1
|
Irisa K, Shichita T. Neural repair mechanisms after ischemic stroke. Inflamm Regen 2025; 45:7. [PMID: 40098163 PMCID: PMC11912631 DOI: 10.1186/s41232-025-00372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Ischemic stroke triggers inflammation that promotes neuronal injury, leading to disruption of neural circuits and exacerbated neurological deficits in patients. Immune cells contribute to not only the acute inflammatory responses but also the chronic neural repair. During the post-stroke recovery, reparative immune cells support the neural circuit reorganization that occurs around the infarct region to connect broad brain areas. This review highlights the time-dependent changes of neuro-immune interactions and reorganization of neural circuits after ischemic brain injury. Understanding the molecular mechanisms involving immune cells in acute inflammation, subsequent neural repair, and neuronal circuit reorganization that compensate for the lost brain function is indispensable to establish treatment strategies for stroke patients.
Collapse
Affiliation(s)
- Koshi Irisa
- Department of Neuroinflammation and Repair, Medical Research Laboratory, Institute of Science Tokyo, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| | - Takashi Shichita
- Department of Neuroinflammation and Repair, Medical Research Laboratory, Institute of Science Tokyo, Bunkyo-Ku, Tokyo, 113-8510, Japan
| |
Collapse
|
2
|
Jones TA, Nemchek V, Fracassi M. Experience-driven competition in neural reorganization after stroke. J Physiol 2025; 603:737-757. [PMID: 39476290 PMCID: PMC11785499 DOI: 10.1113/jp285565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/27/2024] [Indexed: 02/01/2025] Open
Abstract
Behavioural experiences interact with regenerative responses to shape patterns of neural reorganization after stroke. This review is focused on the competitive nature of these behavioural experience effects. Interactions between learning-related plasticity and regenerative reactions have been found to underlie the establishment of new compensatory behaviours and the efficacy of motor rehabilitative training in rodent stroke models. Learning in intact brains depends on competitive and cooperative mechanisms of synaptic plasticity. Synapses are added in response to learning and selectively maintained and strengthened via activity-dependent competition. Long-term memories for experiences that occur closely in time can be weakened or enhanced by competitive or cooperative interactions in the time-dependent process of stabilizing synaptic changes. Rodent stroke model findings suggest that compensatory reliance on the non-paretic hand after stroke can shape and stabilize synaptic reorganization patterns in both hemispheres, to compete with the capacity for experiences of the paretic side to do so. However, the competitive edge of the non-paretic side can be countered by overlapping experiences of the paretic hand, and might even be shifted in a cooperative direction with skilfully coordinated bimanual experience. Advances in the basic understanding of learning-related synaptic competition are helping to inform the basis of experience-dependent variations in stroke outcome.
Collapse
Affiliation(s)
- Theresa A. Jones
- Psychology Department & Institute for Neuroscience, University of Texas at Austin
| | - Victoria Nemchek
- Psychology Department & Institute for Neuroscience, University of Texas at Austin
| | - Michela Fracassi
- Psychology Department & Institute for Neuroscience, University of Texas at Austin
| |
Collapse
|
3
|
Rumajogee P, Altamentova S, Li J, Puvanenthirarajah N, Wang J, Asgarihafshejani A, Van Der Kooy D, Fehlings MG. Constraint-Induced Movement Therapy (CIMT) and Neural Precursor Cell (NPC) Transplantation Synergistically Promote Anatomical and Functional Recovery in a Hypoxic-Ischemic Mouse Model. Int J Mol Sci 2024; 25:9403. [PMID: 39273353 PMCID: PMC11395467 DOI: 10.3390/ijms25179403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Cerebral palsy (CP) is a common neurodevelopmental disorder characterized by pronounced motor dysfunction and resulting in physical disability. Neural precursor cells (NPCs) have shown therapeutic promise in mouse models of hypoxic-ischemic (HI) perinatal brain injury, which mirror hemiplegic CP. Constraint-induced movement therapy (CIMT) enhances the functional use of the impaired limb and has emerged as a beneficial intervention for hemiplegic CP. However, the precise mechanisms and optimal application of CIMT remain poorly understood. The potential synergy between a regenerative approach using NPCs and a rehabilitation strategy using CIMT has not been explored. We employed the Rice-Vannucci HI model on C57Bl/6 mice at postnatal day (PND) 7, effectively replicating the clinical and neuroanatomical characteristics of hemiplegic CP. NPCs were transplanted in the corpus callosum (CC) at PND21, which is the age corresponding to a 2-year-old child from a developmental perspective and until which CP is often not formally diagnosed, followed or not by Botulinum toxin injections in the unaffected forelimb muscles at PND23, 26, 29 and 32 to apply CIMT. Both interventions led to enhanced CC myelination and significant functional recovery (as shown by rearing and gait analysis testing), through the recruitment of endogenous oligodendrocytes. The combinatorial treatment indicated a synergistic effect, as shown by newly recruited oligodendrocytes and functional recovery. This work demonstrates the mechanistic effects of CIMT and NPC transplantation and advocates for their combined therapeutic potential in addressing hemiplegic CP.
Collapse
Affiliation(s)
- Prakasham Rumajogee
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Svetlana Altamentova
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Junyi Li
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Nirushan Puvanenthirarajah
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Jian Wang
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Azam Asgarihafshejani
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Derek Van Der Kooy
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3E1, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
4
|
Fu C, Tang H, Liu L, Huang Y, Zhou H, Huang S, Peng T, Zeng P, Yang X, He L, Xu K. Constraint-Induced Movement Therapy Promotes Myelin Remodeling and Motor Function by Mediating Sox2/Fyn Signals in Rats With Hemiplegic Cerebral Palsy. Phys Ther 2024; 104:pzae011. [PMID: 38302073 DOI: 10.1093/ptj/pzae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 08/27/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024]
Abstract
OBJECTIVE Hypoxic-ischemic brain injury in infants often leads to hemiplegic motor dysfunction. The mechanism of their motor dysfunction has been attributed to deficiencies of the transcription factor sex-determining region (SRY) box 2 (Sox2) or the non-receptor-type tyrosine kinase Fyn (involved in neuronal signal transduction), which causes a defect in myelin formation. Constraint-induced movement therapy (CIMT) following cerebral hypoxia-ischemia may stimulate myelin growth by regulating Sox2/Fyn, Ras homolog protein family A (RhoA), and rho-associated kinase 2 (ROCK2) expression levels. This study investigated how Sox2/Fyn regulates myelin remodeling following CIMT to improve motor function in rats with hemiplegic cerebral palsy (HCP). METHODS To investigate the mechanism of Sox2 involvement in myelin growth and neural function in rats with HCP, Lentivirus (Lenti)-Sox2 adeno-associated virus and negative control-Lenti-Sox2 (LS) adeno-associated virus were injected into the lateral ventricle. The rats were divided into a control group and an HCP group with different interventions (CIMT, LS, or negative control-LS [NS] treatment), yielding the HCP, HCP plus CIMT (HCP + CIMT), HCP + LS, HCP + LS + CIMT, HCP + NS, and HCP + NS + CIMT groups. Front-limb suspension and RotaRod tests, Golgi-Cox staining, transmission electron microscopy, immunofluorescence staining, western blotting, and quantitative polymerase chain reaction experiments were used to analyze the motor function, dendrite/axon area, myelin ultrastructure, and levels of expression of oligodendrocytes and Sox2/Fyn/RhoA/ROCK2 in the motor cortex. RESULTS The rats in the HCP + LS + CIMT group had better values for motor function, dendrite/axon area, myelin ultrastructure, oligodendrocytes, and Sox2/Fyn/RhoA/ROCK2 expression in the motor cortex than rats in the HCP and HCP + NS groups. The improvement of motor function and myelin remodeling, the expression of oligodendrocytes, and the expression of Sox2/Fyn/RhoA/ROCK2 in the HCP + LS group were similar to those in the HCP + CIMT group. CONCLUSION CIMT might overcome RhoA/ROCK2 signaling by upregulating the transcription of Sox2 to Fyn in the brain to induce the maturation and differentiation of oligodendrocytes, thereby promoting myelin remodeling and improving motor function in rats with HCP. IMPACT The pathway mediated by Sox2/Fyn could be a promising therapeutic target for HCP.
Collapse
Affiliation(s)
- Chaoqiong Fu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
- Department of Rehabilitation, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Yuan Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
- School of Exercise and Health, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hongyu Zhou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Shiya Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
- Department of Rehabilitation, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Peishan Zeng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Xubo Yang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| |
Collapse
|
5
|
Oquita R, Cuello V, Uppati S, Mannuru S, Salinas D, Dobbs M, Potter-Baker KA. Moving toward elucidating alternative motor pathway structures post-stroke: the value of spinal cord neuroimaging. Front Neurol 2024; 15:1282685. [PMID: 38419695 PMCID: PMC10899520 DOI: 10.3389/fneur.2024.1282685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Stroke results in varying levels of motor and sensory disability that have been linked to the neurodegeneration and neuroinflammation that occur in the infarct and peri-infarct regions within the brain. Specifically, previous research has identified a key role of the corticospinal tract in motor dysfunction and motor recovery post-stroke. Of note, neuroimaging studies have utilized magnetic resonance imaging (MRI) of the brain to describe the timeline of neurodegeneration of the corticospinal tract in tandem with motor function following a stroke. However, research has suggested that alternate motor pathways may also underlie disease progression and the degree of functional recovery post-stroke. Here, we assert that expanding neuroimaging techniques beyond the brain could expand our knowledge of alternate motor pathway structure post-stroke. In the present work, we will highlight findings that suggest that alternate motor pathways contribute to post-stroke motor dysfunction and recovery, such as the reticulospinal and rubrospinal tract. Then we review imaging and electrophysiological techniques that evaluate alternate motor pathways in populations of stroke and other neurodegenerative disorders. We will then outline and describe spinal cord neuroimaging techniques being used in other neurodegenerative disorders that may provide insight into alternate motor pathways post-stroke.
Collapse
Affiliation(s)
- Ramiro Oquita
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Victoria Cuello
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Sarvani Uppati
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Sravani Mannuru
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Daniel Salinas
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Michael Dobbs
- Department of Clinical Neurosciences, College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Kelsey A. Potter-Baker
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|
6
|
Liu F, Cheng X, Zhao C, Zhang X, Liu C, Zhong S, Liu Z, Lin X, Qiu W, Zhang X. Single-Cell Mapping of Brain Myeloid Cell Subsets Reveals Key Transcriptomic Changes Favoring Neuroplasticity after Ischemic Stroke. Neurosci Bull 2024; 40:65-78. [PMID: 37755676 PMCID: PMC10774469 DOI: 10.1007/s12264-023-01109-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/27/2023] [Indexed: 09/28/2023] Open
Abstract
Interactions between brain-resident and peripheral infiltrated immune cells are thought to contribute to neuroplasticity after cerebral ischemia. However, conventional bulk sequencing makes it challenging to depict this complex immune network. Using single-cell RNA sequencing, we mapped compositional and transcriptional features of peri-infarct immune cells. Microglia were the predominant cell type in the peri-infarct region, displaying a more diverse activation pattern than the typical pro- and anti-inflammatory state, with axon tract-associated microglia (ATMs) being associated with neuronal regeneration. Trajectory inference suggested that infiltrated monocyte-derived macrophages (MDMs) exhibited a gradual fate trajectory transition to activated MDMs. Inter-cellular crosstalk between MDMs and microglia orchestrated anti-inflammatory and repair-promoting microglia phenotypes and promoted post-stroke neurogenesis, with SOX2 and related Akt/CREB signaling as the underlying mechanisms. This description of the brain's immune landscape and its relationship with neurogenesis provides new insight into promoting neural repair by regulating neuroinflammatory responses.
