1
|
Surgent O, Andrews DS, Lee JK, Boyle J, Dakopolos A, Miller M, Ozonoff S, Rogers SJ, Solomon M, Amaral DG, Nordahl CW. Sex Differences in the Striatal Contributions to Longitudinal Fine Motor Development in Autistic Children. Biol Psychiatry 2025; 97:1150-1162. [PMID: 39818327 PMCID: PMC12124950 DOI: 10.1016/j.biopsych.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/27/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Fine motor challenges are prevalent in autistic populations. However, little is known about their neurobiological underpinnings or how their related neural mechanisms are influenced by sex. The dorsal striatum, which comprises the caudate nucleus and putamen, is associated with motor learning and control and may hold critical information. We investigated how autism diagnosis and sex assigned at birth influence associations between the dorsal striatum and fine motor development in autistic and nonautistic children. METHODS We used multimodal assessment of striatal structures (volume and corticostriatal white matter microstructure) and longitudinal assessment of fine motor skills, first at approximately 3 years of age (time 1) and again 2 to 3 years later (follow-up). Fine motor and magnetic resonance imaging (T1 and diffusion) data were collected at time 1 from 356 children (234 autistic; 128 girls) and at follow-up from 195 children (113 autistic; 76 girls). RESULTS At time 1, associations among fine motor skills, putamen volume, and sensorimotor-striatal fractional anisotropy (sensorimotor-affiliated dorsal striatal structures) were different in autistic boys compared with autistic girls and were not significant for nonautistic children. Further, time 1 sensorimotor-striatal and prefrontal-striatal microstructure predicted fine motor development for autistic girls but not boys. CONCLUSIONS Sensorimotor-affiliated dorsal striatum structures may contribute to concurrent motor ability and predict fine motor improvement during critical windows of development in a sex-specific and diagnosis-dependent way. Moreover, the dorsal striatum may play a key role in the distinct neural mechanisms underlying motor challenges in autistic boys and girls.
Collapse
Affiliation(s)
- Olivia Surgent
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California.
| | - Derek S Andrews
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Joshua K Lee
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Joseph Boyle
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California; Department of Psychology, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Andrew Dakopolos
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Meghan Miller
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Sally Ozonoff
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Sally J Rogers
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Marjorie Solomon
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - David G Amaral
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Christine Wu Nordahl
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| |
Collapse
|
2
|
Yun JJ, Abulikemu S, Jangwanich KL, Tai YF, Haar S. Modulatory effect of levodopa on the basal ganglia-cerebellum connectivity in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:115. [PMID: 40328766 PMCID: PMC12056079 DOI: 10.1038/s41531-025-00954-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Long-term levodopa use in Parkinson's disease is associated with declining efficacy and motor complications. Understanding its effects on brain reorganisation is vital for optimizing therapy. Using data from Parkinson's Progression Marker Initiative, we investigated levodopa's impact on resting-state functional connectivity within the cortico-basal ganglia-cerebellum system in 29 patients, under drug-naïve and levodopa-medicated conditions. Univariate comparisons of inter-regional connectivity between conditions were conducted, and multivariate combinations of connections within and between networks were assessed. No significant effect of levodopa was found using the univariate seed-based approach. However, the network connectivity pattern between basal ganglia and cerebellum showed robust classification power. Eigenvector Centrality Mapping (ECM) further identified functional hubs, with cerebellar hubs being the only ones within the cortico-basal ganglia-cerebellum system affected by medication. Our study provides further insight into the importance of inter-network functional connectivity in Parkinson's and the impact of levodopa medication, highlighting the often-overlooked role of the cerebellum.
Collapse
Affiliation(s)
- Juyoung Jenna Yun
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute - Care Research and Technology Centre, Imperial College London, London, UK
| | - Subati Abulikemu
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute - Care Research and Technology Centre, Imperial College London, London, UK
| | - Kodchakorn Love Jangwanich
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute - Care Research and Technology Centre, Imperial College London, London, UK
| | - Yen F Tai
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Neurology, Charing Cross Hospital, London, UK
| | - Shlomi Haar
- Department of Brain Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute - Care Research and Technology Centre, Imperial College London, London, UK.
| |
Collapse
|
3
|
Cho IF, Chao CC, Lin TT, Yang Y, Tang PF. Effects of posterior parietal cortex anodal transcranial direct current stimulation on ankle tracking visuomotor control in healthy young adults. Hum Mov Sci 2025; 101:103351. [PMID: 40112577 DOI: 10.1016/j.humov.2025.103351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Ankle motor control is crucial for balance maintenance and fall prevention. Neurocomputational models of motor control suggest that the posterior parietal cortex (PPC) plays a critical role in estimating body and environmental states, a process fundamental to motor control. Anodal transcranial direct current stimulation (atDCS) has been shown to modulate cortical excitability and alter behaviors accordingly. This study explored the impact of atDCS over the PPC on ankle tracking visuomotor control using a motor adaptation research paradigm in healthy young adults. Thirty-eight participants were randomly assigned to either an atDCS or sham control group. All participants completed an ankle tracking experiment divided into three phases: pre-adaptation, adaptation, and re-adaptation, with each phase comprising eight blocks of five trials. During the experiment, each participant wore a sensor on the non-dominant foot and performed continuous dorsiflexion and plantarflexion movements to track a target cursor on a screen. Visual feedback of the foot position was provided, with a 1:1 feedback ratio in the pre- and re-adaptation phases and a 2.5:1 ratio in the adaptation phase to promote visual-motor remapping. The atDCS group received 20 min of 2 mA atDCS over the PPC during the adaptation phase. Tracking performance on each trial was measured as the root mean squared error (RMSE) between the target and actual movement trajectories. Both groups showed similar RMSEs in the pre-adaptation phase (p > 0.05). However, in the adaptation phase, the atDCS group demonstrated a significant reduction from block 1 to block 2 (p = 0.001, Cohen's d = 0.86) and maintained this improved performance in the following blocks, while the sham group showed no significant changes throughout this phase (p > 0.05). In the re-adaptation phase, both groups quickly returned to their pre-adaptation performance levels. These findings indicate that neither the atDCS nor the sham group adapted to the high visual feedback ratio. However, the early reduction in RMSE observed in the atDCS group suggests that atDCS over the PPC may transiently enhance ankle tracking visuomotor control under the heightened visual feedback ratio condition, resulting in short-term improvements. Future research is warranted to explore whether multiple atDCS sessions over the PPC could provide long-term benefits for lower extremity visuomotor control.
