1
|
Hamzei F, Ritter A, Güllmar D. Implicit Motor Learning Under Anodal or Cathodal tDCS During fMRI Induces Partially Distinct Network Responses. Eur J Neurosci 2025; 61:e70053. [PMID: 40075554 PMCID: PMC11903934 DOI: 10.1111/ejn.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
How anodal transcranial direct current stimulation (atDCS) and cathodal tDCS (ctDCS) affect brain networks is still unclear. Previous fMRI studies have yielded controversial results regarding the effects of atDCS and ctDCS on fMRI activation. The present study hypothesizes that the choice of fMRI paradigm may be a contributing factor to this divergence. Therefore, the present study employed two distinct fMRI paradigms, characterized by varying degrees of complexity: finger tapping as a simple fMRI paradigm and an implicit serial reaction time task (SRTT) as a more challenging paradigm. Seventy-five healthy subjects were randomized to receive either atDCS, ctDCS, or sham stimulation during fMRI. The main effects of the blood oxygenation level-dependent (BOLD) signal were contrasted between groups. SRTT, but not FT, was capable of eliciting differences in modulatory effects on the network between groups. Analysis of functional connectivity between ROIs showed that atDCS and ctDCS shared common and distinct SRTT networks. Correlations between BOLD signal (in ROIs) and the reaction time (RT) recorded during fMRI showed that in the atDCS group, faster RT was associated with higher BOLD signal in the most ROIs, while in the ctDCS group, faster RT was mostly associated with lower BOLD signal activity. The sham group exhibited a combination of these associations. We suggest that atDCS accelerates RT by "pushing" the network, while the network response under ctDCS was a "compensatory" response. The polarity of tDCS differentially modulated the adaptive plasticity of remotely connected regions, based on the concept of functional organization of distributed segregated networks.
Collapse
Affiliation(s)
- Farsin Hamzei
- Section of Neurological Rehabilitation, Clinic of Neurology, University Hospital Jena, Jena, Germany
- Department of Neurology, Moritz Klinik Bad Klosterlausnitz, Bad Klosterlausnitz, Germany
| | - Alexander Ritter
- Section of Neurological Rehabilitation, Clinic of Neurology, University Hospital Jena, Jena, Germany
| | - Daniel Güllmar
- Medical Physics Group, Department of Radiology, University Hospital Jena, Jena, Germany
| |
Collapse
|
2
|
Jiang T, Yan J, Li X, Yang M, Zhuang Y, Ding Z, Tan M, Xia S, Li R, Wang W, Chen F, Xie X, Liu W. tDCS Combined with CIMT for Post-stroke Upper Extremity Rehabilitation: A Systematic Review and Meta-Analysis. NeuroRehabilitation 2025; 56:97-112. [PMID: 40260720 DOI: 10.1177/10538135241301692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
BackgroundTranscranial direct current stimulation (tDCS) has been widely used as an adjunctive treatment for motor function after stroke.ObjectiveTo quantify the effect of tDCS combined with constraint-induced movement therapy (CIMT) on the functional recovery of the upper limb after stroke.MethodsBy May 2024, two independent authors screened relevant randomized controlled trials (RCTs) published in English from PubMed, Embase, Web of Science and the Cochrane Library. Publication bias was assessed using the Egger's test.ResultsOf the 221 retrieved records, seven publications met the criteria for systematic review and quantitative analysis. According to estimates of Hedges'g, significant effects were revealed from Fugl-Meyer Assessment for Upper Limbs (UL-FMA) for upper limb impairment (g = 0.587, 95% CI = 0.256 to 0.919, p < 0.05) and Motor Activity Log-Amount of Movement (MAL-AoM) for perceived amount of motor (g = 0.386, 95% CI = 0.030 to 0.743, p < 0.05). Significant results favoring combined therapy were not found in Motor Activity Log-Quality of Movement (MAL-QoM) (g = 0.181, 95% CI = -0.169 to 0.531, p > 0.05), grip strength (g = 0.135, 95% CI = -0.214 to 0.485, p > 0.05) or Wolf Motor Function Test (WMFT) (g = 0.210, 95% CI = -0.117 to 0.537, p > 0.05).ConclusionsOur findings confirmed that tDCS enhanced the effect of CIMT in improving upper limb impairment and perceived amount of motor in daily life after stroke.
Collapse
Affiliation(s)
- Tao Jiang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jiamin Yan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Xiaohan Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Minguang Yang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yueyang Zhuang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Zhimin Ding
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Mengquan Tan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Sijia Xia
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Rui Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Wenju Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Feng Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Xi Xie
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Weilin Liu
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
3
|
Huang Z, Charalambous CC, Chen M, Kim T, Sokhadze E, Song A, Jung SH, Shekhar S, Feld JA, Jiang X, Feng W. Low intensity focused ultrasound stimulation in stroke: A phase I safety & feasibility trial. Brain Stimul 2025; 18:179-187. [PMID: 39842609 DOI: 10.1016/j.brs.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/30/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025] Open
Abstract
OBJECTIVE We aimed to determine the maximum safe spatial-peak pulse-average intensity (ISPPA) of low-intensity focused ultrasound stimulation (LIFUS) in stroke patients and explore its effect on motor learning and corticospinal excitability. METHODS We adopted the classic 3 + 3 design to escalate ISPPA (estimated in-vivo transcranial value) from 0, 1, 2, 4, 6, to 8 W/cm2. Stopping rules were pre-defined: 2nd-degree scalp burn, clinical seizure, new lesion on diffusion-weighted imaging or major reduction in apparent diffusion coefficient, and participant discontinuation due to any reason. We applied 12-min LIFUS over the ipsilesional motor cortex while participants were concurrently practicing 3 blocks of a motor sequence learning (MSL) task using the affected hand. We measured MSL (response time) and corticospinal excitability (motor evoked potential) pre- and post-stimulation and compared MSL and corticospinal excitability between the LOW (0, 1, and 2 W/cm2) and HIGH (4, 6, and 8 W/cm2) groups. RESULTS ISPPA was escalated to 8 W/cm2 with 18 stroke participants without meeting the stopping rules. Compared to the LOW, more participants in the HIGH performed better on MSL (6/9 vs. 0/9, p = 0.009) and showed a sign of greater corticospinal excitability (7/9 vs. 5/9, p = 0.62). INTERPRETATION Our phase-I safety study suggests that one session of LIFUS up to 8 W/cm2 ISPPA is safe and feasible in stroke patients, and LIFUS at high intensity induces positive changes in both MSL and corticospinal excitability. The next logical step is to conduct a phase-II trial testing the efficacy of LIFUS and continuously monitoring its safety profiles.
Collapse
Affiliation(s)
- Ziping Huang
- Department of Neurology, Duke University School of Medicine, USA; Department of Biomedical Engineering, Duke University, USA
| | | | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, USA
| | - Taewon Kim
- Department of Physical Medicine and Rehabilitation, Penn State College of Medicine, USA; Department of Kinesiology, Pennsylvania State University, USA
| | - Estate Sokhadze
- Department of Neurology, Duke University School of Medicine, USA
| | - Allen Song
- Duke Brain Imaging and Analysis Center, Duke University School of Medicine, USA
| | - Sin-Ho Jung
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, USA
| | - Shashank Shekhar
- Department of Neurology, Duke University School of Medicine, USA
| | - Jody A Feld
- Department of Neurology, Duke University School of Medicine, USA; Department of Orthopedic Surgery, Duke University School of Medicine, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, USA
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, USA; Department of Biomedical Engineering, Duke University, USA
| |
Collapse
|
4
|
Chen P, Tse MMY, Ng SSM, Ho LCM, Kwok ATC, Lam SCY, Liu TW, Wong TWL, So BCL, Lai CYY. Psychometric properties of lift and carry test in assessing people with stroke. Front Neurol 2024; 15:1379536. [PMID: 39239398 PMCID: PMC11375510 DOI: 10.3389/fneur.2024.1379536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Objective To investigate the psychometric properties of the Lift and Carry Test (LCT) time in people with stroke. Design Cross-sectional design. Setting University based neurorehabilitation laboratory. Participants Twenty-four people with stroke and 24 healthy controls. Outcome measures Lift and Carry Test (LCT), Fugl-Meyer Assessment of upper extremity and lower extremity, ankle dorsiflexor and plantarflexor muscle strength, Berg Balance Scale (BBS), Timed Up and Go (TUG) and Community Integration Measure. Results The mean LCT time (29.70s) in people with stroke was more than double of that in healthy controls (13.70s). The LCT showed excellent intra-rater, inter-rater and test-retest reliability [intraclass correlation coefficient (ICC) = 0.943-1.000]. The LCT times demonstrated a significant negative correlation with the BBS score (rs = -0.771) and significant positive correlations with the TUG times (rs = 0.933). There was no significant correlation between LCT times and FMA score (p > 0.05). An optimal cut-off LCT time of 15.48 s (sensitivity = 95.8%, specificity = 87.5%) was identified to differentiate between people with stroke and healthy controls (area under the curve = 0.957). Conclusion LCT is an excellent clinical test for examining advanced functional ability in people with stroke and distinguishing people with stroke from healthy controls.
Collapse
Affiliation(s)
- Peiming Chen
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Mimi M Y Tse
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, Hong Kong SAR, China
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Leo C M Ho
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Anthony T C Kwok
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Sam C Y Lam
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Tai Wa Liu
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, Hong Kong SAR, China
| | - Thomson W L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Billy C L So
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Cynthia Y Y Lai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
5
|
Wessel MJ, Draaisma LR, Durand-Ruel M, Maceira-Elvira P, Moyne M, Turlan JL, Mühl A, Chauvigné L, Koch PJ, Morishita T, Guggisberg AG, Hummel FC. Multi-focal Stimulation of the Cortico-cerebellar Loop During the Acquisition of a Novel Hand Motor Skill in Chronic Stroke Survivors. CEREBELLUM (LONDON, ENGLAND) 2024; 23:341-354. [PMID: 36802021 PMCID: PMC10951005 DOI: 10.1007/s12311-023-01526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 02/21/2023]
Abstract
Impairment of hand motor function is a frequent consequence after a stroke and strongly determines the ability to regain a self-determined life. An influential research strategy for improving motor deficits is the combined application of behavioral training and non-invasive brain stimulation of the motor cortex (M1). However, a convincing clinical translation of the present stimulation strategies has not been achieved yet. One alternative and innovative approach is to target the functionally relevant brain network-based architecture, e.g., the dynamic interactions within the cortico-cerebellar system during learning. Here, we tested a sequential multifocal stimulation strategy targeting the cortico-cerebellar loop. Anodal transcranial direct current stimulation (tDCS) was applied simultaneously to a hand-based motor training in N = 11 chronic stroke survivors during four training sessions on two consecutive days. The tested conditions were: sequential multifocal (M1-cerebellum (CB)-M1-CB) vs. monofocal control stimulation (M1-sham-M1-sham). Additionally, skill retention was assessed 1 and 10 days after the training phase. Paired-pulse transcranial magnetic stimulation data were recorded to characterize stimulation response determining features. The application of CB-tDCS boosted motor behavior in the early training phase in comparison to the control condition. No faciliatory effects on the late training phase or skill retention were detected. Stimulation response variability was related to the magnitude of baseline motor ability and short intracortical inhibition (SICI). The present findings suggest a learning phase-specific role of the cerebellar cortex during the acquisition of a motor skill in stroke and that personalized stimulation strategies encompassing several nodes of the underlying brain network should be considered.
Collapse
Affiliation(s)
- M J Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland
- University Hospital Würzburg (UKW), Department of Neurology, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - L R Draaisma
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland
| | - M Durand-Ruel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland
| | - P Maceira-Elvira
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland
| | - M Moyne
- Department of Clinical Neurosciences, Geneva University Hospital (HUG), Geneva, Switzerland
| | - J-L Turlan
- Clinique Romande de Réadaptation (CRR Suva), Sion, Switzerland
| | - A Mühl
- Clinique Romande de Réadaptation (CRR Suva), Sion, Switzerland
| | - L Chauvigné
- Department of Clinical Neurosciences, Geneva University Hospital (HUG), Geneva, Switzerland
| | - P J Koch
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland
| | - T Morishita
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland
| | - A G Guggisberg
- Department of Clinical Neurosciences, Geneva University Hospital (HUG), Geneva, Switzerland
- Universitäre Neurorehabilitation, Universitätsklinik für Neurologie, Inselspital, University Hospital of Berne, Berne, Switzerland
| | - F C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland.
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland.
- Department of Clinical Neurosciences, Geneva University Hospital (HUG), Geneva, Switzerland.
| |
Collapse
|
6
|
Tseng SC, Cherry D, Ko M, Fisher SR, Furtado M, Chang SH. The effects of combined transcranial brain stimulation and a 4-week visuomotor stepping training on voluntary step initiation in persons with chronic stroke-a pilot study. Front Neurol 2024; 15:1286856. [PMID: 38450075 PMCID: PMC10915046 DOI: 10.3389/fneur.2024.1286856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024] Open
Abstract
Purpose Evidence suggests that transcranial direct current stimulation (tDCS) can enhance motor performance and learning of hand tasks in persons with chronic stroke (PCS). However, the effects of tDCS on the locomotor tasks in PCS are unclear. This pilot study aimed to: (1) determine aggregate effects of anodal tDCS combined with step training on improvements of the neural and biomechanical attributes of stepping initiation in a small cohort of persons with chronic stroke (PCS) over a 4-week training program; and (2) assess the feasibility and efficacy of this novel approach for improving voluntary stepping initiation in PCS. Methods A total of 10 PCS were randomly assigned to one of two training groups, consisting of either 12 sessions of VST paired with a-tDCS (n = 6) or sham tDCS (s-tDCS, n = 4) over 4 weeks, with step initiation (SI) tests at pre-training, post-training, 1-week and 1-month follow-ups. Primary outcomes were: baseline vertical ground reaction force (B-vGRF), response time (RT) to initiate anticipatory postural adjustment (APA), and the retention of B-VGRF and RT. Results a-tDCS paired with a 4-week VST program results in a significant increase in paretic weight loading at 1-week follow up. Furthermore, a-tDCS in combination with VST led to significantly greater retention of paretic BWB compared with the sham group at 1 week post-training. Clinical implications The preliminary findings suggest a 4-week VST results in improved paretic limb weight bearing (WB) during SI in PCS. Furthermore, VST combined with a-tDCS may lead to better retention of gait improvements (NCT04437251) (https://classic.clinicaltrials.gov/ct2/show/NCT04437251).