Collapse
Affiliation(s)
- Fangxi Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xi Cheng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
- Stroke Center, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoqian Zhang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Chang Liu
- Stroke Center, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zhouyang Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xinyu Lin
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Xiuchun Zhang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
7
|
Tang H, Pan J, Xu Y, Liu L, Yang X, Huang S, Peng T, Huang Y, Zhao Y, Fu C, Zhou H, Chen Z, Wang W, He L, Xu K. Constraint therapy promotes motor cortex remodeling and functional improvement by regulating c-Jun/miR-182-5p/Nogo - A signals in hemiplegic cerebral palsy mice. Ann Anat 2023; 250:152136. [PMID: 37506776 DOI: 10.1016/j.aanat.2023.152136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/18/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Our previous study has confirmed that constraint-induced movement therapy (CIMT) could promote neural remodeling in hemiplegic cerebral palsy (HCP) mice through Nogo-A/NgR/RhoA/ROCK signaling, however, the upstream mechanism was still unclear. Therefore, the present study aimed to further explore the mechanism of CIMT regulating the expression of Nogo-A in HCP mice. METHOD HCP mice were well established through ligating the left common carotid artery of 7-day-old pups and being placed in a hypoxic box which was filled with a mixture of 8% oxygen and 92% nitrogen. CIMT intervention was conducted by taping to fix the entire arm of the contralateral side (left) to force the mice to use the affected limb (right). Bioinformatics prediction and luciferase experiment were performed to confirm that miR-182-5p was targeted with Nogo-A. The beam test and grip test were applied to examine the behavioral performance under the intervention of c-Jun and CIMT. Also, immunofluorescence, Golgi staining, and transmission electron microscopy were conducted to show that the lenti-expression of c-Jun could increases the expression of myelin, and downregulates the expression of Nogo-A under the CIMT on HCP mice. RESULT (1) The beam walking test and grip test experiment results showed that compared with the control group, the HCP + nCIMT group's forelimb grasping ability and balance coordination ability were decreased (P < 0.05). (2) The results of Golgi staining, and transmission electron microscopy showed that the thickness of myelin sheath and the density of dendritic spines in the HCP + nCIMT group were lower than those in the control group (P < 0.05). Compared with the HCP + nCIMT group, the cerebral cortex myelin sheath thickness, dendrite spine density and nerve filament expression were increased in HCP + CIMT group (P < 0.05). (3) Immunofluorescence staining showed that the expression of Nogo-A in the cerebral cortex of the HCP + nCIMT group was higher than that of the HCP + CIMT group (P < 0.05). Compared with the HCP + CIMT group, the expression of Nogo-A in the HCP + LC + CIMT group was decreased and, in the HCP, + SC + CIMT group was significantly increased (P < 0.05). Compared with the HCP + nCIMT group, the expression of c-Jun in the control, HCP + CIMT, HCP + LC + nCIMT and HCP + LC + CIMT groups was significantly increased, and in the HCP + SC + CIMT was decreased (P < 0.05). (4) Real-time quantitative polymerase chain reaction (RT-qPCR) results showed that the expression level of miR-182-5p in the HCP + LC + CIMT group was more increased than that in the HCP + nCIMT group (P < 0.05). The expression level of miR-182-5p in the HCP + LC + CIMT group was higher than that in the HCP + LC + nCIMT group and the HCP + SC + CIMT group (P < 0.05). CONCLUSION These data identified that CIMT might stimulate the remodeling of neurons and myelin in the motor cortex by partially inhibiting the c-Jun/miR-182-5p/Nogo-A pathway, thereby facilitating the grasping performance and balance function of HCP mice.
Collapse
Affiliation(s)
- Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Pan
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yunxian Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xubo Yang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shiya Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuan Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiting Zhao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chaoqiong Fu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongyu Zhou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhaofang Chen
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenda Wang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Yan J, Liu Y, Zheng F, Lv D, Jin D. Environmental enrichment enhanced neurogenesis and behavioral recovery after stroke in aged rats. Aging (Albany NY) 2023; 15:9453-9463. [PMID: 37688770 PMCID: PMC10564416 DOI: 10.18632/aging.205010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND AND PURPOSE Age is identified as a significant prognostic factor for poorer outcome after stroke. However, environmental enrichment (EE) has been reported to promote functional recovery after ischemic stroke. The purpose of this study was to investigate whether environmental enrichment was beneficial to ischemic stroke in aged rats. METHODS Aged rats were randomly assigned as control rats, rats subjected to cerebral ischemia, and rats with cerebral ischemia treated with EE for 30 days. Focal cortical ischemia was induced by intracranial injection of endothelin-1 (ET-1). EE housing began one day after focal ischemia and was maintained for the whole experimental period. We used immunofluorescence staining to analyze the neurogenesis in the subventricular zone (SVZ) and TdT-mediated dUTP-biotin nick-end labeling (TUNEL) assay to evaluate apoptosis. The expression of neuronal nuclei, glial fibrillary acidic protein (GFAP) and Iba-1 around the infarcted area were also measured by double immunohistochemistry. RESULTS EE enhanced the proliferation of newborn neurons in the SVZ, as well as increased the long-term survival of newborn neurons. EE also exerted effects on inflammation after stroke. Furthermore, EE suppressed apoptosis and improved the motor functions after stroke in the aged rats. CONCLUSIONS EE improved post-stroke recovery on the basis of enhancing neurogenesis in aged rats.
Collapse
Affiliation(s)
- Ji Yan
- Department of Laboratory Medicine, The Fourth People’s Hospital of Shenyang of China Medical University, Shenyang, Liaoning, China
| | - Yan Liu
- Department of Neurology, The Fourth People’s Hospital of Shenyang of China Medical University, Shenyang, Liaoning, China
| | - Fangda Zheng
- Department of Laboratory Medicine, The Fourth People’s Hospital of Shenyang of China Medical University, Shenyang, Liaoning, China
| | - Dan Lv
- Department of Laboratory Medicine, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Di Jin
- Department of Acupuncture (Neurology), The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Huang Y, Chen Z, Xu Y, Liu L, Tang H, He L, Zhang J, Zhou H, Xu Y, Zhao J, Wu L, Xu K. Proteomic changes of the bilateral M1 and spinal cord in hemiplegic cerebral palsy mouse: Effects of constraint-induced movement therapy. Behav Brain Res 2023; 452:114583. [PMID: 37454934 DOI: 10.1016/j.bbr.2023.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Hemiplegic cerebral palsy (HCP) is a non-progressive movement and posture disorder that affects one side of the body. Constraint-induced movement therapy (CIMT) can improve the hand function of children with HCP. We used label-free proteomic quantification technology to evaluate proteomic changes in the bilateral M1 and spinal cord in HCP mouse induced by hypoxia/ischemia and CIMT. Nissl staining showed reduced neuron density in the HCP mice's lesioned and contralesional M1. The rotarod test and grip strength test showed motor dysfunction in mice with HCP and improved motor ability after CIMT. A total of 5147 proteins were identified. Fifty-one, five, and sixty common differentially expressed proteins (DEPs), which were co-regulated by HCP and CIMT, were found in the lesioned M1, the contralesional M1 and the spinal cord respectively. The significant proteins included alpha-centractin, metaxin complex, PKC, septin 11, choline transporter-like proteins, protein 4.1, teneurin-4, and so on, which mainly related to synapse stability, neuronal development and maintenance, axon development, and myelin formation. The KEGG pathways of HCP-induced DEPs mainly related to lipid metabolism, synaptic remodeling, SNARE interactions in vesicular transport and axon formation. The CIMT-induced DEPs were mainly related to synaptic remodeling and axon formation in the lesioned M1 and spinal cord. This study investigated the proteomic changes of the bilateral M1 and spinal cord as well as the CIMT-induced proteomic changes in HCP mice, which might provide new insights into the therapy of HCP.
Collapse
Affiliation(s)
- Yuan Huang
- School of Medicine, South China University of Technology, Guangzhou 510655, China; Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Zhaofang Chen
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Yunxian Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Jingbo Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Hongyu Zhou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Yi Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Jingyi Zhao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Lilan Wu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Kaishou Xu
- School of Medicine, South China University of Technology, Guangzhou 510655, China; Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China.
| |
Collapse
|
10
|
Sun CC, Zhang YW, Xing XX, Yang Q, Cao LY, Cheng YF, Zhao JW, Zhou ST, Cheng DD, Zhang Y, Hua XY, Wang H, Xu DS. Modified constraint-induced movement therapy enhances cortical plasticity in a rat model of traumatic brain injury: a resting-state functional MRI study. Neural Regen Res 2023; 18:410-415. [PMID: 35900438 PMCID: PMC9396520 DOI: 10.4103/1673-5374.344832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Modified constraint-induced movement therapy (mCIMT) has shown beneficial effects on motor function improvement after brain injury, but the exact mechanism remains unclear. In this study, amplitude of low frequency fluctuation (ALFF) metrics measured by resting-state functional magnetic resonance imaging was obtained to investigate the efficacy and mechanism of mCIMT in a control cortical impact (CCI) rat model simulating traumatic brain injury. At 3 days after control cortical impact model establishment, we found that the mean ALFF (mALFF) signals were decreased in the left motor cortex, somatosensory cortex, insula cortex and the right motor cortex, and were increased in the right corpus callosum. After 3 weeks of an 8-hour daily mCIMT treatment, the mALFF values were significantly increased in the bilateral hemispheres compared with those at 3 days postoperatively. The mALFF signal values of left corpus callosum, left somatosensory cortex, right medial prefrontal cortex, right motor cortex, left postero dorsal hippocampus, left motor cortex, right corpus callosum, and right somatosensory cortex were increased in the mCIMT group compared with the control cortical impact group. Finally, we identified brain regions with significantly decreased mALFF values at 3 days postoperatively. Pearson correlation coefficients with the right forelimb sliding score indicated that the improvement in motor function of the affected upper limb was associated with an increase in mALFF values in these brain regions. Our findings suggest that functional cortical plasticity changes after brain injury, and that mCIMT is an effective method to improve affected upper limb motor function by promoting bilateral hemispheric cortical remodeling. mALFF values correlate with behavioral changes and can potentially be used as biomarkers to assess dynamic cortical plasticity after traumatic brain injury.
Collapse
|
11
|
Paro MR, Chakraborty AR, Angelo S, Nambiar S, Bulsara KR, Verma R. Molecular mediators of angiogenesis and neurogenesis after ischemic stroke. Rev Neurosci 2022; 34:425-442. [PMID: 36073599 DOI: 10.1515/revneuro-2022-0049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022]
Abstract
The mechanisms governing neurological and functional recovery after ischemic stroke are incompletely understood. Recent advances in knowledge of intrinsic repair processes of the CNS have so far translated into minimal improvement in outcomes for stroke victims. Better understanding of the processes underlying neurological recovery after stroke is necessary for development of novel therapeutic approaches. Angiogenesis and neurogenesis have emerged as central mechanisms of post-stroke recovery and potential targets for therapeutics. Frameworks have been developed for conceptualizing cerebral angiogenesis and neurogenesis at the tissue and cellular levels. These models highlight that angiogenesis and neurogenesis are linked to each other and to functional recovery. However, knowledge of the molecular framework linking angiogenesis and neurogenesis after stroke is limited. Studies of potential therapeutics typically focus on one mediator or pathway with minimal discussion of its role within these multifaceted biochemical processes. In this article, we briefly review the current understanding of the coupled processes of angiogenesis and neurogenesis after stroke. We then identify the molecular mediators and signaling pathways found in pre-clinical studies to upregulate both processes after stroke and contextualizes them within the current framework. This report thus contributes to a more-unified understanding of the molecular mediators governing angiogenesis and neurogenesis after stroke, which we hope will help guide the development of novel therapeutic approaches for stroke survivors.
Collapse
Affiliation(s)
- Mitch R Paro
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA.,Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06032, USA
| | - Arijit R Chakraborty
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - Sophia Angelo
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - Shyam Nambiar
- University of Connecticut, 75 North Eagleville Rd, Storrs, CT 06269, USA
| | - Ketan R Bulsara
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA.,Division of Neurosurgery, University of Connecticut Health, 135 Dowling Way, Farmington, CT 06030, USA
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA.,Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06032, USA
| |
Collapse
|
12
|
Wang D, Xiang J, He Y, Yuan M, Dong L, Ye Z, Mao W. The Mechanism and Clinical Application of Constraint-Induced Movement Therapy in Stroke Rehabilitation. Front Behav Neurosci 2022; 16:828599. [PMID: 35801093 PMCID: PMC9253547 DOI: 10.3389/fnbeh.2022.828599] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Constraint-induced movement therapy (CIMT) has been widely applied in stroke rehabilitation, and most relevant studies have shown that CIMT helps improve patients' motor function. In practice, however, principal issues include inconsistent immobilization durations and methods, while incidental issues include a narrow application scope and an emotional impact. Although many studies have explored the possible internal mechanisms of CIMT, a mainstream understanding has not been established.