Collapse
Affiliation(s)
- I-Fei Cho
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ta-Te Lin
- Department of Biomechatronics Engineering, National Taiwan University, College of Bio-Resources and Agriculture, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan; Center for Artificial Intelligence and Robotics, National Taiwan University, Taipei, Taiwan
| | - Yuan Yang
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana Champaign, Urbana, IL, United States of America; Clinical Imaging Research Center, Stephenson Family Clinical Research Institute, Carle Foundation Hospital, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Pei-Fang Tang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan; Center for Artificial Intelligence and Robotics, National Taiwan University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Guo H, Kuang S, Gail A. Sensorimotor environment but not task rule reconfigures population dynamics in rhesus monkey posterior parietal cortex. Nat Commun 2025; 16:1116. [PMID: 39900579 PMCID: PMC11791165 DOI: 10.1038/s41467-025-56360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
Primates excel at mapping sensory inputs flexibly onto motor outcomes. We asked if the neural dynamics to support context-sensitive sensorimotor mapping generalizes or differs between different behavioral contexts that demand such flexibility. We compared reaching under mirror-reversed vision, a case of adaptation to a modified sensorimotor environment (SE), with anti reaching, a case of applying an abstract task rule (TR). While neural dynamics in monkey posterior parietal cortex show shifted initial states and non-aligned low-dimensional neural subspaces in the SE task, remapping is achieved in overlapping subspaces in the TR task. A recurrent neural network model demonstrates how output constraints mimicking SE and TR tasks are sufficient to generate the two fundamentally different neural computational dynamics. We conclude that sensorimotor remapping to implement an abstract task rule happens within the existing repertoire of neural dynamics, while compensation of perturbed sensory feedback requires exploration of independent neural dynamics in parietal cortex.
Collapse
Affiliation(s)
- Hao Guo
- German Primate Center, Göttingen, Germany
| | - Shenbing Kuang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Alexander Gail
- German Primate Center, Göttingen, Germany.
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
Sugiyama T, Uehara S, Izawa J. Meta-learning of human motor adaptation via the dorsal premotor cortex. Proc Natl Acad Sci U S A 2024; 121:e2417543121. [PMID: 39441634 PMCID: PMC11536165 DOI: 10.1073/pnas.2417543121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Meta-learning enables us to learn how to learn the same or similar tasks more efficiently. Decision-making literature theorizes that a prefrontal network, including the orbitofrontal and anterior cingulate cortices, underlies meta-learning of decision making by reinforcement learning. Recently, computationally similar meta-learning has been theorized and empirically demonstrated in motor adaptation. However, it remains unclear whether meta-learning of motor adaptation also relies on a prefrontal network. Considering hierarchical information flow from the prefrontal to motor cortices, this study explores whether meta-learning is processed in the dorsolateral prefrontal cortex (DLPFC) or in the dorsal premotor cortex (PMd), which is situated upstream of the primary motor cortex, but downstream of the DLPFC. Transcranial magnetic stimulation (TMS) was delivered to either PMd or DLPFC during a motor meta-learning task, in which human participants were trained to regulate the rate and retention of motor adaptation to maximize rewards. While motor adaptation itself was intact, TMS to PMd, but not DLPFC, attenuated meta-learning, impairing the ability to regulate motor adaptation to maximize rewards. Further analyses revealed that TMS to PMd attenuated meta-learning of memory retention. These results suggest that meta-learning of motor adaptation relies more on the premotor area than on a prefrontal network. Thus, while PMd is traditionally viewed as crucial for planning motor actions, this study suggests that PMd is also crucial for meta-learning of motor adaptation, processing goal-directed planning of how long motor memory should be retained to fit the long-term goal of motor adaptation.
Collapse
Affiliation(s)
- Taisei Sugiyama
- Institute of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki305-8573, Japan
| | - Shintaro Uehara
- Faculty of Rehabilitation, Fujita Health University School of Health Sciences, Toyoake, Aichi470-1192, Japan
| | - Jun Izawa
- Institute of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki305-8573, Japan
| |
Collapse
|
6
|
Kim KS, Hinkley LB, Brent K, Gaines JL, Pongos AL, Gupta S, Dale CL, Nagarajan SS, Houde JF. Neurophysiological evidence of sensory prediction errors driving speech sensorimotor adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.22.563504. [PMID: 37961099 PMCID: PMC10634734 DOI: 10.1101/2023.10.22.563504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The human sensorimotor system has a remarkable ability to quickly and efficiently learn movements from sensory experience. A prominent example is sensorimotor adaptation, learning that characterizes the sensorimotor system's response to persistent sensory errors by adjusting future movements to compensate for those errors. Despite being essential for maintaining and fine-tuning motor control, mechanisms underlying sensorimotor adaptation remain unclear. A component of sensorimotor adaptation is implicit (i.e., the learner is unaware of the learning process) which has been suggested to result from sensory prediction errors-the discrepancies between predicted sensory consequences of motor commands and actual sensory feedback. However, to date no direct neurophysiological evidence that sensory prediction errors drive adaptation has been demonstrated. Here, we examined prediction errors via magnetoencephalography (MEG) imaging of the auditory cortex (n = 34) during sensorimotor adaptation of speech to altered auditory feedback, an entirely implicit adaptation task. Specifically, we measured how speaking-induced suppression (SIS)--a neural representation of auditory prediction errors--changed over the trials of the adaptation experiment. SIS refers to the suppression of auditory cortical response to speech onset (in particular, the M100 response) to self-produced speech when compared to the response to passive listening to identical playback of that speech. SIS was reduced (reflecting larger prediction errors) during the early learning phase compared to the initial unaltered feedback phase. Furthermore, reduction in SIS positively correlated with behavioral adaptation extents, suggesting that larger prediction errors were associated with more learning. In contrast, such a reduction in SIS was not found in a control experiment in which participants heard unaltered feedback and thus did not adapt. In addition, in some participants who reached a plateau in the late learning phase, SIS increased (reflecting smaller prediction errors), demonstrating that prediction errors were minimal when there was no further adaptation. Together, these findings provide the first neurophysiological evidence for the hypothesis that prediction errors drive human sensorimotor adaptation.
