1
|
Jun S, Altmann A, Sadaghiani S. Modulatory Neurotransmitter Genotypes Shape Dynamic Functional Connectome Reconfigurations. J Neurosci 2025; 45:e1939242025. [PMID: 39843237 PMCID: PMC11884390 DOI: 10.1523/jneurosci.1939-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Dynamic reconfigurations of the functional connectome across different connectivity states are highly heritable, predictive of cognitive abilities, and linked to mental health. Despite their established heritability, the specific polymorphisms that shape connectome dynamics are largely unknown. Given the widespread regulatory impact of modulatory neurotransmitters on functional connectivity, we comprehensively investigated a large set of single nucleotide polymorphisms (SNPs) of their receptors, metabolic enzymes, and transporters in 674 healthy adult subjects (347 females) from the Human Connectome Project. Preregistered modulatory neurotransmitter SNPs and dynamic connectome features entered a Stability Selection procedure with resampling. We found that specific subsets of these SNPs explain individual differences in temporal phenotypes of fMRI-derived connectome dynamics for which we previously established heritability. Specifically, noradrenergic polymorphisms explained Fractional Occupancy, i.e., the proportion of time spent in each connectome state, and cholinergic polymorphisms explained Transition Probability, i.e., the probability to transition between state pairs, respectively. This work identifies specific genetic effects on connectome dynamics via the regulatory impact of modulatory neurotransmitter systems. Our observations highlight the potential of dynamic connectome features as endophenotypes for neurotransmitter-focused precision psychiatry.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Psychology Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Andre Altmann
- Department of Medical Physics, Centre for Medical Image Computing (CMIC), University College London, London WC1V 6LJ, United Kingdom
| | - Sepideh Sadaghiani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Psychology Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
2
|
Moghaddam M, Dzemidzic M, Guerrero D, Liu M, Alessi J, Plawecki MH, Harezlak J, Kareken DA, Goñi J. Tangent space functional reconfigurations in individuals at risk for alcohol use disorder. Netw Neurosci 2025; 9:38-60. [PMID: 40161978 PMCID: PMC11949615 DOI: 10.1162/netn_a_00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/25/2024] [Indexed: 04/02/2025] Open
Abstract
Human brain function dynamically adjusts to ever-changing stimuli from the external environment. Studies characterizing brain functional reconfiguration are, nevertheless, scarce. Here, we present a principled mathematical framework to quantify brain functional reconfiguration when engaging and disengaging from a stop signal task (SST). We apply tangent space projection (a Riemannian geometry mapping technique) to transform the functional connectomes (FCs) of 54 participants and quantify functional reconfiguration using the correlation distance of the resulting tangent-FCs. Our goal was to compare functional reconfigurations in individuals at risk for alcohol use disorder (AUD). We hypothesized that functional reconfigurations when transitioning to/from a task would be influenced by family history of AUD (FHA) and other AUD risk factors. Multilinear regression models showed that engaging and disengaging functional reconfiguration were associated with FHA and recent drinking. When engaging in the SST after a rest condition, functional reconfiguration was negatively associated with recent drinking, while functional reconfiguration when disengaging from the SST was negatively associated with FHA. In both models, several other factors contributed to the functional reconfiguration. This study demonstrates that tangent-FCs can characterize task-induced functional reconfiguration and that it is related to AUD risk.