Collapse
Affiliation(s)
- Dong Wang
- Affiliated Hospital of Chengdu University, Chengdu, China
| | - Junlu Xiang
- Chengdu Women’s and Children’s Central Hospital, Chengdu, China
| | - Ying He
- Affiliated Hospital of Chengdu University, Chengdu, China
| | - Min Yuan
- Affiliated Hospital of Chengdu University, Chengdu, China
| | - Li Dong
- Affiliated Hospital of Chengdu University, Chengdu, China
| | - Zhenli Ye
- Affiliated Hospital of Chengdu University, Chengdu, China
| | - Wei Mao
- Chengdu Integrated TCM and Western Medical Hospital, Chengdu, China
| |
Collapse
|
13
|
Gongcheng X, Congcong H, Jiahui Y, Wenhao L, Hui X, Xiangyang L, Zengyong L, Yonghui W, Daifa W. Effective brain network analysis in unilateral and bilateral upper limb exercise training in subjects with stroke. Med Phys 2022; 49:3333-3346. [PMID: 35262918 DOI: 10.1002/mp.15570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Knowing the patterns of brain activation that occur and networks involved under different interventions is important for motor recovery in subjects with stroke. This study aimed to study the patterns of brain activation and networks in two interventions, affected upper limb side and bilateral exercise training, using concurrent functional near-infrared spectroscopy (fNIRS) imaging. METHODS Thirty-two patients in the early subacute stage were randomly divided into two groups: unilateral and bilateral groups. The patients in the unilateral group underwent isokinetic muscle strength training on the affected upper limb side and patients in the bilateral group underwent bilateral upper limb training. Oxyhemoglobin and deoxyhemoglobin concentration changes (ΔHbO2 and ΔHbR, respectively) were recorded in the ipsilateral and contralateral prefrontal cortex (IPFC and CPFC, respectively) and ipsilateral and contralateral motor cortex (IMC and CMC, respectively) by fNIRS equipment in the resting state and training conditions. The phase information of a 0.01-0.08 Hz fNIRS signal was extracted by the wavelet transform method. Dynamic Bayesian inference was adopted to calculate the coupling strength and direction of effective connectivity. The network threshold was determined by surrogate signal method, the global (weighted clustering coefficient, global efficiency and small-worldness) and local (degree, betweenness centrality and local efficiency) network metrics were calculated. The degree of cerebral lateralization was also compared between the two groups. RESULTS The results of covariance analysis showed that, compared with bilateral training, the coupling effect of CMC→IMC was significantly enhanced (p = 0.03); also, the local efficiency of the IMC (p = 0.01), IPFC (p<0.001), and CPFC (p = 0.006) and the hemispheric autonomy index of IPFC (p = 0.007) were significantly increased in unilateral training. In addition, there was a significant positive correlation between the coupling intensity of the inter-hemispheric motor area and the shifted local efficiency. CONCLUSIONS The results indicated that unilateral upper limb training could more effectively promote the interaction and balance of bilateral motor hemispheres and help brain reorganization in the IMC and prefrontal cortex in stroke patients. The method provided in this study could be used to evaluate dynamic brain activation and network reorganization under different interventions, thus improving the strategy of rehabilitation intervention in a timely manner and resulting in better motor recovery. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xu Gongcheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China.,Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| | - Huo Congcong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China
| | - Yin Jiahui
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| | - Li Wenhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China
| | - Xie Hui
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China.,Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, China
| | - Li Xiangyang
- Nanchang Key Laboratory of Medical and Technology Research, Nanchang University, Nanchang, 330031, China
| | - Li Zengyong
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.,Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, China
| | - Wang Yonghui
- Department of physical medicine and rehabilitation, Qilu hospital, Shandong University, Jinan, 250061, China
| | - Wang Daifa
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
14
|
Ying Z, Wu J, Jiang W, Zhang G, Zhu W, Li X, Pang X, Liu W. Expression of Slit and Robo during remodeling of corticospinal tract in cervical spinal cord in middle cerebral artery occlusion rats. Mol Biol Rep 2021; 48:7831-7839. [PMID: 34652618 DOI: 10.1007/s11033-021-06803-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Slits and Robos were associated with the generation of axons of corticospinal tract during the corticospinal tract (CST) remodeling after the cerebral ischemic stroke (CIS). However, little is known about the mechanism of CST remodeling. In this study, we detected the expression of Slits and Robos in middle cerebral artery occlusion (MCAO) rats to investigate the roles of Slits and Robos in the CIS. METHODS MCAO model was established using modified Zea Longa method. Beam walking test (BWT) was conducted to evaluate the motor function. The images of the track of cortical spinal cord beam on day 7, 14 and 21 were observed by anterograde CST tracing. Biopinylated dextan amine (BDA) was used to mark CST anterogradely. Expression of GAP-43 mRNA and GAP-43 protein in cervical spinal cord was detected by Real-Time PCR and Western blot analysis, respectively. The expression of Slit1, Slit2 and Robo1 in cervical spinal cord was detected by immunofluorescence staining. RESULTS The scores in the model group were significantly reduced compared to sham-operation group on day 7 (P < 0.001), 14 (P < 0.001) and 21 (P < 0.001), respectively. There was no significant difference in the score on day 7, 14 and 21 of the sham-operation groups (P > 0.05). In contrast, significant increase was noticed in the scores in model group, presenting a time-dependent manner. More CST staining fibers could be observed at the degenerative side in the model group compared with that of the sham-operation group on day 21. GAP-43 mRNA expression in the model group showed significant increase compared to that of sham-operation group on day 14 (P = 0.015) and 21 days (P = 0.002). The expression of GAP-43 protein in model group showed significant increase compared to that of sham-operation group on day 14 (P = 0.022) and day 21 (P = 0.008), respectively. The expression of Slit1 and Slit2 showed increase on day 14 and day 21, while the expression of Robo1 showed significant decrease in MCAO rats. CONCLUSION Up-regulation of Slit1 and Slit2 and the downregulation of Robo1 may be related to the axons of CST midline crossing in spinal cord of MCAO rat during the spontaneous recovery of impaired motor function.
Collapse
Affiliation(s)
- Zhenhao Ying
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Junxuan Wu
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenjun Jiang
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, 250002, China
| | - Guoli Zhang
- Department of Radiation Oncology, Shandong Tumor Hospital & Institute, Jinan, 250117, Shandong Province, China
| | - Weiming Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Xin Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Xueyun Pang
- Juxian Hospital of Traditional Chinese Medicine, Rizhao, 276599, China
| | - Wei Liu
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China.
- Department of Cerebral Disease, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China.
| |
Collapse
|
15
|
Kerr AL. Contralesional plasticity following constraint-induced movement therapy benefits outcome: contributions of the intact hemisphere to functional recovery. Rev Neurosci 2021; 33:269-283. [PMID: 34761646 DOI: 10.1515/revneuro-2021-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/15/2021] [Indexed: 11/15/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. A common, chronic deficit after stroke is upper limb impairment, which can be exacerbated by compensatory use of the nonparetic limb. Resulting in learned nonuse of the paretic limb, compensatory reliance on the nonparetic limb can be discouraged with constraint-induced movement therapy (CIMT). CIMT is a rehabilitative strategy that may promote functional recovery of the paretic limb in both acute and chronic stroke patients through intensive practice of the paretic limb combined with binding, or otherwise preventing activation of, the nonparetic limb during daily living exercises. The neural mechanisms that support CIMT have been described in the lesioned hemisphere, but there is a less thorough understanding of the contralesional changes that support improved functional outcome following CIMT. Using both human and non-human animal studies, the current review explores the role of the contralesional hemisphere in functional recovery of stroke as it relates to CIMT. Current findings point to a need for a better understanding of the functional significance of contralesional changes, which may be determined by lesion size, location, and severity as well stroke chronicity.
Collapse
Affiliation(s)
- Abigail L Kerr
- Departments of Psychology and Neuroscience, Illinois Wesleyan University, 1312 Park Street, Bloomington, IL 61701, USA
| |
Collapse
|
16
|
Yan Y, Sun C, Rong X, Han R, Zhu S, Su R, Jin Y, Li L, Liu J. Mechanism of Action of Dengzhan Shengmai in Regulating Stroke from an Inflammatory Perspective: A Preliminary Analysis of Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6138854. [PMID: 34754318 PMCID: PMC8572589 DOI: 10.1155/2021/6138854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/19/2021] [Indexed: 11/18/2022]
Abstract
Stroke is a complicated disease with an increasing incidence and a very high mortality rate. A classical Chinese herbal medicine, Dengzhan Shengmai (DZSM), has shown to have therapeutic effects on stroke; however, its chemical basis and molecular mechanism are still unclear. In this study, a systems biology approach was applicable to elucidate the underlying mechanism of action of DZSM on stroke. All the compounds were obtained from databases, and pendant-related targets were obtained from various data platforms, including the TCM Systematic Pharmacology (TCMSP) database, TCM Integrated Database (TCMIP), High Throughput Experimental Reference Database (HERB), Comparative Toxicogenomics Database (CTD), SwissTargetPredicition, and SymMap, The Human Gene Database (GENECARD) and Comparative Toxicogenomics Database (CTD) were used for stroke disease target data, followed by network pharmacology analysis to predict the potential effect of DZSM on stroke. Animal experiments were intended to validate the underlying mechanisms. A total of 846 chemical components were compiled for the targets of DZSM drug, and quercetin, kaempferol, and Wuweizisu C are the highest chemical components compiled from DZSM. Overlapping with 375 disease-specific targets and 149 core targets, the core targets include TNF, IL-6, ALB, and AKT1, which are shown to regulate the disease process from an anti-inflammatory perspective. 198 enrichment messages were obtained by KEGG enrichment analysis, and we believe that the role of the AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, and IL-17 signaling pathway is more important. Based on rat experiments, we also demonstrated that DZSM could effectively modulate the inflammation level of brain infarct tissues and effectively alleviate behavioral characteristics. Grouped together, our study suggests that the combination of network pharmacology prediction and experimental validation can provide a useful tool to describe the molecular mechanisms of DZSM in Chinese medicine (TCM).
Collapse
Affiliation(s)
- Yiqi Yan
- Laboratory of Pharmacology of Traditional Chinese Medicine Formulae Co-Constructed By the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chao Sun
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Xiaoting Rong
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300121, China
| | - Rui Han
- Laboratory of Pharmacology of Traditional Chinese Medicine Formulae Co-Constructed By the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shan Zhu
- Laboratory of Pharmacology of Traditional Chinese Medicine Formulae Co-Constructed By the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Su
- Laboratory of Pharmacology of Traditional Chinese Medicine Formulae Co-Constructed By the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ya Jin
- Laboratory of Pharmacology of Traditional Chinese Medicine Formulae Co-Constructed By the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Li
- Laboratory of Pharmacology of Traditional Chinese Medicine Formulae Co-Constructed By the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun Liu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, China
| |
Collapse
|
17
|
Wang D, Li L, Zhang Q, Liang Z, Huang L, He C, Wei Q. Combination of Electroacupuncture and Constraint-Induced Movement Therapy Enhances Functional Recovery After Ischemic Stroke in Rats. J Mol Neurosci 2021; 71:2116-2125. [PMID: 34101150 DOI: 10.1007/s12031-021-01863-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023]
Abstract
Both electroacupuncture and constraint-induced movement therapy have been reported to produce therapeutic effects on the recovery of ischemic stroke. The combined use of these two therapies is not rare clinically, although its effectiveness is not yet clear. We aimed to evaluate the efficacy of the combination of electroacupuncture and constraint-induced movement therapy in ischemic stroke rats, and to explore the potential molecular mechanisms. Ischemic stroke rat models were established by middle cerebral artery occlusion. Then, the rats were assigned to receive one of the following interventions: sole electroacupuncture, sole constraint-induced movement therapy, the combination of both therapies, and no treatment. Functional recovery was assessed with the beam balance test and rotarod test. The infarct volume of the brain and the expression of the molecules Nogo-A, P75NTR, NGF, BDNF, and VEGF in the brain tissue were investigated. The results demonstrated that the combination of the two therapies significantly improved neurological functional recovery in ischemic stroke rats compared to each therapy alone (P < 0.01). We also observed a significant decrease in infarct volume in rats receiving the combined treatment. Nogo-A and P75NTR were downregulated and NGF, BDNF, and VEGF were upregulated in the combined treatment rats compared to the control rats. In conclusion, the combination of electroacupuncture and constraint-induced movement therapy enhanced functional recovery after ischemic stroke in rats, and it is a promising treatment strategy in the rehabilitation of stroke. The anti-Nogo-A effect of electroacupuncture may explain its good compatibility with CIMT in ischemic stroke rats.
