1
|
Dorschel KB, Wanebo JE. Physiological and pathophysiological mechanisms of the molecular and cellular biology of angiogenesis and inflammation in moyamoya angiopathy and related vascular diseases. Front Neurol 2023; 14:661611. [PMID: 37273690 PMCID: PMC10236939 DOI: 10.3389/fneur.2023.661611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/16/2023] [Indexed: 06/06/2023] Open
Abstract
Rationale The etiology and pathophysiological mechanisms of moyamoya angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic strokes; with compensatory formation of an abnormal network of perforating blood vessels that creates a collateral circulation; and by aberrant angiogenesis at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms has been proposed as a potential cause of MMA. Moyamoya vessels suggest that aberrant angiogenic, arteriogenic, and vasculogenic processes may be involved in the pathophysiology of MMA. Circulating endothelial progenitor cells have been hypothesized to contribute to vascular remodeling in MMA. MMA is associated with increased expression of angiogenic factors and proinflammatory molecules. Systemic inflammation may be related to MMA pathogenesis. Objective This literature review describes the molecular mechanisms associated with cerebrovascular dysfunction, aberrant angiogenesis, and inflammation in MMA and related cerebrovascular diseases along with treatment strategies and future research perspectives. Methods and results References were identified through a systematic computerized search of the medical literature from January 1, 1983, through July 29, 2022, using the PubMed, EMBASE, BIOSIS Previews, CNKI, ISI web of science, and Medline databases and various combinations of the keywords "moyamoya," "angiogenesis," "anastomotic network," "molecular mechanism," "physiology," "pathophysiology," "pathogenesis," "biomarker," "genetics," "signaling pathway," "blood-brain barrier," "endothelial progenitor cells," "endothelial function," "inflammation," "intracranial hemorrhage," and "stroke." Relevant articles and supplemental basic science articles almost exclusively published in English were included. Review of the reference lists of relevant publications for additional sources resulted in 350 publications which met the study inclusion criteria. Detection of growth factors, chemokines, and cytokines in MMA patients suggests the hypothesis of aberrant angiogenesis being involved in MMA pathogenesis. It remains to be ascertained whether these findings are consequences of MMA or are etiological factors of MMA. Conclusions MMA is a heterogeneous disorder, comprising various genotypes and phenotypes, with a complex pathophysiology. Additional research may advance our understanding of the pathophysiology involved in aberrant angiogenesis, arterial stenosis, and the formation of moyamoya collaterals and anastomotic networks. Future research will benefit from researching molecular pathophysiologic mechanisms and the correlation of clinical and basic research results.
Collapse
Affiliation(s)
- Kirsten B. Dorschel
- Medical Faculty, Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E. Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, United States
| |
Collapse
|
2
|
Pei G, Chen L, Wang Y, He C, Fu C, Wei Q. Role of miR-182 in cardiovascular and cerebrovascular diseases. Front Cell Dev Biol 2023; 11:1181515. [PMID: 37228653 PMCID: PMC10203221 DOI: 10.3389/fcell.2023.1181515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
The treatment of cardiovascular and cerebrovascular diseases have undergone major advances in recent decades, allowing for a more effective prevention of cardiovascular and cerebrovascular events. However, cardiac and cerebral atherothrombotic complications still account for substantial morbidity and mortality worldwide. Novel therapeutic strategies are critical to improve patient outcomes following cardiovascular diseases. miRNAs are small non-coding RNAs, that regulate gene expression. Here, we discuss the role of miR-182 in regulating myocardial proliferation, migration, hypoxia, ischemia, apoptosis and hypertrophy in atherosclerosis, CAD, MI, I/R injury, organ transplant, cardiac hypertrophy, hypertension, heart failure, congenital heart disease and cardiotoxicity. Besides, we also summarize the current progress of miR-182 therapeutics in clinical development and discuss challenges that will need to be overcome to enter the clinic for patients with cardiac disease.
Collapse
Affiliation(s)
- Gaiqin Pei
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Li Chen
- Department of Rehabilitation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Yang Wang
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Chengqi He
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Chenying Fu
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Quan Wei
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Qin S, Shen C, Tang W, Wang M, Lin Y, Wang Z, Li Y, Zhang Z, Liu X. Impact of miR-200b and miR-495 variants on the risk of large-artery atherosclerosis stroke. Metab Brain Dis 2023; 38:631-639. [PMID: 36374407 DOI: 10.1007/s11011-022-01119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) of microRNAs (miRNAs) may alter miRNA transcription, maturation and target specificity, thus affecting stroke susceptibility. We aimed to investigate whether miR-200b and miR-495 SNPs may be associated with ischemic stroke (IS) risk and further explore underlying mechanisms including related genes and pathways. MiR-200b rs7549819 and miR-495 rs2281611 polymorphisms were genotyped among 712 large-artery atherosclerosis (LAA) stroke patients and 1,076 controls in a case-control study. Bioinformatic analyses were performed to explore potential association of miR-200b/495 with IS and to examine the effects of these two SNPs on miR-200b/495. Furthermore, we evaluated the association between these two SNPs and stroke using the public GWAS datasets. In our case-control study, rs7549819 was significantly associated with a decreased risk of LAA stroke (OR = 0.73, 95% CI = 0.58-0.92; p = 0.007), while rs2281611 had no significant association with LAA stroke risk. These results were consistent with the findings in East Asians from the GIGASTROKE study. Combined effects analysis revealed that individuals with 2-4 protective alleles (miR-200bC and miR-495 T) exhibited lower risk of LAA stroke than those with 0-1 variants (OR = 0.76, 95% CI = 0.61-0.96; p = 0.021). Bioinformatic analyses showed that miR-200b and miR-495 were significantly associated with genes and pathways related to IS pathogenesis, and rs7549819 and rs2281611 markedly influenced miRNA expression and structure. MiR-200b rs7549819 polymorphism and the combined genotypes of miR-200b rs7549819 and miR-495 rs2281611 polymorphisms were associated with decreased risk of LAA stroke in Chinese population.
Collapse
Affiliation(s)
- Shanmei Qin
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wuzhuang Tang
- Department of Neurology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| | - Mengmeng Wang
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ying Lin
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Zhaojun Wang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Yunzi Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Zhizhong Zhang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
4
|
Korvenlaita N, Gómez‐Budia M, Scoyni F, Pistono C, Giudice L, Eamen S, Loppi S, de Sande AH, Huremagic B, Bouvy‐Liivrand M, Heinäniemi M, Kaikkonen MU, Cheng L, Hill AF, Kanninen KM, Jenster GW, van Royen ME, Ramiro L, Montaner J, Batkova T, Mikulik R, Giugno R, Jolkkonen J, Korhonen P, Malm T. Dynamic release of neuronal extracellular vesicles containing miR-21a-5p is induced by hypoxia. J Extracell Vesicles 2023; 12:e12297. [PMID: 36594832 PMCID: PMC9809533 DOI: 10.1002/jev2.12297] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hypoxia induces changes in the secretion of extracellular vesicles (EVs) in several non-neuronal cells and pathological conditions. EVs are packed with biomolecules, such as microRNA(miR)-21-5p, which respond to hypoxia. However, the true EV association of miR-21-5p, and its functional or biomarker relevance, are inadequately characterised. Neurons are extremely sensitive cells, and it is not known whether the secretion of neuronal EVs and miR-21-5p are altered upon hypoxia. Here, we characterised the temporal EV secretion profile and cell viability of neurons under hypoxia. Hypoxia induced a rapid increase of miR-21a-5p secretion in the EVs, which preceded the elevation of hypoxia-induced tissue or cellular miR-21a-5p. Prolonged hypoxia induced cell death and the release of morphologically distinct EVs. The EVs protected miR-21a-5p from enzymatic degradation but a remarkable fraction of miR-21a-5p remained fragile and non-EV associated. The increase in miR-21a-5p secretion may have biomarker potential, as high blood levels of miR-21-5p in stroke patients were associated with significant disability at hospital discharge. Our data provides an understanding of the dynamic regulation of EV secretion from neurons under hypoxia and provides a candidate for the prediction of recovery from ischemic stroke.
Collapse
Affiliation(s)
- Nea Korvenlaita
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Mireia Gómez‐Budia
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Flavia Scoyni
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Cristiana Pistono
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Luca Giudice
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland,Department of Computer ScienceUniversity of VeronaVeronaVenetoItaly
| | - Shaila Eamen
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Sanna Loppi
- Department of ImmunologyUniversity of ArizonaTucsonArizonaUSA
| | - Ana Hernández de Sande
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Benjamin Huremagic
- Department of Computer ScienceUniversity of VeronaVeronaVenetoItaly,Department of Human GeneticsKU LeuvenLeuvenFlandersBelgium
| | | | | | - Minna U. Kaikkonen
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Lesley Cheng
- Department of Biochemistry and ChemistrySchool of Agriculture Biomedicine & EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
| | - Andrew F. Hill
- Department of Biochemistry and ChemistrySchool of Agriculture Biomedicine & EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia,La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia,Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
| | - Katja M. Kanninen
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Guido W. Jenster
- Department of UrologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Martin E. van Royen
- Department of PathologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Laura Ramiro
- Neurovascular Research LaboratoryVall d'Hebron Institute of Research (VHIR)Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Joan Montaner
- Neurovascular Research LaboratoryVall d'Hebron Institute of Research (VHIR)Universitat Autònoma de BarcelonaBarcelonaSpain,Institute de Biomedicine of SevilleIBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville & Department of NeurologyHospital Universitario Virgen MacarenaSevilleAndalucíaSpain
| | - Tereza Batkova
- BioVendor‐laboratorni medicina a.s.BrnoCzech Republic,International Clinical Research CenterNeurological DepartmentSt. Anne's University Hospital and Masaryk UniversityBrnoCzech Republic
| | - Robert Mikulik
- International Clinical Research CenterNeurological DepartmentSt. Anne's University Hospital and Masaryk UniversityBrnoCzech Republic
| | - Rosalba Giugno
- Department of Computer ScienceUniversity of VeronaVeronaVenetoItaly
| | - Jukka Jolkkonen
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Paula Korhonen
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Tarja Malm
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| |
Collapse
|
5
|
Can U, Marzioglu E, Akdu S. Some miRNA expressions and their targets in ischemic stroke. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1224-1262. [PMID: 35876186 DOI: 10.1080/15257770.2022.2098974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Ischemic stroke (IS) is a global health challenge leading to life-long disabilities or the deaths of patients. IS is a complex disease where genetic and environmental factors are both concerned with the pathophysiology of the condition. Here, we aimed to investigate various microRNA (miRNA) expressions and their targets in IS. A rapid and accurate diagnosis of acute IS is important to perform appropriate treatment. Therefore, there is a need for a more rapid and simple tool to carry out an acute diagnosis of IS. miRNAs are small RNA molecules serving as precious biomarkers due to their easy detection and stability in blood samples. The present systematic review aimed to summarize previous studies investigating several miRNA expressions and their targets in IS.
