic effect. ApTLR#4F and ApTLR#4FT showed a long-lasting protective effect against brain injury induced by middle cerebral artery occlusion (MCAO), an effect that was absent in TLR4-deficient mice. Similar effects were obtained in other MCAO models, including in rat. Additionally, efficacy of ApTLR#4FT in a model of brain ischemia-reperfusion in rat supports the use of this aptamer in patients undergoing artery recanalization induced by pharmacological or mechanical interventions. The absence of major toxicology aspects and the good safety profile of the aptamers further encourage their future clinical positioning for stroke therapy and possibly other diseases in which TLR4 plays a deleterious role.
Collapse
Affiliation(s)
| | - Ana Moraga
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - María I Cuartero
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Alicia García-Culebras
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Carolina Peña-Martínez
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Jesús M Pradillo
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | | | - Silvia Sacristán
- Laboratorio de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - M Irene Ayuso
- Grupo de Investigación Neurovascular, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - Rafael Gonzalo-Gobernado
- Grupo de Investigación Neurovascular, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - David Fernández-López
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - M Elena Martín
- Laboratorio de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - María A Moro
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Victor M González
- Laboratorio de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain.
| |
Collapse
|
38
|
Femenia T, Qian Y, Arentsen T, Forssberg H, Diaz Heijtz R. Toll-like receptor-4 regulates anxiety-like behavior and DARPP-32 phosphorylation. Brain Behav Immun 2018; 69:273-282. [PMID: 29221855 DOI: 10.1016/j.bbi.2017.11.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/28/2022] Open
Abstract
Toll-like receptors (TLRs) play a crucial role in early innate immune responses to inflammatory agents and pathogens. In the brain, some members of the TLR family are expressed in glial cells and neurons. In particular, TLR4 has been involved in learning and memory processes, stress-induced adaptations, and pathogenesis of neurodegenerative disorders. However, the role of TLR4 in emotional behaviors and their underlying mechanisms are poorly understood. In this study, we investigated the role of TLR4 in emotional and social behavior by using different behavioral approaches, and assessed potential molecular alterations in important brain areas involved in emotional responses. TLR4 knockout (KO) mice displayed increased anxiety-like behavior and reduced social interaction compared to wild type control mice. This behavioral phenotype was associated with an altered expression of genes known to be involved in emotional behavior [e.g., brain-derived neurotrophic factor (BDNF) and metabotropic glutamate receptors (mGluRs)]. Interestingly, the mRNA expression of dopamine- and cAMP-regulated phosphoprotein-32 (DARPP-32) was strongly upregulated in emotion-related regions of the brain in TLR4 KO mice. In addition, the phosphorylation levels at Thr75 and Ser97 in DARPP-32 were increased in the frontal cortex of TLR4 KO male mice. These findings indicate that TLR4 signaling is involved in emotional regulation through modulation of DARPP-32, which is a signaling hub that plays a critical role in the integration of numerous neurotransmitter systems, including dopamine and glutamate.