Collapse
Affiliation(s)
- Mahdi Moghaddam
- Edwardson School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Mario Dzemidzic
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel Guerrero
- Edwardson School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Mintao Liu
- Edwardson School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Jonathan Alessi
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin H. Plawecki
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jaroslaw Harezlak
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - David A. Kareken
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joaquín Goñi
- Edwardson School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
3
|
Zhang X, Yang L, Lu J, Yuan Y, Li D, Zhang H, Yao R, Xiang J, Wang B. Reconfiguration of brain network dynamics in bipolar disorder: a hidden Markov model approach. Transl Psychiatry 2024; 14:507. [PMID: 39737898 DOI: 10.1038/s41398-024-03212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025] Open
Abstract
Bipolar disorder (BD) is a neuropsychiatric disorder characterized by severe disturbance and fluctuation in mood. Dynamic functional connectivity (dFC) has the potential to more accurately capture the evolving processes of emotion and cognition in BD. Nevertheless, prior investigations of dFC typically centered on larger time scales, limiting the sensitivity to transient changes. This study employed hidden Markov model (HMM) analysis to delve deeper into the moment-to-moment temporal patterns of brain activity in BD. We utilized resting-state functional magnetic resonance imaging (rs-fMRI) data from 43 BD patients and 51 controls to evaluate the altered dynamic spatiotemporal architecture of the whole-brain network and identify unique activation patterns in BD. Additionally, we investigated the relationship between altered brain dynamics and structural disruption through the ridge regression (RR) algorithm. The results demonstrated that BD spent less time in a hyperconnected state with higher network efficiency and lower segregation. Conversely, BD spent more time in anticorrelated states featuring overall negative correlations, particularly among pairs of default mode network (DMN) and sensorimotor network (SMN), DMN and insular-opercular ventral attention networks (ION), subcortical network (SCN) and SMN, as well as SCN and ION. Interestingly, the hypoactivation of the cognitive control network in BD may be associated with the structural disruption primarily situated in the frontal and parietal lobes. This study investigated the dynamic mechanisms of brain network dysfunction in BD and offered fresh perspectives for exploring the physiological foundation of altered brain dynamics.
Collapse
Affiliation(s)
- Xi Zhang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lan Yang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jiayu Lu
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yuting Yuan
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Dandan Li
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hui Zhang
- School of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Rong Yao
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jie Xiang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Bin Wang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
4
|
Jun S, Malone SM, Alderson TH, Harper J, Hunt RH, Thomas KM, Wilson S, Iacono WG, Sadaghiani S. Cognitive abilities are associated with rapid dynamics of electrophysiological connectome states. Netw Neurosci 2024; 8:1089-1104. [PMID: 39735509 PMCID: PMC11674572 DOI: 10.1162/netn_a_00390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/17/2024] [Indexed: 12/31/2024] Open
Abstract
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, hold significant implications for cognition. However, connectome dynamics at fast (>1 Hz) timescales highly relevant to cognition are poorly understood due to the dominance of inherently slow fMRI in connectome studies. Here, we investigated the behavioral significance of rapid electrophysiological connectome dynamics using source-localized EEG connectomes during resting state (N = 926, 473 females). We focused on dynamic connectome features pertinent to individual differences, specifically those with established heritability: Fractional Occupancy (i.e., the overall duration spent in each recurrent connectome state) in beta and gamma bands and Transition Probability (i.e., the frequency of state switches) in theta, alpha, beta, and gamma bands. Canonical correlation analysis found a significant relationship between the heritable phenotypes of subsecond connectome dynamics and cognition. Specifically, principal components of Transition Probabilities in alpha (followed by theta and gamma bands) and a cognitive factor representing visuospatial processing (followed by verbal and auditory working memory) most notably contributed to the relationship. We conclude that rapid connectome state transitions shape individuals' cognitive abilities and traits. Such subsecond connectome dynamics may inform about behavioral function and dysfunction and serve as endophenotypes for cognitive abilities.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Stephen M. Malone
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Thomas H. Alderson
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Jeremy Harper
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Ruskin H. Hunt
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Kathleen M. Thomas
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - William G. Iacono
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sepideh Sadaghiani
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
5
|
Jun S, Alderson TH, Malone SM, Harper J, Hunt RH, Thomas KM, Iacono WG, Wilson S, Sadaghiani S. Rapid dynamics of electrophysiological connectome states are heritable. Netw Neurosci 2024; 8:1065-1088. [PMID: 39735507 PMCID: PMC11674403 DOI: 10.1162/netn_a_00391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/17/2024] [Indexed: 12/31/2024] Open