Collapse
Affiliation(s)
- Shih-Chiao Tseng
- Neuromechanics Laboratory, Department of Physical Therapy, University of Texas Medical Branch, Galveston, TX, United States
| | - Dana Cherry
- Neuromechanics Laboratory, Department of Physical Therapy, University of Texas Medical Branch, Galveston, TX, United States
| | - Mansoo Ko
- Neuromechanics Laboratory, Department of Physical Therapy, University of Texas Medical Branch, Galveston, TX, United States
| | - Steven R. Fisher
- Neuromechanics Laboratory, Department of Physical Therapy, University of Texas Medical Branch, Galveston, TX, United States
| | - Michael Furtado
- Department of Physical Therapy, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, United States
| | - Shuo-Hsiu Chang
- Neuromuscular Plasticity Laboratory, Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
7
|
Jung DH, Lee JH, Lee HJ, Park JW, Jung YJ, Shin HK, Choi BT. Therapeutic effects of a novel electrode for transcranial direct current stimulation in ischemic stroke mice. Theranostics 2024; 14:1325-1343. [PMID: 38389833 PMCID: PMC10879864 DOI: 10.7150/thno.90779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: Non-invasive transcranial direct current stimulation (tDCS), a promising stimulation tool to modulate a wide range of brain disorders, has major limitations, such as poor cortical stimulation intensity and focality. We designed a novel electrode for tDCS by conjugating a needle to a conventional ring-based high-definition (HD) electrode to enhance cortical stimulation efficacy. Method: HD-tDCS (43 µA/mm2, charge density 51.6 kC/m2, 20 min) was administered to male C57BL/6J mice subjected to early-stage ischemic stroke. Behavioral tests were employed to determine the therapeutic effects, and the underlying mechanisms of HD-tDCS were determined by performing RNA sequencing and other biomedical analyses. Results: The new HD-tDCS application, showing a higher electric potential and spatial focality based on computational modeling, demonstrated better therapeutic effects than conventional HD-tDCS in alleviating motor and cognitive deficits, with a decrease in infarct volume and inflammatory response. We assessed different electrode configurations in the new HD electrode; the configurations variously showed potent therapeutic effects, ameliorating neuronal death in the peri-infarct region via N-methyl-D-aspartate-dependent sterol regulatory element-binding protein 1 signaling and related inflammatory factors, further alleviating motor and cognitive deficits in stroke. Conclusion: This new HD-tDCS application showed better therapeutic effects than those with conventional HD-tDCS in early-stage stroke via the amelioration of neuronal death in the penumbra. It may be applied in the early stages of stroke to alleviate neurological impairment.
Collapse
Affiliation(s)
- Da Hee Jung
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jae Ho Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hong Ju Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jang Woo Park
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Young-Jin Jung
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
8
|
Ahmed I, Mustafaoglu R, Rossi S, Cavdar FA, Agyenkwa SK, Pang MYC, Straudi S. Non-invasive Brain Stimulation Techniques for the Improvement of Upper Limb Motor Function and Performance in Activities of Daily Living After Stroke: A Systematic Review and Network Meta-analysis. Arch Phys Med Rehabil 2023; 104:1683-1697. [PMID: 37245690 DOI: 10.1016/j.apmr.2023.04.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/21/2023] [Accepted: 04/22/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVE To compare the efficacy of non-invasive brain stimulation (NiBS) such as transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), theta-burst stimulation (TBS), and transcutaneous vagus nerve stimulation (taVNS) in upper limb stroke rehabilitation. DATA SOURCES PubMed, Web of Science, and Cochrane databases were searched from January 2010 to June 2022. DATA SELECTION Randomized controlled trials (RCTs) assessing the effects of "tDCS", "rTMS", "TBS", or "taVNS" on upper limb motor function and performance in activities of daily livings (ADLs) after stroke. DATA EXTRACTION Data were extracted by 2 independent reviewers. Risk of bias was evaluated with the Cochrane Risk of Bias tool. DATA SYNTHESIS 87 RCTs with 3750 participants were included. Pairwise meta-analysis showed that all NiBS except continuous TBS (cTBS) and cathodal tDCS were significantly more efficacious than sham stimulation for motor function (standardized mean difference [SMD] range 0.42-1.20), whereas taVNS, anodal tDCS, and both low and high frequency rTMS were significantly more efficacious than sham stimulation for ADLs (SMD range 0.54-0.99). NMA showed that taVNS was more effective than cTBS (SMD:1.00; 95% CI (0.02-2.02)), cathodal tDCS (SMD:1.07; 95% CI (0.21-1.92)), and Physical rehabilitation alone (SMD:1.46; 95% CI (0.59-2.33)) for improving motor function. P-score found that taVNS is best ranked treatment in improving motor function (SMD: 1.20; 95% CI (0.46-1.95)) and ADLs (SMD:1.20; 95% CI (0.45-1.94)) after stroke. After taVNS, excitatory stimulation protocols (intermittent TBS, anodal tDCS, and HF-rTMS) are most effective in improving motor function and ADLs after acute/sub-acute (SMD range 0.53-1.63) and chronic stroke (SMD range 0.39-1.16). CONCLUSIONS Evidence suggests that excitatory stimulation protocols are the most promising intervention in improving upper limb motor function and performance in ADLs. taVNS appeared to be a promising intervention for stroke patients, but further large RCTs are required to confirm its relative superiority.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium; Istanbul University-Cerrahpasa, Institute of Graduate Studies, Department of Physiotherapy and Rehabilitation, Istanbul, Turkey.
| | - Rustem Mustafaoglu
- Istanbul University-Cerrahpasa, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Istanbul, Turkey
| | - Simone Rossi
- Department of Medicine, Surgery, and Neuroscience, Si-BIN Lab, Human Physiology Section, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Fatih A Cavdar
- Istanbul University-Cerrahpasa, Institute of Graduate Studies, Department of Physiotherapy and Rehabilitation, Istanbul, Turkey; Istanbul Okan University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Istanbul, Turkey
| | - Seth Kwame Agyenkwa
- Istanbul University-Cerrahpasa, Institute of Graduate Studies, Department of Physiotherapy and Rehabilitation, Istanbul, Turkey
| | - Marco Y C Pang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Sofia Straudi
- Neuroscience and Rehabilitation Department, Ferrara University, Ferrara, Italy
| |
Collapse
|
9
|
Qi F, Nitsche MA, Ren X, Wang D, Wang L. Top-down and bottom-up stimulation techniques combined with action observation treatment in stroke rehabilitation: a perspective. Front Neurol 2023; 14:1156987. [PMID: 37497013 PMCID: PMC10367110 DOI: 10.3389/fneur.2023.1156987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Stroke is a central nervous system disease that causes structural lesions and functional impairments of the brain, resulting in varying types, and degrees of dysfunction. The bimodal balance-recovery model (interhemispheric competition model and vicariation model) has been proposed as the mechanism of functional recovery after a stroke. We analyzed how combinations of motor observation treatment approaches, transcranial electrical (TES) or magnetic (TMS) stimulation and peripheral electrical (PES) or magnetic (PMS) stimulation techniques can be taken as accessorial physical therapy methods on symptom reduction of stroke patients. We suggest that top-down and bottom-up stimulation techniques combined with action observation treatment synergistically might develop into valuable physical therapy strategies in neurorehabilitation after stroke. We explored how TES or TMS intervention over the contralesional hemisphere or the lesioned hemisphere combined with PES or PMS of the paretic limbs during motor observation followed by action execution have super-additive effects to potentiate the effect of conventional treatment in stroke patients. The proposed paradigm could be an innovative and adjunctive approach to potentiate the effect of conventional rehabilitation treatment, especially for those patients with severe motor deficits.
Collapse
Affiliation(s)
- Fengxue Qi
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, China
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Xiping Ren
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Duanwei Wang
- Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| | - Lijuan Wang
- Key Laboratory of Exercise and Physical Fitness, Ministry of Education, Beijing Sport University, Beijing, China
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
10
|
Cha TH, Hwang HS. Rehabilitation Interventions Combined with Noninvasive Brain Stimulation on Upper Limb Motor Function in Stroke Patients. Brain Sci 2022; 12:brainsci12080994. [PMID: 35892435 PMCID: PMC9332761 DOI: 10.3390/brainsci12080994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
(1) Background: This systematic review aimed to focus on the effects of rehabilitation interventions combined with noninvasive brain stimulation on upper limb motor function in stroke patients. (2) Methods: PubMed, MEDLINE, and CINAHL were used for the literature research. Articles were searched using the following terms: "Stroke OR CVA OR cerebrovascular accident" AND "upper limb OR upper extremity" AND "NIBS OR Non-Invasive Brain Stimulation" OR "rTMS" OR "repetitive transcranial magnetic stimulation" OR "tDCS" OR "transcranial direct current stimulation" AND "RCT" OR randomized control trial." In total, 12 studies were included in the final analysis. (3) Results: Analysis using the Physiotherapy Evidence Database scale for qualitative evaluation of the literature rated eight articles as "excellent" and four as "good." Combined rehabilitation interventions included robotic therapy, motor imagery using brain-computer interaction, sensory control, occupational therapy, physiotherapy, task-oriented approach, task-oriented mirror therapy, neuromuscular electrical stimulation, and behavior observation therapy. (4) Conclusions: Although it is difficult to estimate the recovery of upper limb motor function in stroke patients treated with noninvasive brain stimulation alone, a combination of a task-oriented approach, occupational therapy, action observation, wrist robot-assisted rehabilitation, and physical therapy can be effective.
Collapse
|
11
|
Wong PL, Yang YR, Tang SC, Huang SF, Wang RY. Comparing different montages of transcranial direct current stimulation on dual-task walking and cortical activity in chronic stroke: double-blinded randomized controlled trial. BMC Neurol 2022; 22:119. [PMID: 35337288 PMCID: PMC8951706 DOI: 10.1186/s12883-022-02644-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation to modulate cortical activity for improving motor function. However, the different tDCS applications for modulating cortical activity and dual task gait performance in chronic stroke have not yet been investigated. This study investigated the effects of different tDCS applications on dual task gait performance and contralesional M1 activation in chronic stroke. METHODS Forty-eight participants were randomized to anodal, bilateral, cathodal, and sham tDCS groups. Each group received 20 min of tDCS stimulation, except the sham group. Gait performance was measured by GaitRite system during cognitive dual task (CDT) walking, motor dual task (MDT) walking, and single walking (SW). Contralesional M1 activity of unaffected tibialis anterior (TA) was measured using transcranial magnetic stimulation (TMS). Intragroup difference was analyzed by Wilconxon sign ranks test with Bonferroni correction, and Kruskal-Wallis one-way analysis of variance by ranks was used for intergroup comparisons, followed by post-hoc Mann-Whitney U tests with Bonferroni correction. RESULTS The bilateral tDCS (p = 0.017) and cathodal tDCS (p = 0.010) improved the CDT walking speed more than sham group. The bilateral tDCS (p = 0.048) and cathodal tDCS (p = 0.048) also improved the MDT walking speed more than sham group. Furthermore, bilateral tDCS (p = 0.012) and cathodal tDCS (p = 0.040) increased the silent period (SP) more than the anodal and sham group. Thus, one-session of bilateral and cathodal tDCS improved dual task walking performance paralleled with increasing contralesional corticomotor inhibition in chronic stroke. CONCLUSIONS Our results indicate that one-session of bilateral and cathodal tDCS increased contralesional corticomotor inhibition and improved dual task gait performance in chronic stroke. TRIAL REGISTRATION Thai Clinical Trials Registry (TCTR20180116001). Registered prospectively on 16th Jan, 2018 at http://www.thaiclinicaltrials.org .
Collapse
Affiliation(s)
- Pei-Ling Wong
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yea-Ru Yang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shun-Chang Tang
- Division of Nerve Repair- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shi-Fong Huang
- Division of Nerve Repair- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
| | - Ray-Yau Wang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
| |
Collapse
|
12
|
Ahmed I, Yeldan I, Mustafaoglu R. The Adjunct of Electric Neurostimulation to Rehabilitation Approaches in Upper Limb Stroke Rehabilitation: A Systematic Review With Network Meta-Analysis of Randomized Controlled Trials. Neuromodulation 2022; 25:1197-1214. [PMID: 35216873 DOI: 10.1016/j.neurom.2022.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/11/2021] [Accepted: 01/08/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This review analyzed the current evidence and the potential for the application of electric neurostimulation such as transcranial direct current stimulation (tDCS) and vagus nerve stimulation (VNS) in upper limb stroke rehabilitation. MATERIALS AND METHODS We performed a systematic review of randomized controlled trials (RCTs) using network meta-analysis (NMA), searching the following data bases: PubMed, Web of Science, Cochrane, and Google Scholar, using specific keywords, from January 2010 to April 2021, and assessing the effects of "tDCS" or "VNS" combined with other therapies on upper limb motor function and activities of daily living (ADL) after stroke. RESULTS We included 38 RCTs with 1261 participants. Pairwise NMA showed transcutaneous VNS (tVNS) and anodal tDCS were effective in improving upper limb motor function (tVNS: mean difference [MD]: 5.50; 95% CI [0.67-11.67]; p < 0.05; anodal tDCS: MD: 5.23; 95% CI [2.45-8.01]; p < 0.05). tVNS and tDCS (anodal and cathodal) were also effective in improving ADL performance after stroke (tVNS: standard MD [SMD]: 0.96; 95% CI [0.15-2.06]; p < 0.05; anodal tDCS: SMD: 3.78; 95% CI [0.0-7.56]; p < 0.05; cathodal tDCS: SMD: 5.38; 95% CI [0.22-10.54]; p < 0.05). Surface under the cumulative ranking curve analysis revealed that tVNS is the best ranked treatment in improving upper limb motor function and performance in ADL after stroke. There was no difference in safety between VNS and its control interventions, measured by reported adverse events (VNS: risk ratio = 1.02 [95% CI = 0.48-2.17; I2 = 0; p = 0.96]). CONCLUSION Moderate- to high-quality evidence suggests that tVNS and anodal tDCS were effective in improving upper limb motor function in both acute/subacute and chronic stroke. In addition to tVNS and anodal tDCS, cathodal tDCS is also effective in improving ADL performance after stroke.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- Department of Physiotherapy and Rehabilitation, Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ipek Yeldan
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Rustem Mustafaoglu
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
13
|
Wu F, Zhao H, Zhang Y, Wang M, Liu C, Wang X, Cheng Y, Jin C, Yang J, Li X. Morphologic Variants of the Hand Motor Cortex in Developing Brains from Neonates through Childhood Assessed by MR Imaging. AJNR Am J Neuroradiol 2022; 43:292-298. [PMID: 34992126 PMCID: PMC8985685 DOI: 10.3174/ajnr.a7386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/20/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Knowledge of anatomic markers of the hand motor cortex is essential in the evaluation and treatment of motor neurologic diseases for both adults and developing populations. However, hand motor cortex variants in developing brains remain to be investigated. Our objective was to observe morphologic variants of the hand motor cortex in developing brains from neonates through childhood. MATERIALS AND METHODS In this study, 542 participants (0∼15 years of age) were retrospectively enrolled and divided into different age groups. The hand motor cortex morphology was evaluated on the basis of 3D T1WI. Variations in hand motor cortex variants were compared among different age groups. Inter-gender and interhemispheric differences of hand motor cortex variants were also evaluated. RESULTS Various hand motor cortex variants could be observed in developing brains, even in the neonatal period. One new morphologic shape, "immature Ω," was found in neonates and infants. The proportion of this new shape decreased dramatically during the first year after birth, then disappeared after 1 year of age. It persisted for a longer time in the right hemisphere and in males. However, sex or hemispheric effects on the distribution of the proportion of variants were not statistically significant. Furthermore, the proportion of concordance of the bilateral hand motor cortex showed an increasing trend with age (P = .006), higher in females than males. CONCLUSIONS Various hand motor cortex variants already existed at birth. The distribution of proportions of different variants developmentally varied during the first year after birth and became stable after 1 year of age. The concordance of the bilateral hand motor cortex could be influenced by age and sex.