Collapse
Affiliation(s)
- T Femenia
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Y Qian
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - T Arentsen
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - H Forssberg
- Department of Women's and Children's Health, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - R Diaz Heijtz
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
39
|
Pharmacologic activation of cholinergic alpha7 nicotinic receptors mitigates depressive-like behavior in a mouse model of chronic stress. J Neuroinflammation 2017; 14:234. [PMID: 29197398 PMCID: PMC5712092 DOI: 10.1186/s12974-017-1007-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
Background It has been shown that chronic stress-induced depression is associated with exaggerated inflammatory response in the brain. Alpha7 nicotinic acetylcholine receptors (α7nAChRs) regulate the cholinergic anti-inflammatory pathway, but the role of cholinergic signaling and α7nAChR in chronic stress has not yet been examined. Methods In this study, we used a well-documented model of depression in which mice were exposed to 6 h of restraint stress for 21 consecutive days. Components of cholinergic signaling and TLR4 signaling were analyzed in the hippocampus. The main targets of neuroinflammation and neuronal damage were also evaluated after a series of tests for depression-like behavior. Results Chronic restraint stress (CRS) induced alterations in components of central cholinergic signaling in hippocampus, including increases in choline acetyltransferase protein expression and decreases in nuclear STAT3 signaling. CRS also increased TLR4 signaling activity, interleukin-1β, and tumor necrosis factor-α expression, microglial activation, and neuronal morphologic changes. Cholinergic stimulation with the α7nAChR agonist DMXBA significantly alleviated CRS-induced depressive-like behavior, neuroinflammation, and neuronal damage, but these effects were abolished by the selective α7nAChR antagonist α-bungarotoxin. Furthermore, activation of α7nAChRs restored the central cholinergic signaling function, inhibited TLR4-mediated inflammatory signaling and microglial activity, and increased the number of regulatory T cells in the hippocampus. Conclusions These findings provide evidence that α7nAChR activation mitigates CRS-induced neuroinflammation and cell death, suggesting that α7nAChRs could be a new therapeutic target for the prevention and treatment of depression. Electronic supplementary material The online version of this article (10.1186/s12974-017-1007-2) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Espinosa-Garcia C, Sayeed I, Yousuf S, Atif F, Sergeeva EG, Neigh GN, Stein DG. Stress primes microglial polarization after global ischemia: Therapeutic potential of progesterone. Brain Behav Immun 2017. [PMID: 28648389 DOI: 10.1016/j.bbi.2017.06.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the fact that stress is associated with increased risk of stroke and worsened outcome, most preclinical studies have ignored this comorbid factor, especially in the context of testing neuroprotective treatments. Preclinical research suggests that stress primes microglia, resulting in an enhanced reactivity to a subsequent insult and potentially increasing vulnerability to stroke. Ischemia-induced activated microglia can be polarized into a harmful phenotype, M1, which produces pro-inflammatory cytokines, or a protective phenotype, M2, which releases anti-inflammatory cytokines and neurotrophic factors. Selective modulation of microglial polarization by inhibiting M1 or stimulating M2 may be a potential therapeutic strategy for treating cerebral ischemia. Our laboratory and others have shown progesterone to be neuroprotective against ischemic stroke in rodents, but it is not known whether it will be as effective under a comorbid condition of chronic stress. Here we evaluated the neuroprotective effect of progesterone on the inflammatory response in the hippocampus after exposure to stress followed by global ischemia. We focused on the effects of microglial M1/M2 polarization and pro- and anti-inflammatory mediators in stressed ischemic animals. Male Sprague-Dawley rats were exposed to 8 consecutive days of social defeat stress and then subjected to global ischemia or sham surgery. The rats received intraperitoneal injections of progesterone (8mg/kg) or vehicle at 2h post-ischemia followed by subcutaneous injections at 6h and once every 24h post-injury for 7days. The animals were killed at 7 and 14days post-ischemia, and brains were removed and processed to assess outcome measures using histological, immunohistochemical and molecular biology techniques. Pre-ischemic stress (1) exacerbated neuronal loss and neurodegeneration as well as microglial activation in the selectively vulnerable CA1 hippocampal region, (2) dysregulated microglial polarization, leading to upregulation of both M1 and M2 phenotype markers, (3) increased pro-inflammatory cytokine expression, and (4) reduced anti-inflammatory cytokine and neurotrophic factor expression in the ischemic hippocampus. Treatment with progesterone significantly attenuated stress-induced microglia priming by modulating polarized microglia and the inflammatory environment in the hippocampus, the area most vulnerable to ischemic injury. Our findings can be taken to suggest that progesterone holds potential as a candidate for clinical testing in ischemic stroke where high stress may be a contributing factor.