Collapse
Affiliation(s)
- Kwang S. Kim
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Leighton B. Hinkley
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Kurtis Brent
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Jessica L. Gaines
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Alvincé L. Pongos
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Saloni Gupta
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Corby L. Dale
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Srikantan S. Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - John F. Houde
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Nardon M, Sinha O, Kpankpa J, Albenze E, Bonnet CT, Bertucco M, Singh T. Prioritized adjustments in posture stabilization and adaptive reaching during neuromuscular fatigue of lower-limb muscles. J Appl Physiol (1985) 2024; 137:629-645. [PMID: 39024408 DOI: 10.1152/japplphysiol.00252.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024] Open
Abstract
Neuromuscular fatigue (NMF) induces temporary reductions in muscle force production capacity, affecting various aspects of motor function. Although studies have extensively explored NMF's impact on muscle activation patterns and postural stability, its influence on motor adaptation processes remains less understood. This article investigates the effects of localized NMF on motor adaptation during upright stance, focusing on reaching tasks. Using a force-field perturbation paradigm, participants performed reaching movements while standing upright before and after inducing NMF in the ankle dorsiflexor muscles. Results revealed that despite maintained postural stability, participants in the NMF group exhibited larger movement errors during reaching tasks, suggesting impaired motor adaptation. This was evident in both initial and terminal phases of adaptation, indicating a disruption in learning processes rather than a decreased adaptation rate. Analysis of electromyography activation patterns highlighted distinct strategies between groups, with the NMF group showing altered activation of both fatigued and nonfatigued muscles. In addition, differences in coactivation patterns suggested compensatory mechanisms to prioritize postural stability despite NMF-induced disruptions. These findings underscore the complex interplay between NMF, motor adaptation, and postural control, suggesting a potential role for central nervous system mechanisms in mediating adaptation processes. Understanding these mechanisms has implications for sports performance, rehabilitation, and motor skill acquisition, where NMF may impact the learning and retention of motor tasks. Further research is warranted to elucidate the transient or long-term effects of NMF on motor adaptation and its implications for motor rehabilitation interventions.NEW & NOTEWORTHY We assessed motor adaptation during force-field reaching following exercise-induced neuromuscular fatigue (NMF) on postural muscles. NMF impaired adaptation in performance. Similarly, diverging activation strategies were observed in the muscles. No effects were seen on measures of postural control. These results suggest the remodulation of motor commands to the muscles in the presence of NMF, which may be relevant in settings where participants could be exposed to NMF while learning, such as sports and rehabilitation.
Collapse
Affiliation(s)
- Mauro Nardon
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Oindrila Sinha
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - John Kpankpa
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Eliza Albenze
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Cédrick T Bonnet
- CNRS, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, Univ. Lille, F-59000 Lille, France
| | - Matteo Bertucco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Tarkeshwar Singh
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| |
Collapse
|
8
|
Kelley CR, Kauffman JL. Parkinsonian Tremor as Unstable Feedback in a Physiologically Consistent Control Framework. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2665-2675. [PMID: 39018214 DOI: 10.1109/tnsre.2024.3430116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Parkinson's disease (PD) is characterized by decreased dopamine in the basal ganglia that causes excessive tonic inhibition of the thalamus. This excessive inhibition seems to explain inhibitory motor symptoms in PD, but the source of tremor remains unclear. This paper investigates how neural inhibition may change the closed-loop characteristics of the human motor control system to determine how this established pathophysiology could produce tremor. The rate-coding model of neural signals suggests increased inhibition decreases signal amplitude, which could create a mismatch between the closed-loop dynamics and the internal models that overcome proprioceptive feedback delays. This paper aims to identify a candidate model structure with decreased-amplitude-induced tremor in PD that also agrees with previously recorded movements of healthy and cerebellar patients. The optimal feedback control theory of human motor control forms the basis of the model. Key additional elements include gating of undesired movements via the basal ganglia-thalamus-motor cortex circuit and the treatment of the efferent copy of the control input as a measurement in the state estimator. Simulations confirm the model's ability to capture tremor in PD and also demonstrate how disease progression could affect tremor and other motor symptoms, providing insight into the existence of tremor and non-tremor phenotypes. Altogether, the physiological underpinnings of the model structure and the agreement of model predictions with clinical observations provides support for the hypothesis that unstable feedback produces parkinsonian tremor. Consequently, these results also support the associated framework for the neuroanatomy of human motor control.
Collapse
|
9
|
Surgent O, Guerrero-Gonzalez J, Dean DC, Adluru N, Kirk GR, Kecskemeti SR, Alexander AL, Li JJ, Travers BG. Microstructural neural correlates of maximal grip strength in autistic children: the role of the cortico-cerebellar network and attention-deficit/hyperactivity disorder features. Front Integr Neurosci 2024; 18:1359099. [PMID: 38808069 PMCID: PMC11130426 DOI: 10.3389/fnint.2024.1359099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/24/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction Maximal grip strength, a measure of how much force a person's hand can generate when squeezing an object, may be an effective method for understanding potential neurobiological differences during motor tasks. Grip strength in autistic individuals may be of particular interest due to its unique developmental trajectory. While autism-specific differences in grip-brain relationships have been found in adult populations, it is possible that such differences in grip-brain relationships may be present at earlier ages when grip strength is behaviorally similar in autistic and non-autistic groups. Further, such neural differences may lead to the later emergence of diagnostic-group grip differences in adolescence. The present study sought to examine this possibility, while also examining if grip strength could elucidate the neuro-motor sources of phenotypic heterogeneity commonly observed within autism. Methods Using high resolution, multi-shell diffusion, and quantitative R1 relaxometry imaging, this study examined how variations in key sensorimotor-related white matter pathways of the proprioception input, lateral grasping, cortico-cerebellar, and corticospinal networks were associated with individual variations in grip strength in 68 autistic children and 70 non-autistic (neurotypical) children (6-11 years-old). Results In both groups, results indicated that stronger grip strength was associated with higher proprioceptive input, lateral grasping, and corticospinal (but not cortico-cerebellar modification) fractional anisotropy and R1, indirect measures concordant with stronger microstructural coherence and increased myelination. Diagnostic group differences in these grip-brain relationships were not observed, but the autistic group exhibited more variability particularly in the cortico-cerebellar modification indices. An examination into the variability within the autistic group revealed that attention-deficit/hyperactivity disorder (ADHD) features moderated the relationships between grip strength and both fractional anisotropy and R1 relaxometry in the premotor-primary motor tract of the lateral grasping network and the cortico-cerebellar network tracts. Specifically, in autistic children with elevated ADHD features (60% of the autistic group) stronger grip strength was related to higher fractional anisotropy and R1 of the cerebellar modification network (stronger microstructural coherence and more myelin), whereas the opposite relationship was observed in autistic children with reduced ADHD features. Discussion Together, this work suggests that while the foundational elements of grip strength are similar across school-aged autistic and non-autistic children, neural mechanisms of grip strength within autistic children may additionally depend on the presence of ADHD features. Specifically, stronger, more coherent connections of the cerebellar modification network, which is thought to play a role in refining and optimizing motor commands, may lead to stronger grip in children with more ADHD features, weaker grip in children with fewer ADHD features, and no difference in grip in non-autistic children. While future research is needed to understand if these findings extend to other motor tasks beyond grip strength, these results have implications for understanding the biological basis of neuromotor control in autistic children and emphasize the importance of assessing co-occurring conditions when evaluating brain-behavior relationships in autism.