Abstract
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state (N = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60-500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states' Modularity and connectivity pattern. We conclude that genetic effects shape individuals' connectome dynamics at rapid timescales, specifically states' overall occurrence and sequencing.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Thomas H. Alderson
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Stephen M. Malone
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Jeremy Harper
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Ruskin H. Hunt
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Kathleen M. Thomas
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - William G. Iacono
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sepideh Sadaghiani
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
6
|
Michael C, Mitchell ME, Cascone AD, Fogleman ND, Rosch KS, Cutts SA, Pekar JJ, Sporns O, Mostofsky SH, Cohen JR. Reconfiguration of Functional Brain Network Organization and Dynamics With Changing Cognitive Demands in Children With Attention-Deficit/Hyperactivity Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00343-4. [PMID: 39561892 PMCID: PMC12084425 DOI: 10.1016/j.bpsc.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND The pathophysiology of attention-deficit/hyperactivity disorder (ADHD) is characterized by atypical brain network organization and dynamics. Although functional brain networks adaptively reconfigure across cognitive contexts, previous studies have largely focused on network dysfunction during the resting state. In this preliminary study, we examined how functional brain network organization and dynamics flexibly reconfigure across rest and 2 cognitive control tasks with different cognitive demands in 30 children with ADHD and 36 typically developing children (ages 8-12 years). METHODS We leveraged graph theoretical analyses to interrogate the segregation (modularity, within-module degree) and integration (global efficiency, node dissociation index) of frontoparietal, cingulo-opercular/salience, default mode, somatomotor, and visual networks. We also conducted edge time series analyses to quantify connectivity dynamics within and between these networks. RESULTS Across resting and task-based states, children with ADHD demonstrated significantly lower whole-graph modularity and a greater node dissociation index between default mode and visual networks. Furthermore, a significant task-by-diagnosis interaction was observed for frontoparietal network within-module degree, which decreased from rest to task in children with ADHD but increased in typically developing children. Finally, children with ADHD displayed significantly more dynamic connectivity within and across cingulo-opercular/salience, default mode, and somatomotor networks, especially during task performance. Exploratory analyses revealed associations between network dynamics, cognitive performance, and ADHD symptoms. CONCLUSIONS By integrating static and dynamic network analyses across changing cognitive demands, this study provides novel insight into how context-specific, context-general, and timescale-dependent network connectivity is altered in children with ADHD. Our findings highlight the involvement and clinical relevance of both association and sensory/motor systems in ADHD.
Collapse
Affiliation(s)
- Cleanthis Michael
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mackenzie E Mitchell
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Arianna D Cascone
- Neuroscience Curriculum, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nicholas D Fogleman
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Keri S Rosch
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland; Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Sarah A Cutts
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - James J Pekar
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland; Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland; Department of Neurology, Johns Hopkins University, Baltimore, Maryland
| | - Jessica R Cohen
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
7
|
Moghaddam M, Dzemidzic M, Guerrero D, Liu M, Alessi J, Plawecki MH, Harezlak J, Kareken DA, Goñi J. Tangent space functional reconfigurations in individuals at risk for alcohol use disorder. ARXIV 2024:arXiv:2405.15905v2. [PMID: 38827458 PMCID: PMC11142326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Human brain function dynamically adjusts to ever-changing stimuli from the external environment. Studies characterizing brain functional reconfiguration are nevertheless scarce. Here we present a principled mathematical framework to quantify brain functional reconfiguration when engaging and disengaging from a stop signal task (SST). We apply tangent space projection (a Riemannian geometry mapping technique) to transform functional connectomes (FCs) of 54 participants and quantify functional reconfiguration using the correlation distance of the resulting tangent-FCs. Our goal was to compare functional reconfigurations in individuals at risk for alcohol use disorder (AUD). We hypothesized that functional reconfigurations when transitioning to/from a task would be influenced by family history of alcohol use disorder (FHA) and other AUD risk factors. Multilinear regression models showed that engaging and disengaging functional reconfiguration were associated with FHA and recent drinking. When engaging in the SST after a rest condition, functional reconfiguration was negatively associated with recent drinking, while functional reconfiguration when disengaging from the SST was negatively associated with FHA. In both models, several other factors contributed to the functional reconfiguration. This study demonstrates that tangent-FCs can characterize task-induced functional reconfiguration, and that it is related to AUD risk.