Collapse
Affiliation(s)
| | - Iqbal Sayeed
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Seema Yousuf
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Fahim Atif
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Elena G Sergeeva
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Gretchen N Neigh
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, USA.
| | - Donald G Stein
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
41
|
Neuroprotective Effect of Modified Xijiao Dihuang Decoction against Oxygen-Glucose Deprivation and Reoxygenation-Induced Injury in PC12 Cells: Involvement of TLR4-MyD88/NF- κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3848595. [PMID: 29234386 PMCID: PMC5682898 DOI: 10.1155/2017/3848595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/01/2017] [Accepted: 09/14/2017] [Indexed: 01/08/2023]
Abstract
Modified Xijiao Dihuang (XJDH) decoction has been shown to exert powerful neuroprotective properties in clinical ischemic stroke treatment. It consists of 4 Chinese herbs: Buffalo Horn, Paeonia suffruticosa Andrews, Rehmannia glutinosa (Gaertn.) DC, and Paeonia lactiflora Pall. In the present study, the neuroprotective effect and specific mechanisms of XJDH in protecting PC12 cells from oxygen-glucose deprivation-induced injury were investigated. It was found that OGD/R significantly decreased the cell viability and lactate dehydrogenase (LDH) activity and increased the release of IL-1β, IL-6, and TNF-α in PC12 cells, and these effects were suppressed by XJDH and one of its major active constituents, paeoniflorin. Additionally, XJDH inhibited caspase-3 activity and reduced cleaved caspase-3 level. Mechanistic studies showed that the expressions of TLR4, MyD88, TRAF6, and NF-κB p65 and phosphorylation of IκBα and p65 were significantly lower in the XJDH-treated group than in the OGD/R control group. Additionally, XJDH reversed the OGD/R-induced increases in p-JNK and p-ERK1/2 expression. These results suggest that XJDH protects PC12 cells from oxygen-glucose deprivation-induced injury, which may be associated with the inhibition of the TLR4-MyD88/NF-κB signaling pathway. As an anti-inflammation factor, XJDH might be used as a neuronal protection strategy for the ischemia injury and related diseases.
Collapse
|
42
|
Das S, Kaul S, Jyothy A, Munshi A. Role of TLR4 (C1196T) and CD14 (C-260T) Polymorphisms in Development of Ischemic Stroke, Its Subtypes and Hemorrhagic Stroke. J Mol Neurosci 2017; 63:300-307. [DOI: 10.1007/s12031-017-0979-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/19/2017] [Indexed: 01/24/2023]
|
43
|
Sun W, Ding Z, Xu S, Su Z, Li H. Crosstalk between TLR2 and Sphk1 in microglia in the cerebral ischemia/reperfusion-induced inflammatory response. Int J Mol Med 2017; 40:1750-1758. [PMID: 29039449 PMCID: PMC5716455 DOI: 10.3892/ijmm.2017.3165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/06/2017] [Indexed: 01/06/2023] Open
Abstract
Stroke is associated with high morbidity and mortality, and much remains unknown about the injury-related mechanisms that occur following reperfusion. This study aimed to explore the roles of Toll-like receptor 2 (TLR2) and sphingosine kinase 1 (Sphk1) in microglial cells in inflammatory responses induced by cerebral ischemia/reperfusion (I/R). For this purpose, C57BL/6 mice were randomly divided into 4 groups as follows: the sham-operated group, the I/R group, the I/R group treated with TLR2 antibody, and the I/R group treated with N,N-dimethylsphingosine. Focal cerebral I/R was induced by middle cerebral artery occlusion. Double-labeling immunofluorescence was used to observe the protein expression of TLR2 and Sphk1 in the ischemic brain tissue. Quantitative polymerase chain reaction was performed to determine the mRNA levels of TLR2 and Sphkl in ischemic brain tissue. Enzyme-linked immunosorbent assay was carried out to detect the protein contents of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-17 and IL-23 in ischemic brain tissue. The results revealed that I/R upregulated TLR2 and Sphk1 expression in microglial cells, and the inhibition of either TLR2 or Sphk1 inhibited the expression of the pro-inflammatory cytokines, IL-1β, TNF-α, IL-17 and IL-23. Notably, the inhibition of TLR2 activity also decreased Sphk1 expression. These results thus indicate that the activation of microglial cells, via a TLR2→Sphk1→pro-inflammatory cytokine (IL-1β, TNF-α, IL-17 and IL-23) pathway, may participate in I/R injury.