Collapse
Affiliation(s)
- F. Wu
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Radiology (F.W.), Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - H. Zhao
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Y. Zhang
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - M. Wang
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - C. Liu
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - X. Wang
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Y. Cheng
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - C. Jin
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - J. Yang
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - X. Li
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
14
|
Nooristani M, Augereau T, Moïn-Darbari K, Bacon BA, Champoux F. Using Transcranial Electrical Stimulation in Audiological Practice: The Gaps to Be Filled. Front Hum Neurosci 2021; 15:735561. [PMID: 34887736 PMCID: PMC8650084 DOI: 10.3389/fnhum.2021.735561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
The effects of transcranial electrical stimulation (tES) approaches have been widely studied for many decades in the motor field, and are well known to have a significant and consistent impact on the rehabilitation of people with motor deficits. Consequently, it can be asked whether tES could also be an effective tool for targeting and modulating plasticity in the sensory field for therapeutic purposes. Specifically, could potentiating sensitivity at the central level with tES help to compensate for sensory loss? The present review examines evidence of the impact of tES on cortical auditory excitability and its corresponding influence on auditory processing, and in particular on hearing rehabilitation. Overall, data strongly suggest that tES approaches can be an effective tool for modulating auditory plasticity. However, its specific impact on auditory processing requires further investigation before it can be considered for therapeutic purposes. Indeed, while it is clear that electrical stimulation has an effect on cortical excitability and overall auditory abilities, the directionality of these effects is puzzling. The knowledge gaps that will need to be filled are discussed.
Collapse
Affiliation(s)
- Mujda Nooristani
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Thomas Augereau
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Karina Moïn-Darbari
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | | | - François Champoux
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| |
Collapse
|
15
|
Taud B, Lindenberg R, Darkow R, Wevers J, Höfflin D, Grittner U, Meinzer M, Flöel A. Limited Add-On Effects of Unilateral and Bilateral Transcranial Direct Current Stimulation on Visuo-Motor Grip Force Tracking Task Training Outcome in Chronic Stroke. A Randomized Controlled Trial. Front Neurol 2021; 12:736075. [PMID: 34858310 PMCID: PMC8631774 DOI: 10.3389/fneur.2021.736075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: This randomized controlled trial investigated if uni- and bihemispheric transcranial direct current stimulation (tDCS) of the motor cortex can enhance the effects of visuo-motor grip force tracking task training and transfer to clinical assessments of upper extremity motor function. Methods: In a randomized, double-blind, sham-controlled trial, 40 chronic stroke patients underwent 5 days of visuo-motor grip force tracking task training of the paretic hand with either unilateral or bilateral (N = 15/group) or placebo tDCS (N = 10). Immediate and long-term (3 months) effects on training outcome and motor recovery (Upper Extremity Fugl-Meyer, UE-FM, Wolf Motor Function Test, and WMFT) were investigated. Results: Trained task performance significantly improved independently of tDCS in a curvilinear fashion. In the anodal stimulation group UE-FM scores were higher than in the sham group at day 5 (adjusted mean difference: 2.6, 95%CI: 0.6–4.5, p = 0.010) and at 3 months follow up (adjusted mean difference: 2.8, 95%CI: 0.8–4.7, p = 0.006). Neither training alone, nor the combination of training and tDCS improved WMFT performance. Conclusions: Visuo-motor grip force tracking task training can facilitate recovery of upper extremity function. Only minimal add-on effects of anodal but not dual tDCS were observed. Clinical Trial Registration:https://clinicaltrials.gov/ct2/results?recrs=&cond=&term=NCT01969097&cntry=&state=&city=&dist=, identifier: NCT01969097, retrospectively registered on 25/10/2013.
Collapse
Affiliation(s)
- Benedikt Taud
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany
| | - Robert Lindenberg
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany.,Department of History, Philosophy and Ethics of Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Robert Darkow
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany
| | - Jasmin Wevers
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany
| | - Dorothee Höfflin
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany
| | - Ulrike Grittner
- Berlin Institute of Health at Charité, Charité University Medicine, Berlin, Germany.,Institute of Biometry and Clinical Epidemiology, Charité University Medicine, Berlin, Germany
| | - Marcus Meinzer
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany.,Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Neurocure Cluster of Excellence, Charité University Medicine, Berlin, Germany.,Department of Neurology, University Medicine Greifswald, Greifswald, Germany.,German Centre for Neurodegenerative Diseases, Site Greifswald/Rostock, Greifswald, Germany.,Center for Stroke Research, Charité University Medicine, Berlin, Germany
| |
Collapse
|
16
|
Predictive models for response to non-invasive brain stimulation in stroke: A critical review of opportunities and pitfalls. Brain Stimul 2021; 14:1456-1466. [PMID: 34560317 DOI: 10.1016/j.brs.2021.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Noninvasive brain stimulation has been successfully applied to improve stroke-related impairments in different behavioral domains. Yet, clinical translation is limited by heterogenous outcomes within and across studies. It has been proposed to develop and apply noninvasive brain stimulation in a patient-tailored, precision medicine-guided fashion to maximize response rates and effect magnitude. An important prerequisite for this task is the ability to accurately predict the expected response of the individual patient. OBJECTIVE This review aims to discuss current approaches studying noninvasive brain stimulation in stroke and challenges associated with the development of predictive models of responsiveness to noninvasive brain stimulation. METHODS Narrative review. RESULTS Currently, the field largely relies on in-sample associational studies to assess the impact of different influencing factors. However, the associational approach is not valid for making claims of prediction, which generalize out-of-sample. We will discuss crucial requirements for valid predictive modeling in particular the presence of sufficiently large sample sizes. CONCLUSION Modern predictive models are powerful tools that must be wielded with great care. Open science, including data sharing across research units to obtain sufficiently large and unbiased samples, could provide a solid framework for addressing the task of building robust predictive models for noninvasive brain stimulation responsiveness.
Collapse
|
17
|
Andressa de Souza J, Ferrari Corrêa JC, Marduy A, Dall'Agnol L, Gomes de Sousa MH, Nunes da Silva V, Alves AB, Silva SM, Fregni F, Corrêa FI. To Combine or Not to Combine Physical Therapy With tDCS for Stroke With Shoulder Pain? Analysis From a Combination Randomized Clinical Trial for Rehabilitation of Painful Shoulder in Stroke. FRONTIERS IN PAIN RESEARCH 2021; 2:696547. [PMID: 35295490 PMCID: PMC8915613 DOI: 10.3389/fpain.2021.696547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: Transcranial Direct Current Stimulation (tDCS) is an intervention that seems to be an ideal tool to enhance the effects of rehabilitation therapies given it facilitates generation of plasticity in the stimulated brain area. In stroke this strategy has been highly utilized; however, the results have been mixed. In this trial we have evaluated the analgesic and functional effects of Transcranial Direct Current Stimulation (tDCS) combined with physiotherapy in stroke survivors with shoulder pain. Methods: Twenty-six stroke surviving adults with shoulder pain received 10 sessions of passive mobilization and performed upper limb exercises using a cycle ergometer, combined with active or sham tDCS. The intensity of pain in the hemiplegic shoulder was measured using the Visual Analog Scale (VAS); secondary outcomes were the level of motor impairment, handgrip strength, range of motion, motor function of the upper limbs, and quality of life (QOL) assessed before and after 10 sessions and 1 month after the end of the treatment. Results: A clinically important pain reduction (3 points) was found in both groups and was maintained at follow-up; there was no significant difference between groups (p = 0.3). Similarly, the shoulder range of motion improved, motor function and quality of life improved showed no significant differences between groups. One result that needs to be underscored is that both groups had a significant effect size toward improvement in all of these outcomes. Conclusions: We discuss in this study that tDCS is not a useful combination strategy when the physical therapy has a large effect by itself and we also review other negative trials of combined therapy under this framework of ceiling effect of the main physical therapy. Trial registry: Trial registration: Brazilian Registry of Clinical Trials, RBR-8F5MNY (http://www.ensaiosclinicos.gov.br/rg/RBR-8f5mny/). Registered on June 2, 2017. Beginning of the recruitment of the volunteers: august, 2017.
Collapse
Affiliation(s)
- Janaina Andressa de Souza
- Doctorate and Masters Program in Rehabilitation Science of University Nove de Julho, UNINOVE, São Paulo, Brazil
| | - João Carlos Ferrari Corrêa
- Doctorate and Masters Program in Rehabilitation Science of University Nove de Julho, UNINOVE, São Paulo, Brazil
| | - Anna Marduy
- Department of Physical Medicine and Rehabilitation, Neuromodulation Center, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Letizzia Dall'Agnol
- Doctorate and Masters Program in Rehabilitation Science of University Nove de Julho, UNINOVE, São Paulo, Brazil
| | - Maria Helena Gomes de Sousa
- Doctorate and Masters Program in Rehabilitation Science of University Nove de Julho, UNINOVE, São Paulo, Brazil
| | - Victor Nunes da Silva
- Doctorate and Masters Program in Rehabilitation Science of University Nove de Julho, UNINOVE, São Paulo, Brazil
| | - André Barreto Alves
- Doctorate and Masters Program in Rehabilitation Science of University Nove de Julho, UNINOVE, São Paulo, Brazil
| | - Soraia Micaela Silva
- Doctorate and Masters Program in Rehabilitation Science of University Nove de Julho, UNINOVE, São Paulo, Brazil
| | - Felipe Fregni
- Department of Physical Medicine and Rehabilitation, Neuromodulation Center, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Fernanda Ishida Corrêa
- Doctorate and Masters Program in Rehabilitation Science of University Nove de Julho, UNINOVE, São Paulo, Brazil
| |
Collapse
|
18
|
Russo C, Veronelli L, Casati C, Monti A, Perucca L, Ferraro F, Corbo M, Vallar G, Bolognini N. Explicit motor sequence learning after stroke: a neuropsychological study. Exp Brain Res 2021; 239:2303-2316. [PMID: 34091696 PMCID: PMC8282572 DOI: 10.1007/s00221-021-06141-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 05/23/2021] [Indexed: 11/30/2022]
Abstract
Motor learning interacts with and shapes experience-dependent cerebral plasticity. In stroke patients with paresis of the upper limb, motor recovery was proposed to reflect a process of re-learning the lost/impaired skill, which interacts with rehabilitation. However, to what extent stroke patients with hemiparesis may retain the ability of learning with their affected limb remains an unsolved issue, that was addressed by this study. Nineteen patients, with a cerebrovascular lesion affecting the right or the left hemisphere, underwent an explicit motor learning task (finger tapping task, FTT), which was performed with the paretic hand. Eighteen age-matched healthy participants served as controls. Motor performance was assessed during the learning phase (i.e., online learning), as well as immediately at the end of practice, and after 90 min and 24 h (i.e., retention). Results show that overall, as compared to the control group, stroke patients, regardless of the side (left/right) of the hemispheric lesion, do not show a reliable practice-dependent improvement; consequently, no retention could be detected in the long-term (after 90 min and 24 h). The motor learning impairment was associated with subcortical damage, predominantly affecting the basal ganglia; conversely, it was not associated with age, time elapsed from stroke, severity of upper-limb motor and sensory deficits, and the general neurological condition. This evidence expands our understanding regarding the potential of post-stroke motor recovery through motor practice, suggesting a potential key role of basal ganglia, not only in implicit motor learning as previously pointed out, but also in explicit finger tapping motor tasks.
Collapse
Affiliation(s)
- Cristina Russo
- Department of Psychology and Milan Center for Neuroscience-NeuroMi, University of Milano-Bicocca, Milan, Italy.
| | - Laura Veronelli
- Department of Neurorehabilitation Sciences, Casa di Cura Policlinico, Milan, Italy
| | - Carlotta Casati
- Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Alessia Monti
- Department of Neurorehabilitation Sciences, Casa di Cura Policlinico, Milan, Italy
| | - Laura Perucca
- Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - Francesco Ferraro
- Riabilitazione Specialistica Neuromotoria - Dipartimento di Neuroscienze, ASST "Carlo Poma" di Mantova - Presidio di Riabilitazione Multifunzionale di Bozzolo, Mantua, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Policlinico, Milan, Italy
| | - Giuseppe Vallar
- Department of Psychology and Milan Center for Neuroscience-NeuroMi, University of Milano-Bicocca, Milan, Italy.,Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology and Milan Center for Neuroscience-NeuroMi, University of Milano-Bicocca, Milan, Italy.,Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
19
|
Gregor S, Saumur TM, Crosby LD, Powers J, Patterson KK. Study Paradigms and Principles Investigated in Motor Learning Research After Stroke: A Scoping Review. Arch Rehabil Res Clin Transl 2021; 3:100111. [PMID: 34179749 PMCID: PMC8211998 DOI: 10.1016/j.arrct.2021.100111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To (1) characterize study paradigms used to investigate motor learning (ML) poststroke and (2) summarize the effects of different ML principles in promoting skill acquisition and retention. Our secondary objective is to evaluate the clinical utility of ML principles on stroke rehabilitation. DATA SOURCES Medline, Excerpta Medica Database, Allied and Complementary Medicine, Cumulative Index to Nursing and Allied Health Literature, and Cochrane Central Register of Controlled Trials were searched from inception on October 24, 2018 and repeated on June 23, 2020. Scopus was searched on January 24, 2019 and July 22, 2020 to identify additional studies. STUDY SELECTION Our search included keywords and concepts to represent stroke and "motor learning. An iterative process was used to generate study selection criteria. Three authors independently completed title, abstract, and full-text screening. DATA EXTRACTION Three reviewers independently completed data extraction. DATA SYNTHESIS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension guidelines for scoping reviews were used to guide our synthesis. Thirty-nine studies were included. Study designs were heterogeneous, including variability in tasks practiced, acquisition parameters, and retention intervals. ML principles investigated included practice complexity, feedback, motor imagery, mental practice, action observation, implicit and explicit information, aerobic exercise, and neurostimulation. An additional 2 patient-related factors that influence ML were included: stroke characteristics and sleep. Practice complexity, feedback, and mental practice/action observation most consistently promoted ML, while provision of explicit information and more severe strokes were detrimental to ML. Other factors (ie, sleep, practice structure, aerobic exercise, neurostimulation) had a less clear influence on learning. CONCLUSIONS Improved consistency of reporting in ML studies is needed to improve study comparability and facilitate meta-analyses to better understand the influence of ML principles on learning poststroke. Knowledge of ML principles and patient-related factors that influence ML, with clinical judgment can guide neurologic rehabilitation delivery to improve patient motor outcomes.