Collapse
Affiliation(s)
- Ummugulsum Can
- Department of Biochemistry, Konya City Hospital, Konya, Türkiye
| | - Ebru Marzioglu
- Department of Genetics, Konya Training and Research Hospital, Konya, Türkiye
| | - Sadinaz Akdu
- Department of Biochemistry, Fethiye State Hospital, Muğla, Turkey
| |
Collapse
|
6
|
Differential expression of non-coding RNAs and association with cerebral ischemic vascular disorders; diagnostic and therapeutic opportunities. Genes Genomics 2022:10.1007/s13258-022-01281-6. [PMID: 35802344 DOI: 10.1007/s13258-022-01281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Over the last few decades, research associated with the coding genome, primarily DNA and transcriptome (mRNA, rRNA, and tRNA), has changed our understanding in several aspects, including physiology, diagnostics, and therapeutics. A large proportion of the human genome that encodes proteins is essential for physiology. However, the human genome represents a significantly large proportion of non-translational, i.e., non-coding (nc) RNAs like microRNAs, siRNAs, piRNAs, lncRNAs, and circRNAs. These ncRNAs do not translate into functional proteins but are associated with several events, such as the regulation of gene expression via several mechanisms. Our understanding of ncRNAs has advanced in the last decade, such as microRNAs and siRNAs, but still, several other ncRNAs remain unexplored. The study comprehended the association of ncRNAs in cerebral ischemia. METHODS In this study searches utilizing multiple databases, PubMed, EMBASE, and Google Scholar were made. The literature survey was done on ncRNA including short and lncRNA associated with the onset, and progression of cerebral ischemia. The literature search was also made for the studies associated with the diagnostic and therapeutic role of ncRNAs for cerebral ischemia. RESULTS AND DISCUSSION Reports suggested that both short and long ncRNAs are critical players of gene expression and are hence associated with the pathophysiology of cerebral ischemia. The reports demonstrate ncRNAs precisely lncRNAs and microRNAs are not only associated with cerebral ischemia progression but also potential diagnostic and therapeutic candidates. IN CONCLUSION This review is certainly helpful to understand the interplay of ncRNAs in understanding gene expression profile and pathophysiology of cerebral ischemia. These ncRNAs molecules show potential for diagnostic and therapeutic development.
Collapse
|
7
|
Investigating the AC079305/DUSP1 Axis as Oxidative Stress-Related Signatures and Immune Infiltration Characteristics in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8432352. [PMID: 35746962 PMCID: PMC9213160 DOI: 10.1155/2022/8432352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022]
Abstract
Background Oxidative stress (OS) and immune inflammation play complex intersections in the pathophysiology of ischemic stroke (IS). However, a competing endogenous RNA- (ceRNA-) based mechanism linked to the intersections in IS has not been explored. We aimed to identify potential OS-related signatures and analyze immune infiltration characteristics in IS. Methods Three datasets (GSE22255, GSE110993, and GSE140275) from the GEO database were extracted. Differentially expressed long noncoding RNAs, microRNAs, and messenger RNAs (DElncRNAs, DEmiRNAs, and DEmRNAs) between IS patients and controls were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were explored. Moreover, a triple ceRNA network was constructed to reveal transcriptional regulation mechanisms. A comprehensive strategy among least absolute shrinkage and selection operator (LASSO) regression, DEmRNAs, uprelated DEmRNAs, and OS-related genes was adopted to select the best signature. Then, we evaluated and verified the discriminant ability of the signature via receiver operating characteristic (ROC) analysis. Immune infiltration characteristics were explored via the CIBERSORT algorithm. Moreover, the best signature was verified via qPCR and western blot methods in rat brain tissues and PC12 cells. Results 11 DEmRNAs were identified totally. Enrichment analysis showed that the DEmRNAs were primarily concentrated in MAPK-associated biological processes and immune or inflammation-involved pathways. DUSP1 was identified as the best signature with an area under the ROC curve of 73.5% (95%CI = 57.02-89.98, sensitivity = 95%, and specificity = 60%) in GSE22255 and 100.0% (95%CI = 100.00-100.00, sensitivity = 100%, and specificity = 100%) in GSE140275. Importantly, we also identified the AC079305/DUSP1 axis in the ceRNA network. Immune infiltration showed that resting mast cells infiltrate less in IS patients compared with controls. And DUSP1 was negatively correlated with resting mast cells (r = −0.703, P < 0.01), whereas it was positively correlated with neutrophils (r = 0.339, P < 0.05). Both in vivo and in vitro models confirmed the upregulated expression of DUSP1 and the downregulated expression of miR-429. Conclusion This study identified the ceRNA-based AC079305/DUSP1 axis as a promising OS-related signature for IS. Immune infiltrating cells, especially mast cells, may exert a pivotal role in IS progression. Pharmacological agents targeting signatures, their receptors, or mast cells may shed a novel light on therapeutic targets for IS.
Collapse
|
8
|
Li T, Chen Q, Dai J, Huang Z, Luo Y, Mou T, Pu J, Yang H, Wei X, Wu Z. MicroRNA-141-3p attenuates oxidative stress-induced hepatic ischemia reperfusion injury via Keap1/Nrf2 pathway. Mol Biol Rep 2022; 49:7575-7585. [DOI: 10.1007/s11033-022-07570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
|
9
|
Riehle C, Sieweke JT, Bakshi S, Ha CM, Junker Udesen NL, Møller-Helgestad OK, Froese N, Berg Ravn H, Bähre H, Geffers R, Seifert R, Møller JE, Wende AR, Bauersachs J, Schäfer A. miRNA-200b—A Potential Biomarker Identified in a Porcine Model of Cardiogenic Shock and Mechanical Unloading. Front Cardiovasc Med 2022; 9:881067. [PMID: 35694659 PMCID: PMC9174458 DOI: 10.3389/fcvm.2022.881067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background Cardiogenic shock (CS) alters whole body metabolism and circulating biomarkers serve as prognostic markers in CS patients. Percutaneous ventricular assist devices (pVADs) unload the left ventricle by actively ejecting blood into the aorta. The goal of the present study was to identify alterations in circulating metabolites and transcripts in a large animal model that might serve as potential prognostic biomarkers in acute CS and additional left ventricular unloading by Impella ® pVAD support. Methods CS was induced in a preclinical large animal model by injecting microspheres into the left coronary artery system in six pigs. After the induction of CS, mechanical pVAD support was implemented for 30 min total. Serum samples were collected under basal conditions, after the onset of CS, and following additional pVAD unloading. Circulating metabolites were determined by metabolomic analysis, circulating RNA entities by RNA sequencing. Results CS and additional pVAD support alter the abundance of circulating metabolites involved in Aminoacyl-tRNA biosynthesis and amino acid metabolism. RNA sequencing revealed decreased abundance of the hypoxia sensitive miRNA-200b following the induction of CS, which was reversed following pVAD support. Conclusion The hypoxamir miRNA-200b is a potential circulating marker that is repressed in CS and is restored following pVAD support. The early transcriptional response with increased miRNA-200b expression following only 30 min of pVAD support suggests that mechanical unloading alters whole body metabolism. Future studies are required to delineate the impact of serum miRNA-200b levels as a prognostic marker in patients with acute CS and pVAD unloading.
Collapse
Affiliation(s)
- Christian Riehle
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
- *Correspondence: Christian Riehle,
| | - Jan-Thorben Sieweke
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Sayan Bakshi
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Chae-Myeong Ha
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nanna Louise Junker Udesen
- Department of Cardiology, Cardiothoracic Surgery and Intensive Care, Odense University Hospital, Odense, Denmark
| | - Ole K. Møller-Helgestad
- Department of Cardiology, Cardiothoracic Surgery and Intensive Care, Odense University Hospital, Odense, Denmark
| | - Natali Froese
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Hanne Berg Ravn
- Department of Cardiothoracic Anesthesia and Intensive Care, Rigshospitalet, Copenhagen, Denmark
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Institute of Pharmacology, Hanover, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Research Group Genome Analytics, Braunschweig, Germany
| | - Roland Seifert
- Research Core Unit Metabolomics, Hannover Medical School, Institute of Pharmacology, Hanover, Germany
| | - Jacob E. Møller
- Department of Cardiology, Cardiothoracic Surgery and Intensive Care, Odense University Hospital, Odense, Denmark
| | - Adam R. Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Andreas Schäfer
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
10
|
Pignataro G. Emerging Role of microRNAs in Stroke Protection Elicited by Remote Postconditioning. Front Neurol 2021; 12:748709. [PMID: 34744984 PMCID: PMC8567963 DOI: 10.3389/fneur.2021.748709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 12/27/2022] Open
Abstract
Remote ischemic conditioning (RIC) represents an innovative and attractive neuroprotective approach in brain ischemia. The purpose of this intervention is to activate endogenous tolerance mechanisms by inflicting a subliminal ischemia injury to the limbs, or to another “remote” region, leading to a protective systemic response against ischemic brain injury. Among the multiple candidates that have been proposed as putative mediators of the protective effect generated by the subthreshold peripheral ischemic insult, it has been hypothesized that microRNAs may play a vital role in the infarct-sparing effect of RIC. The effect of miRNAs can be exploited at different levels: (1) as transducers of protective messages to the brain or (2) as effectors of brain protection. The purpose of the present review is to summarize the most recent evidence supporting the involvement of microRNAs in brain protection elicited by remote conditioning, highlighting potential and pitfalls in their exploitation as diagnostic and therapeutic tools. The understanding of these processes could help provide light on the molecular pathways involved in brain protection for the future development of miRNA-based theranostic agents in stroke.
Collapse
Affiliation(s)
- Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|
11
|
Pfeiffer S, Tomašcová A, Mamrak U, Haunsberger SJ, Connolly NMC, Resler A, Düssmann H, Weisová P, Jirström E, D'Orsi B, Chen G, Cremona M, Hennessy BT, Plesnila N, Prehn JHM. AMPK-regulated miRNA-210-3p is activated during ischaemic neuronal injury and modulates PI3K-p70S6K signalling. J Neurochem 2021; 159:710-728. [PMID: 33694332 DOI: 10.1111/jnc.15347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/12/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022]
Abstract
Progressive neuronal injury following ischaemic stroke is associated with glutamate-induced depolarization, energetic stress and activation of AMP-activated protein kinase (AMPK). We here identify a molecular signature associated with neuronal AMPK activation, as a critical regulator of cellular response to energetic stress following ischaemia. We report a robust induction of microRNA miR-210-3p both in vitro in primary cortical neurons in response to acute AMPK activation and following ischaemic stroke in vivo. Bioinformatics and reverse phase protein array analysis of neuronal protein expression changes in vivo following administration of a miR-210-3p mimic revealed altered expression of phosphatase and tensin homolog (PTEN), 3-phosphoinositide-dependent protein kinase 1 (PDK1), ribosomal protein S6 kinase (p70S6K) and ribosomal protein S6 (RPS6) signalling in response to increasing miR-210-3p. In vivo, we observed a corresponding reduction in p70S6K activity following ischaemic stroke. Utilizing models of glutamate receptor over-activation in primary neurons, we demonstrated that induction of miR-210-3p was accompanied by sustained suppression of p70S6K activity and that this effect was reversed by miR-210-3p inhibition. Collectively, these results provide new molecular insight into the regulation of cell signalling during ischaemic injury, and suggest a novel mechanism whereby AMPK regulates miR-210-3p to control p70S6K activity in ischaemic stroke and excitotoxic injury.