Collapse
Affiliation(s)
- Mahdi Moghaddam
- School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA
| | - Mario Dzemidzic
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel Guerrero
- School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA
| | - Mintao Liu
- School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA
| | - Jonathan Alessi
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin H Plawecki
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA
| | - Jaroslaw Harezlak
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - David A Kareken
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA
| | - Joaquín Goñi
- School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West-Lafayette, IN, USA
| |
Collapse
|
8
|
Matkovič A, Anticevic A, Murray JD, Repovš G. Static and dynamic fMRI-derived functional connectomes represent largely similar information. Netw Neurosci 2023; 7:1266-1301. [PMID: 38144686 PMCID: PMC10631791 DOI: 10.1162/netn_a_00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/06/2023] [Indexed: 12/26/2023] Open
Abstract
Functional connectivity (FC) of blood oxygen level-dependent (BOLD) fMRI time series can be estimated using methods that differ in sensitivity to the temporal order of time points (static vs. dynamic) and the number of regions considered in estimating a single edge (bivariate vs. multivariate). Previous research suggests that dynamic FC explains variability in FC fluctuations and behavior beyond static FC. Our aim was to systematically compare methods on both dimensions. We compared five FC methods: Pearson's/full correlation (static, bivariate), lagged correlation (dynamic, bivariate), partial correlation (static, multivariate), and multivariate AR model with and without self-connections (dynamic, multivariate). We compared these methods by (i) assessing similarities between FC matrices, (ii) by comparing node centrality measures, and (iii) by comparing the patterns of brain-behavior associations. Although FC estimates did not differ as a function of sensitivity to temporal order, we observed differences between the multivariate and bivariate FC methods. The dynamic FC estimates were highly correlated with the static FC estimates, especially when comparing group-level FC matrices. Similarly, there were high correlations between the patterns of brain-behavior associations obtained using the dynamic and static FC methods. We conclude that the dynamic FC estimates represent information largely similar to that of the static FC.
Collapse
Affiliation(s)
- Andraž Matkovič
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - John D. Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Grega Repovš
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Di X, Xu T, Uddin LQ, Biswal BB. Individual differences in time-varying and stationary brain connectivity during movie watching from childhood to early adulthood: Age, sex, and behavioral associations. Dev Cogn Neurosci 2023; 63:101280. [PMID: 37480715 PMCID: PMC10393546 DOI: 10.1016/j.dcn.2023.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023] Open
Abstract
Spatially remote brain regions exhibit dynamic functional interactions across various task conditions. While time-varying functional connectivity during movie watching shows sensitivity to movie content, stationary functional connectivity remains relatively stable across videos. These findings suggest that dynamic and stationary functional interactions may represent different aspects of brain function. However, the relationship between individual differences in time-varying and stationary connectivity and behavioral phenotypes remains elusive. To address this gap, we analyzed an open-access functional MRI dataset comprising participants aged 5-22 years, who watched two cartoon movie clips. We calculated regional brain activity, time-varying connectivity, and stationary connectivity, examining associations with age, sex, and behavioral assessments. Model comparison revealed that time-varying connectivity was more sensitive to age and sex effects compared with stationary connectivity. The preferred age models exhibited quadratic log age or quadratic age effects, indicative of inverted-U shaped developmental patterns. In addition, females showed higher consistency in regional brain activity and time-varying connectivity than males. However, in terms of behavioral predictions, only stationary connectivity demonstrated the ability to predict full-scale intelligence quotient. These findings suggest that individual differences in time-varying and stationary connectivity may capture distinct aspects of behavioral phenotypes.
Collapse
Affiliation(s)
- Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
10
|
Di X, Xu T, Uddin LQ, Biswal BB. Individual differences in time-varying and stationary brain connectivity during movie watching from childhood to early adulthood: age, sex, and behavioral associations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526311. [PMID: 36778481 PMCID: PMC9915503 DOI: 10.1101/2023.01.30.526311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spatially remote brain regions exhibit dynamic functional interactions across various task conditions. While time-varying functional connectivity during movie watching shows sensitivity to movie content, stationary functional connectivity remains relatively stable across videos. These findings suggest that dynamic and stationary functional interactions may represent different aspects of brain function. However, the relationship between individual differences in time-varying and stationary connectivity and behavioral phenotypes remains elusive. To address this gap, we analyzed an open-access functional MRI dataset comprising participants aged 5 to 22 years, who watched two cartoon movie clips. We calculated regional brain activity, time-varying connectivity, and stationary connectivity, examining associations with age, sex, and behavioral assessments. Model comparison revealed that time-varying connectivity was more sensitive to age and sex effects compared with stationary connectivity. The preferred age models exhibited quadratic log age or quadratic age effects, indicative of inverted-U shaped developmental patterns. In addition, females showed higher consistency in regional brain activity and time-varying connectivity than males. However, in terms of behavioral predictions, only stationary connectivity demonstrated the ability to predict full-scale intelligence quotient. These findings suggest that individual differences in time-varying and stationary connectivity may capture distinct aspects of behavioral phenotypes.