Collapse
Affiliation(s)
- Sarah Gregor
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Tyler M. Saumur
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Lucas D. Crosby
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Jessica Powers
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Kara K. Patterson
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Cerrahoğlu Şirin T, Aksu S, Hasirci Bayir BR, Ulukan Ç, Karamürsel S, Kurt A, Baykan B. Is Allodynia a Determinant Factor in the Effectiveness of Transcranial Direct Current Stimulation in the Prophylaxis of Migraine? Neuromodulation 2021; 24:899-909. [PMID: 34058041 DOI: 10.1111/ner.13409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/08/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Allodynia, the clinical marker of central sensitization, affects even simple daily living activities and increases the tendency for migraine to be more resistant to treatment and have a chronic course. Migraine that impairs quality of life can often be treated with variable pharmaceutical agents, but with various side effects. Transcranial direct current stimulation (tDCS) is a potential alternative treatment for migraine prophylaxis. MATERIALS AND METHODS Seventy-seven patients diagnosed with migraine (48 with allodynia and 29 without allodynia) were included in the study. Randomly, 41 of the 77 patients received sham stimulation and 36 patients underwent three sessions of anodal left primary motor cortex stimulation for 2 mA, 20 min. Migraine attack characteristics (frequency, severity, and duration) and analgesic drug use were followed with headache diaries for one month after the stimulation. RESULTS After tDCS, migraine attack frequency (p = 0.021), the number of headache days (p = 0.005), duration of attacks (p = 0.008), and symptomatic analgesic drug use (p = 0.007) decreased in patients receiving active tDCS, compared to the sham group. The therapeutic gain of tDCS was calculated as 44% (95% confidence interval [CI]: 22-60%) for headache days and 76% (95% CI: 55-86) for headache duration. Response to tDCS treatment was higher in patients without allodynia (60% vs. 24%; p = 0.028) and allodynia came out as an independent predictor of response to tDCS with logistic regression analysis. Side effects were rare and similar to the sham group. CONCLUSIONS tDCS is a safe, efficacious, and fast method for migraine prophylaxis. However, the administration of tDCS before allodynia occurs, that is, before central sensitization develops, will provide increased responsiveness to the treatment. SIGNIFICANCE tDCS is more effective before the development of allodynia, but it also improves the quality of life even after the development of allodynia.
Collapse
Affiliation(s)
- Tuba Cerrahoğlu Şirin
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.,Department of Neuroscience, Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Serkan Aksu
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Buse Rahime Hasirci Bayir
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.,Department of Neuroscience, Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Çağrı Ulukan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sacit Karamürsel
- Department of Physiology, School of Medicine, Koc Universitesi, Istanbul, Turkey
| | - Adnan Kurt
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Betül Baykan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
21
|
Fregni F, El-Hagrassy MM, Pacheco-Barrios K, Carvalho S, Leite J, Simis M, Brunelin J, Nakamura-Palacios EM, Marangolo P, Venkatasubramanian G, San-Juan D, Caumo W, Bikson M, Brunoni AR. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int J Neuropsychopharmacol 2021; 24:256-313. [PMID: 32710772 PMCID: PMC8059493 DOI: 10.1093/ijnp/pyaa051] [Citation(s) in RCA: 309] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation has shown promising clinical results, leading to increased demand for an evidence-based review on its clinical effects. OBJECTIVE We convened a team of transcranial direct current stimulation experts to conduct a systematic review of clinical trials with more than 1 session of stimulation testing: pain, Parkinson's disease motor function and cognition, stroke motor function and language, epilepsy, major depressive disorder, obsessive compulsive disorder, Tourette syndrome, schizophrenia, and drug addiction. METHODS Experts were asked to conduct this systematic review according to the search methodology from PRISMA guidelines. Recommendations on efficacy were categorized into Levels A (definitely effective), B (probably effective), C (possibly effective), or no recommendation. We assessed risk of bias for all included studies to confirm whether results were driven by potentially biased studies. RESULTS Although most of the clinical trials have been designed as proof-of-concept trials, some of the indications analyzed in this review can be considered as definitely effective (Level A), such as depression, and probably effective (Level B), such as neuropathic pain, fibromyalgia, migraine, post-operative patient-controlled analgesia and pain, Parkinson's disease (motor and cognition), stroke (motor), epilepsy, schizophrenia, and alcohol addiction. Assessment of bias showed that most of the studies had low risk of biases, and sensitivity analysis for bias did not change these results. Effect sizes vary from 0.01 to 0.70 and were significant in about 8 conditions, with the largest effect size being in postoperative acute pain and smaller in stroke motor recovery (nonsignificant when combined with robotic therapy). CONCLUSION All recommendations listed here are based on current published PubMed-indexed data. Despite high levels of evidence in some conditions, it must be underscored that effect sizes and duration of effects are often limited; thus, real clinical impact needs to be further determined with different study designs.
Collapse
Affiliation(s)
- Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Mirret M El-Hagrassy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Sandra Carvalho
- Neurotherapeutics and experimental Psychopathology Group (NEP), Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Jorge Leite
- I2P-Portucalense Institute for Psychology, Universidade Portucalense, Porto, Portugal
| | - Marcel Simis
- Physical and Rehabilitation Medicine Institute of the University of Sao Paulo Medical School General Hospital, Sao Paulo, Brazil
| | - Jerome Brunelin
- CH Le Vinatier, PSYR2 team, Lyon Neuroscience Research Center, UCB Lyon 1, Bron, France
| | - Ester Miyuki Nakamura-Palacios
- Laboratory of Cognitive Sciences and Neuropsychopharmacology, Department of Physiological Sciences, Federal University of Espírito Santo, Espírito Santo, Brasil (Dr Nakamura-Palacios)
| | - Paola Marangolo
- Dipartimento di Studi Umanistici, Università Federico II, Naples, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Daniel San-Juan
- Neurophysiology Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS) Surgery Department, School of Medicine, UFRGS; Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre (HCPA) Laboratory of Pain and Neuromodulation at HCPA, Porto Alegre, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, New York
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry & Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Chen JL, Schipani A, Schuch CP, Lam H, Swardfager W, Thiel A, Edwards JD. Does Cathodal vs. Sham Transcranial Direct Current Stimulation Over Contralesional Motor Cortex Enhance Upper Limb Motor Recovery Post-stroke? A Systematic Review and Meta-analysis. Front Neurol 2021; 12:626021. [PMID: 33935936 PMCID: PMC8083132 DOI: 10.3389/fneur.2021.626021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
Background: During recovery from stroke, the contralesional motor cortex (M1) may undergo maladaptive changes that contribute to impaired interhemispheric inhibition (IHI). Transcranial direct current stimulation (tDCS) with the cathode over contralesional M1 may inhibit this maladaptive plasticity, normalize IHI, and enhance motor recovery. Objective: The objective of this systematic review and meta-analysis was to evaluate available evidence to determine whether cathodal tDCS on contralesional M1 enhances motor re-learning or recovery post-stroke more than sham tDCS. Methods: We searched OVID Medline, Embase, and the Cochrane Central Register of Controlled Trials for participants with stroke (>1 week post-onset) with motor impairment and who received cathodal or sham tDCS to contralesional M1 for one or more sessions. The outcomes included a change in any clinically validated assessment of physical function, activity, or participation, or a change in a movement performance variable (e.g., time, accuracy). A meta-analysis was performed by pooling five randomized controlled trials (RCTs) and comparing the change in Fugl–Meyer upper extremity scores between cathodal and sham tDCS groups. Results: Eleven studies met the inclusion criteria. Qualitatively, four out of five cross-over design studies and three out of six RCTs reported a significant effect of cathodal vs. sham tDCS. In the quantitative synthesis, cathodal tDCS (n = 65) did not significantly reduce motor impairment compared to sham tDCS (n = 67; standardized mean difference = 0.33, z = 1.79, p = 0.07) with a little observed heterogeneity (I2 = 5%). Conclusions: The effects of cathodal tDCS to contralesional M1 on motor recovery are small and consistent. There may be sub-populations that may respond to this approach; however, further research with larger cohorts is required.
Collapse
Affiliation(s)
- Joyce L Chen
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Ashley Schipani
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Henry Lam
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Walter Swardfager
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Alexander Thiel
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jodi D Edwards
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
23
|
O'Leary GH, Jenkins DD, Coker-Bolt P, George MS, Kautz S, Bikson M, Gillick BT, Badran BW. From adults to pediatrics: A review noninvasive brain stimulation (NIBS) to facilitate recovery from brain injury. PROGRESS IN BRAIN RESEARCH 2021; 264:287-322. [PMID: 34167660 DOI: 10.1016/bs.pbr.2021.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stroke is a major problem worldwide that impacts over 100 million adults and children annually. Rehabilitation therapy is the current standard of care to restore functional impairments post-stroke, however its effects are limited and many patients suffer persisting functional impairments and life-long disability. Noninvasive Brain Stimulation (NIBS) has emerged as a potential rehabilitation treatment option in both adults and children with brain injury. In the last decade, Transcranial Magnetic Stimulation (TMS), Transcranial Direct Current Stimulation (tDCS) and Transcutaneous Auricular Vagus Nerve Stimulation (taVNS) have been investigated to improve motor recovery in adults post-stroke. These promising adult findings using NIBS, however, have yet to be widely translated to the area of pediatrics. The limited studies exploring NIBS in children have demonstrated safety, feasibility, and utility of stimulation-augmented rehabilitation. This chapter will describe the mechanism of NIBS therapy (cortical excitability, neuroplasticity) that underlies its use in stroke and motor function and how TMS, tDCS, and taVNS are applied in adult stroke treatment paradigms. We will then discuss the current state of NIBS in early pediatric brain injury and will provide insight regarding practical considerations and future applications of NIBS in pediatrics to make this promising treatment option a viable therapy in children.
Collapse
Affiliation(s)
- Georgia H O'Leary
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Dorothea D Jenkins
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Patricia Coker-Bolt
- Division of Occupational Therapy, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Mark S George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Steve Kautz
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States; Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, United States
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, United States
| | - Bernadette T Gillick
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Bashar W Badran
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
24
|
Distinction of High- and Low-Frequency Repetitive Transcranial Magnetic Stimulation on the Functional Reorganization of the Motor Network in Stroke Patients. Neural Plast 2021; 2021:8873221. [PMID: 33542729 PMCID: PMC7840259 DOI: 10.1155/2021/8873221] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Objective To investigate the functional reorganization of the motor network after repetitive transcranial magnetic stimulation (rTMS) in stroke patients with motor dysfunction and the distinction between high-frequency rTMS (HF-rTMS) and low-frequency rTMS (LF-rTMS). Methods Thirty-three subcortical stroke patients were enrolled and assigned to the HF-rTMS group, LF-rTMS group, and sham group. Each patient of rTMS groups received either 10.0 Hz rTMS over the ipsilesional primary motor cortex (M1) or 1.0 Hz rTMS over the contralesional M1 for 10 consecutive days. A resting-state functional magnetic resonance imaging (fMRI) scan and neurological examinations were performed at baseline and after rTMS. The motor network and functional connectivities intramotor network with the core brain regions including the bilateral M1, premotor area (PMA), and supplementary motor area (SMA) were calculated. Comparisons of functional connectivities and Pearson correlation analysis between functional connectivity changes and behavioral improvement were calculated. Results Significant motor improvement was found after rTMS in all groups which was larger in two rTMS groups than in the sham group. The functional connectivities of the motor network were significantly increased in bilateral M1, SMA, and contralesional PMA after real rTMS. These changes were only detected in the regions of the ipsilesional hemisphere in the HF-rTMS group and in the regions of the contralesional hemisphere in the LF-rTMS group. Significantly changed functional connectivities of the intramotor network were found between the ipsilesional M1 and SMA and contralesional PMA, between contralesional M1 and contralesional SMA, between contralesional SMA and ipsilesional SMA and contralesional PMA in the HF-rTMS group in which the changed connectivity between ipsilesional M1 and contralesional PMA was obviously correlated with the motor improvement. In addition, the functional connectivity of the intramotor network between ipsilesional M1 and contralesional PMA was significantly higher in the HF-rTMS group than in the LF-rTMS group. Conclusion Both HF-rTMS and LF-rTMS have a positive effect on motor recovery in patients with subcortical stroke and could promote the reorganization of the motor network. HF-rTMS may contribute more to the functional connectivity reorganization of the ipsilesional motor network and realize greater benefit to the motor recovery.
Collapse
|
25
|
Wessel MJ, Park CH, Beanato E, Cuttaz EA, Timmermann JE, Schulz R, Morishita T, Koch PJ, Hummel FC. Multifocal stimulation of the cerebro-cerebellar loop during the acquisition of a novel motor skill. Sci Rep 2021; 11:1756. [PMID: 33469089 PMCID: PMC7815761 DOI: 10.1038/s41598-021-81154-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/28/2020] [Indexed: 01/10/2023] Open
Abstract
Transcranial direct current stimulation (tDCS)-based interventions for augmenting motor learning are gaining interest in systems neuroscience and clinical research. Current approaches focus largely on monofocal motorcortical stimulation. Innovative stimulation protocols, accounting for motor learning related brain network interactions also, may further enhance effect sizes. Here, we tested different stimulation approaches targeting the cerebro-cerebellar loop. Forty young, healthy participants trained a fine motor skill with concurrent tDCS in four sessions over two days, testing the following conditions: (1) monofocal motorcortical, (2) sham, (3) monofocal cerebellar, or (4) sequential multifocal motorcortico-cerebellar stimulation in a double-blind, parallel design. Skill retention was assessed after circa 10 and 20 days. Furthermore, potential underlying mechanisms were studied, applying paired-pulse transcranial magnetic stimulation and multimodal magnetic resonance imaging-based techniques. Multisession motorcortical stimulation facilitated skill acquisition, when compared with sham. The data failed to reveal beneficial effects of monofocal cerebellar or additive effects of sequential multifocal motorcortico-cerebellar stimulation. Multimodal multiple linear regression modelling identified baseline task performance and structural integrity of the bilateral superior cerebellar peduncle as the most influential predictors for training success. Multisession application of motorcortical tDCS in several daily sessions may further boost motor training efficiency. This has potential implications for future rehabilitation trials.
Collapse
Affiliation(s)
- Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland. .,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland.
| | - Chang-Hyun Park
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
| | - Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
| | - Estelle A Cuttaz
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
| | - Jan E Timmermann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
| | - Philipp J Koch
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland.,Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
26
|
Nguemeni C, Homola GA, Nakchbandi L, Pham M, Volkmann J, Zeller D. A Single Session of Anodal Cerebellar Transcranial Direct Current Stimulation Does Not Induce Facilitation of Locomotor Consolidation in Patients With Multiple Sclerosis. Front Hum Neurosci 2020; 14:588671. [PMID: 33192424 PMCID: PMC7661800 DOI: 10.3389/fnhum.2020.588671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/12/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Multiple sclerosis (MS) may cause variable functional impairment. The discrepancy between functional impairment and brain imaging findings in patients with MS (PwMS) might be attributed to differential adaptive and consolidation capacities. Modulating those abilities could contribute to a favorable clinical course of the disease. Objectives: We examined the effect of cerebellar transcranial direct current stimulation (c-tDCS) on locomotor adaptation and consolidation in PwMS using a split-belt treadmill (SBT) paradigm. Methods: 40 PwMS and 30 matched healthy controls performed a locomotor adaptation task on a SBT. First, we assessed locomotor adaptation in PwMS. In a second investigation, this training was followed by cerebellar anodal tDCS applied immediately after the task ipsilateral to the fast leg (T0). The SBT paradigm was repeated 24 h (T1) and 78 h (T2) post-stimulation to evaluate consolidation. Results: The gait dynamics and adaptation on the SBT were comparable between PwMS and controls. We found no effects of offline cerebellar anodal tDCS on locomotor adaptation and consolidation. Participants who received the active stimulation showed the same retention index than sham-stimulated subjects at T1 (p = 0.33) and T2 (p = 0.46). Conclusion: Locomotor adaptation is preserved in people with mild-to-moderate MS. However, cerebellar anodal tDCS applied immediately post-training does not further enhance this ability. Future studies should define the neurobiological substrates of maintained plasticity in PwMS and how these substrates can be manipulated to improve compensation. Systematic assessments of methodological variables for cerebellar tDCS are urgently needed to increase the consistency and replicability of the results across experiments in various settings.