Collapse
Affiliation(s)
- Shona Pfeiffer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Anna Tomašcová
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Biomedical Centre Martin, Comenius University in Bratislava, Bratislava, Slovakia
| | - Uta Mamrak
- Institute for Stroke and Dementia Research (ISD), Munich, Germany
| | - Stefan J Haunsberger
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Niamh M C Connolly
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alexa Resler
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Heiko Düssmann
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Petronela Weisová
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Elisabeth Jirström
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Center, Royal College of Surgeons Ireland, Dublin, Ireland
| | - Beatrice D'Orsi
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa, Italy
| | - Gang Chen
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mattia Cremona
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Dept of Molecular Medicine (Medical Oncology group), Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Bryan T Hennessy
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Dept of Molecular Medicine (Medical Oncology group), Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Center, Royal College of Surgeons Ireland, Dublin, Ireland
| |
Collapse
|
12
|
Guzel Tanoglu E, Tanoglu A, Guven BB. mir-221, mir-190b, mir-363-3p, mir-200c are involved in rat liver ischaemia-reperfusion injury through oxidative stress, apoptosis and endoplasmic reticulum stress. Int J Clin Pract 2021; 75:e14848. [PMID: 34519137 DOI: 10.1111/ijcp.14848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
AIM In this study, it was aimed to investigate the relationship between expression levels of micro-RNAs, endoplasmic reticulum (ER) stress, apoptosis and oxidative stress markers in hepatic ischaemia-reperfusion (IR) injury. METHODS Sixteen rats were randomised into two groups: Sham and IR groups. In the IR group, portal vein and hepatic artery were totally clamped with an atraumatic microvascular clamp and 60 minutes later unclamped and finally IR model was accomplished (60 minutes ischaemia and 60 minutes reperfusion). After sacrification, serum insulin-like growth factor-1 (IGF-1), tumour necrosis factor-α (TNF-α), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured. Liver tissue samples were evaluated histopathologically. The expression levels of IR1-alpha, Perk, Catalase, Gpx-1, Caspase-3, Bcl-2 genes and miR-33a, miR-221, miR-190b, miR-363-3p, miR-200c, miR-223, miR-133b were measured by quantitative real-time polymerase chain reaction method. RESULTS Biochemical parameters of the IR group showed significantly higher changes compared with the Sham group (P < .01). Histological tissue damage was significantly prominent in the IR group. ER stress, oxidative stress and apoptosis gene expression levels were significantly higher in the IR group (P < .01). Expression levels of miR-221, miR-190b, miR-363-3p and miR-200c were increased in the IR group compared with the Sham group. No significant difference was found between the two groups in terms of miR-33a, miR-133b and miR-223 expression levels (P > .05). CONCLUSION There is a strong need to enlighten the physiopathological and molecular mechanisms of liver IR injury and to find more specific biomarkers for IR damage, and miR-221, miR-190b, miR-363-3p and miR-200c maybe used as potential biomarkers of hepatic IR injury.
Collapse
Affiliation(s)
- Esra Guzel Tanoglu
- Department of Molecular Biology and Genetics, Institution of Medical Sciences, University of Health Sciences Turkey, Istanbul, Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul, Turkey
| | - Alpaslan Tanoglu
- Department of Gastroenterology, University of Health Sciences Turkey, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
- Department of Medical Physiology, University of Health Sciences Turkey, Istanbul, Turkey
| | - Bulent Barıs Guven
- Department of Anesthesia and Reanimation, University of Health Sciences Turkey, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
13
|
Zhu Q, Hu J, Wang L, Wang W, Wang Z, Li PL, Li N. Overexpression of MicroRNA-429 Transgene Into the Renal Medulla Attenuated Salt-Sensitive Hypertension in Dahl S Rats. Am J Hypertens 2021; 34:1071-1077. [PMID: 34089591 DOI: 10.1093/ajh/hpab089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/28/2021] [Accepted: 06/02/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND We have previously shown that high salt stimulates the expression of miR-429 in the renal medulla, which induces mRNA decay of HIF prolyl-hydroxylase 2 (PHD2), an enzyme to promote the degradation of hypoxia-inducible factor (HIF)-1α, and increases the HIF-1α-mediated activation of antihypertensive genes in the renal medulla, consequently promoting extra sodium excretion. Our preliminary results showed that high salt-induced increase of miR-429 was not observed in Dahl S rats. This present study determined whether correction of this impairment in miR-429 would reduce PHD2 levels, increase antihypertensive gene expression in the renal medulla and attenuate salt-sensitive hypertension in Dahl S rats. METHODS Lentiviruses encoding rat miR-429 were transfected into the renal medulla in uninephrectomized Dahl S rats. Sodium excretion and blood pressure were then measured. RESULTS Transduction of lentiviruses expressing miR-429 into the renal medulla increased miR-429 levels, decreased PHD2 levels, and upregulated HIF-1α target gene NOS-2, which restored the adaptive mechanism to increase the antihypertensive gene after high-salt intake in Dahl S rats. Functionally, overexpression of miR-429 transgene in the renal medulla significantly improved pressure natriuretic response, enhanced urinary sodium excretion, and reduced sodium retention upon extra sodium loading, and consequently, attenuated the salt-sensitive hypertension in Dahl S rats. CONCLUSIONS Our results suggest that the impaired miR-429-mediated PHD2 inhibition in response to high salt in the renal medulla may represent a novel mechanism for salt-sensitive hypertension in Dahl S rats and that correction of this impairment in miR-429 pathway could be a therapeutic approach for salt-sensitive hypertension.
Collapse
Affiliation(s)
- Qing Zhu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junping Hu
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Lei Wang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weili Wang
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zhengchao Wang
- Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Pin-Lan Li
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ningjun Li
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
14
|
Chavda V, Chaurasia B, Deora H, Umana GE. Chronic Kidney disease and stroke: A Bi-directional risk cascade and therapeutic update. BRAIN DISORDERS 2021. [DOI: 10.1016/j.dscb.2021.100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
15
|
Yu J, Zhou A, Li Y. Clinical value of miR-191-5p in predicting the neurological outcome after out-of-hospital cardiac arrest. Ir J Med Sci 2021; 191:1607-1612. [PMID: 34462890 DOI: 10.1007/s11845-021-02745-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/15/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The diagnostic and prognostic value of microRNAs (miRNA) in human disease has been confirmed in a number of clinical studies. AIMS The purpose of this study was to investigate the predictive value of miR-191-5p in the neurological outcome of patients recovering from out-of-hospital cardiac arrest (OHCA). METHODS A total of 260 patients undergoing the target temperature management trial were analyzed. The expression level of serum miR-191-5p was detected by qRT-PCR at 48 h after return of spontaneous circulation (ROSC). ROC curve was established to evaluate the ability of miR-191-5p as a biomarker for predicting adverse neurological outcomes after OHCA. Kaplan-Meier curve and Cox regression analysis were used for survival analysis. RESULTS One hundred eighteen patients (45%) had poor neurological outcomes at 6 months. The expression level of serum miR-191-5p in patients with poor neurological outcomes was significantly lower than that in patients with good neurological prognosis (P < 0.001) and was not associated with TTM trial. The AUC, sensitivity, and specificity of the ROC curve were 0.899, 84.7%, and 82.4%, respectively, suggesting that the level of miR-191-5p had the ability to predict neurological outcome. By the end of the experiment, 88 patients (34%) were dead. Results of survival analysis showed that lower miR-191-5p expression level was significantly associated with lower survival rate (HR: 0.344, 95% CI = 0.208-0.567, P < 0.001). CONCLUSIONS The level of miR-191-5p was down-regulated in patients with poor neurological outcomes, and it could be used as a promising novel biomarker for prediction of neurological outcome and survival after OHCA.
Collapse
Affiliation(s)
- Jie Yu
- Clinical Skills Training Center, Affiliated Hospital of Weifang Medical University, Shandong, 261031, China.
| | - Aihua Zhou
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Shandong, 261031, China
| | - Ying Li
- Department of Urology Surgery, Affiliated Hospital of Weifang Medical University, Shandong, 261031, China
| |
Collapse
|
16
|
Lucero García Rojas EY, Villanueva C, Bond RA. Hypoxia Inducible Factors as Central Players in the Pathogenesis and Pathophysiology of Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:709509. [PMID: 34447792 PMCID: PMC8382733 DOI: 10.3389/fcvm.2021.709509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular (CV) diseases are the major cause of death in industrialized countries. The main function of the CV system is to deliver nutrients and oxygen to all tissues. During most CV pathologies, oxygen and nutrient delivery is decreased or completely halted. Several mechanisms, including increased oxygen transport and delivery, as well as increased blood flow are triggered to compensate for the hypoxic state. If the compensatory mechanisms fail to sufficiently correct the hypoxia, irreversible damage can occur. Thus, hypoxia plays a central role in the pathogenesis and pathophysiology of CV diseases. Hypoxia inducible factors (HIFs) orchestrate the gene transcription for hundreds of proteins involved in erythropoiesis, glucose transport, angiogenesis, glycolytic metabolism, reactive oxygen species (ROS) handling, cell proliferation and survival, among others. The overall regulation of the expression of HIF-dependent genes depends on the severity, duration, and location of hypoxia. In the present review, common CV diseases were selected to illustrate that HIFs, and proteins derived directly or indirectly from their stabilization and activation, are related to the development and perpetuation of hypoxia in these pathologies. We further classify CV diseases into acute and chronic hypoxic states to better understand the temporal relevance of HIFs in the pathogenesis, disease progression and clinical outcomes of these diseases. We conclude that HIFs and their derived factors are fundamental in the genesis and progression of CV diseases. Understanding these mechanisms will lead to more effective treatment strategies leading to reduced morbidity and mortality.
Collapse
Affiliation(s)
| | - Cleva Villanueva
- Instituto Politecnico Nacional, Escuela Superior de Medicina, Mexico City, Mexico
| | - Richard A Bond
- Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| |
Collapse
|
17
|
Liu X, Guo H, Wang X, Jiao H, Li L, Zheng J. c-myc protects mice from ischemia stroke through elevating microRNA-200b-5p-regulated SIRT1 expression. Brain Res Bull 2021; 176:76-84. [PMID: 34371139 DOI: 10.1016/j.brainresbull.2021.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE c-myc has been reported to attenuate ischemia stroke (IS). We initiated the research to uncover the molecular mechanism of c-myc with regard to microRNA (miR)-200b-5p/Sirtuin1 (SIRT1) axis. METHODS An IS mouse model was prepared by middle cerebral artery occlusion (MCAO). Measurements of c-myc, miR-200b-5p and SIRT1 levels in MCAO mice were conducted. c-myc, miR-200b-5p and SIRT1 expression levels in MCAO mice were detected. The neurological function, production of inflammatory cytokines, neuronal apoptosis, brain tissue pathology and neuronal survival of MCAO mice were observed. RESULTS c-myc and SIRT1 levels went downward while miR-200b-5p expression went upward in MCAO mice. Elevation of c-myc or suppression of miR-200b-5p improved neurological function, reduced inflammation and neuronal apoptosis, and attenuated brain tissue pathology and neuronal survival of MCAO mice. Enhancement of miR-200b-5p or knockdown of SIRT1 weakened c-myc-induced protection against MCAO-induced brain injury in mice. CONCLUSION Overall, c-myc protects mice from IS through elevating miR-200b-5p-targeted SIRT1 expression.
Collapse
Affiliation(s)
- Xiaodan Liu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Heng Guo
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Xiao Wang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Hong Jiao
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Lei Li
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Jiaolin Zheng
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.
| |
Collapse
|
18
|
Sheng R, Chen JL, Qin ZH. Cerebral conditioning: Mechanisms and potential clinical implications. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
19
|
Expression of miR-200c corresponds with increased reactive oxygen species and hypoxia markers after transient focal ischemia in mice. Neurochem Int 2021; 149:105146. [PMID: 34343653 DOI: 10.1016/j.neuint.2021.105146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/21/2022]
Abstract
Embolic stroke results in a necrotic core of cells destined to die, but also a peri-ischemic, watershed penumbral region of potentially salvageable brain tissue. Approaches to effectively differentiate between the ischemic and peri-ischemic zones is critical for novel therapeutic discovery to improve outcomes in survivors of stroke. MicroRNAs are a class of small non-coding RNAs regulating gene translation that have region- and cell-specific expression and responses to ischemia. We have previously reported that global inhibition of cerebral microRNA-200c after experimental stroke in mice is protective, however delineating the post-stroke sub-regional and cell-type specific patterns of post-stroke miR-200c expression are necessary to minimize off-target effects and advance translational application. Here, we detail a novel protocol to visualize regional miR-200c expression after experimental stroke, complexed with visualization of regional ischemia and markers of oxidative stress in an experimental stroke model in mice. In the present study we demonstrate that the fluorescent hypoxia indicator pimonidazole hydrochloride, the reactive-oxygen-species marker 8-hydroxy-deoxyguanosine, neuronal marker MAP2 and NeuN, and the reactive astrocyte marker GFAP can be effectively complexed to determine regional differences in ischemic injury as early as 30 min post-reperfusion after experimental stroke, and can be effectively used to distinguish ischemic core from surrounding penumbral and unaffected regions for targeted therapy. This multi-dimensional post-stroke immunofluorescent imaging protocol enables a greater degree of sub-regional mechanistic investigation, with the ultimate goal of developing more effective post-stroke pharmaceutical therapy.