Collapse
Affiliation(s)
- Olivia Surgent
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Jose Guerrero-Gonzalez
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Douglas C. Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Gregory R. Kirk
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Andrew L. Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - James J. Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Psychology Department, University of Wisconsin-Madison, Madison, WI, United States
| | - Brittany G. Travers
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Occupational Therapy Program in the Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
10
|
Haar S. Motor variability in task-space and body-space. Phys Life Rev 2024; 48:162-163. [PMID: 38237427 DOI: 10.1016/j.plrev.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Shlomi Haar
- Department of Brain Sciences, Imperial College London, London, United Kingdom; UK Dementia Research Institute - Care Research and Technology Centre, Imperial College London, London, UK.
| |
Collapse
|
11
|
Nashed JY, Shearer KT, Wang JZ, Chen Y, Cook EE, Champagne AA, Coverdale NS, Fernandez-Ruiz J, Striver SI, Flanagan JR, Gallivan JP, Cook DJ. Spontaneous Behavioural Recovery Following Stroke Relates to the Integrity of Parietal and Temporal Regions. Transl Stroke Res 2024; 15:127-139. [PMID: 36542292 DOI: 10.1007/s12975-022-01115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Stroke is a devastating disease that results in neurological deficits and represents a leading cause of death and disability worldwide. Following a stroke, there is a degree of spontaneous recovery of function, the neural basis of which is of great interest among clinicians in their efforts to reduce disability following stroke and enhance rehabilitation. Conventionally, work on spontaneous recovery has tended to focus on the neural reorganization of motor cortical regions, with comparably little attention being paid to changes in non-motor regions and how these relate to recovery. Here we show, using structural neuroimaging in a macaque stroke model (N = 31) and by exploiting individual differences in spontaneous behavioural recovery, that the preservation of regions in the parietal and temporal cortices predict animal recovery. To characterize recovery, we performed a clustering analysis using Non-Human Primate Stroke Scale (NHPSS) scores and identified a good versus poor recovery group. By comparing the preservation of brain volumes in the two groups, we found that brain areas in integrity of brain areas in parietal, temporal and somatosensory cortex were associated with better recovery. In addition, a decoding approach performed across all subjects revealed that the preservation of specific brain regions in the parietal, somatosensory and medial frontal cortex predicted recovery. Together, these findings highlight the importance of parietal and temporal regions in spontaneous behavioural recovery.
Collapse
Affiliation(s)
- Joseph Y Nashed
- Department of Translational Medicine, Queen's University, 18 Stuart Street, Room 230, Botterell Hall, Kingston, Ontario, K7L 3N6, Canada
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Kaden T Shearer
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Justin Z Wang
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, M5T 1P5, Canada
| | - Yining Chen
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Elise E Cook
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Allen A Champagne
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Nicole S Coverdale
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Juan Fernandez-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Shirley I Striver
- Division of Neurosurgery, Department of Surgery, Queen's University, Kingston, Ontario, K7L 2V7, Canada
| | - J Randal Flanagan
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Department of Psychology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Jason P Gallivan
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Department of Psychology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Douglas J Cook
- Department of Translational Medicine, Queen's University, 18 Stuart Street, Room 230, Botterell Hall, Kingston, Ontario, K7L 3N6, Canada.
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
- Division of Neurosurgery, Department of Surgery, Queen's University, Kingston, Ontario, K7L 2V7, Canada.
| |
Collapse
|
12
|
Claassen J, Kondziella D, Alkhachroum A, Diringer M, Edlow BL, Fins JJ, Gosseries O, Hannawi Y, Rohaut B, Schnakers C, Stevens RD, Thibaut A, Monti M. Cognitive Motor Dissociation: Gap Analysis and Future Directions. Neurocrit Care 2024; 40:81-98. [PMID: 37349602 DOI: 10.1007/s12028-023-01769-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Patients with disorders of consciousness who are behaviorally unresponsive may demonstrate volitional brain responses to motor imagery or motor commands detectable on functional magnetic resonance imaging or electroencephalography. This state of cognitive motor dissociation (CMD) may have prognostic significance. METHODS The Neurocritical Care Society's Curing Coma Campaign identified an international group of experts who convened in a series of monthly online meetings between September 2021 and April 2023 to examine the science of CMD and identify key knowledge gaps and unmet needs. RESULTS The group identified major knowledge gaps in CMD research: (1) lack of information about patient experiences and caregiver accounts of CMD, (2) limited epidemiological data on CMD, (3) uncertainty about underlying mechanisms of CMD, (4) methodological variability that limits testing of CMD as a biomarker for prognostication and treatment trials, (5) educational gaps for health care personnel about the incidence and potential prognostic relevance of CMD, and (6) challenges related to identification of patients with CMD who may be able to communicate using brain-computer interfaces. CONCLUSIONS To improve the management of patients with disorders of consciousness, research efforts should address these mechanistic, epidemiological, bioengineering, and educational gaps to enable large-scale implementation of CMD assessment in clinical practice.
Collapse
Affiliation(s)
- Jan Claassen
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, NewYork Presbyterian Hospital, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA.