Collapse
Affiliation(s)
- Carine Nguemeni
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - György A Homola
- Department of Neuroradiology, University Hospital of Würzburg, Würzburg, Germany
| | - Luis Nakchbandi
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Mirko Pham
- Department of Neuroradiology, University Hospital of Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Daniel Zeller
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev 2020; 11:CD009645. [PMID: 33175411 PMCID: PMC8095012 DOI: 10.1002/14651858.cd009645.pub4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Stroke is one of the leading causes of disability worldwide. Functional impairment, resulting in poor performance in activities of daily living (ADL) among stroke survivors is common. Current rehabilitation approaches have limited effectiveness in improving ADL performance, function, muscle strength, and cognitive abilities (including spatial neglect) after stroke, with improving cognition being the number one research priority in this field. A possible adjunct to stroke rehabilitation might be non-invasive brain stimulation by transcranial direct current stimulation (tDCS) to modulate cortical excitability, and hence to improve these outcomes in people after stroke. OBJECTIVES To assess the effects of tDCS on ADL, arm and leg function, muscle strength and cognitive abilities (including spatial neglect), dropouts and adverse events in people after stroke. SEARCH METHODS We searched the Cochrane Stroke Group Trials Register, CENTRAL, MEDLINE, Embase and seven other databases in January 2019. In an effort to identify further published, unpublished, and ongoing trials, we also searched trials registers and reference lists, handsearched conference proceedings, and contacted authors and equipment manufacturers. SELECTION CRITERIA This is the update of an existing review. In the previous version of this review, we focused on the effects of tDCS on ADL and function. In this update, we broadened our inclusion criteria to compare any kind of active tDCS for improving ADL, function, muscle strength and cognitive abilities (including spatial neglect) versus any kind of placebo or control intervention. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial quality and risk of bias, extracted data, and applied GRADE criteria. If necessary, we contacted study authors to ask for additional information. We collected information on dropouts and adverse events from the trial reports. MAIN RESULTS We included 67 studies involving a total of 1729 patients after stroke. We also identified 116 ongoing studies. The risk of bias did not differ substantially for different comparisons and outcomes. The majority of participants had ischaemic stroke, with mean age between 43 and 75 years, in the acute, postacute, and chronic phase after stroke, and level of impairment ranged from severe to less severe. Included studies differed in terms of type, location and duration of stimulation, amount of current delivered, electrode size and positioning, as well as type and location of stroke. We found 23 studies with 781 participants examining the effects of tDCS versus sham tDCS (or any other passive intervention) on our primary outcome measure, ADL after stroke. Nineteen studies with 686 participants reported absolute values and showed evidence of effect regarding ADL performance at the end of the intervention period (standardised mean difference (SMD) 0.28, 95% confidence interval (CI) 0.13 to 0.44; random-effects model; moderate-quality evidence). Four studies with 95 participants reported change scores, and showed an effect (SMD 0.48, 95% CI 0.02 to 0.95; moderate-quality evidence). Six studies with 269 participants assessed the effects of tDCS on ADL at the end of follow-up and provided absolute values, and found improved ADL (SMD 0.31, 95% CI 0.01 to 0.62; moderate-quality evidence). One study with 16 participants provided change scores and found no effect (SMD -0.64, 95% CI -1.66 to 0.37; low-quality evidence). However, the results did not persist in a sensitivity analysis that included only trials with proper allocation concealment. Thirty-four trials with a total of 985 participants measured upper extremity function at the end of the intervention period. Twenty-four studies with 792 participants that presented absolute values found no effect in favour of tDCS (SMD 0.17, 95% CI -0.05 to 0.38; moderate-quality evidence). Ten studies with 193 participants that presented change values also found no effect (SMD 0.33, 95% CI -0.12 to 0.79; low-quality evidence). Regarding the effects of tDCS on upper extremity function at the end of follow-up, we identified five studies with a total of 211 participants (absolute values) without an effect (SMD -0.00, 95% CI -0.39 to 0.39; moderate-quality evidence). Three studies with 72 participants presenting change scores found an effect (SMD 1.07; 95% CI 0.04 to 2.11; low-quality evidence). Twelve studies with 258 participants reported outcome data for lower extremity function and 18 studies with 553 participants reported outcome data on muscle strength at the end of the intervention period, but there was no effect (high-quality evidence). Three studies with 156 participants reported outcome data on muscle strength at follow-up, but there was no evidence of an effect (moderate-quality evidence). Two studies with 56 participants found no evidence of effect of tDCS on cognitive abilities (low-quality evidence), but one study with 30 participants found evidence of effect of tDCS for improving spatial neglect (very low-quality evidence). In 47 studies with 1330 participants, the proportions of dropouts and adverse events were comparable between groups (risk ratio (RR) 1.25, 95% CI 0.74 to 2.13; random-effects model; moderate-quality evidence). AUTHORS' CONCLUSIONS: There is evidence of very low to moderate quality on the effectiveness of tDCS versus control (sham intervention or any other intervention) for improving ADL outcomes after stroke. However, the results did not persist in a sensitivity analyses including only trials with proper allocation concealment. Evidence of low to high quality suggests that there is no effect of tDCS on arm function and leg function, muscle strength, and cognitive abilities in people after stroke. Evidence of very low quality suggests that there is an effect on hemispatial neglect. There was moderate-quality evidence that adverse events and numbers of people discontinuing the treatment are not increased. Future studies should particularly engage with patients who may benefit the most from tDCS after stroke, but also should investigate the effects in routine application. Therefore, further large-scale randomised controlled trials with a parallel-group design and sample size estimation for tDCS are needed.
Collapse
Affiliation(s)
- Bernhard Elsner
- Department of Public Health, Dresden Medical School, Technical University Dresden, Dresden, Germany
- Department of Physiotherapy, SRH Hochschule für Gesundheit Gera, 07548 Gera, Germany
| | - Joachim Kugler
- Department of Public Health, Dresden Medical School, Technical University Dresden, Dresden, Germany
| | - Marcus Pohl
- Neurological Rehabilitation, Helios Klinik Schloss Pulsnitz, Pulsnitz, Germany
| | - Jan Mehrholz
- Department of Public Health, Dresden Medical School, Technical University Dresden, Dresden, Germany
| |
Collapse
|
28
|
Liepert J, Stürner J, Büsching I, Sehle A, Schoenfeld MA. Effects of a single mental chronometry training session in subacute stroke patients - a randomized controlled trial. BMC Sports Sci Med Rehabil 2020; 12:66. [PMID: 33101692 PMCID: PMC7579870 DOI: 10.1186/s13102-020-00212-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 10/05/2020] [Indexed: 11/10/2022]
Abstract
Background Motor imagery training might be helpful in stroke rehabilitation. This study explored if a single session of motor imagery (MI) training induces performance changes in mental chronometry (MC), motor execution, or changes of motor excitability. Methods Subacute stroke patients (n = 33) participated in two training sessions. The order was randomized. One training consisted of a mental chronometry task, the other training was a hand identification task, each lasting 30 min. Before and after the training session, the Box and Block Test (BBT) was fully executed and also performed as a mental version which served as a measure of MC. A subgroup analysis based on the presence of sensory deficits was performed. Patients were allocated to three groups (no sensory deficits, moderate sensory deficits, severe sensory deficits). Motor excitability was measured by transcranial magnetic stimulation (TMS) pre and post training. Amplitudes of motor evoked potentials at rest and during pre-innervation as well as the duration of cortical silent period were measured in the affected and the non-affected hand. Results Pre-post differences of MC showed an improved MC after the MI training, whereas MC was worse after the hand identification training. Motor execution of the BBT was significantly improved after mental chronometry training but not after hand identification task training. Patients with severe sensory deficits performed significantly inferior in BBT execution and MC abilities prior to the training session compared to patients without sensory deficits or with moderate sensory deficits. However, pre-post differences of MC were similar in the 3 groups. TMS results were not different between pre and post training but showed significant differences between affected and unaffected side. Conclusion Even a single training session can modulate MC abilities and BBT motor execution in a task-specific way. Severe sensory deficits are associated with poorer motor performance and poorer MC ability, but do not have a negative impact on training-associated changes of mental chronometry. Studies with longer treatment periods should explore if the observed changes can further be expanded. Trial registration DRKS, DRKS00020355, registered March 9th, 2020, retrospectively registered
Collapse
Affiliation(s)
- Joachim Liepert
- Department of Neurorehabilitation, Kliniken Schmieder, Zum Tafelholz 8, 78476 Allensbach, Germany
| | - Jana Stürner
- Department of Neurorehabilitation, Kliniken Schmieder, Zum Tafelholz 8, 78476 Allensbach, Germany
| | | | - Aida Sehle
- Department of Neurorehabilitation, Kliniken Schmieder, Zum Tafelholz 8, 78476 Allensbach, Germany
| | - Mircea A Schoenfeld
- Department of Neurorehabilitation, Kliniken Schmieder, Heidelberg, Germany.,Department of Experimental Neurology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
29
|
Espenhahn S, Rossiter HE, van Wijk BCM, Redman N, Rondina JM, Diedrichsen J, Ward NS. Sensorimotor cortex beta oscillations reflect motor skill learning ability after stroke. Brain Commun 2020; 2:fcaa161. [PMID: 33215085 PMCID: PMC7660041 DOI: 10.1093/braincomms/fcaa161] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/16/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Recovery of skilled movement after stroke is assumed to depend on motor learning. However, the capacity for motor learning and factors that influence motor learning after stroke have received little attention. In this study, we first compared motor skill acquisition and retention between well-recovered stroke patients and age- and performance-matched healthy controls. We then tested whether beta oscillations (15–30 Hz) from sensorimotor cortices contribute to predicting training-related motor performance. Eighteen well-recovered chronic stroke survivors (mean age 64 ± 8 years, range: 50–74 years) and 20 age- and sex-matched healthy controls were trained on a continuous tracking task and subsequently retested after initial training (45–60 min and 24 h later). Scalp electroencephalography was recorded during the performance of a simple motor task before each training and retest session. Stroke patients demonstrated capacity for motor skill learning, but it was diminished compared to age- and performance-matched healthy controls. Furthermore, although the properties of beta oscillations prior to training were comparable between stroke patients and healthy controls, stroke patients did show less change in beta measures with motor learning. Lastly, although beta oscillations did not help to predict motor performance immediately after training, contralateral (ipsilesional) sensorimotor cortex post-movement beta rebound measured after training helped predict future motor performance, 24 h after training. This finding suggests that neurophysiological measures such as beta oscillations can help predict response to motor training in chronic stroke patients and may offer novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Svenja Espenhahn
- Correspondence to:Svenja Espenhahn, PhD, Department of Radiology, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, Canada AB T2N 4N1 E-mail:
| | - Holly E Rossiter
- School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff CF24 4HQ, UK
| | - Bernadette C M van Wijk
- Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, Amsterdam 1018 WT, The Netherlands
| | - Nell Redman
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jane M Rondina
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Joern Diedrichsen
- Department of Computer Science, Department of Statistical and Actuarial Sciences, Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Nick S Ward
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
30
|
Cerebellar transcranial alternating current stimulation in the gamma range applied during the acquisition of a novel motor skill. Sci Rep 2020; 10:11217. [PMID: 32641706 PMCID: PMC7343806 DOI: 10.1038/s41598-020-68028-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/16/2020] [Indexed: 11/11/2022] Open
Abstract
The development of novel strategies to augment motor training success is of great interest for healthy persons and neurological patients. A promising approach is the combination of training with transcranial electric stimulation. However, limited reproducibility and varying effect sizes make further protocol optimization necessary. We tested the effects of a novel cerebellar transcranial alternating current stimulation protocol (tACS) on motor skill learning. Furthermore, we studied underlying mechanisms by means of transcranial magnetic stimulation and analysis of fMRI-based resting-state connectivity. N = 15 young, healthy participants were recruited. 50 Hz tACS was applied to the left cerebellum in a double-blind, sham-controlled, cross-over design concurrently to the acquisition of a novel motor skill. Potential underlying mechanisms were assessed by studying short intracortical inhibition at rest (SICIrest) and in the premovement phase (SICImove), intracortical facilitation at rest (ICFrest), and seed-based resting-state fMRI-based functional connectivity (FC) in a hypothesis-driven motor learning network. Active stimulation did not enhance skill acquisition or retention. Minor effects on striato-parietal FC were present. Linear mixed effects modelling identified SICImove modulation and baseline task performance as the most influential determining factors for predicting training success. Accounting for the identified factors may allow to stratify participants for future training-based interventions.
Collapse
|
31
|
Carneiro MIS, Russo C, Masson R, Rossi Sebastiano D, Baranello G, Turati C, Bolognini N. Motor learning in unilateral cerebral palsy and the influence of corticospinal tract reorganization. Eur J Paediatr Neurol 2020; 27:49-59. [PMID: 32417186 DOI: 10.1016/j.ejpn.2020.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/06/2020] [Accepted: 04/25/2020] [Indexed: 11/28/2022]
Abstract
Cerebral Palsy (CP) is a complex neurological disorder, characterized by congenital motor disability associated with behaviour, perception and cognition disorders. The sensorimotor impairments represent the main hallmark of the disease, significantly impacting the quality of life. So far, few studies have investigated motor learning abilities in CP and their association with the plastic reorganization of the motor system remains largely unknown. The present proof-of-principle study explored explicit motor sequence learning in children with unilateral CP and different patterns of motor system reorganization (bilateral, ipsilateral, contralateral). Children with unilateral CP, and a group of age-matched typically developing (TD) children, underwent a sequential finger tapping task, performed with the affected hand by children with CP and with the non-dominant hand by TD children. The pattern of corticospinal tract projections in hemiparetic patients was assessed by single-pulse Transcranial Magnetic Stimulation (TMS). Results showed the presence of finger dexterity impairments in children with unilateral CP presenting with a bilateral or an ipsilateral control of the affected (trained) hand, as compared to TD children. Conversely, motor sequence learning was impaired in unilateral CP with ipsilateral or contralateral corticospinal reorganization, but not in the case of a bilateral control of the paretic hand. These preliminary findings, although referred to small clinical samples, suggest that unilateral control of the paretic upper-limb, from the ipsilateral or the contralateral motor cortex, may not be sufficient to develop typical motor learning with the affected hand, which seems to require a bilateral representation in the motor cortex. This evidence has potential implications for fine motor skills rehabilitation in CP.