Collapse
|
20
|
Sung HY, Choi EN, Han J, Chae YJ, Im SW, Kim HS, Park EM, Ahn JH. Protective role of ABCA1 in ischemic preconditioning is mediated by downregulation of miR-33-5p and miR-135-5p. Sci Rep 2021; 11:12511. [PMID: 34131232 PMCID: PMC8206355 DOI: 10.1038/s41598-021-91982-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/03/2021] [Indexed: 11/22/2022] Open
Abstract
Ischemic preconditioning (IPC) significantly reduces ischemia–reperfusion injury in the brain by inducing ischemic tolerance. Although emerging evidence suggests that microRNAs (miRNAs) contribute to the pathogenesis of brain ischemia and IPC-induced neuroprotection, the role of miRNAs and their underlying mechanisms are still unclear. IPC was induced in male C57BL/6 mice by brief bilateral common carotid artery occlusion. After 24 h, mice underwent transient middle cerebral artery occlusion followed by 3 h of reperfusion. Expression levels of messenger RNAs (mRNAs) and proteins were examined in the ipsilateral cortex, and mimics and inhibitors of selective miRNAs were transfected into Neuro-2a cells before oxygen–glucose deprivation (OGD). Post-IPC miRNA expression profiling identified neuroprotection-associated changes in miRNA expression in the ipsilateral cortex after ischemic stroke. Among them, miR-33-5p and miR-135b-5p were significantly downregulated by IPC. Inhibition of miR-33-5p and miR-135b-5p expression protected Neuro-2a cells from OGD-induced apoptosis. Inhibition of these two miRNAs significantly increased mRNA and protein levels of ATP-binding cassette subfamily A member 1 (ABCA1), and a binding assay showed that these two miRNAs showed specificity for Abca1 mRNA. Overexpression of ABCA1 decreased the Bax/Bcl2 mRNA ratio and activation of caspase-9 and caspase-3, whereas knockdown of ABCA1 expression increased the Bax/Bcl2 mRNA ratio and the percentage of Neuro-2a cells with a loss of mitochondrial membrane potential after OGD-treatment. In conclusion, ABCA1 expression is regulated by miR-33-5p and miR-135b-5p. Increased ABCA1 expression following IPC exerts a protective influence against cerebral ischemia via suppression of a mitochondria-dependent apoptosis pathway.
Collapse
Affiliation(s)
- Hye Youn Sung
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
| | - Eun Nam Choi
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
| | - Jihye Han
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
| | - Yun Ju Chae
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
| | - Sun-Wha Im
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea.
| | - Jung-Hyuck Ahn
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea.
| |
Collapse
|
21
|
Wang Y, Xu M. miR-380-5p facilitates NRF2 and attenuates cerebral ischemia/reperfusion injury-induced neuronal cell death by directly targeting BACH1. Transl Neurosci 2021; 12:210-217. [PMID: 34046217 PMCID: PMC8134798 DOI: 10.1515/tnsci-2020-0172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Background This study aimed to explore the role of miR-380-5p in cerebral ischemia/reperfusion (CIR) injury-induced neuronal cell death and the potential signaling pathway involved. Methodology Human neuroblastoma cell line SH-SY5Y cells were used in this study. Oxygen and glucose deprivation/reperfusion (OGD/R) model was used to mimic ischemia/reperfusion injury. CCK-8 assay and flow cytometry were used to examine cell survival. Quantitative real time PCR (RT-qPCR) assay and Western blotting were used to measure the change of RNA and protein expression, respectively. TargetScan and Luciferase assay was used to confirm the target of miR-380-5p. Malondialdehyde (MDA) superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) were measured using commercial kits. Results miR-380-5p was downregulated in SH-SY5Y cells after OGD/R. Cell viability was increased by miR-380-5p, while cell apoptosis was reduced by miR-380-5p mimics. MDA was reduced by miR-380-5p mimics, while SOD and GSHPx were increased by miR-380-5p. Results of TargetScan and luciferase assay have showed that BACH1 is the direct target of miR-380-5p. Expression of NRF2 was upregulated after OGD/R, but was not affected by miR-380-5p. mRNA expression of HO-1 and NQO1 and ARE activity were increased by miR-380-5p. Overexpression of BACH1 reversed the antioxidant and neuroprotective effects of miR-380-5p. Conclusion miR-380-5p inhibited cell death induced by CIR injury through target BACH1 which also facilitated the activation of NRF2, indicating the antioxidant and neuroprotective effects of miR-380-5p.
Collapse
Affiliation(s)
- Yibiao Wang
- Department of Neurosurgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, 570311, China
| | - Min Xu
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, No. 189 Chaoyang Road, Kunshan City, Jiangsu Province, 215300, China
| |
Collapse
|
22
|
Liu X, Wang X, Zhang L, Zhou Y, Yang L, Yang M. By targeting apoptosis facilitator BCL2L13, microRNA miR-484 alleviates cerebral ischemia/reperfusion injury-induced neuronal apoptosis in mice. Bioengineered 2021; 12:948-959. [PMID: 33724167 PMCID: PMC8806345 DOI: 10.1080/21655979.2021.1898134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Neuronal apoptosis was considered as one of the main factors of cerebral ischemia/reperfusion injury. Understanding the molecular regulatory mechanism of neuronal apoptosis under the cerebral ischemia/reperfusion injury may provide the novel therapeutic targets for cerebral ischemia/reperfusion injury. However, the molecular regulatory mechanism of neurons fate determination under the cerebral ischemia/reperfusion injury remains poorly understood. This study was aimed to delve into the related molecular mechanism of miR-484 on the regulation of cerebral ischemia/reperfusion injury-induced neuronal apoptosis in mice. In this study, quantitative real-time polymerase chain reaction assays revealed that the expression level of miR-484 was down-regulated in neurons following OGD. Then, CCK8 assay western blot assay, and flow cytometry assay verified that upregulation of miR-484 increased viability and inhibited apoptosis of neurons following OGD. Further bioinformatics methods and dual-luciferase reporter assay were applied together to anticipate and certify the interaction between miR-484 and BCL2L13. Finally, cerebral infarct size assessment and TUNEL staining confirmed that overexpression of miR-484 alleviated cerebral ischemia/reperfusion injury in mice, and overexpression of BCL2L13 could abolish the effect of miR-484-suppressed cell apoptosis. All these results suggested that miR-484 alleviates cerebral ischemia/reperfusion injury-induced neuronal apoptosis in mice by targeting apoptosis facilitator BCL2L13.
Collapse
Affiliation(s)
- Xindong Liu
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu City, Sichuan Province, China
| | - Xin Wang
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu City, Sichuan Province, China
| | - Lijuan Zhang
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu City, Sichuan Province, China
| | - Yi Zhou
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu City, Sichuan Province, China
| | - Le Yang
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu City, Sichuan Province, China
| | - Minghao Yang
- Department of Cerebrovascular Disease, The Second Affiliated Hospital of Guilin Medical University, Guilin City, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
23
|
Chavda V, Madhwani K. Coding and non-coding nucleotides': The future of stroke gene therapeutics. Genomics 2021; 113:1291-1307. [PMID: 33677059 DOI: 10.1016/j.ygeno.2021.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/01/2020] [Accepted: 03/02/2021] [Indexed: 01/05/2023]
Abstract
Stroke is the foremost cause of death ranked after heart disease and cancer. It is the fatal life-threatening event that requires immediate medical admissions to overcome following morbidity and mortality. The therapeutic advances in stroke therapy have been manipulated with diverse paths for last 5 years. Recent research and clinical trials have investigated a variety of anti-stroke agents including anti-coagulants, cerebro-protective agents, antiplatelet therapy, stem-cell therapy, and specified gene therapy. In recent advanced studies, genetic therapies including noncoding RNAs (ncRNAs), long non-coding RNAs (LncRNAs), small interfering RNAs (siRNAs), microRNAs (miRNAs), Piwi interacting RNAs (PiWi RNAs) have shown better potential as targeted future therapeutics with a better outcome than conventional stroke therapeutics. The potential of targeted gene therapy is much more advanced in not only the induction of neuroprotection but also safer non-toxic targeted therapeutics. In the current state of the art review, we have focused on the recent advancements made towards the stroke with RNA modifications and targeted gene therapeutics.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pharmacology, Nirma University, Ahmadabad, Gujarat, India.
| | - Kajal Madhwani
- Department of Microbiology, Nirma University, Ahmadabad, Gujarat, India
| |
Collapse
|
24
|
Moradi SZ, Jalili F, Farhadian N, Joshi T, Wang M, Zou L, Cao H, Farzaei MH, Xiao J. Polyphenols and neurodegenerative diseases: focus on neuronal regeneration. Crit Rev Food Sci Nutr 2021; 62:3421-3436. [PMID: 33393375 DOI: 10.1080/10408398.2020.1865870] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neurodegenerative diseases are questions that modern therapeutics can still not answer. Great milestones have been achieved regarding liver, heart, skin, kidney and other types of organ transplantations but the greatest drawback is the adequate supply of these organs. Furthermore, there are still a few options available in the treatment of neurodegenerative diseases. With great advances in medical science, many health problems faced by humans have been solved, and their quality of life is improving. Moreover, diseases that were incurable in the past have now been fully cured. Still, the area of regenerative medicine, especially concerning neuronal regeneration, is in its infancy. Presently allopathic drugs, surgical procedures, organ transplantation, stem cell therapy forms the core of regenerative therapy. However, many times, the currently used therapies cannot completely cure damaged organs and neurodegenerative diseases. The current review focuses on the concepts of regeneration, hurdles faced in the path of regenerative therapy, neurodegenerative diseases and the idea of using peptides, cytokines, tissue engineering, genetic engineering, advanced stem cell therapy, and polyphenolic phytochemicals to cure damaged tissues and neurodegenerative diseases.
Collapse
Affiliation(s)
- Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faramarz Jalili
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Farhadian
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Kumaun University (Nainital), Nainital, India
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
25
|
RNA and Oxidative Stress in Alzheimer's Disease: Focus on microRNAs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2638130. [PMID: 33312335 PMCID: PMC7721489 DOI: 10.1155/2020/2638130] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 01/31/2023]
Abstract
Oxidative stress (OS) is one of the major pathomechanisms of Alzheimer's disease (AD), which is closely associated with other key events in neurodegeneration such as mitochondrial dysfunction, inflammation, metal dysregulation, and protein misfolding. Oxidized RNAs are identified in brains of AD patients at the prodromal stage. Indeed, oxidized mRNA, rRNA, and tRNA lead to retarded or aberrant protein synthesis. OS interferes with not only these translational machineries but also regulatory mechanisms of noncoding RNAs, especially microRNAs (miRNAs). MiRNAs can be oxidized, which causes misrecognizing target mRNAs. Moreover, OS affects the expression of multiple miRNAs, and conversely, miRNAs regulate many genes involved in the OS response. Intriguingly, several miRNAs embedded in upstream regulators or downstream targets of OS are involved also in neurodegenerative pathways in AD. Specifically, seven upregulated miRNAs (miR-125b, miR-146a, miR-200c, miR-26b, miR-30e, miR-34a, miR-34c) and three downregulated miRNAs (miR-107, miR-210, miR-485), all of which are associated with OS, are found in vulnerable brain regions of AD at the prodromal stage. Growing evidence suggests that altered miRNAs may serve as targets for developing diagnostic or therapeutic tools for early-stage AD. Focusing on a neuroprotective transcriptional repressor, REST, and the concept of hormesis that are relevant to the OS response may provide clues to help us understand the role of the miRNA system in cellular and organismal adaptive mechanisms to OS.