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Michael Diringer
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Brian L Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Joseph J Fins
- Division of Medical Ethics, Department of Medicine, Weill Cornell Medical College, NewYork Presbyterian Hospital, New York, NY, 10032, USA
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liege, Liege, Belgium
- Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Yousef Hannawi
- Division of Cerebrovascular Diseases and Neurocritical Care, Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - Benjamin Rohaut
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP) - Pitié Salpêtrière, Paris, France
| | | | - Robert D Stevens
- Department of Anesthesiology and Critical Care Medicine, Neurology, and Radiology, School of Medicine, Secondary Appointment in Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness, University of Liege, Liege, Belgium
- Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Martin Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
13
|
Franzova E, Shen Q, Doyle K, Chen JM, Egbebike J, Vrosgou A, Carmona JC, Grobois L, Heinonen GA, Velazquez A, Gonzales IJ, Egawa S, Agarwal S, Roh D, Park S, Connolly ES, Claassen J. Injury patterns associated with cognitive motor dissociation. Brain 2023; 146:4645-4658. [PMID: 37574216 PMCID: PMC10629765 DOI: 10.1093/brain/awad197] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/14/2023] [Accepted: 05/28/2023] [Indexed: 08/15/2023] Open
Abstract
In unconscious appearing patients with acute brain injury, wilful brain activation to motor commands without behavioural signs of command following, known as cognitive motor dissociation (CMD), is associated with functional recovery. CMD can be detected by applying machine learning to EEG recorded during motor command presentation in behaviourally unresponsive patients. Identifying patients with CMD carries clinical implications for patient interactions, communication with families, and guidance of therapeutic decisions but underlying mechanisms of CMD remain unknown. By analysing structural lesion patterns and network level dysfunction we tested the hypothesis that, in cases with preserved arousal and command comprehension, a failure to integrate comprehended motor commands with motor outputs underlies CMD. Manual segmentation of T2-fluid attenuated inversion recovery and diffusion weighted imaging sequences quantifying structural injury was performed in consecutive unresponsive patients with acute brain injury (n = 107) who underwent EEG-based CMD assessments and MRI. Lesion pattern analysis was applied to identify lesion patterns common among patients with (n = 21) and without CMD (n = 86). Thalamocortical and cortico-cortical network connectivity were assessed applying ABCD classification of power spectral density plots and weighted pairwise phase consistency (WPPC) to resting EEG, respectively. Two distinct structural lesion patterns were identified on MRI for CMD and three for non-CMD patients. In non-CMD patients, injury to brainstem arousal pathways including the midbrain were seen, while no CMD patients had midbrain lesions. A group of non-CMD patients was identified with injury to the left thalamus, implicating possible language comprehension difficulties. Shared lesion patterns of globus pallidus and putamen were seen for a group of CMD patients, which have been implicated as part of the anterior forebrain mesocircuit in patients with reversible disorders of consciousness. Thalamocortical network dysfunction was less common in CMD patients [ABCD-index 2.3 (interquartile range, IQR 2.1-3.0) versus 1.4 (IQR 1.0-2.0), P < 0.0001; presence of D 36% versus 3%, P = 0.0006], but WPPC was not different. Bilateral cortical lesions were seen in patients with and without CMD. Thalamocortical disruption did not differ for those with CMD, but long-range WPPC was decreased in 1-4 Hz [odds ratio (OR) 0.8; 95% confidence interval (CI) 0.7-0.9] and increased in 14-30 Hz frequency ranges (OR 1.2; 95% CI 1.0-1.5). These structural and functional data implicate a failure of motor command integration at the anterior forebrain mesocircuit level with preserved thalamocortical network function for CMD patients with subcortical lesions. Amongst patients with bilateral cortical lesions preserved cortico-cortical network function is associated with CMD detection. These data may allow screening for CMD based on widely available structural MRI and resting EEG.
Collapse
Affiliation(s)
- Eva Franzova
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Qi Shen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Kevin Doyle
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Justine M Chen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jennifer Egbebike
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Athina Vrosgou
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jerina C Carmona
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Lauren Grobois
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Gregory A Heinonen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Angela Velazquez
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | | | - Satoshi Egawa
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Sachin Agarwal
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - David Roh
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Soojin Park
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - E Sander Connolly
- Department of Neurological Surgery, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
14
|
Anziano M, Mouthon M, Thoeny H, Sperber C, Spierer L. Mental flexibility depends on a largely distributed white matter network: Causal evidence from connectome-based lesion-symptom mapping. Cortex 2023; 165:38-56. [PMID: 37253289 DOI: 10.1016/j.cortex.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/20/2022] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Mental flexibility (MF) refers to the capacity to dynamically switch from one task to another. Current neurocognitive models suggest that since this function requires interactions between multiple remote brain areas, the integrity of the anatomic tracts connecting these brain areas is necessary to maintain performance. We tested this hypothesis by assessing with a connectome-based lesion-symptom mapping approach the effects of white matter lesions on the brain's structural connectome and their association with performance on the trail making test, a neuropsychological test of MF, in a sample of 167 first unilateral stroke patients. We found associations between MF deficits and damage of i) left lateralized fronto-temporo-parietal connections and interhemispheric connections between left temporo-parietal and right parietal areas; ii) left cortico-basal connections; and iii) left cortico-pontine connections. We further identified a relationship between MF and white matter disconnections within cortical areas composing the cognitive control, default mode and attention functional networks. These results for a central role of white matter integrity in MF extend current literature by providing causal evidence for a functional interdependence among the regional cortical and subcortical structures composing the MF network. Our results further emphasize the necessity to consider connectomics in lesion-symptom mapping analyses to establish comprehensive neurocognitive models of high-order cognitive functions.
Collapse
Affiliation(s)
- Marco Anziano
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Michael Mouthon
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Harriet Thoeny
- Department of Diagnostic and Interventional Radiology, Cantonal Hospital of Fribourg, University of Fribourg, Fribourg, Switzerland
| | - Christoph Sperber
- Department of Neurology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Lucas Spierer
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
15
|
Kim KS, Gaines JL, Parrell B, Ramanarayanan V, Nagarajan SS, Houde JF. Mechanisms of sensorimotor adaptation in a hierarchical state feedback control model of speech. PLoS Comput Biol 2023; 19:e1011244. [PMID: 37506120 PMCID: PMC10434967 DOI: 10.1371/journal.pcbi.1011244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 08/17/2023] [Accepted: 06/06/2023] [Indexed: 07/30/2023] Open
Abstract
Upon perceiving sensory errors during movements, the human sensorimotor system updates future movements to compensate for the errors, a phenomenon called sensorimotor adaptation. One component of this adaptation is thought to be driven by sensory prediction errors-discrepancies between predicted and actual sensory feedback. However, the mechanisms by which prediction errors drive adaptation remain unclear. Here, auditory prediction error-based mechanisms involved in speech auditory-motor adaptation were examined via the feedback aware control of tasks in speech (FACTS) model. Consistent with theoretical perspectives in both non-speech and speech motor control, the hierarchical architecture of FACTS relies on both the higher-level task (vocal tract constrictions) as well as lower-level articulatory state representations. Importantly, FACTS also computes sensory prediction errors as a part of its state feedback control mechanism, a well-established framework in the field of motor control. We explored potential adaptation mechanisms and found that adaptive behavior was present only when prediction errors updated the articulatory-to-task state transformation. In contrast, designs in which prediction errors updated forward sensory prediction models alone did not generate adaptation. Thus, FACTS demonstrated that 1) prediction errors can drive adaptation through task-level updates, and 2) adaptation is likely driven by updates to task-level control rather than (only) to forward predictive models. Additionally, simulating adaptation with FACTS generated a number of important hypotheses regarding previously reported phenomena such as identifying the source(s) of incomplete adaptation and driving factor(s) for changes in the second formant frequency during adaptation to the first formant perturbation. The proposed model design paves the way for a hierarchical state feedback control framework to be examined in the context of sensorimotor adaptation in both speech and non-speech effector systems.