Collapse
Affiliation(s)
- Wei Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhaoming Ding
- Department of Thyroid Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Shengjie Xu
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhiqiang Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
44
|
Xyloketal B alleviates cerebral infarction and neurologic deficits in a mouse stroke model by suppressing the ROS/TLR4/NF-κB inflammatory signaling pathway. Acta Pharmacol Sin 2017; 38:1236-1247. [PMID: 28552908 DOI: 10.1038/aps.2017.22] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/09/2017] [Indexed: 12/17/2022]
Abstract
Xyloketal B (Xyl-B) is a novel marine compound isolated from mangrove fungus Xylaria sp. We previously demonstrated that pretreatment with Xyl-B exerted neuroprotective effects and attenuated hypoxic-ischemic brain injury in neonatal mice. In the present study we investigated the neuroprotective effects of pre- and post-treatment with Xyl-B in adult mice using a transient middle cerebral artery occlusion (tMCAO) model, and explored the underlying mechanisms. Adult male C57 mice were subjected to tMCAO surgery. For the pre-treatment, Xyl-B was given via multiple injections (12.5, 25, and 50 mg·kg-1·d-1, ip) 48 h, 24 h and 30 min before ischemia. For the post-treatment, a single dose of Xyl-B (50 mg/kg, ip) was injected at 0, 1 or 2 h after the onset of ischemia. The regional cerebral perfusion was monitored using a laser-Doppler flowmeter. TTC staining was performed to determine the brain infarction volume. We found that both pre-treatment with Xyl-B (50 mg/kg) and post-treatment with Xyl-B (50 mg/kg) significantly reduced the infarct volume, but had no significant hemodynamic effects. Treatment with Xyl-B also significantly alleviated the neurological deficits in tMCAO mice. Furthermore, treatment with Xyl-B significantly attenuated ROS overproduction in brain tissues; increased the MnSOD protein levels, suppressed TLR4, NF-κB and iNOS protein levels; and downregulated the mRNA levels of proinflammatory cytokines, including IL-1β, TNF-α, IL-6 and IFN-γ. Moreover, Xyl-B also protected blood-brain barrier integrity in tMCAO mice. In conclusion, Xyl-B administered within 2 h after the onset of stroke effectively protects against focal cerebral ischemia; the underlying mechanism may be related to suppressing the ROS/TLR4/NF-κB inflammatory signaling pathway.
Collapse
|
45
|
Lee HY, Lee JS, Kim HG, Kim WY, Lee SB, Choi YH, Son CG. The ethanol extract of Aquilariae Lignum ameliorates hippocampal oxidative stress in a repeated restraint stress mouse model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:397. [PMID: 28797292 PMCID: PMC5553856 DOI: 10.1186/s12906-017-1902-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Chronic stress contributes to the development of brain disorders, such as neurodegenerative and psychiatric diseases. Oxidative damage is well known as a causative factor for pathogenic process in brain tissues. The aim of this study is to evaluate the neuroprotective effect of a 30% ethanol extract of Aquilariae Lignum (ALE) in repeated stress-induced hippocampal oxidative injury. METHODS Fifty BALB/c male mice (12 weeks old) were randomly divided into five groups (n = 10). For 11 consecutive days, each group was orally administered with distilled water, ALE (20 or 80 mg/kg) or N-acetylcysteine (NAC; 100 mg/kg), and then all mice (except unstressed group) were subjected to restraint stress for 6 h. On the final day, brain tissues and sera were isolated, and stress hormones and hippocampal oxidative alterations were examined. We also treated lipopolysaccharide (LPS, 1 μg/mL)-stimulated BV2 microglial cells with ALE (1 and 5 μg/mL) or NAC (10 μM) to investigate the pharmacological mechanism. RESULTS Restraint stress considerably increased the serum levels of corticosterone and adrenaline and the hippocampal levels of reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA). ALE administration significantly attenuated the above abnormalities. ALE also significantly normalized the stress-induced activation of astrocytes and microglial cells in the hippocampus as well as the elevation of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β). The in vitro assay outcome supplemented ALE could dramatically block NF-κB activation in microglia. The anti-oxidative stress effects of ALE were supported by the results of antioxidant components, 4-hydroxynonenal (4-HNE), NADPH oxidase 2 (NOX2), inducible nitric oxide synthase (iNOS) and NFE2L2 (Nrf2) in the hippocampal tissues. CONCLUSIONS We firstly demonstrated the neuroprotective potentials of A. Lignum against hippocampal oxidative injury in repeated restraint stress. The corresponding mechanisms might involve modulations in the release of ROS, pro-inflammatory cytokines and stress hormones.