Collapse
|
26
|
Patterson AJ, Song MA, Choe D, Xiao D, Foster G, Zhang L. Early Detection of Coronary Artery Disease by Micro-RNA Analysis in Asymptomatic Patients Stratified by Coronary CT Angiography. Diagnostics (Basel) 2020; 10:diagnostics10110875. [PMID: 33126452 PMCID: PMC7693112 DOI: 10.3390/diagnostics10110875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023] Open
Abstract
Early detection of asymptomatic coronary artery disease (CAD) is essential but underdeveloped. The aim of this study was to assess micro-RNA (miRNA) expression profiles in patients with or without CAD as selected by coronary CT angiography (CTA) and stratified by risk of CAD as determined by Framingham Risk Score (FRS). In this pilot study, patients were divided into two groups based on the presence or absence of CAD. Disease status was determined by Coronary CTA by identification of atherosclerosis and/or calcified plaque in coronary arteries. There were 16 control subjects and 16 subjects with documented CAD. Groups were then subdivided based on FRS. Pathway-specific microarray profiling of 86 genes using miRNAs isolated from whole peripheral blood was analyzed. MiRNA were differentially expressed in patients with and without CAD and who were stratified on the basis of FRS with miRNA associated with endothelial function, cardiomyocyte protection and inflammatory response (hsa-miR-17-5p, hsa-miR-21-5p, hsa-miR-210-3p, hsa-miR-29b-3p, hsa-miR-7-5p and hsa-miR-99a-5p) consistently upregulated by greater than twofold in groups with CAD. The present study reveals that miRNA expression patterns in whole blood as selected on the basis of coronary CTA and risk scores vary significantly depending on the subject phenotype. Thus, profiling miRNA may improve early detection of CAD.
Collapse
Affiliation(s)
- Andrew J. Patterson
- Lawrence D. Longo, MD Center for Perinatal Biology Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; (M.A.S.); (D.X.)
- Correspondence: (A.J.P.); (L.Z.)
| | - Minwoo A. Song
- Lawrence D. Longo, MD Center for Perinatal Biology Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; (M.A.S.); (D.X.)
| | - David Choe
- Division of Cardiology Jerry L Pettis Memorial Veterans Hospital, Loma Linda, CA 92354, USA; (D.C.); (G.F.)
| | - Daliao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; (M.A.S.); (D.X.)
| | - Gary Foster
- Division of Cardiology Jerry L Pettis Memorial Veterans Hospital, Loma Linda, CA 92354, USA; (D.C.); (G.F.)
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; (M.A.S.); (D.X.)
- Correspondence: (A.J.P.); (L.Z.)
| |
Collapse
|
27
|
Vinciguerra A, Cepparulo P, Anzilotti S, Cuomo O, Valsecchi V, Amoroso S, Annunziato L, Pignataro G. Remote postconditioning ameliorates stroke damage by preventing let-7a and miR-143 up-regulation. Theranostics 2020; 10:12174-12188. [PMID: 33204336 PMCID: PMC7667695 DOI: 10.7150/thno.48135] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023] Open
Abstract
Remote limb ischemic postconditioning (RLIP) is a well-established neuroprotective strategy able to protect the brain from a previous harmful ischemic insult through a sub-lethal occlusion of the femoral artery. Neural and humoral mechanisms have been proposed as mediators required to transmit the peripheral signal from limb to brain. Moreover, different studies suggest that protection observed at brain level is associated to a general genetic reprogramming involving also microRNAs (miRNAs) intervention. Methods: Brain ischemia was induced in male rats by transient occlusion of the middle cerebral artery (tMCAO), whereas RLIP was achieved by one cycle of temporary occlusion of the ipsilateral femoral artery after tMCAO. The expression profile of 810 miRNAs was evaluated in ischemic brain samples from rats subjected either to tMCAO or to RLIP. Among all analyzed miRNAs, there were four whose expression were upregulated after stroke and returned to basal level after RLIP, thus suggesting a possible involvement in RLIP-induced neuroprotection. These selected miRNAs were intracerebroventricularly infused in rats subjected to remote ischemic postconditioning, and their effect was evaluated in terms of brain damage, neurological deficit scores and expression of putative targets. Results: Twenty-one miRNAs, whose expression was significantly affected by tMCAO and by tMCAO plus RLIP, were selected based on microarray microfluidic profiling. Our data showed that: (1) stroke induced an up-regulation of let-7a and miR-143 (2) these two miRNAs were involved in the protective effects induced by RLIP and (3) HIF1-α contributes to their protective effect. Indeed, their expression was reduced after RLIP and the exogenous intracerebroventricularly infusion of let-7a and miR-143 mimics prevented neuroprotection and HIF1-α overexpression induced by RLIP. Conclusions: Prevention of cerebral let-7a and miR-143 overexpression induced by brain ischemia emerges as new potential strategy in stroke intervention.
Collapse
|
28
|
LncRNA SNHG11 facilitates tumor metastasis by interacting with and stabilizing HIF-1α. Oncogene 2020; 39:7005-7018. [PMID: 33060856 PMCID: PMC7661343 DOI: 10.1038/s41388-020-01512-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
Epigenetic alteration is one of the hallmarks of colorectal cancer (CRC). Many driver genes are regulated by DNA methylation in CRC. However, the role of DNA methylation regulating lncRNAs remain elusive. Here, we identify that SNHG11 (small nucleolar RNA host gene 11) is upregulated by promotor hypomethylation in CRC and is associated with poor prognosis in CRC patients. SNHG11 can promote CRC cell migration and metastasis under hypoxia. Interestingly, the DNA-binding motif of SNHG11 is similar to that of HIF-1α. In addition, SNHG11-associated genes are enriched with members of the HIF-1 signaling pathway in CRC. Mechanistically, SNHG11 binds to the pVHLrecognition sites on HIF-1α, thus blocking the interaction of pVHL with HIF-1α and preventing its ubiquitination and degradation. Moreover, SNHG11 upregulates the expression of HIF-1α target genes, i.e., AK4, ENO1, HK2, and Twist1. Notably, SNHG11 can bind to the HRE sites in the promoter of these genes and increase their transcription. In summary, these results identify a SNHG11/ HIF-1α axis that plays a pivotal role in tumor invasion and metastasis.
Collapse
|
29
|
Rahmani A, Saleki K, Javanmehr N, Khodaparast J, Saadat P, Nouri HR. Mesenchymal stem cell-derived extracellular vesicle-based therapies protect against coupled degeneration of the central nervous and vascular systems in stroke. Ageing Res Rev 2020; 62:101106. [PMID: 32565329 DOI: 10.1016/j.arr.2020.101106] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
Stem cell-based treatments have been suggested as promising candidates for stroke. Recently, mesenchymal stem cells (MSCs) have been reported as potential therapeutics for a wide range of diseases. In particular, clinical trial studies have suggested MSCs for stroke therapy. The focus of MSC treatments has been directed towards cell replacement. However, recent research has lately highlighted their paracrine actions. The secretion of extracellular vesicles (EVs) is offered to be the main therapeutic mechanism of MSC therapy. However, EV-based treatments may provide a wider therapeutic window compared to tissue plasminogen activator (tPA), the traditional treatment for stroke. Exosomes are nano-sized EVs secreted by most cell types, and can be isolated from conditioned cell media or body fluids such as plasma, urine, and cerebrospinal fluid (CSF). Exosomes apply their effects through targeting their cargos such as microRNAs (miRs), DNAs, messenger RNAs, and proteins at the host cells, which leads to a shift in the behavior of the recipient cells. It has been indicated that exosomes, in particular their functional cargoes, play a significant role in the coupled pathogenesis and recovery of stroke through affecting the neurovascular unit (NVU). Therefore, it seems that exosomes could be utilized as diagnostic and therapeutic tools in stroke treatment. The miRs are small endogenous non-coding RNA molecules which serve as the main functional cargo of exosomes, and apply their effects as epigenetic regulators. These versatile non-coding RNA molecules are involved in various stages of stroke and affect stroke-related factors. Moreover, the involvement of aging-induced changes to specific miRs profile in stroke further highlights the role of miRs. Thus, miRs could be utilized as diagnostic, prognostic, and therapeutic tools in stroke. In this review, we discuss the roles of stem cells, exosomes, and their application in stroke therapy. We also highlight the usage of miRs as a therapeutic choice in stroke therapy.
Collapse
|
30
|
Hadj-Moussa H, Storey KB. The OxymiR response to oxygen limitation: a comparative microRNA perspective. J Exp Biol 2020; 223:223/10/jeb204594. [DOI: 10.1242/jeb.204594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT
From squid at the bottom of the ocean to humans at the top of mountains, animals have adapted to diverse oxygen-limited environments. Surviving these challenging conditions requires global metabolic reorganization that is orchestrated, in part, by microRNAs that can rapidly and reversibly target all biological functions. Herein, we review the involvement of microRNAs in natural models of anoxia and hypoxia tolerance, with a focus on the involvement of oxygen-responsive microRNAs (OxymiRs) in coordinating the metabolic rate depression that allows animals to tolerate reduced oxygen levels. We begin by discussing animals that experience acute or chronic periods of oxygen deprivation at the ocean's oxygen minimum zone and go on to consider more elevated environments, up to mountain plateaus over 3500 m above sea level. We highlight the commonalities and differences between OxymiR responses of over 20 diverse animal species, including invertebrates and vertebrates. This is followed by a discussion of the OxymiR adaptations, and maladaptations, present in hypoxic high-altitude environments where animals, including humans, do not enter hypometabolic states in response to hypoxia. Comparing the OxymiR responses of evolutionarily disparate animals from diverse environments allows us to identify species-specific and convergent microRNA responses, such as miR-210 regulation. However, it also sheds light on the lack of a single unified response to oxygen limitation. Characterizing OxymiRs will help us to understand their protective roles and raises the question of whether they can be exploited to alleviate the pathogenesis of ischemic insults and boost recovery. This Review takes a comparative approach to addressing such possibilities.
Collapse
Affiliation(s)
- Hanane Hadj-Moussa
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| | - Kenneth B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| |
Collapse
|
31
|
Downregulation of Microrna-421 Relieves Cerebral Ischemia/Reperfusion Injuries: Involvement of Anti-apoptotic and Antioxidant Activities. Neuromolecular Med 2020; 22:411-419. [PMID: 32385800 DOI: 10.1007/s12017-020-08600-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Reperfusion after cerebral ischemia causes additional ischemic injuries due to sudden recovery of blood supply. It usually produces excessive reactive species, mitochondrial dysfunction, oxidative stress, and cell apoptosis. Our study is designed to examine the role of miR-421 antagomir in cerebral ischemia/reperfusion injuries, as well as its underlying mechanisms. Middle cerebral artery occlusion (MCAO) model was performed with male Sprague Dawley (SD) rats for the initiation of cerebral ischemia/reperfusion injuries. Malondialdehyde (oxidative stress marker) and superoxide dismutase (antioxidant enzyme) were measured as indicators for oxidative stress. Flow cytometry was utilized to evaluate the cell apoptosis effects from miR-421. miR-421 antagomir significantly decreased neurological deficits and infarction volumes. It also downregulated malondialdehyde contents, upregulated superoxide dismutase activities, promoted the expressions of myeloid cells leukemia-1 and B cells lymphoma-2, and downregulated the expressions of Bax in the ischemic cortex. In addition, miR-421targeted MCL1 to exert its biological functions. Our study indicated the neuroprotection effects of miR-421 antagomir on cerebral I/R injuries, which involved the suppression of cell apoptosis and oxidative stress. MiR-421 might provide a new therapeutic direction for ischemia/reperfusion injuries.