Collapse
Affiliation(s)
- Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA
| | - Lucina Q. Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Bharat B. Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
11
|
Yuan B, Xie H, Wang Z, Xu Y, Zhang H, Liu J, Chen L, Li C, Tan S, Lin Z, Hu X, Gu T, Lu J, Liu D, Wu J. The domain-separation language network dynamics in resting state support its flexible functional segregation and integration during language and speech processing. Neuroimage 2023; 274:120132. [PMID: 37105337 DOI: 10.1016/j.neuroimage.2023.120132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
Modern linguistic theories and network science propose that language and speech processing are organized into hierarchical, segregated large-scale subnetworks, with a core of dorsal (phonological) stream and ventral (semantic) stream. The two streams are asymmetrically recruited in receptive and expressive language or speech tasks, which showed flexible functional segregation and integration. We hypothesized that the functional segregation of the two streams was supported by the underlying network segregation. A dynamic conditional correlation approach was employed to construct framewise time-varying language networks and k-means clustering was employed to investigate the temporal-reoccurring patterns. We found that the framewise language network dynamics in resting state were robustly clustered into four states, which dynamically reconfigured following a domain-separation manner. Spatially, the hub distributions of the first three states highly resembled the neurobiology of speech perception and lexical-phonological processing, speech production, and semantic processing, respectively. The fourth state was characterized by the weakest functional connectivity and was regarded as a baseline state. Temporally, the first three states appeared exclusively in limited time bins (∼15%), and most of the time (> 55%), state 4 was dominant. Machine learning-based dFC-linguistics prediction analyses showed that dFCs of the four states significantly predicted individual linguistic performance. These findings suggest a domain-separation manner of language network dynamics in resting state, which forms a dynamic "meta-network" framework to support flexible functional segregation and integration during language and speech processing.
Collapse
Affiliation(s)
- Binke Yuan
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China.
| | - Hui Xie
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Zhihao Wang
- CNRS - Centre d'Economie de la Sorbonne, Panthéon-Sorbonne University, France
| | - Yangwen Xu
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento 38123, Italy
| | - Hanqing Zhang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jiaxuan Liu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Lifeng Chen
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Chaoqun Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Shiyao Tan
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Zonghui Lin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xin Hu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Tianyi Gu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Junfeng Lu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Dongqiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, PR China.
| | - Jinsong Wu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| |
Collapse
|
12
|
Carhart-Harris RL, Chandaria S, Erritzoe DE, Gazzaley A, Girn M, Kettner H, Mediano PAM, Nutt DJ, Rosas FE, Roseman L, Timmermann C, Weiss B, Zeifman RJ, Friston KJ. Canalization and plasticity in psychopathology. Neuropharmacology 2023; 226:109398. [PMID: 36584883 DOI: 10.1016/j.neuropharm.2022.109398] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
This theoretical article revives a classical bridging construct, canalization, to describe a new model of a general factor of psychopathology. To achieve this, we have distinguished between two types of plasticity, an early one that we call 'TEMP' for 'Temperature or Entropy Mediated Plasticity', and another, we call 'canalization', which is close to Hebbian plasticity. These two forms of plasticity can be most easily distinguished by their relationship to 'precision' or inverse variance; TEMP relates to increased model variance or decreased precision, whereas the opposite is true for canalization. TEMP also subsumes increased learning rate, (Ising) temperature and entropy. Dictionary definitions of 'plasticity' describe it as the property of being easily shaped or molded; TEMP is the better match for this. Importantly, we propose that 'pathological' phenotypes develop via mechanisms of canalization or increased model precision, as a defensive response to adversity and associated distress or dysphoria. Our model states that canalization entrenches in psychopathology, narrowing the phenotypic state-space as the agent develops expertise in their pathology. We suggest that TEMP - combined with gently guiding psychological support - can counter canalization. We address questions of whether and when canalization is adaptive versus maladaptive, furnish our model with references to basic and human neuroscience, and offer concrete experiments and measures to test its main hypotheses and implications. This article is part of the Special Issue on "National Institutes of Health Psilocybin Research Speaker Series".