Collapse
Affiliation(s)
- Dong Wang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Lijuan Li
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Qing Zhang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Zejun Liang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Liyi Huang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Chengqi He
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Quan Wei
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
18
|
Abdullahi A, Truijen S, Umar NA, Useh U, Egwuonwu VA, Van Criekinge T, Saeys W. Effects of Lower Limb Constraint Induced Movement Therapy in People With Stroke: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:638904. [PMID: 33833730 PMCID: PMC8021771 DOI: 10.3389/fneur.2021.638904] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Constraint induced movement therapy (CIMT) is effective at improving upper limb outcomes after stroke. Aim: The aim of this study was to carry out a systematic review and meta-analysis of the effects of lower limb CIMT studies of any design in people with stroke. Materials/ Method: PubMED, PEDro, OTSeeker, CENTRAL, and Web of Science were searched from their earliest dates to February 2021. Lower limbs CIMT studies that measured outcomes at baseline and post-intervention were selected. Sample size, mean, and standard deviation on the outcomes of interest and the protocols of both the experimental and control groups were extracted. McMaster Critical Review Form was used to assess the methodological quality of the studies. Result: Sixteen studies with different designs were included in this review. The result showed that lower limb CIMT improves functional, physiological and person's reported outcomes including motor function, balance, mobility, gait speed, oxygen uptake, exertion before and after commencement of activities, knee extensor spasticity, weight bearing, lower limb kinematics and quality of life in people with stroke post intervention. However, there were only significant differences in quality of life in favor of CIMT post-intervention [mean difference (MD) = 16.20, 95% CI = 3.30–29.10, p = 0.01]; and at follow-up [mean difference (MD) = 14.10, 95% CI = 2.07–26.13, p = 0.02] between CIMT and the control group. Even for the quality of life, there was significant heterogeneity in the studies post intervention (I2 = 84%, p = 0.01). Conclusion: Lower limb CIMT improves motor function, balance, functional mobility, gait speed, oxygen uptake, weigh bearing, lower limb kinematics, and quality of life. However, it is only superior to the control at improving quality of life after stroke based on the current literature.
Collapse
Affiliation(s)
- Auwal Abdullahi
- Neurological Rehabilitation Unit, Department of Physiotherapy, Bayero University Kano, Kano, Nigeria.,Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Wilrijk, Belgium
| | - Steven Truijen
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Wilrijk, Belgium
| | - Naima A Umar
- Department of Physiotherapy, Muhammad Abdullahi Wase Teaching Hospital, Kano, Nigeria
| | - Ushotanefe Useh
- Lifestyle Diseases Research Entity, Faculty of Health Sciences, North-West University, Mmabatho, South Africa
| | - Victor A Egwuonwu
- Department of Medical Rehabilitation, Nnamdi Azikiwe University, Awka, Nigeria
| | - Tamaya Van Criekinge
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Wilrijk, Belgium
| | - Wim Saeys
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
19
|
Liu LR, Wang YX, He L, Xu YX, Huang JY, Peng TT, Yang XB, Pan J, Tang HM, Xu KS. Constraint-Induced Movement Therapy Promotes Neural Remodeling and Functional Reorganization by Overcoming Nogo-A/NgR/RhoA/ROCK Signals in Hemiplegic Cerebral Palsy Mice. Neurorehabil Neural Repair 2021; 35:145-157. [PMID: 33410385 DOI: 10.1177/1545968320981962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Little is known about the induction of functional and brain structural reorganization in hemiplegic cerebral palsy (HCP) by constraint-induced movement therapy (CIMT). Objective. We aimed to explore the specific molecular mechanism of functional and structural plasticity related to CIMT in HCP. Methods. The mice were divided into a control group and HCP groups with different interventions (unconstraint-induced movement therapy [UNCIMT], CIMT or siRNA-Nogo-A [SN] treatment): the HCP, HCP+UNCIMT, HCP+CIMT, HCP+SN, and HCP+SN+CIMT groups. Rotarod and front-limb suspension tests, immunohistochemistry, Golgi-Cox staining, transmission electron microscopy, and Western blot analyses were applied to measure motor function, neurons and neurofilament density, dendrites/axon areas, myelin integrity, and Nogo-A/NgR/RhoA/ROCK expression in the motor cortex. Results. The mice in the HCP+CIMT group had better motor function, greater neurons and neurofilament density, dendrites/axon areas, myelin integrity, and lower Nogo-A/NgR/RhoA/ROCK expression in the motor cortex than the HCP and HCP+UNCIMT groups (P < .05). Moreover, the expression of Nogo-A/NgR/RhoA/ROCK, the improvement of neural remodeling and motor function of mice in the HCP+SN group were similar to those in the HCP+CIMT group (P > .05). The neural remodeling and motor function of the HCP+SN+CIMT group were significantly greater than those in the HCP+SN and HCP+CIMT groups (P < .05). Motor function were positively correlated with the density of neurons (r = 0.450 and 0.309, respectively; P < .05) and neurofilament (r = 0.717 and 0.567, respectively; P < .05). Conclusions. CIMT might promote the remodeling of neurons, neurofilament, dendrites/axon areas, and myelin in the motor cortex by partially inhibiting the Nogo-A/NgR/RhoA/ROCK pathway, thereby promoting the improvement of motor function in HCP mice.
Collapse
Affiliation(s)
- Li-Ru Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu-Xin Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lu He
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yun-Xian Xu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing-Yu Huang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ting-Ting Peng
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xu-Bo Yang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Pan
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hong-Mei Tang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kai-Shou Xu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Zhao C, Zhao S, Guan M, Cheng X, Wang H, Liu C, Zhong S, Zhou Z, Liang Y. Forced forelimb use following stroke enhances oligodendrogenesis and functional recovery in the rat. Brain Res 2020; 1746:147016. [PMID: 32679116 DOI: 10.1016/j.brainres.2020.147016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/23/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
Forced limb use, which forces the use of the impaired arm following stroke, improves functional recovery. The study was designed to investigate the mechanisms of recovery underlying forced impaired limbuse. Furthermore, forced unimpaired arm use was also performed in order to explore its effect on functional behavior. We hypothesized that forced forelimb use could improve functional recovery in rats that have had an experimentally induced ischemic stroke, through promoting the recruitment and differentiation of the oligodendrocyte progenitor cells (OPCs). Indeed the proliferation of Olig2 and NG2 positive cells, as well as the expression of myelin basic protein (MBP)were increased in the perilesional striatum, whereas quantitative changes of Olig2+ and NG2+ oligodendrocyte progenitor cells was not observed in the subventricular zone. Through comparing rats forced to rely on affected or unaffected forelimb, the results demonstrated that forced impaired limb use boosted functional recovery. At the same time forced unimpaired limb use deteriorated limb movement of injured side. In addition, the expression of NogoA is reduced, when the injured limb was used more, suggesting that it played a role in the repair of white matter.
Collapse
Affiliation(s)
- Chuansheng Zhao
- The First Hospital of China Medical University, Shenyang, China.
| | - Shanshan Zhao
- The First Hospital of China Medical University, Shenyang, China.
| | - Meiting Guan
- The First Hospital of China Medical University, Shenyang, China.
| | - Xi Cheng
- The First Hospital of China Medical University, Shenyang, China.
| | - Huibin Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Chang Liu
- The First Hospital of China Medical University, Shenyang, China.
| | - Shanshan Zhong
- The First Hospital of China Medical University, Shenyang, China.
| | - Zhike Zhou
- The First Hospital of China Medical University, Shenyang, China.
| | - Yifan Liang
- The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
21
|
Kuriakose D, Xiao Z. Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. Int J Mol Sci 2020; 21:E7609. [PMID: 33076218 PMCID: PMC7589849 DOI: 10.3390/ijms21207609] [Citation(s) in RCA: 550] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Stroke is the second leading cause of death and a major contributor to disability worldwide. The prevalence of stroke is highest in developing countries, with ischemic stroke being the most common type. Considerable progress has been made in our understanding of the pathophysiology of stroke and the underlying mechanisms leading to ischemic insult. Stroke therapy primarily focuses on restoring blood flow to the brain and treating stroke-induced neurological damage. Lack of success in recent clinical trials has led to significant refinement of animal models, focus-driven study design and use of new technologies in stroke research. Simultaneously, despite progress in stroke management, post-stroke care exerts a substantial impact on families, the healthcare system and the economy. Improvements in pre-clinical and clinical care are likely to underpin successful stroke treatment, recovery, rehabilitation and prevention. In this review, we focus on the pathophysiology of stroke, major advances in the identification of therapeutic targets and recent trends in stroke research.
Collapse
Affiliation(s)
| | - Zhicheng Xiao
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia;
| |
Collapse
|
22
|
Adams KV, Mahmud N, Green-Holland M, Vonderwalde I, Umebayashi D, Sachewsky N, Coles BL, van der Kooy D, Morshead CM. Constraint-induced movement therapy promotes motor recovery after neonatal stroke in the absence of neural precursor activation. Eur J Neurosci 2020; 53:1334-1349. [PMID: 33010080 DOI: 10.1111/ejn.14993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Neonatal stroke is a leading cause of long-term disability and currently available rehabilitation treatments are insufficient to promote recovery. Activating neural precursor cells (NPCs) in adult rodents, in combination with rehabilitation, can accelerate functional recovery following stroke. Here, we describe a novel method of constraint-induced movement therapy (CIMT) in a rodent model of neonatal stroke that leads to improved functional outcomes, and we asked whether the recovery was correlated with expansion of NPCs. A hypoxia/ischemia (H/I) injury was induced on postnatal day 8 (PND8) via unilateral carotid artery ligation followed by systemic hypoxia. One week and two weeks post-H/I, CIMT was administered in the form of 3 botulinum toxin (Botox) injections, which induced temporary paralysis in the unaffected limb. Functional recovery was assessed using the foot fault task. NPC proliferation was assessed using the neurosphere assay and EdU immunohistochemistry. We found that neonatal H/I injury alone expands the NPC pool by >2.5-fold relative to controls. We determined that using Botox injections as a method to provide CIMT results in significant functional motor recovery after H/I. However, CIMT does not lead to enhanced NPC activation or migration into the injured parenchyma in vivo. At the time of functional recovery, increased numbers of proliferating inflammatory cells were found within the injured motor cortex. Together, these findings suggest that NPC activation following CIMT does not account for the observed functional improvement and suggests that CIMT-mediated modification of the CNS inflammatory response may play a role in the motor recovery.