Collapse
|
32
|
Zhang H, Liu X, Yang F, Cheng D, Liu W. Overexpression of HIF-1α protects PC12 cells against OGD/R-evoked injury by reducing miR-134 expression. Cell Cycle 2020; 19:990-999. [PMID: 32266863 PMCID: PMC7217352 DOI: 10.1080/15384101.2020.1743903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 03/08/2020] [Indexed: 01/04/2023] Open
Abstract
Nowadays, searching for new therapeutic targets for cerebral stroke treatment are still in urgent need. Our study explored the influences and mechanisms of HIF-1α on OGD/R-evoked injury. OGD/R treatment was conducted on PC12 cells to simulate ischemic injury. CCK-8, flow cytometry and qRT-PCR were conducted to determine the variations of cell viability, apoptosis and gene expression, respectively. Cell transfections were conducted to overexpress HIF-1α and miR-134. Variations of protein levels were evaluated by employing western blot. Results showed that OGD/R treatment induced cell injury through reducing viability, while enhancing apoptosis that was validated by the elevated ratios of C/P-PARP and C/P-caspase-3. HIF-1α expression was markedly increased by OGD/R treatment. HIF-1α overexpression attenuated OGD/R-evoked injury in PC12 cells and remarkably reversed OGD/R-triggered inhibitory effects on ERK1/2 and JAK1/STAT3 pathways. Besides, miR-134 was also down-regulated by HIF-1α overexpression in PC12 cells. Up-regulation of miR-134 notably counteracted HIF-1α overexpression-triggered neuro-protective impacts on OGD/R-evoked injury and ERK1/2 and JAK1/STAT3 pathways. Our present study reported that HIF-1α overexpression protected PC12 cells against OGD/R-evoked injury via down-regulation of miR-134, which making HIF-1α and miR-134 to be promising targets for cerebral stroke therapy.
Collapse
Affiliation(s)
- Hongliang Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xianming Liu
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Fengyu Yang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Dekui Cheng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Liu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
33
|
Leng J, Liu W, Li L, Wei FY, Tian M, Liu HM, Guo W. MicroRNA-429/Cxcl1 Axis Protective Against Oxygen Glucose Deprivation/Reoxygenation-Induced Injury in Brain Microvascular Endothelial Cells. Dose Response 2020; 18:1559325820913785. [PMID: 32284700 PMCID: PMC7139192 DOI: 10.1177/1559325820913785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 01/12/2023] Open
Abstract
Objective: The objective of the present work was to study the role of Cxcl1 in cerebral
ischemia–reperfusion (I/R) injury and to in-depth explore its pathogenesis. Methods: The expression of Cxcl1 based on the public data was analyzed. Then, we constructed an
oxygen glucose deprivation/reoxygenation (OGD/R) model in vitro using mice brain
microvascular endothelial cells (BMECs) to simulate cerebral I/R in vivo. Results: The results of quantitative real-time polymerase chain reaction assay uncovered that
Cxcl1 showed higher expression while miR-429 showed lower expression in BMECs damaged by
OGD/R, whereas overexpression of Cxcl1 or inhibition of miR-429 expression can
strengthen this effect. Hereafter, through dual luciferase reporter assay, we verified
that miR-429 directly targets Cxcl1 and negatively regulates Cxcl1 expression.
Furthermore, the results also revealed that overexpression of Cxcl1 can reverse the
miR-429-mediated effects. Conclusion: We concluded that miR-429 exerts protective effects against OGD/R-induce injury in
vitro through modulation of Cxcl1 and nuclear factor kinase B pathway, hoping provide a
new view on the pathogenesis of cerebral I/R injury and a feasible potential therapeutic
target.
Collapse
Affiliation(s)
- Jun Leng
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China.,Co-first authors and contributed equally to this work
| | - Wei Liu
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China.,Co-first authors and contributed equally to this work
| | - Li Li
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Fang Yue Wei
- Shandong University of Traditional Chinese Medicine Rehabilitation College Rehabilitation Medicine and Physiotherapy, Jinan, Shandong Province, People's Republic of China
| | - Meng Tian
- Competitive sports section 1 of Sports Science Research Center of Shandong Province, Jinan, Shandong Province, People's Republic of China
| | - Hui Min Liu
- Shandong University of Traditional Chinese Medicine Rehabilitation College Rehabilitation Medicine and Physiotherapy, Jinan, Shandong Province, People's Republic of China
| | - Wen Guo
- Shandong University of Traditional Chinese Medicine Rehabilitation College Rehabilitation Medicine and Physiotherapy, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
34
|
Abstract
Despite thousands of neuroprotectants demonstrating promise in preclinical trials, a neuroprotective therapeutic has yet to be approved for the treatment of acute brain injuries such as stroke or traumatic brain injury. Developing a more detailed understanding of models and populations demonstrating "neurological resilience" in spite of brain injury can give us important insights into new translational therapies. Resilience is the process of active adaptation to a stressor. In the context of neuroprotection, models of preconditioning and unique animal models of extreme physiology (such as hibernating species) reliably demonstrate resilience in the laboratory setting. In the clinical setting, resilience is observed in young patients and can be found in those with specific genetic polymorphisms. These important examples of resilience can help transform and extend the current neuroprotective framework from simply countering the injurious cascade into one that anticipates, monitors, and optimizes patients' physiological responses from the time of injury throughout the process of recovery. This review summarizes the underpinnings of key adaptations common to models of resilience and how this understanding can be applied to new neuroprotective approaches.
Collapse
Affiliation(s)
- Neel S Singhal
- Department of Neurology, University of California-San Francisco, 555 South Mission Bay Blvd, San Francisco, CA, 94158, USA.
| | - Chung-Huan Sun
- Department of Neurology, University of California-San Francisco, 555 South Mission Bay Blvd, San Francisco, CA, 94158, USA
| | - Evan M Lee
- Cardiovascular Research Institute, University of California-San Francisco, 555 South Mission Bay Blvd, San Francisco, CA, 94158, USA
- Department of Physiology, University of California-San Francisco, 555 South Mission Bay Blvd, San Francisco, CA, 94158, USA
| | - Dengke K Ma
- Cardiovascular Research Institute, University of California-San Francisco, 555 South Mission Bay Blvd, San Francisco, CA, 94158, USA
- Department of Physiology, University of California-San Francisco, 555 South Mission Bay Blvd, San Francisco, CA, 94158, USA
| |
Collapse
|
35
|
Vasudeva K, Munshi A. miRNA dysregulation in ischaemic stroke: Focus on diagnosis, prognosis, therapeutic and protective biomarkers. Eur J Neurosci 2020; 52:3610-3627. [PMID: 32022336 DOI: 10.1111/ejn.14695] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/10/2020] [Accepted: 01/31/2020] [Indexed: 01/14/2023]
Abstract
Stroke is one of the leading causes of death and disability in both developing and developed countries. Biomarkers for stroke and its outcome can greatly facilitate early detection and management of the disease. miRNAs have been explored for their potential as biomarkers for diagnosis, prognosis and brain injury in ischaemic stroke. A substantial body of evidence suggests that miRNAs play key roles in numerous cellular changes following ischaemic stroke including mitochondrial dysfunction, energy failure, cytokine-mediated cytotoxicity, oxidative stress, activation of glial cells, increased intracellular calcium levels inflammatory responses and disruption of the blood-brain barrier (BBB). In addition, targeting specific miRNAs, therapeutic modulation of brain injury and apoptosis can also be achieved. Therefore, the current review has been compiled within an aim to give an overview of the developments exploiting miRNAs at different stages of stroke as prognostic, diagnostic, protective and therapeutic biomarkers.
Collapse
Affiliation(s)
- Kanika Vasudeva
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| |
Collapse
|
36
|
Qi R, Liu H, Liu C, Xu Y, Liu C. Expression and short-term prognostic value of miR-126 and miR-182 in patients with acute stroke. Exp Ther Med 2019; 19:527-534. [PMID: 31897098 PMCID: PMC6923740 DOI: 10.3892/etm.2019.8227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Expression and short-term prognostic value of miR-126 and miR-182 in patients with acute stroke were investigated. In total, 153 patients with acute stroke admitted to the Second Affiliated Hospital of Soochow University from February 2016 to February 2018 were enrolled into the observation group as group A [88 patients with acute cerebral infarction (AIS)] or group B [65 patients with cerebral hemorrhage (ICH)]. Furthermore, 69 healthy people receiving physical examinations in the hospital were enrolled into the control group. The relative expression of miR-126 and miR-182 in all subjects were measured and their correlation with the National Institute of Health stroke scale (NIHSS) and activities of daily living (ADL) scores was analyzed. After 3 months of follow-up, the correlation of miR-126 and miR-182 with the Modified Rankin Scale (MRS) score of patients was investigated. The receiver operating characteristic (ROC) curve was employed to explore the value of miR-126 and miR-182, alone or in combination, in predicting the prognosis of acute stroke patients. Subjects in the control group had markedly higher miR-126 expression and lower miR-182 expression than those in group A and group B in the observation group (P<0.05). Pearson's correlation analysis suggested a notable correlation of miR-126 and miR-182 with NIHSS and ADL scores. Patients with a mild condition or good prognosis had higher miR-126 expression and lower miR-182 expression than patients with a severe condition or poor prognosis (P<0.05). Both miR-126 and miR-182 predicted the prognosis of acute stroke, and the combination of miR-126 and miR-182 presented better accuracy. The expression levels of miR-126 and miR-182 are associated with the neurological function, self-care ability, and prognosis in patients with acute stroke is highly valuable for predicting the prognosis of patients.
Collapse
Affiliation(s)
- Ruigang Qi
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Haihua Liu
- Department of Neurology, Gaoyou Hospital Affiliated Soochow University, Gaoyou, Jiangsu 225600, P.R. China
| | - Chenglong Liu
- Department of Anaesthesiology, Gaoyou Hospital Affiliated Soochow University, Gaoyou, Jiangsu 225600, P.R. China
| | - Yingying Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Chunfeng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
37
|
Long non-coding RNA MALAT1 sponges microRNA-429 to regulate apoptosis of hippocampal neurons in hypoxic-ischemic brain damage by regulating WNT1. Brain Res Bull 2019; 152:1-10. [DOI: 10.1016/j.brainresbull.2019.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
|
38
|
Corey S, Luo Y. Circular RNAs and neutrophils: Key factors in tackling asymptomatic moyamoya disease. Brain Circ 2019; 5:150-155. [PMID: 31620664 PMCID: PMC6785948 DOI: 10.4103/bc.bc_38_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 12/23/2022] Open
Abstract
Moyamoya disease (MMD) represents a rare steno-occlusive disorder affecting the terminal ends of the internal carotid artery and promoting the development of a poor, abnormal vascular network at the brain's base. Primarily affecting East Asian countries over Western populations, MMD can be further divided into symptomatic and asymptomatic subtypes. The current knowledge of the underlying mechanisms and potential management strategies for asymptomatic cases of MMD are largely lacking and thus warrant investigation to elucidate the pathology of this rare disorder. Here, we assess research examining the expression profile of circular RNAs (circRNAs) of neutrophil transcriptome in asymptomatic MMD patients. These findings conclude that 123 differentially expressed circRNAs significantly contributed to metabolism, angiogenesis, and immune response. The hypoxia-inducing factor-1α signaling pathway was also revealed to be crucial in angiogenesis. We also evaluate current therapeutic options demonstrating the potential for MMD patients, such as EC-IC bypass and ischemic pre- and post-conditioning. These approaches combined with recent findings on the circRNA expression profile suggest a crucial role of anti-inflammatory and angiogenic-related mechanisms underlying MMD. Investigating the role of circRNAs and neutrophils in the asymptomatic MMD subtype may provide insight into its elusive pathology and direct future approaches to combat the progression of this rare disease.