Collapse
Affiliation(s)
- R L Carhart-Harris
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA; Centre for Psychedelic Research, Imperial College London, UK.
| | - S Chandaria
- Centre for Psychedelic Research, Imperial College London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Institute of Philosophy, School of Advanced Study, University of London, UK
| | - D E Erritzoe
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - A Gazzaley
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA
| | - M Girn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - H Kettner
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA; Centre for Psychedelic Research, Imperial College London, UK
| | - P A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, UK
| | - D J Nutt
- Centre for Psychedelic Research, Imperial College London, UK
| | - F E Rosas
- Centre for Psychedelic Research, Imperial College London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Department of Informatics, University of Sussex, UK; Centre for Complexity Science, Imperial College London, UK
| | - L Roseman
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - C Timmermann
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - B Weiss
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - R J Zeifman
- Centre for Psychedelic Research, Imperial College London, UK; NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, USA
| | - K J Friston
- Wellcome Centre for Human Neuroimaging, University College London, UK
| |
Collapse
|
13
|
Teghipco A, Okada K, Murphy E, Hickok G. Predictive Coding and Internal Error Correction in Speech Production. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:81-119. [PMID: 37229143 PMCID: PMC10205072 DOI: 10.1162/nol_a_00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/02/2022] [Indexed: 05/27/2023]
Abstract
Speech production involves the careful orchestration of sophisticated systems, yet overt speech errors rarely occur under naturalistic conditions. The present functional magnetic resonance imaging study sought neural evidence for internal error detection and correction by leveraging a tongue twister paradigm that induces the potential for speech errors while excluding any overt errors from analysis. Previous work using the same paradigm in the context of silently articulated and imagined speech production tasks has demonstrated forward predictive signals in auditory cortex during speech and presented suggestive evidence of internal error correction in left posterior middle temporal gyrus (pMTG) on the basis that this area tended toward showing a stronger response when potential speech errors are biased toward nonwords compared to words (Okada et al., 2018). The present study built on this prior work by attempting to replicate the forward prediction and lexicality effects in nearly twice as many participants but introduced novel stimuli designed to further tax internal error correction and detection mechanisms by biasing speech errors toward taboo words. The forward prediction effect was replicated. While no evidence was found for a significant difference in brain response as a function of lexical status of the potential speech error, biasing potential errors toward taboo words elicited significantly greater response in left pMTG than biasing errors toward (neutral) words. Other brain areas showed preferential response for taboo words as well but responded below baseline and were less likely to reflect language processing as indicated by a decoding analysis, implicating left pMTG in internal error correction.
Collapse
Affiliation(s)
- Alex Teghipco
- Department of Cognitive Sciences, University of California, Irvine, CA, USA
| | - Kayoko Okada
- Department of Psychology, Loyola Marymount University, Los Angeles, CA, USA
| | - Emma Murphy
- Department of Psychology, Loyola Marymount University, Los Angeles, CA, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, CA, USA
| |
Collapse
|
14
|
Casto KV, Jordan T, Petersen N. Hormone-based models for comparing menstrual cycle and hormonal contraceptive effects on human resting-state functional connectivity. Front Neuroendocrinol 2022; 67:101036. [PMID: 36126748 PMCID: PMC9649880 DOI: 10.1016/j.yfrne.2022.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022]
Abstract
Oral contraceptives (OCs) are widely used yet understudied given their potential for public health consequences. Emerging investigations scaling from single-subject, dense-sampling neuroimaging studies to population-level metrics have linked OCs to altered brain structure and function. Modeling the hypogonadal, hypergonadal, or mixed state effects of OCs in terms of their impact on hormone action in the brain is a valuable approach to synthesizing results across neuroimaging studies and comparing OC effects to companion findings from research on menstrual cycle phase effects on brain anatomy and function. Resting-state functional connectivity studies provide a powerful tool to evaluate the role of OCs on the intrinsic network connectivity that underlies multiple behavioral domains. The preponderance (but not consensus) of the current literature indicates that (1) as the menstrual cycle proceeds from a low to high progesterone state, prefrontal connectivity increases and parietal connectivity decreases; (2) OCs tend to mimic this connectivity pattern; therefore (3) OCs may produce a hyperprogestogenic state in the brain, in spite of overall reductions in endogenous steroid hormone levels. Alternative models are also considered.