Collapse
Affiliation(s)
- Kelsey V Adams
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Neemat Mahmud
- Department of Surgery, Division of Anatomy, University of Toronto, Toronto, ON, Canada
| | | | - Ilan Vonderwalde
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Daisuke Umebayashi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nadia Sachewsky
- Department of Surgery, Division of Anatomy, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Brenda L Coles
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Cindi M Morshead
- Department of Surgery, Division of Anatomy, University of Toronto, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada.,KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
23
|
Guo M, Wu L, Song Z, Yang B. Enhancement of Neural Stem Cell Proliferation in Rats with Spinal Cord Injury by a Combination of Repetitive Transcranial Magnetic Stimulation (rTMS) and Human Umbilical Cord Blood Mesenchymal Stem Cells (hUCB-MSCs). Med Sci Monit 2020; 26:e924445. [PMID: 32814758 PMCID: PMC7453755 DOI: 10.12659/msm.924445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND This study was designed to explore the combined effects of repetitive transcranial magnetic stimulation (rTMS) and human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) transplantation on neural stem cell proliferation in rats with spinal cord injury (SCI). MATERIAL AND METHODS SCI was induced in 90 rats by laminectomy at T10. Fifteen rats each were treated with 0.5 Hz rTMS or 10 Hz rTMS or underwent hUCB-MSC transplantation; 15 each were treated with 0.5 Hz rTMS+hUCB-MSCs or 10 Hz rTMS+hUCB-MSCs; and 15 were untreated (control group). The Basso, Beattie, and Bresnahan (BBB) scores and motor evoked potentials (MEPs) were measured, and all rats underwent biotin dextran-amine (BDA) tracing of the corticospinal tract (CST). The levels of expression of neural stem cell proliferation related proteins, including BrdU, nestin, Tuj1, Ng2+ and GFAP, were measured, and the levels of bFGF and EGF determined by Western blotting. RESULTS BBB scores and MEPs were increased after rTMS and hUCB-MSC transplantation, while histologically determined SCI-induced neuron apoptosis was attenuated. The numbers of BDA-positive fibers and Brdu-, nestin- and Tuj1-positive cells were markedly increased and the numbers of Ng2+- and GFAP-positive cells were markedly decreased following treatment with rTMS alone or rTMS plus hUCB-MSC transplantation. The levels of expression of bFGF and EGF were significantly upregulated following rTMS treatment and hUCB-MSC transplantation. Higher performance was observed after combined treatment with rTMS and hUCB-MSC transplantation than after either alone. CONCLUSIONS The combination of rTMS treatment and hUCB-MSC transplantation could attenuate SCI-induced neural stem cell apoptosis and motor dysfunction in rats.
Collapse
Affiliation(s)
- Mengguo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Lixin Wu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Zhenyu Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
24
|
A Review of Exercise-Induced Neuroplasticity in Ischemic Stroke: Pathology and Mechanisms. Mol Neurobiol 2020; 57:4218-4231. [PMID: 32691303 DOI: 10.1007/s12035-020-02021-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
After ischemic stroke, survivors experience motor dysfunction and deterioration of memory and cognition. These symptoms are associated with the disruption of normal neuronal function, i.e., the secretion of neurotrophic factors, interhemispheric connections, and synaptic activity, and hence the disruption of the normal neural circuit. Exercise is considered an effective and feasible rehabilitation strategy for improving cognitive and motor recovery following ischemic stroke through the facilitation of neuroplasticity. In this review, our aim was to discuss the mechanisms by which exercise-induced neuroplasticity improves motor function and cognitive ability after ischemic stroke. The associated mechanisms include increases in neurotrophins, improvements in synaptic structure and function, the enhancement of interhemispheric connections, the promotion of neural regeneration, the acceleration of neural function reorganization, and the facilitation of compensation beyond the infarcted tissue. We also discuss some common exercise strategies and a novel exercise therapy, robot-assisted movement, which might be widely applied in the clinic to help stroke patients in the future.
Collapse
|
25
|
Neurobiology of Recovery of Motor Function after Stroke: The Central Nervous System Biomarker Effects of Constraint-Induced Movement Therapy. Neural Plast 2020; 2020:9484298. [PMID: 32617098 PMCID: PMC7312560 DOI: 10.1155/2020/9484298] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/25/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Recovery of motor function after stroke involves many biomarkers. This review attempts to identify the biomarker effects responsible for recovery of motor function following the use of Constraint-Induced Movement Therapy (CIMT) and discuss their implications for research and practice. From the studies reviewed, the biomarker effects identified include improved perfusion of motor areas and brain glucose metabolism; increased expression of proteins, namely, Brain-Derived Neurotrophic Factor (BDNF), Vascular Endothelial Growth Factor (VEGF), and Growth-Associated Protein 43 (GAP-43); and decreased level of Gamma-Aminobutyric Acid (GABA). Others include increased cortical activation, increased motor map size, and decreased interhemispheric inhibition of the ipsilesional hemisphere by the contralesional hemisphere. Interestingly, the biomarker effects correlated well with improved motor function. However, some of the biomarker effects have not yet been investigated in humans, and they require that CIMT starts early on poststroke. In addition, one study seems to suggest the combined use of CIMT with other rehabilitation techniques such as Transcortical Direct Stimulation (tDCs) in patients with chronic stroke to achieve the biomarker effects. Unfortunately, there are few studies in humans that implemented CIMT during early poststroke. Thus, it is important that more studies in humans are carried out to determine the biomarker effects of CIMT especially early on poststroke, when there is a greater opportunity for recovery. Furthermore, it should be noted that these effects are mainly in ischaemic stroke.
Collapse
|
26
|
Tao D, Liu F, Sun X, Qu H, Zhao S, Zhou Z, Xiao T, Zhao C, Zhao M. Bumetanide: A review of its neuroplasticity and behavioral effects after stroke. Restor Neurol Neurosci 2020; 37:397-407. [PMID: 31306143 DOI: 10.3233/rnn-190926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stroke often leads to neuronal injury and neurological functional deficits. Whilst spontaneous neurogenesis and axon regeneration are induced by ischemic stroke, effective pharmacological treatments are also essential for the improvement of neuroplasticity and functional recovery after stroke. However, no pharmacological therapy has been demonstrated to be able to effectively improve the functional recovery after stroke. Bumetanide is a specific Na+-K+-Cl- co-transporter inhibitor which can maintain chloride homeostasis in neurons. Therefore, many studies have focused on this drug's effect in stroke recovery in recent years. Here, we first review the function of Na+-K+-Cl- co-transporter in neurons, then how bumetanide's role in reducing brain damage, promoting neuroplasticity, leading to functional recovery after stroke, is elucidated. Finally, we discuss current limitations of bumetanide's efficiency and their potential solutions. These results may provide new avenues for further exploring mechanisms of post-stroke functional recovery as well as promising therapeutic targets for functional disability rehabilitation after ischemic stroke.
Collapse
Affiliation(s)
- Dongxia Tao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Fangxi Liu
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoyu Sun
- Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Huiling Qu
- Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Shanshan Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Zhike Zhou
- Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Ting Xiao
- Dermatology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, China
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Mei Zhao
- Cardiology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
27
|
Dong BC, Li MX, Wang XY, Cheng X, Wang Y, Xiao T, Jolkkonen J, Zhao CS, Zhao SS. Effects of CXCR7-neutralizing antibody on neurogenesis in the hippocampal dentate gyrus and cognitive function in the chronic phase of cerebral ischemia. Neural Regen Res 2020; 15:1079-1085. [PMID: 31823888 PMCID: PMC7034276 DOI: 10.4103/1673-5374.270416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stromal cell-derived factor-1 and its receptor CXCR4 are essential regulators of the neurogenesis that occurs in the adult hippocampal dentate gyrus. However, the effects of CXCR7, a new atypical receptor of stromal cell-derived factor-1, on hippocampal neurogenesis after a stroke remain largely unknown. Our study is the first to investigate the effect of a CXCR7-neutralizing antibody on neurogenesis in the dentate gyrus and the associated recovery of cognitive function of rats in the chronic stage of cerebral ischemia. The rats were randomly divided into sham, sham + anti-CXCR7, ischemia and ischemia + anti-CXCR7 groups. Endothelin-1 was injected in the ipsilateral motor cortex and striatum to induce focal cerebral ischemia. Sham group rats were injected with saline instead of endothelin-1 via intracranial injection. Both sham and ischemic rats were treated with intraventricular infusions of CXCR7-neutralizing antibodies for 6 days 1 week after surgery. Immunofluorescence staining with doublecortin, a marker for neuronal precursors, was performed to assess the neurogenesis in the dentate gyrus. We found that anti-CXCR7 antibody infusion enhanced the proliferation and dendritic development of doublecortin-labeled cells in the dentate gyrus in both ischemic and sham-operated rats. Spatial learning and memory functions were assessed by Morris water maze tests 30–32 days after ischemia. CXCR7-neutralizing antibody treatment significantly reduced the escape latency of the spatial navigation trial and increased the time spent in the target quadrant of spatial probe trial in animals that received ischemic insult, but not in sham operated rats. These results suggest that CXCR7-neutralizing antibody enhances the neurogenesis in the dentate gyrus and improves the cognitive function after cerebral ischemia in rats. All animal experimental protocols and procedures were approved by the Institutional Animal Care and Use Committee of China Medical University (CMU16089R) on December 8, 2016.
Collapse
Affiliation(s)
- Bing-Chao Dong
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mei-Xuan Li
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiao-Yin Wang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xi Cheng
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yu Wang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ting Xiao
- Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, Liaoning Province, China
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Chuan-Sheng Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shan-Shan Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
28
|
Gao BY, Xu DS, Liu PL, Li C, Du L, Hua Y, Hu J, Hou JY, Bai YL. Modified constraint-induced movement therapy alters synaptic plasticity of rat contralateral hippocampus following middle cerebral artery occlusion. Neural Regen Res 2020; 15:1045-1057. [PMID: 31823884 PMCID: PMC7034265 DOI: 10.4103/1673-5374.270312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Modified constraint-induced movement therapy is an effective treatment for neurological and motor impairments in patients with stroke by increasing the use of their affected limb and limiting the contralateral limb. However, the molecular mechanism underlying its efficacy remains unclear. In this study, a middle cerebral artery occlusion (MCAO) rat model was produced by the suture method. Rats received modified constraint-induced movement therapy 1 hour a day for 14 consecutive days, starting from the 7th day after middle cerebral artery occlusion. Day 1 of treatment lasted for 10 minutes at 2 r/min, day 2 for 20 minutes at 2 r/min, and from day 3 onward for 20 minutes at 4 r/min. CatWalk gait analysis, adhesive removal test, and Y-maze test were used to investigate motor function, sensory function as well as cognitive function in rodent animals from the 1st day before MCAO to the 21st day after MCAO. On the 21st day after MCAO, the neurotransmitter receptor-related genes from both contralateral and ipsilateral hippocampi were tested by micro-array and then verified by western blot assay. The glutamate related receptor was shown by transmission electron microscopy and the glutamate content was determined by high-performance liquid chromatography. The results of behavior tests showed that modified constraint-induced movement therapy promoted motor and sensory functional recovery in the middle cerebral artery-occluded rats, but had no effect on cognitive function. The modified constraint-induced movement therapy upregulated the expression of glutamate ionotropic receptor AMPA type subunit 3 (Gria3) in the hippocampus and downregulated the expression of the beta3-adrenergic receptor gene Adrb3 and arginine vasopressin receptor 1A, Avpr1a in the middle cerebral artery-occluded rats. In the ipsilateral hippocampus, only Adra2a was downregulated, and there was no significant change in Gria3. Transmission electron microscopy revealed a denser distribution the more distribution of postsynaptic glutamate receptor 2/3, which is an α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor, within 240 nm of the postsynaptic density in the contralateral cornu ammonis 3 region. The size and distribution of the synaptic vesicles within 100 nm of the presynaptic active zone were unchanged. Western blot analysis showed that modified constraint-induced movement therapy also increased the expression of glutamate receptor 2/3 and brain-derived neurotrophic factor in the hippocampus of rats with middle cerebral artery occlusion, but had no effect on Synapsin I levels. Besides, we also found modified constraint-induced movement therapy effectively reduced glutamate content in the contralateral hippocampus. This study demonstrated that modified constraint-induced movement therapy is an effective rehabilitation therapy in middle cerebral artery-occluded rats, and suggests that these positive effects occur via the upregulation of the postsynaptic membrane α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor expression. This study was approved by the Institutional Animal Care and Use Committee of Fudan University, China (approval No. 201802173S) on March 3, 2018.