Collapse
Affiliation(s)
- Maíra I S Carneiro
- University of Milano-Bicocca, Department of Psychology & NeuroMI - Milan Center for Neuroscience, Milan, Italy.
| | - Cristina Russo
- University of Milano-Bicocca, Department of Psychology & NeuroMI - Milan Center for Neuroscience, Milan, Italy
| | - Riccardo Masson
- Fondazione IRCCS Istituto Neurologico C. Besta, Developmental Neurology Unit, Milan, Italy
| | | | - Giovanni Baranello
- Fondazione IRCCS Istituto Neurologico C. Besta, Developmental Neurology Unit, Milan, Italy
| | - Chiara Turati
- University of Milano-Bicocca, Department of Psychology & NeuroMI - Milan Center for Neuroscience, Milan, Italy
| | - Nadia Bolognini
- University of Milano-Bicocca, Department of Psychology & NeuroMI - Milan Center for Neuroscience, Milan, Italy; IRCCS Istituto Auxologico, Laboratory of Neuropsychology, Milan, Italy.
| |
Collapse
|
32
|
Tseng SC, Chang SH, Hoerth KM, Nguyen ATA, Perales D. Anodal Transcranial Direct Current Stimulation Enhances Retention of Visuomotor Stepping Skills in Healthy Adults. Front Hum Neurosci 2020; 14:251. [PMID: 32676018 PMCID: PMC7333563 DOI: 10.3389/fnhum.2020.00251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/05/2020] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) paired with exercise training can enhance learning and retention of hand tasks; however, there have been few investigations of the effects of tDCS on leg skill improvements. The purpose of this study was to investigate whether tDCS paired with visuomotor step training can promote skill learning and retention. We hypothesized that pairing step training with anodal tDCS would improve skill learning and retention, evidenced by decreased step reaction times (RTs), both immediately (online skill gains) and 30 min after training (offline skill gains). Twenty healthy adults were randomly assigned to one of two groups, in which 20-min anodal or sham tDCS was applied to the lower limb motor cortex and paired with visuomotor step training. Step RTs were determined across three time points: (1) before brain stimulation (baseline); (2) immediately after brain stimulation (P0); and (3) 30 min after brain stimulation (P3). A continuous decline in RT was observed in the anodal tDCS group at both P0 and P3, with a significant decrease in RT at P3; whereas there were no improvements in RT at P0 and P3 in the sham group. These findings do not support our hypothesis that anodal tDCS enhances online learning, as RT was not decreased significantly immediately after stimulation. Nevertheless, the results indicate that anodal tDCS enhances offline learning, as RT was significantly decreased 30 min after stimulation, likely because of tDCS-induced neural modulation of cortical and subcortical excitability, synaptic efficacy, and spinal neuronal activity.
Collapse
Affiliation(s)
- Shih-Chiao Tseng
- Neuroscience Laboratory, School of Physical Therapy, Texas Woman's University, Houston, TX, United States
| | - Shuo-Hsiu Chang
- Motor Recovery Laboratory, Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kristine M Hoerth
- Neuroscience Laboratory, School of Physical Therapy, Texas Woman's University, Houston, TX, United States
| | - Anh-Tu A Nguyen
- Neuroscience Laboratory, School of Physical Therapy, Texas Woman's University, Houston, TX, United States
| | - Daniel Perales
- Neuroscience Laboratory, School of Physical Therapy, Texas Woman's University, Houston, TX, United States
| |
Collapse
|
33
|
Ekechukwu END, Olowoyo P, Nwankwo KO, Olaleye OA, Ogbodo VE, Hamzat TK, Owolabi MO. Pragmatic Solutions for Stroke Recovery and Improved Quality of Life in Low- and Middle-Income Countries-A Systematic Review. Front Neurol 2020; 11:337. [PMID: 32695058 PMCID: PMC7336355 DOI: 10.3389/fneur.2020.00337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Given the limited healthcare resources in low and middle income countries (LMICs), effective rehabilitation strategies that can be realistically adopted in such settings are required. Objective: A systematic review of literature was conducted to identify pragmatic solutions and outcomes capable of enhancing stroke recovery and quality of life of stroke survivors for low- and middle- income countries. Methods: PubMed, HINARI, and Directory of Open Access Journals databases were searched for published Randomized Controlled Trials (RCTs) till November 2018. Only completed trials published in English with non-pharmacological interventions on adult stroke survivors were included in the review while published protocols, pilot studies and feasibility analysis of trials were excluded. Obtained data were synthesized thematically and descriptively analyzed. Results: One thousand nine hundred and ninety six studies were identified while 347 (65.22% high quality) RCTs were found to be eligible for the review. The most commonly assessed variables (and outcome measure utility) were activities of daily living [75.79% of the studies, with Barthel Index (37.02%)], motor function [66.57%; with Fugl Meyer scale (71.88%)], and gait [31.12%; with 6 min walk test (38.67%)]. Majority of the innovatively high technology interventions such as robot therapy (95.24%), virtual reality (94.44%), transcranial direct current stimulation (78.95%), transcranial magnetic stimulation (88.0%) and functional electrical stimulation (85.00%) were conducted in high income countries. Several traditional and low-cost interventions such as constraint-induced movement therapy (CIMT), resistant and aerobic exercises (R&AE), task oriented therapy (TOT), body weight supported treadmill training (BWSTT) were reported to significantly contribute to the recovery of motor function, activity, participation, and improvement of quality of life after stroke. Conclusion: Several pragmatic, in terms of affordability, accessibility and utility, stroke rehabilitation solutions, and outcome measures that can be used in resource-limited settings were found to be effective in facilitating and enhancing post-stroke recovery and quality of life.
Collapse
Affiliation(s)
- Echezona Nelson Dominic Ekechukwu
- Department of Medical Rehabilitation, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Enugu, Nigeria
- LANCET Physiotherapy and Wellness and Research Centre, Enugu, Nigeria
| | - Paul Olowoyo
- Department of Medicine, Federal Teaching Hospital, Ido Ekiti, Nigeria
- College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Kingsley Obumneme Nwankwo
- Stroke Control Innovations Initiative of Nigeria, Abuja, Nigeria
- Fitness Global Consult Physiotherapy Clinic, Abuja, Nigeria
| | - Olubukola A Olaleye
- Department of Physiotherapy, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Talhatu Kolapo Hamzat
- Department of Physiotherapy, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mayowa Ojo Owolabi
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- University College Hospital, Ibadan, Nigeria
- Blossom Specialist Medical Centre, Ibadan, Nigeria
| |
Collapse
|
34
|
Yao X, Cui L, Wang J, Feng W, Bao Y, Xie Q. Effects of transcranial direct current stimulation with virtual reality on upper limb function in patients with ischemic stroke: a randomized controlled trial. J Neuroeng Rehabil 2020; 17:73. [PMID: 32539812 PMCID: PMC7296643 DOI: 10.1186/s12984-020-00699-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/21/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Non-invasive brain stimulation techniques have been shown in several studies to improve the motor recovery of the affected upper-limbs in stroke patients. This study aims to investigate whether or not cathodal transcranial direct current stimulation (c-tDCS), combined with virtual reality (VR), is superior to VR alone in reducing motor impairment and improving upper limb function and quality of life in stroke patients. METHODS Forty patients who suffered ischemic stroke between 2 weeks to 12 months were recruited for this single-blind randomized control trial. The patients were randomly assigned either to an experimental group who receiving c-tDCS and VR, or a control group receiving sham stimulation and VR. The cathodal electrode was positioned over the primary motor cortex (M1) of the unaffected hemisphere. The treatment session consisted of 20 min of daily therapy, for 10 sessions over a 2-week period. The outcome measures were the Fugl-Meyer Upper Extremity (FM-UE), the Action Research Arm Test (ARAT) and the Barthel Index (BI). RESULTS The two groups were comparable in demographic characteristic and motor impairment. After 2 weeks of intervention, both groups demonstrated significant improvement in FM-UE, ARAT and BI scores (P<0.05).The experiment group demonstrated more improvement in FM-UE than the control group (10.1 vs. 6.4, p = 0.003) and, ARAT (7.0 vs 3.6, p = 0.026) and BI (12.8 vs 8.5, p = 0.043). CONCLUSIONS The findings from our study support that c-tDCS, along with VR, can facilitate a stronger beneficial effect on upper limb motor impairment, function and quality of life than VR alone in patients with ischemic stroke. TRIAL REGISTRATION The study was registered in the Chinese Clinical Trial Registry (ChiCTR1800019386) in November 8, 2018-Retrospectively registered.
Collapse
Affiliation(s)
- Xiaoling Yao
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lijun Cui
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wuwei Feng
- Deparment of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yong Bao
- Department of Rehabilitation Medicine, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China.
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Department of Rehabilitation Medicine, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China.
| |
Collapse
|
35
|
Ahn SM, Jung DH, Lee HJ, Pak ME, Jung YJ, Shin YI, Shin HK, Choi BT. Contralesional Application of Transcranial Direct Current Stimulation on Functional Improvement in Ischemic Stroke Mice. Stroke 2020; 51:2208-2218. [PMID: 32521221 DOI: 10.1161/strokeaha.120.029221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND PURPOSE The therapeutic use of transcranial direct current stimulation (tDCS), an adjuvant tool for stroke, induces long-term changes in cortical excitability, for example, the secretion of activity-dependent growth factors. We assessed the proper therapeutic configuration of high-definition tDCS (HD-tDCS) in the subacute stage of ischemic stroke and its underlying expression profiling of growth factors to propose a new method for ensuring better therapeutic effects. METHODS Male C57BL/6J mice were subjected to middle cerebral artery occlusion, after which repetitive HD-tDCS (20 minutes, 55 µA/mm2, charge density 66 000 C/m2) was applied from subacute phases of their ischemic insult. Behavioral tests assessing motor and cognitive functions were used to determine suitable conditions and HD-tDCS stimulation sites. Gene expression profiling of growth factors and their secretion and activation were analyzed to shed light on the underlying mechanisms. RESULTS Anodal HD-tDCS application over the contralesional cortex, especially the motor cortex, was more effective than ipsilesional stimulation in attenuating motor and cognitive deficits. In the HD-tDCS application over the contralesional motor cortex, positive changes in Bmp8b, Gdf5, Il4, Pdgfa, Pgf, and Vegfb were observed in the ipsilesional site. The expression of GDF5 (growth/differentiation factor 5) and PDGFA (platelet-derived growth factor subunit A) tended to similarly increase in both ipsi- and contralesional striata. However, higher expression levels of GDF5 and PDGFA and their receptors were observed in the peri-infarct regions of the striatum after HD-tDCS, especially in PDGFA expression. A higher number of proliferating or newly formed neuronal cells was detected in ipsilesional sites such as the subventricular zone. CONCLUSIONS Application of anodal HD-tDCS over the contralesional cortex may enhance beneficial recovery through the expression of growth factors, such as GDF5 and PDGFA, in the ipsilesional site. Therefore, this therapeutic configuration may be applied in the subacute stage of ischemic stroke to ameliorate neurological impairments.
Collapse
Affiliation(s)
- Sung Min Ahn
- Korean Medical Science Research Center for Healthy-Aging (S.M.A., M.E.P., H.K.S., B.T.C.), Pusan National University, Yangsan, Republic of Korea
| | - Da Hee Jung
- Department of Korean Medical Science, School of Korean Medicine (D.H.J., H.J.L., H.K.S., B.T.C.), Pusan National University, Yangsan, Republic of Korea.,Graduate Training Program of Korean Medicine for Healthy-Aging (D.H.J., H.J.L., H.K.S., B.T.C.), Pusan National University, Yangsan, Republic of Korea
| | - Hong Ju Lee
- Department of Korean Medical Science, School of Korean Medicine (D.H.J., H.J.L., H.K.S., B.T.C.), Pusan National University, Yangsan, Republic of Korea.,Graduate Training Program of Korean Medicine for Healthy-Aging (D.H.J., H.J.L., H.K.S., B.T.C.), Pusan National University, Yangsan, Republic of Korea
| | - Malk Eun Pak
- Korean Medical Science Research Center for Healthy-Aging (S.M.A., M.E.P., H.K.S., B.T.C.), Pusan National University, Yangsan, Republic of Korea
| | - Young Jin Jung
- Department of Radiological Science, Heath Science Division, Dongseo University, Busan, Republic of Korea (Y.J.J.)
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, School of Medicine (Y.-I.S.), Pusan National University, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Korean Medical Science Research Center for Healthy-Aging (S.M.A., M.E.P., H.K.S., B.T.C.), Pusan National University, Yangsan, Republic of Korea.,Department of Korean Medical Science, School of Korean Medicine (D.H.J., H.J.L., H.K.S., B.T.C.), Pusan National University, Yangsan, Republic of Korea.,Graduate Training Program of Korean Medicine for Healthy-Aging (D.H.J., H.J.L., H.K.S., B.T.C.), Pusan National University, Yangsan, Republic of Korea
| | - Byung Tae Choi
- Korean Medical Science Research Center for Healthy-Aging (S.M.A., M.E.P., H.K.S., B.T.C.), Pusan National University, Yangsan, Republic of Korea.,Department of Korean Medical Science, School of Korean Medicine (D.H.J., H.J.L., H.K.S., B.T.C.), Pusan National University, Yangsan, Republic of Korea.,Graduate Training Program of Korean Medicine for Healthy-Aging (D.H.J., H.J.L., H.K.S., B.T.C.), Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
36
|
Transcranial Direct Current Stimulation for Motor Recovery Following Brain Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020. [DOI: 10.1007/s40141-020-00262-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Exercise Plus Pharmacological Neuromodulation of Synaptic Inhibition Enhance Motor Function Recovery After Ischemic Stroke. Neuroscience 2020; 430:12-24. [PMID: 31982464 DOI: 10.1016/j.neuroscience.2020.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/23/2022]
Abstract
The objective of this study was to examine the interactive effects of exercise and low-level inhibition of GABAA receptors on the recovery of motor function and BDNF expression in the primary motor cortex (M1) of a stroke rat model. Male Sprague-Dawley rats were divided into five groups: sham (SHAM), control (CON), exercise (EX), bicuculline (BIC), and bicuculline plus exercise (BICEX) groups. All rats, except those in the SHAM group, underwent middle cerebral artery occlusion (MCAO) surgery to induce an ischemic stroke. GABAA receptor antagonist, bicuculline (0.25 mg/kg, i.p.), was administered to the BIC and BICEX groups. The EX and BICEX groups exercised on a treadmill (11 m/min for 30 min). Each intervention started 3 days after the MCAO surgery and was carried out every day for 2 weeks. Following the intervention, bilateral M1 BDNF mRNA and protein expression levels were assessed using qRT-PCR and ELISA. Marginal recovery was found in the EX and BIC groups, whereas motor function recovery was enhanced with exercise in the presence of BIC administration specifically in the BICEX group. Furthermore, BDNF protein level in the ipsilateral M1 was significantly higher in the BICEX group than in other groups. This study indicated that exercise combined with low-level inhibition of GABAA receptors after stroke could facilitate the recovery of motor function accompanied by BDNF upregulation in the ipsilateral M1. Therefore, this study provides a novel insight of pharmacological neuromodulation into stroke rehabilitation.