Collapse
Affiliation(s)
- Kathleen V Casto
- Social Sciences Division, New College of Florida, 5800 Bay Shore Road, Sarasota, FL 34243, USA
| | - Timothy Jordan
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Nicole Petersen
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
Di X, Zhang Z, Xu T, Biswal BB. Dynamic and stationary brain connectivity during movie watching as revealed by functional MRI. Brain Struct Funct 2022; 227:2299-2312. [PMID: 35767066 PMCID: PMC9420792 DOI: 10.1007/s00429-022-02522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/04/2022] [Indexed: 11/25/2022]
Abstract
Spatially remote brain regions show synchronized activity as typically revealed by correlated functional MRI (fMRI) signals. An emerging line of research has focused on the temporal fluctuations of connectivity; however, its relationships with stationary connectivity have not been clearly illustrated. We examined dynamic and stationary connectivity when the participants watched four different movie clips. We calculated point-by-point multiplication between two regional time series to estimate the time-resolved dynamic connectivity, and estimated the inter-individual consistency of the dynamic connectivity time series. Widespread consistent dynamic connectivity was observed for each movie clip, which also showed differences between the clips. For example, a cartoon movie clip, Wall-E, showed more consistent of dynamic connectivity with the posterior cingulate cortex and supramarginal gyrus, while a court drama clip, A Few Good Men, showed more consistent of dynamic connectivity with the auditory cortex and temporoparietal junction, which might suggest the involvement of specific brain processing for different movie contents. In contrast, the stationary connectivity as measured by the correlations between regional time series was highly similar among the movie clips, and showed fewer statistically significant differences. The patterns of consistent dynamic connectivity could be used to classify different movie clips with higher accuracy than the stationary connectivity and regional activity. These results support the functional significance of dynamic connectivity in reflecting functional brain changes, which could provide more functionally relevant information than stationary connectivity.
Collapse
Affiliation(s)
- Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Height, Newark, NJ, 07102, USA.
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, People's Republic of China
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Height, Newark, NJ, 07102, USA.
| |
Collapse
|
16
|
Luijendijk MJ, Bekele BM, Schagen SB, Douw L, de Ruiter MB. Temporal Dynamics of Resting-state Functional Networks and Cognitive Functioning following Systemic Treatment for Breast Cancer. Brain Imaging Behav 2022; 16:1927-1937. [PMID: 35705764 PMCID: PMC9581823 DOI: 10.1007/s11682-022-00651-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 11/13/2022]
Abstract
Many women with breast cancer suffer from a decline in memory and executive function, particularly after treatment with chemotherapy. Recent neuroimaging studies suggest that changes in network dynamics are fundamental in decline in these cognitive functions. This has, however, not yet been investigated in breast cancer patients. Using resting state functional magnetic resonance imaging, we prospectively investigated whether changes in dynamic functional connectivity were associated with changes in memory and executive function. We examined 34 breast cancer patients that received chemotherapy, 32 patients that did not receive chemotherapy, and 35 no-cancer controls. All participants were assessed prior to treatment and six months after completion of chemotherapy, or at similar intervals for the other groups. To assess memory and executive function, we used the Hopkins Verbal Learning Test – Immediate Recall and the Trail Making Test B, respectively. Using a sliding window approach, we then evaluated dynamic functional connectivity of resting state networks supporting memory and executive function, i.e. the default mode network and frontoparietal network, respectively. Next, we directly investigated the association between cognitive performance and dynamic functional connectivity. We found no group differences in cognitive performance or connectivity measures. The association between dynamic functional connectivity of the default mode network and memory differed significantly across groups. This was not the case for the frontoparietal network and executive function. This suggests that cancer and chemotherapy alter the role of dynamic functional connectivity in memory function. Further implications of these findings are discussed.
Collapse
Affiliation(s)
- Maryse J Luijendijk
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands.,Brain and Cognition Group, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Biniam M Bekele
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands.,Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sanne B Schagen
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands. .,Brain and Cognition Group, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.