Collapse
Affiliation(s)
- Bei-Yao Gao
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dong-Sheng Xu
- Rehabilitation Section, Department of Spine Surgery, Tongji Hospital of Tongji University; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University) Ministry of Education, Shanghai, China
| | - Pei-Le Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ce Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Du
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Yun Hou
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai, China
| | - Yu-Long Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Maier M, Ballester BR, Verschure PFMJ. Principles of Neurorehabilitation After Stroke Based on Motor Learning and Brain Plasticity Mechanisms. Front Syst Neurosci 2019; 13:74. [PMID: 31920570 PMCID: PMC6928101 DOI: 10.3389/fnsys.2019.00074] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 11/19/2019] [Indexed: 01/19/2023] Open
Abstract
What are the principles underlying effective neurorehabilitation? The aim of neurorehabilitation is to exploit interventions based on human and animal studies about learning and adaptation, as well as to show that the activation of experience-dependent neuronal plasticity augments functional recovery after stroke. Instead of teaching compensatory strategies that do not reduce impairment but allow the patient to return home as soon as possible, functional recovery might be more sustainable as it ensures a long-term reduction in impairment and an improvement in quality of life. At the same time, neurorehabilitation permits the scientific community to collect valuable data, which allows inferring about the principles of brain organization. Hence neuroscience sheds light on the mechanisms of learning new functions or relearning lost ones. However, current rehabilitation methods lack the exact operationalization of evidence gained from skill learning literature, leading to an urgent need to bridge motor learning theory and present clinical work in order to identify a set of ingredients and practical applications that could guide future interventions. This work aims to unify the neuroscientific literature relevant to the recovery process and rehabilitation practice in order to provide a synthesis of the principles that constitute an effective neurorehabilitation approach. Previous attempts to achieve this goal either focused on a subset of principles or did not link clinical application to the principles of motor learning and recovery. We identified 15 principles of motor learning based on existing literature: massed practice, spaced practice, dosage, task-specific practice, goal-oriented practice, variable practice, increasing difficulty, multisensory stimulation, rhythmic cueing, explicit feedback/knowledge of results, implicit feedback/knowledge of performance, modulate effector selection, action observation/embodied practice, motor imagery, and social interaction. We comment on trials that successfully implemented these principles and report evidence from experiments with healthy individuals as well as clinical work.
Collapse
Affiliation(s)
- Martina Maier
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Belén Rubio Ballester
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Paul F. M. J. Verschure
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institucio Catalana de Recerca I Estudis Avançats, Barcelona, Spain
| |
Collapse
|
30
|
Cheng X, Wang H, Liu C, Zhong S, Niu X, Zhang X, Qi R, Zhao S, Zhang X, Qu H, Zhao C. Dl-3-n-butylphthalide promotes remyelination process in cerebral white matter in rats subjected to ischemic stroke. Brain Res 2019; 1717:167-175. [DOI: 10.1016/j.brainres.2019.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 03/12/2019] [Accepted: 03/16/2019] [Indexed: 01/02/2023]
|
31
|
Wang H, Cheng X, Yu H, Zhang X, Guan M, Zhao L, Liu Y, Linag Y, Luo Y, Zhao C. Activation of GABAA receptors enhances the behavioral recovery but not axonal sprouting in ischemic rats. Restor Neurol Neurosci 2019; 37:315-331. [PMID: 31227671 DOI: 10.3233/rnn-180827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Huibin Wang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xi Cheng
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hang Yu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Xiuchun Zhang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Meiting Guan
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lanqing Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yang Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Yifan Linag
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yujia Luo
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chuansheng Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
32
|
Maejima H, Inoue T, Takamatsu Y. Therapeutic exercise accompanied by neuronal modulation to enhance neurotrophic factors in the brain with central nervous system disorders. Phys Ther Res 2019; 22:38-43. [PMID: 31289711 DOI: 10.1298/ptr.r0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Exercise is a primary therapeutic regimen in physical therapy to rehabilitate the motor function of patients with central nervous system (CNS) disorders such as cerebrovascular accident (CVA). Furthermore, exercise positively contributes to cognitive function related to neuroplasticity and neuroprotection in the hippocampus. Neurotrophins play a crucial role in neuroplasticity, neurogenesis, and neuroprotection in the CNS. Exercise enhances the expression of neurotrophins in the brain. Thus, novel regimens for kinesiotherapy in CNS disorders to further enhance exercise-induced expression are expected. In this review, we described three novel regimens for kinesiotherapy in CNS disorders based on the interaction between exercise and pharmacological treatment with the idea of "inhibition of inhibition" in the CNS.
Collapse
Affiliation(s)
- Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University
| | | | - Yasuyuki Takamatsu
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University
| |
Collapse
|
33
|
Constraint induced movement therapy promotes contralesional-oriented structural and bihemispheric functional neuroplasticity after stroke. Brain Res Bull 2019; 150:201-206. [PMID: 31181321 DOI: 10.1016/j.brainresbull.2019.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022]
Abstract
The mechanism behind constraint-induced movement therapy (CIMT) in promoting motor recovery after stroke remains unclear. We explored the bilateral structural and functional reorganization of the brain induced by CIMT after left middle cerebral artery occlusion (MCAO) in rats. CIMT started on the 8th day (D8) after MCAO surgery and lasted for 3 weeks. Skilled walking was assessed by Foot-Fault tests. The efferent neuron network innervating the paralyzed forelimb was labeled by pseudorabies virus (PRV) to explore neuron recruitment. Synapsin Ⅰ was used as an indicator of the number of synapses. Additionally, C-fos expression 1 h after walking was detected to explore the activation of the brain. As a result, CIMT significantly improved skilled walking and elicited more neuron recruitment into the innervating network of a paralyzed forelimb in the contralesional rather than the ipsilesional motor cortex and red nucleus. CIMT also increased the synapse number in the contralesional cortex but there was no corresponding effect in the intact ipsilesional cortex. Furthermore, MCAO decreased ipsilesional motor cortex activation, but CIMT partially compensated for this by increasing the number of activated neurons (c-fos+) in both the left and right motor cortex. In conclusion, the contralesional motor cortex and red nucleus might play more important roles than corresponding ipsilesional regions in structural reorganization during CIMT-induced motor recovery after stroke. However, CIMT promotes bilateral motor cortex activity without a side preference.
Collapse
|
34
|
Zhai ZY, Feng J. Constraint-induced movement therapy enhances angiogenesis and neurogenesis after cerebral ischemia/reperfusion. Neural Regen Res 2019; 14:1743-1754. [PMID: 31169192 PMCID: PMC6585549 DOI: 10.4103/1673-5374.257528] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Constraint-induced movement therapy after cerebral ischemia stimulates axonal growth by decreasing expression levels of Nogo-A, RhoA, and Rho-associated kinase (ROCK) in the ischemic boundary zone. However, it remains unclear if there are any associations between the Nogo-A/RhoA/ROCK pathway and angiogenesis in adult rat brains in pathological processes such as ischemic stroke. In addition, it has not yet been reported whether constraint-induced movement therapy can promote angiogenesis in stroke in adult rats by overcoming Nogo-A/RhoA/ROCK signaling. Here, a stroke model was established by middle cerebral artery occlusion and reperfusion. Seven days after stroke, the following treatments were initiated and continued for 3 weeks: forced limb use in constraint-induced movement therapy rats (constraint-induced movement therapy group), intraperitoneal infusion of fasudil (a ROCK inhibitor) in fasudil rats (fasudil group), or lateral ventricular injection of NEP1–40 (a specific antagonist of the Nogo-66 receptor) in NEP1–40 rats (NEP1–40 group). Immunohistochemistry and western blot assay results showed that, at 2 weeks after middle cerebral artery occlusion, expression levels of RhoA and ROCK were lower in the ischemic boundary zone in rats treated with NEP1–40 compared with rats treated with ischemia/reperfusion or constraint-induced movement therapy alone. However, at 4 weeks after middle cerebral artery occlusion, expression levels of RhoA and ROCK in the ischemic boundary zone were markedly decreased in the NEP1–40 and constraint-induced movement therapy groups, but there was no difference between these two groups. Compared with the ischemia/reperfusion group, modified neurological severity scores and foot fault scores were lower and time taken to locate the platform was shorter in the constraint-induced movement therapy and fasudil groups at 4 weeks after middle cerebral artery occlusion, especially in the constraint-induced movement therapy group. Immunofluorescent staining demonstrated that fasudil promoted an immune response of nerve-regeneration-related markers (BrdU in combination with CD31 (platelet endothelial cell adhesion molecule), Nestin, doublecortin, NeuN, and glial fibrillary acidic protein) in the subventricular zone and ischemic boundary zone ipsilateral to the infarct. After 3 weeks of constraint-induced movement therapy, the number of regenerated nerve cells was noticeably increased, and was accompanied by an increased immune response of tight junctions (claudin-5), a pericyte marker (α-smooth muscle actin), and vascular endothelial growth factor receptor 2. Taken together, the results demonstrate that, compared with fasudil, constraint-induced movement therapy led to stronger angiogenesis and nerve regeneration ability and better nerve functional recovery at 4 weeks after cerebral ischemia/reperfusion. In addition, constraint-induced movement therapy has the same degree of inhibition of RhoA and ROCK as NEP1–40. Therefore, constraint-induced movement therapy promotes angiogenesis and neurogenesis after cerebral ischemia/reperfusion injury, at least in part by overcoming the Nogo-A/RhoA/ROCK signaling pathway. All protocols were approved by the Institutional Animal Care and Use Committee of China Medical University, China on December 9, 2015 (approval No. 2015PS326K).
Collapse
Affiliation(s)
- Zhi-Yong Zhai
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
35
|
Hu J, Li C, Hua Y, Zhang B, Gao BY, Liu PL, Sun LM, Lu RR, Wang YY, Bai YL. Constrained-induced movement therapy promotes motor function recovery by enhancing the remodeling of ipsilesional corticospinal tract in rats after stroke. Brain Res 2018; 1708:27-35. [PMID: 30471245 DOI: 10.1016/j.brainres.2018.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/29/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
Constraint-induced movement therapy (CIMT), which forces the use of the impaired limb by restraining the unaffected limb, has been used extensively for the recovery of limb motor function after stroke. However, the underlying mechanism of CIMT remains unclear. Diffusion tensor imaging (DTI) is a well-known neuroimaging technique that reflects the microstructure of white matter tracts and potential changes associated with different treatments. The aim of this study is to use DTI imaging to determine how corticospinal tract (CST) fibers remodel in ischemic rats with CIMT. In the present study, rats were randomly divided into three groups: a middle cerebral artery occlusion group (MCAO), a therapeutic group (MCAO + CIMT), and a sham-operated group (sham). A plaster cast was used to restrict the unaffected limb of the rats in the MCAO + CIMT group for 14 days. The Catwalk system was used to assess the limb motor function of rats. Fractional anisotropy (FA) and the average diffusion coefficient (ADC) of the CST were quantified through DTI. The expression of the c-Jun-N-terminal kinase signaling pathway (JNK) was examined after 14 days of CIMT. We found that CIMT could accelerate and enhance motor function recovery, and the MCAO + CIMT group showed significantly increased FA values in the ipsilesional posterior limb of internal capsule (PLIC) compared with the MCAO group. In addition, we found no significant difference in the ratio of phosphorylated-JNK/total-JNK among the three groups, whereas the expression of P-JNK decreased significantly in the chronic phase of stroke. In conclusion, CIMT-induced functional recovery following ischemic stroke through facilitation of the remodeling of ipsilesional CST, and restoration after ischemic stroke may be associated with the declining value of the ratio of P-JNK/JNK.
Collapse
Affiliation(s)
- Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ce Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Bei Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Bei-Yao Gao
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Pei-Le Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li-Min Sun
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong-Rong Lu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Yuan Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yu-Long Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
36
|
Inflammation and neural repair after ischemic brain injury. Neurochem Int 2018; 130:104316. [PMID: 30342960 DOI: 10.1016/j.neuint.2018.10.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/02/2018] [Accepted: 10/17/2018] [Indexed: 12/24/2022]
Abstract
Stroke causes neuronal cell death and destruction of neuronal circuits in the brain and spinal cord. Injury to the brain tissue induces sterile inflammation triggered by the extracellular release of endogenous molecules, but cerebral inflammation after stroke is gradually resolved within several days. In this pro-resolving process, inflammatory cells adopt a pro-resolving or repairing phenotype in the injured brain, activating endogenous repairing programs. Although the mechanisms involved in the transition from inflammation to neural repair after stroke remain largely unknown to date, some of the mechanisms for inflammation and neural repair have been clarified in detail. This review focuses on the molecular or cellular mechanisms involved in sterile inflammation and neural repair after stroke. This accumulation of evidence may be helpful for speculating about the endogenous repairing mechanisms in the brain and identifying therapeutic targets for improving the functional prognoses of stroke patients.