Collapse
Affiliation(s)
- Hyun-Yong Lee
- College of Korean Medicine, Daejeon University, 62, Daehak-ro, Dong-gu, Daejeon, 34520 Republic of Korea
| | - Jin-Seok Lee
- Liver and Immunology Research Center, Institute of Traditional Medicine and Bioscience of Daejeon University, 176-9, Daeheung-ro, Jung-gu, Daejeon, 34929 Republic of Korea
| | - Hyeong-Geug Kim
- Liver and Immunology Research Center, Institute of Traditional Medicine and Bioscience of Daejeon University, 176-9, Daeheung-ro, Jung-gu, Daejeon, 34929 Republic of Korea
| | - Won-Yong Kim
- Liver and Immunology Research Center, Institute of Traditional Medicine and Bioscience of Daejeon University, 176-9, Daeheung-ro, Jung-gu, Daejeon, 34929 Republic of Korea
| | - Seung-Bae Lee
- Liver and Immunology Research Center, Institute of Traditional Medicine and Bioscience of Daejeon University, 176-9, Daeheung-ro, Jung-gu, Daejeon, 34929 Republic of Korea
| | - Yung-Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, 52-57, Yangjeong-ro, Busanjin-gu, Busan, 47227 Republic of Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Institute of Traditional Medicine and Bioscience of Daejeon University, 176-9, Daeheung-ro, Jung-gu, Daejeon, 34929 Republic of Korea
| |
Collapse
|
46
|
Rahimifard M, Maqbool F, Moeini-Nodeh S, Niaz K, Abdollahi M, Braidy N, Nabavi SM, Nabavi SF. Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Res Rev 2017; 36:11-19. [PMID: 28235660 DOI: 10.1016/j.arr.2017.02.004] [Citation(s) in RCA: 347] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/11/2017] [Accepted: 02/16/2017] [Indexed: 01/08/2023]
Abstract
A wide array of cell signaling mediators and their interactions play vital roles in neuroinflammation associated with ischemia, brain trauma, developmental disorders and age-related neurodegeneration. Along with neurons, microglia and astrocytes are also affected by the inflammatory cascade by releasing pro-inflammatory cytokines, chemokines and reactive oxygen species. The release of pro-inflammatory mediators in response to neural dysfunction may be helpful, neutral or even deleterious to normal cellular survival. Moreover, the important role of NF-κB factors in the central nervous system (CNS) through toll-like receptor (TLR) activation has been well established. This review demonstrates recent findings regarding therapeutic aspects of polyphenolic compounds for the treatment of neuroinflammation, with the aim of regulating TLR4. Polyphenols including flavonoids, phenolic acids, phenolic alcohols, stilbenes and lignans, can target TLR4 signaling pathways in multiple ways. Toll interacting protein expression could be modulated by epigallocatechin-3-gallate. Resveratrol may also exert neuroprotective effects via the TLR4/NF-κB/STAT signaling cascade. Its role in activation of cascade via interfering with TLR4 oligomerization upon receptor stimulation has also been reported. Curcumin, another polyphenol, can suppress overexpression of inflammatory mediators via inhibiting the TLR4-MAPK/NF-κB pathway. It can also reduce neuronal apoptosis via a mechanism concerning the TLR4/MyD88/NF-κB signaling pathway in microglia/macrophages. Despite a symphony of in vivo and in vitro studies, many molecular and pharmacological aspects of neuroinflammation remain unclear. It is proposed that natural compounds targeting TLR4 may serve as important pharmacophores for the development of potent drugs for the treatment of neurological disorders.