Collapse
|
38
|
Dahms C, Brodoehl S, Witte OW, Klingner CM. The importance of different learning stages for motor sequence learning after stroke. Hum Brain Mapp 2020; 41:270-286. [PMID: 31520506 PMCID: PMC7268039 DOI: 10.1002/hbm.24793] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/31/2019] [Accepted: 09/02/2019] [Indexed: 11/12/2022] Open
Abstract
The task of learning predefined sequences of interrelated motor actions is of everyday importance and has also strong clinical importance for regaining motor function after brain lesions. A solid understanding of sequence learning in stroke patients can help clinicians to optimize and individualize rehabilitation strategies. Moreover, to investigate the impact of a focal lesion on the ability to successfully perform motor sequence learning can enhance our comprehension of the underlying physiological principles of motor sequence learning. In this article, we will first provide an overview of current concepts related to motor sequence learning in healthy subjects with focus on the involved brain areas and their assumed functions according to the temporal stage model. Subsequently, we will consider the question of what we can learn from studies investigating motor sequence learning in stroke patients. We will first focus on the implications of lesion location. Then, we will analyze whether distinct lesion locations affect specific learning stages. Finally, we will discuss the implications for clinical rehabilitation and suggest directions for further research.
Collapse
Affiliation(s)
- Christiane Dahms
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
| | - Stefan Brodoehl
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
- Biomagnetic CenterJena University HospitalJenaGermany
| | - Otto W. Witte
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
| | - Carsten M. Klingner
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
- Biomagnetic CenterJena University HospitalJenaGermany
| |
Collapse
|
39
|
Liu HH, He XK, Chen HY, Peng CW, Rotenberg A, Juan CH, Pei YC, Liu HL, Chiang YH, Wang JY, Feng XJ, Huang YZ, Hsieh TH. Neuromodulatory Effects of Transcranial Direct Current Stimulation on Motor Excitability in Rats. Neural Plast 2019; 2019:4252943. [PMID: 31949429 PMCID: PMC6942908 DOI: 10.1155/2019/4252943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/14/2019] [Indexed: 11/17/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive technique for modulating neural plasticity and is considered to have therapeutic potential in neurological disorders. For the purpose of translational neuroscience research, a suitable animal model can be ideal for providing a stable condition for identifying mechanisms that can help to explore therapeutic strategies. Here, we developed a tDCS protocol for modulating motor excitability in anesthetized rats. To examine the responses of tDCS-elicited plasticity, the motor evoked potential (MEP) and MEP input-output (IO) curve elicited by epidural motor cortical electrical stimulus were evaluated at baseline and after 30 min of anodal tDCS or cathodal tDCS. Furthermore, a paired-pulse cortical electrical stimulus was applied to assess changes in the inhibitory network by measuring long-interval intracortical inhibition (LICI) before and after tDCS. In the results, analogous to those observed in humans, the present study demonstrates long-term potentiation- (LTP-) and long-term depression- (LTD-) like plasticity can be induced by tDCS protocol in anesthetized rats. We found that the MEPs were significantly enhanced immediately after anodal tDCS at 0.1 mA and 0.8 mA and remained enhanced for 30 min. Similarly, MEPs were suppressed immediately after cathodal tDCS at 0.8 mA and lasted for 30 min. No effect was noted on the MEP magnitude under sham tDCS stimulation. Furthermore, the IO curve slope was elevated following anodal tDCS and presented a trend toward diminished slope after cathodal tDCS. No significant differences in the LICI ratio of pre- to post-tDCS were observed. These results indicated that developed tDCS schemes can produce consistent, rapid, and controllable electrophysiological changes in corticomotor excitability in rats. This newly developed tDCS animal model could be useful to further explore mechanical insights and may serve as a translational platform bridging human and animal studies, establishing new therapeutic strategies for neurological disorders.
Collapse
Affiliation(s)
- Hui-Hua Liu
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
| | - Xiao-Kuo He
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
- Department of Rehabilitation, The Fifth Hospital of Xiamen, Xiamen, Fujian, China
| | - Hsin-Yung Chen
- Department of Occupational Therapy and Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology and Dementia Center, Taoyuan Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Brain Research Center, National Central University, Taoyuan, Taiwan
| | - Yu-Cheng Pei
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Hsiao Chiang
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Program on Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Xiao-Jun Feng
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Ying-Zu Huang
- Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
40
|
Kim J, Lee M, Yim J. A New Approach to Transcranial Direct Current Stimulation in Improving Cognitive Motor Learning and Hand Function with the Nintendo Switch in Stroke Survivors. Med Sci Monit 2019; 25:9555-9562. [PMID: 31837648 PMCID: PMC6929561 DOI: 10.12659/msm.921081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation (NIBS) technique designed to improve cognitive and physical function of stroke survivors. There are many studies being conducted in the search for an effective intervention of tDCS. This study focused on cognitive motor learning in relation to hand function of stroke survivors. MATERIAL AND METHODS We enrolled 30 subjects with cognitive and hand function disorders. The participants in each group were inpatients at a hospital in Korea and had undergone neurorehabilitation training (60 min). Groups 1 and 3 had tDCS applied for 20 min, while group 2 received sham tDCS for the same duration. Afterwards, groups 1 and 2 played Nintendo games for 20 min, but group 3 did not. The total intervention period was 40 min/day, 2 days/week, for 8 weeks. The cognitive and hand function of the subjects were assessed using the Trail Making Test (TMT-A, TMT-B), Grip strength, Box and Block Test (BBT), and the Manual Function Test (MFT) before and after intervention. RESULTS The tDCS + Nintendo Switch game group showed significant differences in TMT-A, TMT-B, Grip strength, MFT, and BBT results compared to the other groups between before and after intervention (p<.05). CONCLUSIONS Our results suggest that inclusion of motor tasks with the application of tDCS may be effective in improving cognitive and hand function of stroke survivors.
Collapse
Affiliation(s)
- JaeEun Kim
- Department of Physical Therapy, Graduate School of Sahmyook University, Seoul, South Korea
| | - MiYoung Lee
- Department of Physical Therapy, Sahmyook University, Seoul, South Korea
| | - JongEun Yim
- Department of Physical Therapy, Sahmyook University, Seoul, South Korea
| |
Collapse
|
41
|
Barbati SA, Cocco S, Longo V, Spinelli M, Gironi K, Mattera A, Paciello F, Colussi C, Podda MV, Grassi C. Enhancing Plasticity Mechanisms in the Mouse Motor Cortex by Anodal Transcranial Direct-Current Stimulation: The Contribution of Nitric Oxide Signaling. Cereb Cortex 2019; 30:2972-2985. [PMID: 31821409 DOI: 10.1093/cercor/bhz288] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 05/01/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
Consistent body of evidence shows that transcranial direct-current stimulation (tDCS) over the primary motor cortex (M1) facilitates motor learning and promotes recovery after stroke. However, the knowledge of molecular mechanisms behind tDCS effects needs to be deepened for a more rational use of this technique in clinical settings. Here we characterized the effects of anodal tDCS of M1, focusing on its impact on glutamatergic synaptic transmission and plasticity. Mice subjected to tDCS displayed increased long-term potentiation (LTP) and enhanced basal synaptic transmission at layer II/III horizontal connections. They performed better than sham-stimulated mice in the single-pellet reaching task and exhibited increased forelimb strength. Dendritic spine density of layer II/III pyramidal neurons was also increased by tDCS. At molecular level, tDCS enhanced: 1) BDNF expression, 2) phosphorylation of CREB, CaMKII, and GluA1, and 3) S-nitrosylation of GluA1 and HDAC2. Blockade of nitric oxide synthesis by L-NAME prevented the tDCS-induced enhancement of GluA1 phosphorylation at Ser831 and BDNF levels, as well as of miniature excitatory postsynaptic current (mEPSC) frequency, LTP and reaching performance. Collectively, these findings demonstrate that anodal tDCS engages plasticity mechanisms in the M1 and highlight a role for nitric oxide (NO) as a novel mediator of tDCS effects.
Collapse
Affiliation(s)
| | - Sara Cocco
- Istituto di Fisiologia Umana, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Valentina Longo
- Istituto di Fisiologia Umana, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Matteo Spinelli
- Istituto di Fisiologia Umana, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Katia Gironi
- Istituto di Fisiologia Umana, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Andrea Mattera
- Istituto di Fisiologia Umana, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Fabiola Paciello
- Istituto di Fisiologia Umana, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Claudia Colussi
- Istituto di Fisiologia Umana, Università Cattolica del Sacro Cuore, Roma 00168, Italy.,Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti" (IASI) - CNR, Rome 00185, Italy
| | - Maria Vittoria Podda
- Istituto di Fisiologia Umana, Università Cattolica del Sacro Cuore, Roma 00168, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma 00168, Italy
| | - Claudio Grassi
- Istituto di Fisiologia Umana, Università Cattolica del Sacro Cuore, Roma 00168, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma 00168, Italy
| |
Collapse
|
42
|
Corsi C, Santos MM, Moreira RFC, Dos Santos AN, de Campos AC, Galli M, Rocha NACF. Effect of physical therapy interventions on spatiotemporal gait parameters in children with cerebral palsy: a systematic review. Disabil Rehabil 2019; 43:1507-1516. [PMID: 31588810 DOI: 10.1080/09638288.2019.1671500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AIM To investigate the effect of physical therapy interventions on spatiotemporal gait parameters in children with cerebral palsy. METHODS Six databases were searched: PubMed, Embase, Web of Science, Science Direct, Lilacs, and Scopus. Two independent reviewers worked on primary study selection based on titles, abstracts, and full text reading. We included randomized controlled trials investigating the role of therapeutic interventions on gait kinematics in children with cerebral palsy. The independent reviewers extracted information about study population, intervention type, main outcomes, and methodological quality according to PEDro Scale. The body of evidence was synthesized through GRADE. RESULTS Twenty-six studies were found addressing the following treatment categories: functional electrical stimulation, transcranial stimulation, gait training, muscular strengthening, vibratory platform training, and serial casting. A moderate level of evidence was identified for vibratory platform training, gait training, transcranial stimulation (positive effect), and isolated muscle strengthening (negative effect) in relation to gait velocity. Electrical stimulation showed a moderate level of evidence regarding stride length. The evidence for other outcomes was of low or very low quality. CONCLUSION Vibratory platform, gait training, electrical stimulation, and transcranial stimulation were effective to improve spatiotemporal gait parameters, especially velocity in children with cerebral palsy.Implication for rehabilitationImprovement and maintenance of gait of children with cerebral palsy is a great challenge to rehabilitation professionalsVibratory platform, gait training, electrical stimulation, and transcranial stimulation improve gait parameters.Isolated strength training was not effective to improve gait parameters in Cerebral Palsy.Long-term effect of most techniques on gait parameters until unclear.
Collapse
Affiliation(s)
- Carolina Corsi
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil.,Bioengineering Department, Politecnico di Milano, Milan, Italy
| | - Mariana M Santos
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | - Roberta F C Moreira
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | - Adriana N Dos Santos
- Department of Physical Therapy, Federal University of Santa Catarina, Araranguá, Brazil
| | - Ana C de Campos
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | - Manuela Galli
- Bioengineering Department, Politecnico di Milano, Milan, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele di Pisana, Rome, Italy
| | - Nelci A C F Rocha
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
43
|
Qiu T, Hameed NUF, Peng Y, Wang S, Wu J, Zhou L. Functional near-infrared spectroscopy for intraoperative brain mapping. NEUROPHOTONICS 2019; 6:045010. [PMID: 31799334 PMCID: PMC6876615 DOI: 10.1117/1.nph.6.4.045010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/05/2019] [Indexed: 05/04/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is a relatively new seizure-free technique and its value for intraoperative brain mapping is unknown. We examine the feasibility of fNIRS for intraoperative functional brain mapping. A 1 × 1 cm 2 density fNIRS probe specially designed for intraoperative use was used to map brain function in adult patients undergoing awake brain surgery and performing motor and/or language tasks. The ability of fNIRS for functional mapping was compared with direct cortical stimulation (DCS) and regression was used to determine if mean blood pressure (MBP) and blood hemoglobin influenced fNIRS measurements. Eighteen patients underwent awake craniotomy and performed 19 language- and 17 motor-related tasks. fNIRS mapping was highly correlated with DCS for 10 language- and 7 motor-related tasks. fNIRS was able to detect functional language ( p < 0.001 ) and motor areas ( p = 0.002 ). Compared to DCS, fNIRS was less accurate in determining both functional language (at least 22.64%, p < 0.001 ) and motor areas (at least 32.74%, p < 0.001 ). Higher MBP and blood hemoglobin were associated with better fNIRS results ( p = 0.045 and 0.007, respectively). No seizures or other complications occurred during fNIRS measurement. fNIRS is a promising seizure-free technique for intraoperative brain mapping. The accuracy of current technology needs further development for clinical use.
Collapse
Affiliation(s)
- Tianming Qiu
- Fudan University, Huashan Hospital, Glioma Surgery Division, Department of Neurosurgery, Shanghai, China
| | - N. U. Farrukh Hameed
- Fudan University, Huashan Hospital, Glioma Surgery Division, Department of Neurosurgery, Shanghai, China
| | - Yuerong Peng
- Fudan University, Huashan Hospital, Department of Anesthesia, Shanghai, China
| | - Shuheng Wang
- Yale University, Statistics and Data Science Department, Connecticut, United States
| | - Jinsong Wu
- Fudan University, Huashan Hospital, Glioma Surgery Division, Department of Neurosurgery, Shanghai, China
| | - Liangfu Zhou
- Fudan University, Huashan Hospital, Department of Neurosurgery, Shanghai, China
| |
Collapse
|
44
|
Tatemoto T, Tanaka S, Maeda K, Tanabe S, Kondo K, Yamaguchi T. Skillful Cycling Training Induces Cortical Plasticity in the Lower Extremity Motor Cortex Area in Healthy Persons. Front Neurosci 2019; 13:927. [PMID: 31551689 PMCID: PMC6733988 DOI: 10.3389/fnins.2019.00927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/19/2019] [Indexed: 11/30/2022] Open
Abstract
Cycling exercise is commonly used in rehabilitation to improve lower extremity (LE) motor function and gait performance after stroke. Motor learning is important for regaining motor skills, suggesting that training of motor skills influences cortical plasticity. However, the effects of motor skill learning in dynamic alternating movements of both legs on cortical plasticity remain unclear. Here, we examined the effects of skillful cycling training on cortical plasticity of the LE motor area in healthy adults. Eleven healthy volunteers participated in the following three sessions on different days: skillful cycling training, constant-speed cycling training, and rest condition. Skillful cycling training required the navigation of a marker up and down curves by controlling the rotation speed of the pedals. Participants were instructed to fit the marker to the target curves as accurately as possible. Amplitudes of motor evoked potentials (MEPs) and short-interval intracortical inhibition (SICI) evoked using transcranial magnetic stimulation (TMS) were assessed at baseline, after every 10 min of the task (a total of 30 min), and 30 min after the third and final trial. A decrease in tracking errors was representative of the formation of motor learning following skillful cycling training. Compared to baseline, SICI was significantly decreased after skillful cycling training in the tibialis anterior (TA) muscle. The task-induced alterations of SICI were more prominent and lasted longer with skillful cycling training than with the other conditions. The changes in SICI were negatively correlated with a change in tracking error ratio at 20 min the task. MEP amplitudes were not significantly altered with any condition. In conclusion, skillful cycling training induced long-lasting plastic changes of intracortical inhibition, which corresponded to the learning process in the LE motor cortex. These findings suggest that skillful cycling training would be an effective LE rehabilitation method after stroke.