Collapse
|
37
|
Zhao C, Könönen M, Vanninen R, Pitkänen K, Hiekkala S, Jolkkonen J. Translating experimental evidence to finding novel ways to promote motor recovery in stroke patients – a review. Restor Neurol Neurosci 2018; 36:519-533. [PMID: 29889087 DOI: 10.3233/rnn-180814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | | | | | - Kauko Pitkänen
- Brain Research and Rehabilitation Center Neuron, Kuopio, Finland
| | - Sinikka Hiekkala
- Finnish Association of People with Physical Disabilities, Helsinki, Finland
| | - Jukka Jolkkonen
- Institute of Clinical Medicine – Neurology, University of Eastern Finland, Kuopio, Finland
- NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
38
|
Li MZ, Zhang Y, Zou HY, Ouyang JY, Zhan Y, Yang L, Cheng BCY, Wang L, Zhang QX, Lei JF, Zhao YY, Zhao H. Investigation of Ginkgo biloba extract (EGb 761) promotes neurovascular restoration and axonal remodeling after embolic stroke in rat using magnetic resonance imaging and histopathological analysis. Biomed Pharmacother 2018; 103:989-1001. [DOI: 10.1016/j.biopha.2018.04.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
|
39
|
Modo MM, Jolkkonen J, Zille M, Boltze J. Future of Animal Modeling for Poststroke Tissue Repair. Stroke 2018; 49:1099-1106. [PMID: 29669872 PMCID: PMC6013070 DOI: 10.1161/strokeaha.117.018293] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Michel M Modo
- From the Departments of Radiology and Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA (M.M.M.)
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio (J.J.)
- Neurocenter, Kuopio University Hospital, Finland (J.J.)
| | - Marietta Zille
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Institute for Medical and Marine Biotechnology, University of Lübeck, Mönkhofer Weg, Germany (M.Z., J.B.)
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee, Germany (M.Z.)
| | - Johannes Boltze
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Institute for Medical and Marine Biotechnology, University of Lübeck, Mönkhofer Weg, Germany (M.Z., J.B.)
| |
Collapse
|
40
|
Meyers EC, Solorzano BR, James J, Ganzer PD, Lai ES, Rennaker RL, Kilgard MP, Hays SA. Vagus Nerve Stimulation Enhances Stable Plasticity and Generalization of Stroke Recovery. Stroke 2018; 49:710-717. [PMID: 29371435 DOI: 10.1161/strokeaha.117.019202] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/28/2017] [Accepted: 12/21/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Chronic impairment of the arm and hand is a common consequence of stroke. Animal and human studies indicate that brief bursts of vagus nerve stimulation (VNS) in conjunction with rehabilitative training improve recovery of motor function after stroke. In this study, we tested whether VNS could promote generalization, long-lasting recovery, and structural plasticity in motor networks. METHODS Rats were trained on a fully automated, quantitative task that measures forelimb supination. On task proficiency, unilateral cortical and subcortical ischemic lesions were administered. One week after ischemic lesion, rats were randomly assigned to receive 6 weeks of rehabilitative training on the supination task with or without VNS. Rats then underwent 4 weeks of testing on a task assessing forelimb strength to test generalization of recovery. Finally, the durability of VNS benefits was tested on the supination task 2 months after the cessation of VNS. After the conclusion of behavioral testing, viral tracing was performed to assess synaptic connectivity in motor networks. RESULTS VNS enhances plasticity in corticospinal motor networks to increase synaptic connectivity to musculature of the rehabilitated forelimb. Adding VNS more than doubled the benefit of rehabilitative training, and the improvements lasted months after the end of VNS. Pairing VNS with supination training also significantly improved performance on a similar, but untrained task that emphasized volitional forelimb strength, suggesting generalization of forelimb recovery. CONCLUSIONS This study provides the first evidence that VNS paired with rehabilitative training after stroke (1) doubles long-lasting recovery on a complex task involving forelimb supination, (2) doubles recovery on a simple motor task that was not paired with VNS, and (3) enhances structural plasticity in motor networks.
Collapse
Affiliation(s)
- Eric C Meyers
- From the Texas Biomedical Device Center (E.C.M., B.R.S., J.J., P.D.G., E.S.L., R.L.R., M.P.K., S.A.H.), Erik Jonsson School of Engineering and Computer Science (E.C.M., P.D.G., E.S.L., R.L.R., M.P.K., S.A.H.), and School of Behavioral Brain Sciences (J.J., R.L.R., M.P.K.), University of Texas at Dallas, Richardson.
| | - Bleyda R Solorzano
- From the Texas Biomedical Device Center (E.C.M., B.R.S., J.J., P.D.G., E.S.L., R.L.R., M.P.K., S.A.H.), Erik Jonsson School of Engineering and Computer Science (E.C.M., P.D.G., E.S.L., R.L.R., M.P.K., S.A.H.), and School of Behavioral Brain Sciences (J.J., R.L.R., M.P.K.), University of Texas at Dallas, Richardson
| | - Justin James
- From the Texas Biomedical Device Center (E.C.M., B.R.S., J.J., P.D.G., E.S.L., R.L.R., M.P.K., S.A.H.), Erik Jonsson School of Engineering and Computer Science (E.C.M., P.D.G., E.S.L., R.L.R., M.P.K., S.A.H.), and School of Behavioral Brain Sciences (J.J., R.L.R., M.P.K.), University of Texas at Dallas, Richardson
| | - Patrick D Ganzer
- From the Texas Biomedical Device Center (E.C.M., B.R.S., J.J., P.D.G., E.S.L., R.L.R., M.P.K., S.A.H.), Erik Jonsson School of Engineering and Computer Science (E.C.M., P.D.G., E.S.L., R.L.R., M.P.K., S.A.H.), and School of Behavioral Brain Sciences (J.J., R.L.R., M.P.K.), University of Texas at Dallas, Richardson
| | - Elaine S Lai
- From the Texas Biomedical Device Center (E.C.M., B.R.S., J.J., P.D.G., E.S.L., R.L.R., M.P.K., S.A.H.), Erik Jonsson School of Engineering and Computer Science (E.C.M., P.D.G., E.S.L., R.L.R., M.P.K., S.A.H.), and School of Behavioral Brain Sciences (J.J., R.L.R., M.P.K.), University of Texas at Dallas, Richardson
| | - Robert L Rennaker
- From the Texas Biomedical Device Center (E.C.M., B.R.S., J.J., P.D.G., E.S.L., R.L.R., M.P.K., S.A.H.), Erik Jonsson School of Engineering and Computer Science (E.C.M., P.D.G., E.S.L., R.L.R., M.P.K., S.A.H.), and School of Behavioral Brain Sciences (J.J., R.L.R., M.P.K.), University of Texas at Dallas, Richardson
| | - Michael P Kilgard
- From the Texas Biomedical Device Center (E.C.M., B.R.S., J.J., P.D.G., E.S.L., R.L.R., M.P.K., S.A.H.), Erik Jonsson School of Engineering and Computer Science (E.C.M., P.D.G., E.S.L., R.L.R., M.P.K., S.A.H.), and School of Behavioral Brain Sciences (J.J., R.L.R., M.P.K.), University of Texas at Dallas, Richardson
| | - Seth A Hays
- From the Texas Biomedical Device Center (E.C.M., B.R.S., J.J., P.D.G., E.S.L., R.L.R., M.P.K., S.A.H.), Erik Jonsson School of Engineering and Computer Science (E.C.M., P.D.G., E.S.L., R.L.R., M.P.K., S.A.H.), and School of Behavioral Brain Sciences (J.J., R.L.R., M.P.K.), University of Texas at Dallas, Richardson
| |
Collapse
|
41
|
Li YY, Zhang B, Yu KW, Li C, Xie HY, Bao WQ, Kong YY, Jiao FY, Guan YH, Bai YL. Effects of constraint-induced movement therapy on brain glucose metabolism in a rat model of cerebral ischemia: a micro PET/CT study. Int J Neurosci 2018; 128:736-745. [PMID: 29251083 DOI: 10.1080/00207454.2017.1418343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ying-Ying Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Bei Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ke-Wei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ce Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong-Yu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Qi Bao
- Center, Department of Nuclear Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan-Yan Kong
- Center, Department of Nuclear Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang-Yang Jiao
- Center, Department of Nuclear Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Hui Guan
- Center, Department of Nuclear Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Long Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Cell Therapy in Stroke-Cautious Steps Towards a Clinical Treatment. Transl Stroke Res 2017; 9:321-332. [PMID: 29150739 DOI: 10.1007/s12975-017-0587-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 01/01/2023]
Abstract
In the future, stroke patients may receive stem cell therapy as this has the potential to restore lost functions. However, the development of clinically deliverable therapy has been slower and more challenging than expected. Despite recommendations by STAIR and STEPS consortiums, there remain flaws in experimental studies such as lack of animals with comorbidities, inconsistent approaches to experimental design, and concurrent rehabilitation that might lead to a bias towards positive results. Clinical studies have typically been small, lacking control groups as well as often without clear biological hypotheses to guide patient selection. Furthermore, they have used a wide range of cell types, doses, and delivery methods, and outcome measures. Although some ongoing and recent trial programs offer hints that these obstacles are now being tackled, the Horizon2020 funded RESSTORE trial will be given as an example of inconsistent regulatory requirements and challenges in harmonized cell production, logistic, and clinical criteria in an international multicenter study. The PISCES trials highlight the complex issues around intracerebral cell transplantation. Therefore, a better understanding of translational challenges is expected to pave the way to more successful help for stroke patients.
Collapse
|
43
|
Mu XP, Wang HB, Cheng X, Yang L, Sun XY, Qu HL, Zhao SS, Zhou ZK, Liu TT, Xiao T, Song B, Jolkkonen J, Zhao CS. Inhibition of Nkcc1 promotes axonal growth and motor recovery in ischemic rats. Neuroscience 2017; 365:83-93. [PMID: 28964752 DOI: 10.1016/j.neuroscience.2017.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/03/2017] [Accepted: 09/21/2017] [Indexed: 12/15/2022]
Abstract
Bumetanide is a selective inhibitor of the Na+-K+-Cl--co-transporter 1(NKCC1). We studied whether bumetanide could affect axonal growth and behavioral outcome in stroke rats. Adult male Wistar rats were randomly assigned to four groups: sham-operated rats treated with vehicle or bumetanide, and ischemic rats treated with vehicle or bumetanide. Endothelin-1 was used to induce focal cerebral ischemia. Bumetanide administration (i.c.v.) started on postoperative day 7 and continued for 3 weeks. Biotinylated dextran amine (BDA) was injected into the right imotor cortex on postoperative day 14 to trace corticospinal tract (CST) fibers sprouting into the denervated cervical spinal cord. Nogo-A, NKCC1, KCC2 and BDNF in the perilesional cortex and BDA, PSD-95 and vGlut1 in the denervated spinal cord were measured by immunohistochemistry and/or Western blot. Behavioral outcome of rats was assessed by the beam walking and cylinder tests. The total length of CST fibers sprouting into the denervated cervical spinal cord significantly increased after stroke and bumetanide further increased this sprouting. Bumetanide treatment also decreased the expressions of NKCC1 and Nogo-A, increased the expressions of KCC2 and BDNF in the perilesional cortex and enhanced the synaptic plasticity in the denervated cervical spinal cord after cerebral ischemia. The behavioral performance of ischemic rats was significantly improved by bumetanide. In conclusion, bumetanide promoted post-stroke axonal sprouting together accompanied by an improved behavioral outcome possibly through restoring and maintaining neuronal chloride homeostasis and creating a recovery-promoting microenvironment by overcoming the axonal growth inhibition encountered after cerebral ischemia in rats.