Collapse
Affiliation(s)
- Kwang S. Kim
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Jessica L. Gaines
- Graduate Program in Bioengineering, University of California Berkeley-University of California San Francisco, San Francisco, California, United States of America
| | - Benjamin Parrell
- Department of Communication Sciences and Disorders, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Vikram Ramanarayanan
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, United States of America
- Modality.AI, San Francisco, California, United States of America
| | - Srikantan S. Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - John F. Houde
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
16
|
Surgent O, Guerrero-Gonzalez J, Dean DC, Kirk GR, Adluru N, Kecskemeti SR, Alexander AL, Travers BG. How we get a grip: Microstructural neural correlates of manual grip strength in children. Neuroimage 2023; 273:120117. [PMID: 37062373 PMCID: PMC10161685 DOI: 10.1016/j.neuroimage.2023.120117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023] Open
Abstract
Maximal grip strength is associated with a variety of health-related outcome measures and thus may be reflective of the efficiency of foundational brain-body communication. Non-human primate models of grip strength strongly implicate the cortical lateral grasping network, but little is known about the translatability of these models to human children. Further, it is unclear how supplementary networks that provide proprioceptive information and cerebellar-based motor command modification are associated with maximal grip strength. Therefore, this study employed high resolution, multi-shell diffusion and quantitative T1 imaging to examine how variations in lateral grasping, proprioception input, and cortico-cerebellar modification network white matter microstructure are associated with variations in grip strength across 70 children. Results indicated that stronger grip strength was associated with higher lateral grasping and proprioception input network fractional anisotropy and R1, indirect measures consistent with stronger microstructural coherence and increased myelination. No relationships were found in the cerebellar modification network. These results provide a neurobiological mechanism of grip behavior in children which suggests that increased myelination of cortical sensory and motor pathways is associated with stronger grip. This neurobiological mechanism may be a signature of pediatric neuro-motor behavior more broadly as evidenced by the previously demonstrated relationships between grip strength and behavioral outcome measures across a variety of clinical and non-clinical populations.
Collapse
Affiliation(s)
- Olivia Surgent
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Jose Guerrero-Gonzalez
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| | - Gregory R Kirk
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Andrew L Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Brittany G Travers
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Occupational Therapy Program in the Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
17
|
Fu J, Jiang Z, Shu X, Chen S, Jia J. Correlation between the ERD in grasp/open tasks of BCIs and hand function of stroke patients: a cross-sectional study. Biomed Eng Online 2023; 22:36. [PMID: 37061673 PMCID: PMC10105926 DOI: 10.1186/s12938-023-01091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/02/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND AND AIMS Brain-computer interfaces (BCIs) are emerging as a promising tool for upper limb recovery after stroke, and motor tasks are an essential part of BCIs for patient training and control of rehabilitative/assistive BCIs. However, the correlation between brain activation with different levels of motor impairment and motor tasks in BCIs is still not so clear. Thus, we aim to compare the brain activation of different levels of motor impairment in performing the hand grasping and opening tasks in BCIs. METHODS We instructed stroke patients to perform motor attempts (MA) to grasp and open the affected hand for 30 trials, respectively. During this period, they underwent EEG acquisition and BCIs accuracy recordings. They also received detailed history records and behavioral scale assessments (the Fugl-Meyer assessment of upper limb, FMA-UE). RESULTS The FMA-UE was negatively correlated with the event-related desynchronization (ERD) of the affected hemisphere during open MA (R = - 0.423, P = 0.009) but not with grasp MA (R = - 0.058, P = 0.733). Then we divided the stroke patients into group 1 (Brunnstrom recovery stages between I to II, n = 19) and group 2 (Brunnstrom recovery stages between III to VI, n = 23). No difference during the grasping task (t = 0.091, P = 0.928), but a significant difference during the open task (t = 2.156, P = 0.037) was found between the two groups on the affected hemisphere. No significant difference was found in the unaffected hemisphere. CONCLUSIONS The study indicated that brain activation is positively correlated with the hand function of stroke in open-hand tasks. In the grasping task, the patients in the different groups have a similar brain response, while in the open task, mildly injured patients have more brain activation in open the hand than the poor hand function patients.
Collapse
Affiliation(s)
- Jianghong Fu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 Mid-Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - ZeWu Jiang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 Mid-Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Xiaokang Shu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shugeng Chen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 Mid-Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 Mid-Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
18
|
Baladron J, Vitay J, Fietzek T, Hamker FH. The contribution of the basal ganglia and cerebellum to motor learning: A neuro-computational approach. PLoS Comput Biol 2023; 19:e1011024. [PMID: 37011086 PMCID: PMC10101648 DOI: 10.1371/journal.pcbi.1011024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/13/2023] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
Motor learning involves a widespread brain network including the basal ganglia, cerebellum, motor cortex, and brainstem. Despite its importance, little is known about how this network learns motor tasks and which role different parts of this network take. We designed a systems-level computational model of motor learning, including a cortex-basal ganglia motor loop and the cerebellum that both determine the response of central pattern generators in the brainstem. First, we demonstrate its ability to learn arm movements toward different motor goals. Second, we test the model in a motor adaptation task with cognitive control, where the model replicates human data. We conclude that the cortex-basal ganglia loop learns via a novelty-based motor prediction error to determine concrete actions given a desired outcome, and that the cerebellum minimizes the remaining aiming error.
Collapse
Affiliation(s)
- Javier Baladron
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Julien Vitay
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| | - Torsten Fietzek
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| | - Fred H Hamker
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
19
|
Priorelli M, Stoianov IP. Flexible intentions: An Active Inference theory. Front Comput Neurosci 2023; 17:1128694. [PMID: 37021085 PMCID: PMC10067605 DOI: 10.3389/fncom.2023.1128694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
We present a normative computational theory of how the brain may support visually-guided goal-directed actions in dynamically changing environments. It extends the Active Inference theory of cortical processing according to which the brain maintains beliefs over the environmental state, and motor control signals try to fulfill the corresponding sensory predictions. We propose that the neural circuitry in the Posterior Parietal Cortex (PPC) compute flexible intentions-or motor plans from a belief over targets-to dynamically generate goal-directed actions, and we develop a computational formalization of this process. A proof-of-concept agent embodying visual and proprioceptive sensors and an actuated upper limb was tested on target-reaching tasks. The agent behaved correctly under various conditions, including static and dynamic targets, different sensory feedbacks, sensory precisions, intention gains, and movement policies; limit conditions were individuated, too. Active Inference driven by dynamic and flexible intentions can thus support goal-directed behavior in constantly changing environments, and the PPC might putatively host its core intention mechanism. More broadly, the study provides a normative computational basis for research on goal-directed behavior in end-to-end settings and further advances mechanistic theories of active biological systems.