Collapse
|
47
|
Arcuri C, Mecca C, Bianchi R, Giambanco I, Donato R. The Pathophysiological Role of Microglia in Dynamic Surveillance, Phagocytosis and Structural Remodeling of the Developing CNS. Front Mol Neurosci 2017; 10:191. [PMID: 28674485 PMCID: PMC5474494 DOI: 10.3389/fnmol.2017.00191] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
In vertebrates, during an early wave of hematopoiesis in the yolk sac between embryonic day E7.0 and E9.0, cells of mesodermal leaflet addressed to macrophage lineage enter in developing central nervous system (CNS) and originate the developing native microglial cells. Depending on the species, microglial cells represent 5–20% of glial cells resident in adult brain. Here, we briefly discuss some canonical functions of the microglia, i.e., cytokine secretion and functional transition from M1 to M2 phenotype. In addition, we review studies on the non-canonical functions of microglia such as regulation of phagocytosis, synaptic pruning, and sculpting postnatal neural circuits. In this latter context the contribution of microglia to some neurodevelopmental disorders is now well established. Nasu-Hakola (NHD) disease is considered a primary microgliopathy with alterations of the DNAX activation protein 12 (DAP12)-Triggering receptor expressed on myeloid cells 2 (TREM-2) signaling and removal of macromolecules and apoptotic cells followed by secondary microglia activation. In Rett syndrome Mecp2-/- microglia shows a substantial impairment of phagocytic ability, although the role of microglia is not yet clear. In a mouse model of Tourette syndrome (TS), microglia abnormalities have also been described, and deficient microglia-mediated neuroprotection is obvious. Here we review the role of microglial cells in neurodevelopmental disorders without inflammation and on the complex role of microglia in developing CNS.
Collapse
Affiliation(s)
- Cataldo Arcuri
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| | - Carmen Mecca
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| |
Collapse
|
48
|
Nissen JC. Microglial Function across the Spectrum of Age and Gender. Int J Mol Sci 2017; 18:ijms18030561. [PMID: 28273860 PMCID: PMC5372577 DOI: 10.3390/ijms18030561] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/26/2017] [Accepted: 03/01/2017] [Indexed: 12/19/2022] Open
Abstract
Microglia constitute the resident immunocompetent cells of the central nervous system. Although much work has focused on their ability to mount an inflammatory response in reaction to pathology, recent studies have delved into their role in maintaining homeostasis in the healthy brain. It is important to note that the function of these cells is more complex than originally conceived, as there is increasing evidence that microglial responses can vary greatly among individuals. Here, this review will describe the changing behavior of microglia from development and birth through to the aged brain. Further, it is not only age that impacts the state of the neuroimmune milieu, as microglia have been shown to play a central role in the sexual differentiation of the brain. Finally, this review will discuss the implications this has for the differences in the incidence of neurodegenerative disorders between males and females, and between the young and old.
Collapse
Affiliation(s)
- Jillian C Nissen
- Department of Pharmacological Sciences, Stony Brook University, NY 11794-8651, USA.