Collapse
Affiliation(s)
- Tsuyoshi Tatemoto
- Graduate School of Health Sciences, Fujita Health University, Aichi, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kazuhei Maeda
- Department of Clinical Technology, Hokkaido Institutional Society Otaru Hospital, Hokkaido, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Aichi, Japan
| | | | - Tomofumi Yamaguchi
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| |
Collapse
|
45
|
Abstract
Depression is one of the most disabling conditions in the world. In many cases patients continue to suffer with depressive disorders despite a series of adequate trials of medication and psychotherapy. Neuromodulation treatments offer a qualitatively different modality of treatment that can frequently prove efficacious in these treatment-refractory patients. The field of neuromodulation focuses on the use of electrical/electromagnetic energy, both invasively and noninvasively, to interface with and ultimately alter activity within the human brain for therapeutic purposes. These treatments provide another set of options to offer patients when clinically indicated, and knowledge of their safety, risks and benefits, and appropriate clinical application is essential for modern psychiatrists and other mental health professionals. Although neuromodulation techniques hold tremendous promise, only three such treatments are currently approved by the United States Food and Drug Administration (FDA) for the treatment of major depressive disorder: electroconvulsive therapy (ECT), vagus nerve stimulation (VNS), and repetitive transcranial magnetic stimulation (rTMS). Additionally, numerous other neurostimulation modalities (deep brain stimulation [DBS], magnetic seizure therapy [MST], transcranial electric stimulation [tES], and trigeminal nerve stimulation [TNS]), though currently experimental, show considerable therapeutic promise. Researchers are actively looking for ways to optimize outcomes and clinical benefits by making neuromodulation treatments safer, more efficacious, and more durable.
Collapse
Affiliation(s)
| | - Willa Xiong
- Washington University School of Medicine, St. Louis, MO, USA
| | - Charles R Conway
- Washington University School of Medicine, St. Louis, MO, USA. .,John Cochran Division, VA St. Louis Health Care System, St. Louis, MO, USA.
| |
Collapse
|
46
|
Santos Ferreira I, Teixeira Costa B, Lima Ramos C, Lucena P, Thibaut A, Fregni F. Searching for the optimal tDCS target for motor rehabilitation. J Neuroeng Rehabil 2019; 16:90. [PMID: 31315679 PMCID: PMC6637619 DOI: 10.1186/s12984-019-0561-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/28/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has been investigated over the years due to its short and also long-term effects on cortical excitability and neuroplasticity. Although its mechanisms to improve motor function are not fully understood, this technique has been suggested as an alternative therapeutic method for motor rehabilitation, especially those with motor function deficits. When applied to the primary motor cortex, tDCS has shown to improve motor function in healthy individuals, as well as in patients with neurological disorders. Based on its potential effects on motor recovery, identifying optimal targets for tDCS stimulation is essential to improve knowledge regarding neuromodulation as well as to advance the use of tDCS in clinical motor rehabilitation. METHODS AND RESULTS Therefore, this review discusses the existing evidence on the application of four different tDCS montages to promote and enhance motor rehabilitation: (1) anodal ipsilesional and cathodal contralesional primary motor cortex tDCS, (2) combination of central tDCS and peripheral electrical stimulation, (3) prefrontal tDCS montage and (4) cerebellar tDCS stimulation. Although there is a significant amount of data testing primary motor cortex tDCS for motor recovery, other targets and strategies have not been sufficiently tested. This review then presents the potential mechanisms and available evidence of these other tDCS strategies to promote motor recovery. CONCLUSIONS In spite of the large amount of data showing that tDCS is a promising adjuvant tool for motor rehabilitation, the diversity of parameters, associated with different characteristics of the clinical populations, has generated studies with heterogeneous methodologies and controversial results. The ideal montage for motor rehabilitation should be based on a patient-tailored approach that takes into account aspects related to the safety of the technique and the quality of the available evidence.
Collapse
Affiliation(s)
- Isadora Santos Ferreira
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, USA
| | - Beatriz Teixeira Costa
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, USA
| | - Clara Lima Ramos
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, USA
| | - Pedro Lucena
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, USA
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium
| | - Felipe Fregni
- Neuromodulation Center, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, 79/96 13th Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
47
|
Wessel MJ, Draaisma LR, Morishita T, Hummel FC. The Effects of Stimulator, Waveform, and Current Direction on Intracortical Inhibition and Facilitation: A TMS Comparison Study. Front Neurosci 2019; 13:703. [PMID: 31338018 PMCID: PMC6629772 DOI: 10.3389/fnins.2019.00703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/21/2019] [Indexed: 01/10/2023] Open
Abstract
Background: Cortical function is dependent on the balance between excitatory and inhibitory influences. In the human motor cortex, surrogates of these interactions can be measured in vivo, non-invasively with double-pulse transcranial magnetic stimulation (TMS). To compare results from data acquired with different available setups and bring data together, it is inevitable to determine whether different TMS setups lead to comparable or differential results. Objective: We assessed and compared short intracortical inhibition (SICI) and intracortical facilitation (ICF) testing four different experimental conditions. Methods: SICI and ICF were studied with different stimulators (Magstim BiStim2 or MagVenture MagPro X100), waveforms (monophasic or biphasic), current directions (anterior-posterior or posterior-anterior) at interstimulus intervals (ISIs) of 1, 3, 10, 15 ms. Results: We were not able to detect differences for SICI and ICF, when comparing the tested conditions, except for 3 ms SICI in which the anterior-posterior current direction led to stronger modulation. Correlation analysis suggested comparability for 3 ms SICI for the Magstim monophasic posterior-anterior condition with both tested MagVenture conditions. Conclusions: 3 ms SICI data sets obtained with two different, commonly used stimulators (Magstim BiStim2 or MagVenture MagPro X100) with conventionally used stimulation parameters are largely comparable. This may allow the combination of data sets in an open science view.
Collapse
Affiliation(s)
- Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
| | - Laurijn R Draaisma
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
| | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland.,Department of Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
48
|
Lucena MFG, Teixeira PEP, Bonin Pinto C, Fregni F. Top 100 cited noninvasive neuromodulation clinical trials. Expert Rev Med Devices 2019; 16:451-466. [PMID: 31092060 DOI: 10.1080/17434440.2019.1615440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Introduction: Transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) are noninvasive neuromodulation techniques used as therapeutic and research tools for several neuropsychiatric conditions. Given the exponential scientific growth of this field, we aimed to systematically review the most cited clinical trials using TMS or tDCS. AREAS COVERED A de-novo keyword search strategy identified and characterized the 100 most-cited trials. Total citation count for the most cited trials was 13,204. Articles were published between 2008 and 2014 in 50 different journals with a median impact factor of 6.52 (IQR 3.37). Almost half of the top cited papers were investigating mechanisms of action in healthy subjects. Most studies were feasibility trials and only five were pivotal trials, including the ones used for recent FDA approval. Seven articles were interlinked with another article by at least 25 citations and eight authors had collaborated with at least one other author. EXPERT OPINION Although there has been a significant increase in interest for rTMS and tDCS, most of the cited clinical trials are still small feasibility studies, what reinforced the need for more robust clinical trials (larger samples sizes and effects sizes) to better define clinical effectiveness.
Collapse
Affiliation(s)
- Mariana F G Lucena
- a Laboratory of Neuromodulation & Center for Clinical Research Learning, Physics and Rehabilitation Department , Spaulding Rehabilitation Hospital, Harvard Medical School , Boston , MA USA
| | - Paulo E P Teixeira
- a Laboratory of Neuromodulation & Center for Clinical Research Learning, Physics and Rehabilitation Department , Spaulding Rehabilitation Hospital, Harvard Medical School , Boston , MA USA.,b Research and Education Center , Wilson Mello Institute , Campinas, Sao Paulo , Brazil
| | - Camila Bonin Pinto
- a Laboratory of Neuromodulation & Center for Clinical Research Learning, Physics and Rehabilitation Department , Spaulding Rehabilitation Hospital, Harvard Medical School , Boston , MA USA.,c Department of Neuroscience and Behavior, Psychology Institute , University of Sao Paulo , Sao Paulo , Brazil
| | - Felipe Fregni
- a Laboratory of Neuromodulation & Center for Clinical Research Learning, Physics and Rehabilitation Department , Spaulding Rehabilitation Hospital, Harvard Medical School , Boston , MA USA
| |
Collapse
|
49
|
Qi F, Nitsche MA, Zschorlich VR. Modulating Observation-Execution-Related Motor Cortex Activity by Cathodal Transcranial Direct Current Stimulation. Brain Sci 2019; 9:E121. [PMID: 31130692 PMCID: PMC6563080 DOI: 10.3390/brainsci9050121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/18/2019] [Accepted: 05/23/2019] [Indexed: 12/27/2022] Open
Abstract
The aim of this randomized sham-controlled study was to examine the impact of cathodal transcranial direct current stimulation (ctDCS) of the primary motor cortex (M1) during movement observation on subsequent execution-related motor cortex activity. Thirty healthy participants received sham or real ctDCS (1 mA) over the left M1 for 10 minutes, respectively. The participants observed a video showing repeated button pressing tasks of the right hand during the sham or real ctDCS, followed by performance of these tasks by the right hand. Motor-evoked potentials (MEP) were recorded from the resting right first dorsal interosseous muscle before movement observation during the sham or real ctDCS, immediately after observation of actions, and after subsequent movement execution. The results of the ANOVA showed a significant main effect on the group (F1,28 = 4.60, p = 0.041) and a significant interaction between time and the group (F2,56 = 5.34, p = 0.008). As revealed by respective post hoc tests, ctDCS induced a significant reduction of MEP amplitudes in connection with movement observation (p = 0.026, Cohen's d = 0.861) and after subsequent movement execution (p = 0.018, Cohen's d = 0.914) in comparison with the sham stimulation. It is concluded that ctDCS during movement observation was effective in terms of modulating motor cortex excitability. Moreover, it subsequently influenced execution-related motor cortex activity. This indicates a possible application for rehabilitative treatment in syndromes with pathologically enhanced cortical activity.
Collapse
Affiliation(s)
- Fengxue Qi
- Department of Movement Science, Faculty of Philosophy, University of Rostock, 18057 Rostock, Germany.
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, 44139 Dortmund, Germany.
- Department of Sport Training, Sport Coaching College, Beijing Sport University, Beijing 100084, China.
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, 44139 Dortmund, Germany.
- Department of Neurology, University Medical Hospital Bergmannsheil, 44789 Bochum, Germany.
| | - Volker R Zschorlich
- Department of Movement Science, Faculty of Philosophy, University of Rostock, 18057 Rostock, Germany.
- Faculty of Medicine, University of Rostock, 18055 Rostock, Germany.
- Department Ageing of Individuals and Society, Faculty of Interdisciplinary Research, University of Rostock, 18051 Rostock, Germany.
| |
Collapse
|
50
|
Doost MY, Orban de Xivry JJ, Herman B, Vanthournhout L, Riga A, Bihin B, Jamart J, Laloux P, Raymackers JM, Vandermeeren Y. Learning a Bimanual Cooperative Skill in Chronic Stroke Under Noninvasive Brain Stimulation: A Randomized Controlled Trial. Neurorehabil Neural Repair 2019; 33:486-498. [PMID: 31088342 DOI: 10.1177/1545968319847963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background. Transcranial direct current stimulation (tDCS) has been suggested to improve poststroke recovery. However, its effects on bimanual motor learning after stroke have not previously been explored. Objective. We investigated whether dual-tDCS of the primary motor cortex (M1), with cathodal and anodal tDCS applied over undamaged and damaged hemispheres, respectively, improves learning and retention of a new bimanual cooperative motor skill in stroke patients. Method. Twenty-one chronic hemiparetic patients were recruited for a randomized, double-blinded, cross-over, sham-controlled trial. While receiving real or sham dual-tDCS, they trained on a bimanual cooperative task called CIRCUIT. Changes in performance were quantified via bimanual speed/accuracy trade-off (Bi-SAT) and bimanual coordination factor (Bi-Co) before, during, and 0, 30, and 60 minutes after dual-tDCS, as well as one week later to measure retention. A generalization test then followed, where patients were asked to complete a new CIRCUIT layout. Results. The patients were able to learn and retain the bimanual cooperative skill. However, a general linear mixed model did not detect a significant difference in retention between the real and sham dual-tDCS conditions for either Bi-SAT or Bi-Co. Similarly, no difference in generalization was detected for Bi-SAT or Bi-Co. Conclusion. The chronic hemiparetic stroke patients learned and retained the complex bimanual cooperative task and generalized the newly acquired skills to other tasks, indicating that bimanual CIRCUIT training is promising as a neurorehabilitation approach. However, bimanual motor skill learning was not enhanced by dual-tDCS in these patients.
Collapse
Affiliation(s)
- Maral Yeganeh Doost
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium.,2 Université catholique de Louvain (UCLouvain), Institute of NeuroScience (IoNS), NEUR division, Brussels, Belgium.,3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium
| | - Jean-Jacques Orban de Xivry
- 4 Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Belgium.,5 Leuven Brain Institute, KU Leuven, Belgium
| | - Benoît Herman
- 3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium.,6 Université catholique de Louvain (UCLouvain), Institute of Mechanics, Materials and Civil Engineering (iMMC), Louvain-la-Neuve, Belgium
| | - Léna Vanthournhout
- 3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium.,6 Université catholique de Louvain (UCLouvain), Institute of Mechanics, Materials and Civil Engineering (iMMC), Louvain-la-Neuve, Belgium
| | - Audrey Riga
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium.,2 Université catholique de Louvain (UCLouvain), Institute of NeuroScience (IoNS), NEUR division, Brussels, Belgium.,3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium
| | - Benoît Bihin
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium
| | - Jacques Jamart
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium
| | - Patrice Laloux
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium.,2 Université catholique de Louvain (UCLouvain), Institute of NeuroScience (IoNS), NEUR division, Brussels, Belgium
| | | | - Yves Vandermeeren
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium.,2 Université catholique de Louvain (UCLouvain), Institute of NeuroScience (IoNS), NEUR division, Brussels, Belgium.,3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium
| |
Collapse
|