Collapse
|
20
|
Wu Q, Wang GN, Hu H, Chen XF, Xu XQ, Zhang JS, Wu FY. A resting-state functional magnetic resonance imaging study of altered functional brain activity in cardiac arrest survivors with good neurological outcome. Front Neurol 2023; 14:1136197. [PMID: 37153675 PMCID: PMC10157780 DOI: 10.3389/fneur.2023.1136197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Purpose To investigate the spontaneous brain activity alterations in survivors of cardiac arrest (CA) with good neurological outcome using resting-state functional magnetic resonance imaging (rs-fMRI) with amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) methods. Materials and methods Thirteen CA survivors with favorable neurological outcomes and 13 healthy controls (HCs) were recruited and underwent rs-fMRI scans. The ALFF and ReHo methods were applied to assess the regional intensity and synchronization of spontaneous brain activity. Correlation analyses were performed to explore the relationships between the mean ALFF and ReHo values in significant clusters and clinical parameters. Results The survivors of CA showed significantly decreased ALFF values in the left postcentral gyrus and precentral gyrus and increased ALFF values in the left hippocampus and parahippocampal gyrus than HCs. Significantly decreased ReHo values were observed in the left inferior occipital gyrus and middle occipital gyrus in the patients. Mean ALFF values in the left hippocampus and parahippocampal gyrus were positively correlated with the time to return of spontaneous circulation (r = 0.794, p = 0.006) in the patient group. Conclusion Functional activity alterations in the brain areas corresponding to known cognitive and physical impairments were observed in CA survivors with preserved neurological function. Our results could advance the understanding of the neurological mechanisms underlying the residual deficits in those patients.
Collapse
Affiliation(s)
- Qian Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gan-Nan Wang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xu-Feng Chen
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Fei-Yun Wu, , Jin-Song Zhang, , Xu-Feng Chen,
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Song Zhang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Fei-Yun Wu, , Jin-Song Zhang, , Xu-Feng Chen,
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Fei-Yun Wu, , Jin-Song Zhang, , Xu-Feng Chen,
| |
Collapse
|
21
|
Tsay JS, Kim H, Haith AM, Ivry RB. Understanding implicit sensorimotor adaptation as a process of proprioceptive re-alignment. eLife 2022; 11:e76639. [PMID: 35969491 PMCID: PMC9377801 DOI: 10.7554/elife.76639] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/13/2022] [Indexed: 01/11/2023] Open
Abstract
Multiple learning processes contribute to successful goal-directed actions in the face of changing physiological states, biomechanical constraints, and environmental contexts. Amongst these processes, implicit sensorimotor adaptation is of primary importance, ensuring that movements remain well-calibrated and accurate. A large body of work on reaching movements has emphasized how adaptation centers on an iterative process designed to minimize visual errors. The role of proprioception has been largely neglected, thought to play a passive role in which proprioception is affected by the visual error but does not directly contribute to adaptation. Here, we present an alternative to this visuo-centric framework, outlining a model in which implicit adaptation acts to minimize a proprioceptive error, the distance between the perceived hand position and its intended goal. This proprioceptive re-alignment model (PReMo) is consistent with many phenomena that have previously been interpreted in terms of learning from visual errors, and offers a parsimonious account of numerous unexplained phenomena. Cognizant that the evidence for PReMo rests on correlational studies, we highlight core predictions to be tested in future experiments, as well as note potential challenges for a proprioceptive-based perspective on implicit adaptation.
Collapse
Affiliation(s)
- Jonathan S Tsay
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Hyosub Kim
- Department of Physical Therapy, University of DelawareNewarkUnited States
- Department of Psychological and Brain Sciences, University of DelawareNewarkUnited States
| | - Adrian M Haith
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
| | - Richard B Ivry
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
22
|
Nasrawi R, van Ede F. Planning the Potential Future during Multi-item Visual Working Memory. J Cogn Neurosci 2022; 34:1534-1546. [PMID: 35604357 DOI: 10.1162/jocn_a_01875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Working memory allows us to retain visual information to guide upcoming future behavior. In line with this future-oriented purpose of working memory, recent studies have shown that action planning occurs during encoding and retention of a single visual item, for which the upcoming action is certain. We asked whether and how this extends to multi-item visual working memory, when visual representations serve the potential future. Human participants performed a visual working-memory task with a memory-load manipulation (one/two/four items) and a delayed orientation-reproduction report (of one item). We measured EEG to track 15- to 25-Hz beta activity in electrodes contralateral to the required response hand-a canonical marker of action planning. We show an attenuation of beta activity, not only in Load 1 (with one certain future action) but also in Load 2 (with two potential future actions), compared with Load 4 (with low prospective-action certainty). Moreover, in Load 2, potential action planning occurs regardless whether both visual items afford similar or dissimilar manual responses, and it predicts the speed of ensuing memory-guided behavior. This shows that potential action planning occurs during multi-item visual working memory and brings the perspective that working memory helps us prepare for the potential future.
Collapse
Affiliation(s)
| | - Freek van Ede
- Vrije Universiteit Amsterdam, The Netherlands.,University of Oxford, United Kingdom
| |
Collapse
|
23
|
Abstract
A hallmark of adaptation in humans and other animals is our ability to control how we think and behave across different settings. Research has characterized the various forms cognitive control can take-including enhancement of goal-relevant information, suppression of goal-irrelevant information, and overall inhibition of potential responses-and has identified computations and neural circuits that underpin this multitude of control types. Studies have also identified a wide range of situations that elicit adjustments in control allocation (e.g., those eliciting signals indicating an error or increased processing conflict), but the rules governing when a given situation will give rise to a given control adjustment remain poorly understood. Significant progress has recently been made on this front by casting the allocation of control as a decision-making problem. This approach has developed unifying and normative models that prescribe when and how a change in incentives and task demands will result in changes in a given form of control. Despite their successes, these models, and the experiments that have been developed to test them, have yet to face their greatest challenge: deciding how to select among the multiplicity of configurations that control can take at any given time. Here, we will lay out the complexities of the inverse problem inherent to cognitive control allocation, and their close parallels to inverse problems within motor control (e.g., choosing between redundant limb movements). We discuss existing solutions to motor control's inverse problems drawn from optimal control theory, which have proposed that effort costs act to regularize actions and transform motor planning into a well-posed problem. These same principles may help shed light on how our brains optimize over complex control configuration, while providing a new normative perspective on the origins of mental effort.
Collapse
|
24
|
Ptak R, Doganci N, Bourgeois A. From Action to Cognition: Neural Reuse, Network Theory and the Emergence of Higher Cognitive Functions. Brain Sci 2021; 11:1652. [PMID: 34942954 PMCID: PMC8699577 DOI: 10.3390/brainsci11121652] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this article is to discuss the logic and assumptions behind the concept of neural reuse, to explore its biological advantages and to discuss the implications for the cognition of a brain that reuses existing circuits and resources. We first address the requirements that must be fulfilled for neural reuse to be a biologically plausible mechanism. Neural reuse theories generally take a developmental approach and model the brain as a dynamic system composed of highly flexible neural networks. They often argue against domain-specificity and for a distributed, embodied representation of knowledge, which sets them apart from modular theories of mental processes. We provide an example of reuse by proposing how a phylogenetically more modern mental capacity (mental rotation) may appear through the reuse and recombination of existing resources from an older capacity (motor planning). We conclude by putting arguments into context regarding functional modularity, embodied representation, and the current ontology of mental processes.