| |
Collapse
|
49
|
Zhuang P, Wan Y, Geng S, He Y, Feng B, Ye Z, Zhou D, Li D, Wei H, Li H, Zhang Y, Ju A. Salvianolic Acids for Injection (SAFI) suppresses inflammatory responses in activated microglia to attenuate brain damage in focal cerebral ischemia. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:194-204. [PMID: 28087473 DOI: 10.1016/j.jep.2016.11.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 11/18/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Inflammatory reactions induced by microglia in the brain play crucial roles in ischemia/reperfusion (I/R) cerebral injuries. Microglia activation has been shown to be closely related to TLR4/NF-κB signal pathways. Salvianolic acids for injection (SAFI) have been used in clinical practice to treat ischemic stroke with reported neuroprotective effects; however, the underlying mechanisms are still uncertain. OBJECTIVE AND METHODS First, we studied the effect of SAFI on inflammatory responses in LPS-stimulated BV-2 microglia. Then, to discover whether the beneficial in vitro effects of SAFI lead to in vivo therapeutic effects, an MCAO (Middle cerebral artery occlusion) rat model was further employed to elucidate the probable mechanism of SAFI in treating ischemic stroke. Rats in the SAFI group were given SAFI (23 or 46mg/kg) before I/R injury. RESULTS The results showed that SAFI treatment significantly decreased neuroinflammation and the infarction volume compared with the vehicle group. Activation of microglia cells was reduced, and TLR4/NF-κB signals, which were markedly inhibited by SAFI treatment in ischemic hemisphere, were accompanied by reduced expression and release of cytokines IL-1β and IL-6. CONCLUSION This study provides evidence that SAFI effectively protects the brain after cerebral ischemia, which may be caused by attenuating inflammation in microglia.
Collapse
Affiliation(s)
- Pengwei Zhuang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin JF-Pharmaland Technology Development Co., Ltd., Tianjin, China
| | - Yanjun Wan
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shihan Geng
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Ying He
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin Key Laboratory of Safety Evaluation Enterprise of TCM Injections, Tianjin 300410, China; Tianjin Tasliy Pride Pharmaceutical Co., Ltd., Tianjin 300400, China
| | - Bo Feng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhengliang Ye
- Tianjin Key Laboratory of Safety Evaluation Enterprise of TCM Injections, Tianjin 300410, China; Tianjin Tasliy Pride Pharmaceutical Co., Ltd., Tianjin 300400, China
| | - Dazheng Zhou
- Tianjin Key Laboratory of Safety Evaluation Enterprise of TCM Injections, Tianjin 300410, China; Tianjin Tasliy Pride Pharmaceutical Co., Ltd., Tianjin 300400, China
| | - Dekun Li
- Tianjin Key Laboratory of Safety Evaluation Enterprise of TCM Injections, Tianjin 300410, China; Tianjin Tasliy Pride Pharmaceutical Co., Ltd., Tianjin 300400, China
| | - Hongjun Wei
- Tianjin JF-Pharmaland Technology Development Co., Ltd., Tianjin, China
| | - Hongyan Li
- Tianjin JF-Pharmaland Technology Development Co., Ltd., Tianjin, China
| | - Yanjun Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Aichun Ju
- Tianjin Key Laboratory of Safety Evaluation Enterprise of TCM Injections, Tianjin 300410, China; Tianjin Tasliy Pride Pharmaceutical Co., Ltd., Tianjin 300400, China.
| |
Collapse
|
50
|
Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer's disease: the emerging role for microglia? Neurosci Biobehav Rev 2017; 77:148-164. [PMID: 28185874 DOI: 10.1016/j.neubiorev.2017.01.046] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 01/22/2023]
Abstract
Chronic psychosocial stress is increasingly recognized as a risk factor for late-onset Alzheimer's disease (LOAD) and associated cognitive deficits. Chronic stress also primes microglia and induces inflammatory responses in the adult brain, thereby compromising synapse-supportive roles of microglia and deteriorating cognitive functions during aging. Substantial evidence demonstrates that failure of microglia to clear abnormally accumulating amyloid-beta (Aβ) peptide contributes to neuroinflammation and neurodegeneration in AD. Moreover, genome-wide association studies have linked variants in several immune genes, such as TREM2 and CD33, the expression of which in the brain is restricted to microglia, with cognitive dysfunctions in LOAD. Thus, inflammation-promoting chronic stress may create a vicious cycle of aggravated microglial dysfunction accompanied by increased Aβ accumulation, collectively exacerbating neurodegeneration. Surprisingly, however, little is known about whether and how chronic stress contributes to microglia-mediated neuroinflammation that may underlie cognitive impairments in AD. This review aims to summarize the currently available clinical and preclinical data and outline potential molecular mechanisms linking stress, microglia and neurodegeneration, to foster future research in this field.
Collapse
|