Collapse
Affiliation(s)
- Sydney Corey
- Department of Neurosurgery and Brain Repair, College of Medicine, University of South Florida Morsani, Tampa, FL, USA
| | - Yumin Luo
- Department of Neurosurgery and Brain Repair, College of Medicine, University of South Florida Morsani, Tampa, FL, USA.,Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Di Liegro CM, Schiera G, Proia P, Di Liegro I. Physical Activity and Brain Health. Genes (Basel) 2019; 10:genes10090720. [PMID: 31533339 PMCID: PMC6770965 DOI: 10.3390/genes10090720] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
Physical activity (PA) has been central in the life of our species for most of its history, and thus shaped our physiology during evolution. However, only recently the health consequences of a sedentary lifestyle, and of highly energetic diets, are becoming clear. It has been also acknowledged that lifestyle and diet can induce epigenetic modifications which modify chromatin structure and gene expression, thus causing even heritable metabolic outcomes. Many studies have shown that PA can reverse at least some of the unwanted effects of sedentary lifestyle, and can also contribute in delaying brain aging and degenerative pathologies such as Alzheimer’s Disease, diabetes, and multiple sclerosis. Most importantly, PA improves cognitive processes and memory, has analgesic and antidepressant effects, and even induces a sense of wellbeing, giving strength to the ancient principle of “mens sana in corpore sano” (i.e., a sound mind in a sound body). In this review we will discuss the potential mechanisms underlying the effects of PA on brain health, focusing on hormones, neurotrophins, and neurotransmitters, the release of which is modulated by PA, as well as on the intra- and extra-cellular pathways that regulate the expression of some of the genes involved.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Patrizia Proia
- Department of Psychology, Educational Science and Human Movement (Dipartimento di Scienze Psicologiche, Pedagogiche, dell'Esercizio fisico e della Formazione), University of Palermo, 90128 Palermo, Italy.
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy.
| |
Collapse
|
40
|
Haack F, Trakooljul N, Gley K, Murani E, Hadlich F, Wimmers K, Ponsuksili S. Deep sequencing of small non-coding RNA highlights brain-specific expression patterns and RNA cleavage. RNA Biol 2019; 16:1764-1774. [PMID: 31432767 DOI: 10.1080/15476286.2019.1657743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With the advance of high-throughput sequencing technology numerous new regulatory small RNAs have been identified, that broaden the variety of processing mechanisms and functions of non-coding RNA. Here we explore small non-coding RNA (sncRNA) expression in central parts of the physiological stress and anxiety response system. Therefore, we characterize the sncRNA profile of tissue samples from Amygdala, Hippocampus, Hypothalamus and Adrenal Gland, obtained from 20 pigs. Our analysis reveals that all tissues but Amygdala and Hippocampus possess distinct, tissue-specific expression pattern of miRNA that are associated with Hypoxia, stress responses as well as memory and fear conditioning. In particular, we observe marked differences in the expression profile of limbic tissues compared to those associated to the HPA/stress axis, with a surprisingly high aggregation of 3´-tRNA halves in Amygdala and Hippocampus. Since regulation of sncRNA and RNA cleavage plays a pivotal role in the central nervous system, our work provides seminal insights in the role/involvement of sncRNA in the transcriptional and post-transcriptional regulation of negative emotion, stress and coping behaviour in pigs, and mammals in general.
Collapse
Affiliation(s)
- Fiete Haack
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Nares Trakooljul
- Institute for Genome Biology, Genomics Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Kevin Gley
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Eduard Murani
- Institute for Genome Biology, Genomics Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frieder Hadlich
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute for Genome Biology, Genomics Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| | - Siriluck Ponsuksili
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
41
|
Yu S, Yu M, He X, Wen L, Bu Z, Feng J. KCNQ1OT1 promotes autophagy by regulating miR-200a/FOXO3/ATG7 pathway in cerebral ischemic stroke. Aging Cell 2019; 18:e12940. [PMID: 30945454 PMCID: PMC6516167 DOI: 10.1111/acel.12940] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/15/2019] [Accepted: 02/09/2019] [Indexed: 11/30/2022] Open
Abstract
Dysregulation of long noncoding RNAs (lncRNAs) is associated with abnormal development and pathophysiology in the brain. Increasing evidence has indicated that ischemic stroke is becoming the most common cerebral disease in aging populations. The treatment of ischemic stroke is challenging, due in part to ischemia and reperfusion (I/R) injury. In this study, we revealed that potassium voltage‐gated channel subfamily Q member 1 opposite strand 1 (KCNQ1OT1) was significantly upregulated in ischemic stroke. Knockdown of KCNQ1OT1 remarkably reduced the infarct volume and neurological impairments in transient middle cerebral artery occlusion (tMCAO) mice. Mechanistically, KCNQ1OT1 acted as a competing endogenous RNA of miR‐200a to regulate downstream forkhead box O3 (FOXO3) expression, which is a transcriptional regulator of ATG7. Knockdown of KCNQ1OT1 might inhibit I/R‐induced autophagy and increase cell viability via the miR‐200a/FOXO3/ATG7 pathway. This finding offers a potential novel strategy for ischemic stroke therapy.
Collapse
Affiliation(s)
- Shijia Yu
- Department of Neurology Shengjing Hospital of China Medical University Shenyang China
| | - Mingjun Yu
- Department of Neurosurgery Shengjing Hospital of China Medical University Shenyang China
| | - Xin He
- Department of Neurology Shengjing Hospital of China Medical University Shenyang China
| | - Lulu Wen
- Department of Neurology Shengjing Hospital of China Medical University Shenyang China
| | - Zhongqi Bu
- Department of Neurology Shengjing Hospital of China Medical University Shenyang China
| | - Juan Feng
- Department of Neurology Shengjing Hospital of China Medical University Shenyang China
| |
Collapse
|
42
|
Seo HH, Lee S, Lee CY, Lee J, Shin S, Song BW, Kim IK, Choi JW, Lim S, Kim SW, Hwang KC. Multipoint targeting of TGF-β/Wnt transactivation circuit with microRNA 384-5p for cardiac fibrosis. Cell Death Differ 2019; 26:1107-1123. [PMID: 30206318 PMCID: PMC6748152 DOI: 10.1038/s41418-018-0187-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/17/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
Cardiac fibrosis is a common precursor to ventricular dysfunction and eventual heart failure, and cardiac fibrosis begins with cardiac fibroblast activation. Here we have demonstrated that the TGF-β signaling pathway and Wnt signaling pathway formed a transactivation circuit during cardiac fibroblast activation and that miR-384-5p is a key regulator of the transactivation circuit. The results of in vitro study indicated that TGF-β activated an auto-positive feedback loop by increasing Wnt production in cardiac fibroblasts, and Wnt neutralizing antibodies disrupted the feedback loop. Also, we demonstrated that miR-384-5p simultaneously targeted the key receptors of the TGF-β/Wnt transactivation circuit and significantly attenuated both TGF-β-induced cardiac fibroblast activation and ischemia-reperfusion-induced cardiac fibrosis. In addition, small molecule that prevented pro-fibrogenic stimulus-induced downregulation of endogenous miR-384-5p significantly suppressed cardiac fibroblast activation and cardiac fibrosis. In conclusion, modulating a key endogenous miRNA targeting multiple components of the TGF-β/Wnt transactivation circuit can be an effective means to control cardiac fibrosis and has great therapeutic potential.
Collapse
Affiliation(s)
- Hyang-Hee Seo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, Republic of Korea
| | - Jiyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Sunhye Shin
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, Republic of Korea
| | - Byeong-Wook Song
- EIT/LOFUS R&D Center, International St. Mary's Hospital, Incheon, Republic of Korea
| | - Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Jung-Won Choi
- Department of Environmental Engineering, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea.
| |
Collapse
|
43
|
Zeng ZN, Liu LL, He YL, Shi X, Wei YS. A functional variant rs12904 in the miR-200c binding site was associated with a decreased risk of ischemic stroke. Lipids Health Dis 2019; 18:110. [PMID: 31077198 PMCID: PMC6511201 DOI: 10.1186/s12944-019-1060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/29/2019] [Indexed: 11/10/2022] Open
Abstract
Genome-wide association study (GWAS) identified chromosome 12p13 rs12425791 and rs11833579 as susceptibility loci of ischemic stroke (IS) in a European population. However, conflicting results were obtained in subsequent replication analysis. miR-200c, located on chromosome 12p13, was found to have a neuroprotective effect on ischemia. Our aim of this study was to investigate the association of the rs12425791, rs11833579 and rs12904 in the binding site of miR-200c with the risk of IS. The rs12425791, rs11833579, and rs12904 were genotyped using a TaqMan allelic discrimination assay. The results were verified by Sanger sequencing. We found that the rs12904 AG/GG genotypes and G allele were associated with a decreased risk of IS (AG/GG vs. AA: adjusted OR = 0.64; 95% CI, 0.44-0.95; G vs. A: adjusted OR = 0.65; 95% CI, 0.46-0.93). The combined genotypes of the rs11833579AG/AA and rs12904AG/GG were also associated with a reduced risk of IS (OR = 0.65; 95% CI, 0.46-0.93). These findings suggest that the rs12904 may have a jointly protective effect against the risk of IS.
Collapse
Affiliation(s)
- Zhi-Neng Zeng
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Ling-Ling Liu
- Department of Neonatology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yong-Ling He
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiang Shi
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Ye-Sheng Wei
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
44
|
Forouzanfar F, Shojapour M, Asgharzade S, Amini E. Causes and Consequences of MicroRNA Dysregulation Following Cerebral Ischemia-Reperfusion Injury. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:212-221. [DOI: 10.2174/1871527318666190204104629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/31/2018] [Accepted: 01/25/2019] [Indexed: 12/31/2022]
Abstract
Stroke continues to be a major cause of death and disability worldwide. In this respect, the
most important mechanisms underlying stroke pathophysiology are inflammatory pathways, oxidative
stress, as well as apoptosis. Accordingly, miRNAs are considered as non-coding endogenous RNA
molecules interacting with their target mRNAs to inhibit mRNA translation or reduce its transcription.
Studies in this domain have similarly shown that miRNAs are strongly associated with coronary artery
disease and correspondingly contributed to the brain ischemia molecular processes. To retrieve articles
related to the study subject, i.e. the role of miRNAs involved in inflammatory pathways, oxidative
stress, and apoptosis in stroke from the databases of Web of Science, PubMed (NLM), Open Access
Journals, LISTA (EBSCO), and Google Scholar; keywords including cerebral ischemia, microRNA
(miRNA), inflammatory pathway, oxidative stress, along with apoptosis were used. It was consequently
inferred that, miRNAs could be employed as potential biomarkers for diagnosis and prognosis, as
well as therapeutic goals of cerebral ischemia.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mana Shojapour
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Amini
- UKM Medical Centre [HUKM], Department of Medicine, Faculty of Medicine, Malaysia
| |
Collapse
|
45
|
Yu S, Yu M, He X, Wen L, Bu Z, Feng J. KCNQ1OT1 promotes autophagy by regulating miR-200a/FOXO3/ATG7 pathway in cerebral ischemic stroke. Aging Cell 2019. [PMID: 30945454 DOI: 10.1111/acel.12940.] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Dysregulation of long noncoding RNAs (lncRNAs) is associated with abnormal development and pathophysiology in the brain. Increasing evidence has indicated that ischemic stroke is becoming the most common cerebral disease in aging populations. The treatment of ischemic stroke is challenging, due in part to ischemia and reperfusion (I/R) injury. In this study, we revealed that potassium voltage-gated channel subfamily Q member 1 opposite strand 1 (KCNQ1OT1) was significantly upregulated in ischemic stroke. Knockdown of KCNQ1OT1 remarkably reduced the infarct volume and neurological impairments in transient middle cerebral artery occlusion (tMCAO) mice. Mechanistically, KCNQ1OT1 acted as a competing endogenous RNA of miR-200a to regulate downstream forkhead box O3 (FOXO3) expression, which is a transcriptional regulator of ATG7. Knockdown of KCNQ1OT1 might inhibit I/R-induced autophagy and increase cell viability via the miR-200a/FOXO3/ATG7 pathway. This finding offers a potential novel strategy for ischemic stroke therapy.