Collapse
Affiliation(s)
- Radek Ptak
- Division of Neurorehabilitation, University Hospitals Geneva, 1205 Geneva, Switzerland
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (N.D.); (A.B.)
| | - Naz Doganci
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (N.D.); (A.B.)
| | - Alexia Bourgeois
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (N.D.); (A.B.)
| |
Collapse
|
25
|
Bourgeois A, Schmid A, Turri F, Schnider A, Ptak R. Visual but Not Auditory-Verbal Feedback Induces Aftereffects Following Adaptation to Virtual Prisms. Front Neurosci 2021; 15:658353. [PMID: 34764847 PMCID: PMC8575682 DOI: 10.3389/fnins.2021.658353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 09/27/2021] [Indexed: 11/23/2022] Open
Abstract
Visuo-motor adaptation with optical prisms that displace the visual scene (prism adaptation, PA) has been widely used to study visuo-motor plasticity in healthy individuals and to decrease the lateralized bias of brain-damaged patients suffering from spatial neglect. Several factors may influence PA aftereffects, such as the degree of optical deviation (generally measured in dioptres of wedge prisms) or the direction of the prismatic shift (leftward vs. rightward). However, the mechanisms through which aftereffects of adaptation in healthy individuals and in neglect affect performance in tasks probing spatial cognition remain controversial. For example, some studies have reported positive effects of PA on auditory neglect, while other studies failed to obtain any changes of performance even in the visual modality. We here tested a new adaptation method in virtual reality to evaluate how sensory parameters influence PA aftereffects. Visual vs. auditory-verbal feedback of optical deviations were contrasted to assess whether rightward deviations influence manual and perceptual judgments in healthy individuals. Our results revealed that altered visual, but not altered auditory-verbal feedback induces aftereffects following adaptation to virtual prisms after 30-degrees of deviation. These findings refine current models of the mechanisms underlying the cognitive effects of virtual PA in emphasizing the importance of visual vs. auditory-verbal feedback during the adaptation phase on visuospatial judgments. Our study also specifies parameters which influence virtual PA and its aftereffect, such as the sensory modality used for the feedback.
Collapse
Affiliation(s)
- Alexia Bourgeois
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Audrey Schmid
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Francesco Turri
- Division of Neurorehabilitation, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Armin Schnider
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Neurorehabilitation, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Radek Ptak
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Neurorehabilitation, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
26
|
Tzvi E, Loens S, Donchin O. Mini-review: The Role of the Cerebellum in Visuomotor Adaptation. THE CEREBELLUM 2021; 21:306-313. [PMID: 34080132 PMCID: PMC8993777 DOI: 10.1007/s12311-021-01281-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/16/2021] [Indexed: 12/20/2022]
Abstract
The incredible capability of the brain to quickly alter performance in response to ever-changing environment is rooted in the process of adaptation. The core aspect of adaptation is to fit an existing motor program to altered conditions. Adaptation to a visuomotor rotation or an external force has been well established as tools to study the mechanisms underlying sensorimotor adaptation. In this mini-review, we summarize recent findings from the field of visuomotor adaptation. We focus on the idea that the cerebellum plays a central role in the process of visuomotor adaptation and that interactions with cortical structures, in particular, the premotor cortex and the parietal cortex, may be crucial for this process. To this end, we cover a range of methodologies used in the literature that link cerebellar functions and visuomotor adaptation; behavioral studies in cerebellar lesion patients, neuroimaging and non-invasive stimulation approaches. The mini-review is organized as follows: first, we provide evidence that sensory prediction errors (SPE) in visuomotor adaptation rely on the cerebellum based on behavioral studies in cerebellar patients. Second, we summarize structural and functional imaging studies that provide insight into spatial localization as well as visuomotor adaptation dynamics in the cerebellum. Third, we discuss premotor — cerebellar interactions and how these may underlie visuomotor adaptation. And finally, we provide evidence from transcranial direct current and magnetic stimulation studies that link cerebellar activity, beyond correlational relationships, to visuomotor adaptation .
Collapse
Affiliation(s)
- Elinor Tzvi
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103, Leipzig, Germany.
| | - Sebastian Loens
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Opher Donchin
- Motor Learning Lab, Ben Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
27
|
Haar S, Sundar G, Faisal AA. Embodied virtual reality for the study of real-world motor learning. PLoS One 2021; 16:e0245717. [PMID: 33503022 PMCID: PMC7840008 DOI: 10.1371/journal.pone.0245717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Motor-learning literature focuses on simple laboratory-tasks due to their controlled manner and the ease to apply manipulations to induce learning and adaptation. Recently, we introduced a billiards paradigm and demonstrated the feasibility of real-world-neuroscience using wearables for naturalistic full-body motion-tracking and mobile-brain-imaging. Here we developed an embodied virtual-reality (VR) environment to our real-world billiards paradigm, which allows to control the visual feedback for this complex real-world task, while maintaining sense of embodiment. The setup was validated by comparing real-world ball trajectories with the trajectories of the virtual balls, calculated by the physics engine. We then ran our short-term motor learning protocol in the embodied VR. Subjects played billiard shots when they held the physical cue and hit a physical ball on the table while seeing it all in VR. We found comparable short-term motor learning trends in the embodied VR to those we previously reported in the physical real-world task. Embodied VR can be used for learning real-world tasks in a highly controlled environment which enables applying visual manipulations, common in laboratory-tasks and rehabilitation, to a real-world full-body task. Embodied VR enables to manipulate feedback and apply perturbations to isolate and assess interactions between specific motor-learning components, thus enabling addressing the current questions of motor-learning in real-world tasks. Such a setup can potentially be used for rehabilitation, where VR is gaining popularity but the transfer to the real-world is currently limited, presumably, due to the lack of embodiment.
Collapse
Affiliation(s)
- Shlomi Haar
- Brain and Behaviour Lab, Dept. of Bioengineering, Imperial College London, London, United Kingdom
- * E-mail: (SH); (AAF)
| | - Guhan Sundar
- Brain and Behaviour Lab, Dept. of Bioengineering, Imperial College London, London, United Kingdom
| | - A. Aldo Faisal
- Brain and Behaviour Lab, Dept. of Bioengineering, Imperial College London, London, United Kingdom
- Dept. of Computing, Imperial College London, London, United Kingdom
- UKRI Centre for Doctoral Training in AI for Healthcare, Imperial College London, London, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
- * E-mail: (SH); (AAF)
| |
Collapse
|