Collapse
Affiliation(s)
- X P Mu
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China; Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - H B Wang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - X Cheng
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - L Yang
- Department of Cardiology, The Affiliated Center Hospital, Shenyang Medical College, Shenyang, China
| | - X Y Sun
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - H L Qu
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - S S Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Z K Zhou
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - T T Liu
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - T Xiao
- Department of Dermatology, The First Affiliated Hospital, China Medical University, Shenyang, China; Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, China
| | - B Song
- Regenerative Medicine, Cardiff Institute of Tissue Engineering and Repair, School of Dentistry, Cardiff University, Cardiff, UK
| | - J Jolkkonen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P. O. Box 1627, 70211 Kuopio, Finland
| | - C S Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
44
|
Zhang C, Zou Y, Li K, Li C, Jiang Y, Sun J, Sun R, Wen H. Different effects of running wheel exercise and skilled reaching training on corticofugal tract plasticity in hypertensive rats with cortical infarctions. Behav Brain Res 2017; 336:166-172. [PMID: 28882693 DOI: 10.1016/j.bbr.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/15/2022]
Abstract
The approaches that facilitate white matter plasticity may prompt functional recovery after a stroke. The effects of different exercise methods on motor recovery in stroke rats have been investigated. However, it is not clear whether their effects on axonal plasticity different. The aim of this study was to compare the effects of the forced running wheel exercise (RWE) and skilled reaching training (SRT) on axonal plasticity and motor recovery. Cortical infarctions were generated in stroke-prone renovascular hypertensive rats. The rats were randomly divided into the following three groups: the control (Con) group, the RWE group, and the SRT group. A sham group was also included. The mNSS and forelimb grip strength tests were performed on days 3, 7, 14, 21, 28, 35, and 42 after ischemia. The anterograde tract tracer biotinylated dextran amine (BDA) was injected into the rats to trace the axonal plasticity of the contralesional corticofugal tracts. Compared with the Con group, the mNSS scores in the SRT and RWE groups decreased on day 28 (P<0.05) and on days 35 and 42 (P<0.01). The grip strength in the SRT group increased relative to that in the RWE group at 42day post-ischemia (P<0.01). Both the RWE and SRT groups exhibited enhanced plasticity of the contralesional corticofugal tract axons at the level of the red nucleus (P<0.01) and the cervical enlargement (P<0.01). More contralateral corticorubral tract remodeling was observed at the red nucleus level in the SRT group than in the RWE group (P<0.001). Taken together, these results suggest that SRT may enhance axon plasticity in the corticorubral tract more effectively than the forced RWE and is associated with better motor recovery after cerebral ischemia.
Collapse
Affiliation(s)
- ChanJuan Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China; Department of Rehabilitation Medicine, Guangdong Second Provincial General Hospital, 466 Xingang Middle Road, Guangzhou 510317, Guangdong Province, China
| | - Yan Zou
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Kui Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Chao Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - YingPing Jiang
- Department of Rehabilitation Medicine, Guangdong Second Provincial General Hospital, 466 Xingang Middle Road, Guangzhou 510317, Guangdong Province, China
| | - Ju Sun
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Ruifang Sun
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - HongMei Wen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| |
Collapse
|
45
|
Holahan MR. A Shift from a Pivotal to Supporting Role for the Growth-Associated Protein (GAP-43) in the Coordination of Axonal Structural and Functional Plasticity. Front Cell Neurosci 2017; 11:266. [PMID: 28912688 PMCID: PMC5583208 DOI: 10.3389/fncel.2017.00266] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/18/2017] [Indexed: 11/14/2022] Open
Abstract
In a number of animal species, the growth-associated protein (GAP), GAP-43 (aka: F1, neuromodulin, B-50, G50, pp46), has been implicated in the regulation of presynaptic vesicular function and axonal growth and plasticity via its own biochemical properties and interactions with a number of other presynaptic proteins. Changes in the expression of GAP-43 mRNA or distribution of the protein coincide with axonal outgrowth as a consequence of neuronal damage and presynaptic rearrangement that would occur following instances of elevated patterned neural activity including memory formation and development. While functional enhancement in GAP-43 mRNA and/or protein activity has historically been hypothesized as a central mediator of axonal neuroplastic and regenerative responses in the central nervous system, it does not appear to be the crucial substrate sufficient for driving these responses. This review explores the historical discovery of GAP-43 (and associated monikers), its transcriptional, post-transcriptional and post-translational regulation and current understanding of protein interactions and regulation with respect to its role in axonal function. While GAP-43 itself appears to have moved from a pivotal to a supporting factor, there is no doubt that investigations into its functions have provided a clearer understanding of the biochemical underpinnings of axonal plasticity.
Collapse
|
46
|
Loris ZB, Hynton JR, Pieper AA, Dietrich WD. Beneficial Effects of Delayed P7C3-A20 Treatment After Transient MCAO in Rats. Transl Stroke Res 2017; 9:146-156. [PMID: 28842830 DOI: 10.1007/s12975-017-0565-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 01/15/2023]
Abstract
Despite ischemic stroke being the fifth leading cause of death in the USA, there are few therapeutic options available. We recently showed that the neuroprotective compound P7C3-A20 reduced brain atrophy, increased neurogenesis, and improved functional recovery when treatment was initiated immediately post-reperfusion after a 90-min middle cerebral artery occlusion (MCAO). In the present study, we investigated a more clinically relevant therapeutic window for P7C3-A20 treatment after ischemic stroke. MCAO rats were administered P7C3-A20 for 1 week, beginning immediately or at a delayed point, 6 h post-reperfusion. Delayed P7C3-A20 treatment significantly improved stroke-induced sensorimotor deficits in motor coordination and symmetry, as well as cognitive deficits in hippocampal-dependent spatial learning, memory retention, and working memory. In the cerebral cortex, delayed P7C3-A20 treatment significantly increased tissue sparing 7 weeks after stroke and reduced hemispheric infarct volumes 48 h after reperfusion. Despite no reduction in striatal infarct volumes acutely, there was a significant increase in spared tissue volume chronically. In the hippocampus, only immediately treated P7C3-A20 animals had a significant increase in tissue sparing compared to vehicle-treated stroke animals. This structural protection translated into minimal hippocampal-dependent behavioral improvements with delayed P7C3-A20 treatment. However, all rats treated with delayed P7C3-A20 demonstrated a significant improvement in both sensorimotor tasks compared to vehicle controls, suggesting a somatosensory-driven recovery. These results demonstrate that P7C3-A20 improves chronic functional and histopathological outcomes after ischemic stroke with an extended therapeutic window.
Collapse
Affiliation(s)
- Zachary B Loris
- Department of Neurological Surgery, Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA.,The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Justin R Hynton
- Department of Neurological Surgery, Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew A Pieper
- Department of Psychiatry, College of Medicine, University of Iowa Carver College of Medicine, 169 Newton Road, Iowa City, IA, 52242, USA. .,Department of Neurology, University of Iowa Carver College of Medicine, 169 Newton Road, Iowa City, IA, 52242, USA. .,Department of Free Radical and Radiation Biology Program, Department of Radiation Oncology Comprehensive Cancer Center, Department of Veterans Affairs, University of Iowa Carver College of Medicine, 169 Newton Road, Iowa City, IA, 52242, USA.
| | - W Dalton Dietrich
- Department of Neurological Surgery, Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA. .,The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA. .,Department of Neurological Surgery, University of Miami, Leonard M. Miller School of Medicine, 1095 NW 14th Terrace, Suite 2-30, Miami, FL, 33136-1060, USA.
| |
Collapse
|
47
|
Sun Y, Cheng X, Wang H, Mu X, Liang Y, Luo Y, Qu H, Zhao C. dl -3- n -butylphthalide promotes neuroplasticity and motor recovery in stroke rats. Behav Brain Res 2017; 329:67-74. [DOI: 10.1016/j.bbr.2017.04.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 01/05/2023]
|
48
|
Hylin MJ, Kerr AL, Holden R. Understanding the Mechanisms of Recovery and/or Compensation following Injury. Neural Plast 2017; 2017:7125057. [PMID: 28512585 PMCID: PMC5415868 DOI: 10.1155/2017/7125057] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/24/2017] [Accepted: 03/26/2017] [Indexed: 11/30/2022] Open
Abstract
Injury due to stroke and traumatic brain injury result in significant long-term effects upon behavioral functioning. One central question to rehabilitation research is whether the nature of behavioral improvement observed is due to recovery or the development of compensatory mechanisms. The nature of functional improvement can be viewed from the perspective of behavioral changes or changes in neuroanatomical plasticity that follows. Research suggests that these changes correspond to each other in a bidirectional manner. Mechanisms surrounding phenomena like neural plasticity may offer an opportunity to explain how variables such as experience can impact improvement and influence the definition of recovery. What is more, the intensity of the rehabilitative experiences may influence the ability to recover function and support functional improvement of behavior. All of this impacts how researchers, clinicians, and medical professionals utilize rehabilitation.
Collapse
Affiliation(s)
- Michael J. Hylin
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| | - Abigail L. Kerr
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Ryan Holden
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
49
|
The neuroprotective compound P7C3-A20 promotes neurogenesis and improves cognitive function after ischemic stroke. Exp Neurol 2017; 290:63-73. [PMID: 28077334 DOI: 10.1016/j.expneurol.2017.01.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/05/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022]
Abstract
Ischemic stroke is a devastating condition with few therapeutic interventions available. The neuroprotective compound P7C3-A20 inhibits mature neuronal cell death while also increasing the net magnitude of postnatal neurogenesis in models of neurodegeneration and acute injury. P7C3 compounds enhance flux of nicotinamide adenine dinucleotide (NAD) in mammalian cells, a proposed therapeutic approach to treating cerebral ischemia. The effectiveness of P7C3-A20 treatment on chronic histopathological and behavioral outcomes and neurogenesis after ischemic stroke has not previously been established. Here, a transient middle cerebral artery occlusion in rats was followed by twice daily injection of P7C3-A20 or vehicle for 7days. P7C3-A20-treated rats performed significantly better than vehicle-treated controls in sensorimotor cylinder and grid-walk tasks, and in a chronic test of spatial learning and memory. These behavioral improvements with P7C3-A20 treatment were correlated with significantly decreased cortical and hippocampal atrophy, and associated with increased neurogenesis in the subventricular zone and hippocampal dentate gyrus subgranular zone. Furthermore, cerebral ischemia significantly reduced NAD in the cortex but P7C3-A20 treatment restored NAD to sham levels. Thus, P7C3-A20 treatment mitigates neurodegeneration and augments repair in the brain after focal ischemia, which translates into chronic behavioral improvement. This suggests a new therapeutic approach of using P7C3 compounds to safely augment NAD and thereby promote two independent processes critical to protecting the brain from ischemic stroke: mature neuron survival and postnatal neurogenesis throughout the post-ischemic brain.
Collapse
|
50
|
Okabe N, Narita K, Miyamoto O. Axonal remodeling in the corticospinal tract after stroke: how does rehabilitative training modulate it? Neural Regen Res 2017; 12:185-192. [PMID: 28400791 PMCID: PMC5361493 DOI: 10.4103/1673-5374.200792] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstruct the remaining neural network. In the motor system, such neural network remodeling is observed as a motor map reorganization. Because of its significant correlation with functional recovery, motor map reorganization has been regarded as a key phenomenon for functional recovery after stroke. Although the mechanism underlying motor map reorganization remains unclear, increasing evidence has shown a critical role for axonal remodeling in the corticospinal tract. In this study, we review previous studies investigating axonal remodeling in the corticospinal tract after stroke and discuss which mechanisms may underlie the stimulatory effect of rehabilitative training. Axonal remodeling in the corticospinal tract can be classified into three types based on the location and the original targets of corticospinal neurons, and it seems that all the surviving corticospinal neurons in both ipsilesional and contralesional hemisphere can participate in axonal remodeling and motor map reorganization. Through axonal remodeling, corticospinal neurons alter their output selectivity from a single to multiple areas to compensate for the lost function. The remodeling of the corticospinal axon is influenced by the extent of tissue destruction and promoted by various therapeutic interventions, including rehabilitative training. Although the precise molecular mechanism underlying rehabilitation-promoted axonal remodeling remains elusive, previous data suggest that rehabilitative training promotes axonal remodeling by upregulating growth-promoting and downregulating growth-inhibiting signals.
Collapse
Affiliation(s)
- Naohiko Okabe
- Second Department of Physiology, Kawasaki Medical School 577, Matsushima, Kurashiki City, Okayama, Japan
| | - Kazuhiko Narita
- Second Department of Physiology, Kawasaki Medical School 577, Matsushima, Kurashiki City, Okayama, Japan
| | - Osamu Miyamoto
- Second Department of Physiology, Kawasaki Medical School 577, Matsushima, Kurashiki City, Okayama, Japan
| |
Collapse
|