Collapse
Affiliation(s)
- Shijia Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingjun Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongqi Bu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
46
|
Dehaini H, Awada H, El-Yazbi A, Zouein FA, Issa K, Eid AA, Ibrahim M, Badran A, Baydoun E, Pintus G, Eid AH. MicroRNAs as Potential Pharmaco-targets in Ischemia-Reperfusion Injury Compounded by Diabetes. Cells 2019; 8:152. [PMID: 30759843 PMCID: PMC6406262 DOI: 10.3390/cells8020152] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Ischemia-Reperfusion (I/R) injury is the tissue damage that results from re-oxygenation of ischemic tissues. There are many players that contribute to I/R injury. One of these factors is the family of microRNAs (miRNAs), which are currently being heavily studied. This review aims to critically summarize the latest papers that attributed roles of certain miRNAs in I/R injury, particularly in diabetic conditions and dissect their potential as novel pharmacologic targets in the treatment and management of diabetes. METHODS PubMed was searched for publications containing microRNA and I/R, in the absence or presence of diabetes. All papers that provided sufficient evidence linking miRNA with I/R, especially in the context of diabetes, were selected. Several miRNAs are found to be either pro-apoptotic, as in the case of miR-34a, miR-144, miR-155, and miR-200, or anti-apoptotic, as in the case of miR-210, miR-21, and miR-146a. Here, we further dissect the evidence that shows diverse cell-context dependent effects of these miRNAs, particularly in cardiomyocytes, endothelial, or leukocytes. We also provide insight into cases where the possibility of having two miRNAs working together to intensify a given response is noted. CONCLUSIONS This review arrives at the conclusion that the utilization of miRNAs as translational agents or pharmaco-targets in treating I/R injury in diabetic patients is promising and becoming increasingly clearer.
Collapse
Affiliation(s)
- Hassan Dehaini
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon.
| | - Hussein Awada
- Department of Biology, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon.
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon.
- Department of Pharmacology and Toxicology, Alexandria University, Alexandria P.O. Box 21521, El-Mesallah, Egypt.
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon.
| | - Khodr Issa
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon.
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon.
| | - Maryam Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon.
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman P.O Box 961343 Amman, Jordan.
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar.
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar.
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon.
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar.
| |
Collapse
|
47
|
Zhao Y, Zhang A, Wang Y, Hu S, Zhang R, Qian S. Genome-wide identification of brain miRNAs in response to high-intensity intermittent swimming training in Rattus norvegicus by deep sequencing. BMC Mol Biol 2019; 20:3. [PMID: 30646850 PMCID: PMC6334412 DOI: 10.1186/s12867-019-0120-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 01/10/2019] [Indexed: 11/20/2022] Open
Abstract
Background Physical exercise can improve brain function by altering brain gene expression. The expression mechanisms underlying the brain’s response to exercise still remain unknown. miRNAs as vital regulators of gene expression may be involved in regulation of brain genes in response to exercise. However, as yet, very little is known about exercise-responsive miRNAs in brain. Results We constructed two comparative small RNA libraries of rat brain from a high-intensity intermittent swimming training (HIST) group and a normal control (NC) group. Using deep sequencing and bioinformatics analysis, we identified 2109 (1700 from HIST, 1691 from NC) known and 55 (50 from HIST, 28 from NC) novel candidate miRNAs. Among them, 34 miRNAs were identified as significantly differentially expressed in response to HIST, 16 were up-regulated and 18 were down-regulated. The results showed that all members of mir-200 family were strongly up-regulated, implying mir-200 family may play very important roles in HIST response mechanisms of rat brain. A total of 955 potential target genes of these 34 exercise-responsive miRNAs were identified from rat genes. Most of them are directly involved in the development and regulatory function of brain or nerve. Many acknowledged exercise-responsive brain genes such as Bdnf, Igf-1, Vgf, Ngf c-Fos, and Ntf3 etc. could be targeted by exercise-responsive miRNAs. Moreover, qRT-PCR and SABC immunohistochemical analysis further confirm the reliability of the expression of miRNAs and their targets. Conclusions This study demonstrated that physical exercise could induce differential expression of rat brain miRNAs and 34 exercise-responsive miRNAs were identified in rat brain. Our results suggested that exercise-responsive miRNAs could play important roles in regulating gene expression of rat brain in response to exercise. Electronic supplementary material The online version of this article (10.1186/s12867-019-0120-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanhong Zhao
- College of Agriculture, Ludong University, Yantai, China.
| | - Anmin Zhang
- College of Sports, Yantai University, Yantai, China. .,Institute of Health Sciences, Shanxi University of Finance & Economics, Taiyuan, China.
| | - Yanfang Wang
- College of Life Sciences, Ludong University, Yantai, China
| | - Shuping Hu
- Institute of Health Sciences, Shanxi University of Finance & Economics, Taiyuan, China
| | | | | |
Collapse
|
48
|
Osei J, Kelly W, Toffolo K, Donahue K, Levy B, Bard J, Wang J, Levy E, Nowak N, Poulsen D. Thymosin beta 4 induces significant changes in the plasma miRNA profile following severe traumatic brain injury in the rat lateral fluid percussion injury model. Expert Opin Biol Ther 2019; 18:159-164. [PMID: 29873258 DOI: 10.1080/14712598.2018.1484102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Thymosin beta 4 (Tβ4) has demonstrated neuroprotective potential in models of neurlogical injury. The neuroprotective potential of Tβ4 has been associated with increased miR-200a and miR-200b within the brain following stroke. Here we tested the hypothesis that Tβ4 treatment could also alter miRNA profiles within the plasma following severe traumatic brain injury (TBI). METHODS We used the rat lateral fluid percusion injury model of severe TBI to test this hypothesis. Highly sensitive and quantitative droplet digital polymerase chain reaction (ddPCR) was used to measure the plasma concentrations of miR-200 family members. In addition, we conducted RNAseq analysis of plasma miRNA to further identify changes associated with TBI and treatment with Tβ4. RESULTS ddPCR demonstrated that miR-200a-3p andmiR-200b-3p were both significantly increased in plasma following treatment with Tβ4 after severe TBI. RNAseq analysis suggested that miR-300-3p and miR-598-3p increased while miR-450-3p and miR-194-5p significantly decreased following TBI. In contrast, miR-194-5p significantly increased in Tβ4 treated rats following TBI. In addition, we identified nine plasma miRNAs whose expression significantly changed following treatment with Tβ4. CONCLUSIONS Tβ4 treatment significantly increased plasma levels of miR-200a-3p and miR-200b-3p, while RNAseq analysis identified miR-194-5p as a candidate miRNA that may be critical for neuroprotection.
Collapse
Affiliation(s)
- Jennifer Osei
- a Department of Neurosrgery, Jacobs School of Medicine and Biomedical Sceinces , Univeristy at Buffalo , Buffalo , NY , USA
| | - William Kelly
- a Department of Neurosrgery, Jacobs School of Medicine and Biomedical Sceinces , Univeristy at Buffalo , Buffalo , NY , USA
| | - Kathryn Toffolo
- a Department of Neurosrgery, Jacobs School of Medicine and Biomedical Sceinces , Univeristy at Buffalo , Buffalo , NY , USA
| | - Kaitlynn Donahue
- a Department of Neurosrgery, Jacobs School of Medicine and Biomedical Sceinces , Univeristy at Buffalo , Buffalo , NY , USA
| | - Bennet Levy
- a Department of Neurosrgery, Jacobs School of Medicine and Biomedical Sceinces , Univeristy at Buffalo , Buffalo , NY , USA
| | - Jonathan Bard
- b New York State Center for Bioinformatics and Life Sciences , University at Buffalo , Buffalo , NY , USA
| | - Jianxin Wang
- c Center for Computational Research , University at Buffalo , Buffalo , NY , USA
| | - Elad Levy
- a Department of Neurosrgery, Jacobs School of Medicine and Biomedical Sceinces , Univeristy at Buffalo , Buffalo , NY , USA
| | - Norma Nowak
- b New York State Center for Bioinformatics and Life Sciences , University at Buffalo , Buffalo , NY , USA.,d Department of Biochemistry, School of Medicine and Biomedical Sciences , Univeristy at Buffalo , Buffalo , NY , USA
| | - David Poulsen
- a Department of Neurosrgery, Jacobs School of Medicine and Biomedical Sceinces , Univeristy at Buffalo , Buffalo , NY , USA
| |
Collapse
|
49
|
Oda H, Ikeguchi R, Aoyama T, Ohta S, Noguchi T, Kaizawa Y, Yurie H, Takeuchi H, Mitsuzawa S, Yamamoto K, Matsuda S. Relative antigenicity of components in vascularized composite allotransplants: An experimental study of microRNAs expression in rat hind limb transplantation model. Microsurgery 2018; 39:340-348. [DOI: 10.1002/micr.30408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Hiroki Oda
- Department of Orthopaedic Surgery, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Ryosuke Ikeguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Tomoki Aoyama
- Department of Physical Therapy, Human Health Sciences; Graduate School of Medicine, Kyoto University; Kyoto Japan
| | - Souichi Ohta
- Department of Orthopaedic Surgery, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Takashi Noguchi
- Department of Orthopaedic Surgery; Tango Central Hospital; Kyotango Japan
| | - Yukitoshi Kaizawa
- Department of Orthopaedic Surgery, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Hirofumi Yurie
- Department of Orthopaedic Surgery, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Hisataka Takeuchi
- Department of Orthopaedic Surgery, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Sadaki Mitsuzawa
- Department of Orthopaedic Surgery, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Koji Yamamoto
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences; Doshisha University; Kyotango Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine; Kyoto University; Kyoto Japan
| |
Collapse
|
50
|
MALAT1 lncRNA Induces Autophagy and Protects Brain Microvascular Endothelial Cells Against Oxygen-Glucose Deprivation by Binding to miR-200c-3p and Upregulating SIRT1 Expression. Neuroscience 2018; 397:116-126. [PMID: 30496821 DOI: 10.1016/j.neuroscience.2018.11.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 01/27/2023]
Abstract
There is growing evidence that long noncoding RNAs (lncRNAs) play important roles in various biological processes. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is one of the most highly upregulated lncRNAs in cerebral ischemia. However, the molecular mechanism of MALAT1 during cerebral ischemia is still unclear. This experiment is intended to investigate the role of MALAT1 in cerebral ischemia and its relationship with autophagy. Oxygen-glucose deprivation (OGD) in brain microvascular endothelial cells (BMECs) was used to mimic ischemic-like conditions in vitro. Real-time PCR, MTT, LDH assay and western blot were used to evaluate the levels of MALAT1, miR-200c-3p, SIRT1, cell survival and proteins. We found that the expression of MALAT1 and LC3BII were upregulated and p62 was downregulated by OGD. Inhibition of MALAT1 attenuated the autophagy activation and promoted cell death. We further revealed that MALAT1 downregulated the expression of miR-200c-3p by directly binding to miR-200c-3p. Furthermore, miR-200c-3p inhibited the autophagy and survival in BMECs by binding to 3'UTR of SIRT1, whereas MALAT1 overturned the inhibitory effect of miR-200c-3p. In conclusion, our study illuminated a novel Malat1-miR-200c-3p-SIRT1 pathway in the regulation of autophagy, in which, MALAT1 activates autophagy and promotes cell survival by binding to miR-200c-3p and upregulating SIRT1 expression.
Collapse
|