| | - Linda Douw
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Michiel B de Ruiter
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Liu ZQ, Vázquez-Rodríguez B, Spreng RN, Bernhardt BC, Betzel RF, Misic B. Time-resolved structure-function coupling in brain networks. Commun Biol 2022; 5:532. [PMID: 35654886 PMCID: PMC9163085 DOI: 10.1038/s42003-022-03466-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/09/2022] [Indexed: 12/23/2022] Open
Abstract
The relationship between structural and functional connectivity in the brain is a key question in systems neuroscience. Modern accounts assume a single global structure-function relationship that persists over time. Here we study structure-function coupling from a dynamic perspective, and show that it is regionally heterogeneous. We use a temporal unwrapping procedure to identify moment-to-moment co-fluctuations in neural activity, and reconstruct time-resolved structure-function coupling patterns. We find that patterns of dynamic structure-function coupling are region-specific. We observe stable coupling in unimodal and transmodal cortex, and dynamic coupling in intermediate regions, particularly in insular cortex (salience network) and frontal eye fields (dorsal attention network). Finally, we show that the variability of a region’s structure-function coupling is related to the distribution of its connection lengths. Collectively, our findings provide a way to study structure-function relationships from a dynamic perspective. Temporal unwrapping analysis of diffusion weighted MRI connectivity and functional MRI scans reveals that the coupling between structure and function in the human brain is regionally heterogeneous and provides a framework to evaluate these relationships from a dynamic perspective.
Collapse
|
18
|
Alvarez GM, Rudolph MD, Cohen JR, Muscatell KA. Lower Socioeconomic Position Is Associated with Greater Activity in and Integration within an Allostatic-Interoceptive Brain Network in Response to Affective Stimuli. J Cogn Neurosci 2022; 34:1906-1927. [PMID: 35139207 DOI: 10.1162/jocn_a_01830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Socioeconomic inequities shape physical health and emotional well-being. As such, recent work has examined the neural mechanisms through which socioeconomic position (SEP) may influence health. However, there remain critical gaps in knowledge regarding the relationships between SEP and brain function. These gaps include a lack of research on: (1) the association between SEP and brain functioning in later life, (2) relationships between SEP and functioning of the whole brain beyond specific regions of interest, and (3) how neural responses to positive affective stimuli differ by SEP. The current study addressed these gaps by examining the association between SEP (i.e., education, income) and neural responses to affective stimuli among 122 mid- to late-life adults. During MRI scanning, participants viewed 30 positive, 30 negative, and 30 neutral images; activation and network connectivity analyses explored associations between SEP and neural responses to these affective stimuli. Analyses revealed that those with lower SEP showed greater neural activity to both positive and negative images in regions within the allostatic-interoceptive network, a system of regions implicated in representing and regulating physiological states of the body and the external environment. There were no positive associations between SEP and neural responses to negative or positive images. In addition, graph-theory network analyses showed that individuals with lower SEP demonstrated greater global efficiency within the allostatic-interoceptive network and executive control network, across all task conditions. The findings suggest that lower SEP is associated with enhanced neural sensitivity to affective cues that may be metabolically costly to maintain over time and suggest a mechanism by which SEP might get "under the skull" to influence mental and physical well-being.
Collapse
Affiliation(s)
| | | | - Jessica R Cohen
- University of North Carolina at Chapel Hill.,Carolina Institute for Developmental Disabilities, Carrboro, NC
| | - Keely A Muscatell
- University of North Carolina at Chapel Hill.,Carolina Institute for Developmental Disabilities, Carrboro, NC
| |
Collapse
|
19
|
Pascucci D, Rubega M, Rué-Queralt J, Tourbier S, Hagmann P, Plomp G. Structure supports function: Informing directed and dynamic functional connectivity with anatomical priors. Netw Neurosci 2022; 6:401-419. [PMID: 35733424 PMCID: PMC9205420 DOI: 10.1162/netn_a_00218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/23/2021] [Indexed: 12/03/2022] Open
Abstract
The dynamic repertoire of functional brain networks is constrained by the underlying topology of structural connections. Despite this intrinsic relationship between structural connectivity (SC) and functional connectivity (FC), integrative and multimodal approaches to combine the two remain limited. Here, we propose a new adaptive filter for estimating dynamic and directed FC using structural connectivity information as priors. We tested the filter in rat epicranial recordings and human event-related EEG data, using SC priors from a meta-analysis of tracer studies and diffusion tensor imaging metrics, respectively. We show that, particularly under conditions of low signal-to-noise ratio, SC priors can help to refine estimates of directed FC, promoting sparse functional networks that combine information from structure and function. In addition, the proposed filter provides intrinsic protection against SC-related false negatives, as well as robustness against false positives, representing a valuable new tool for multimodal imaging in the context of dynamic and directed FC analysis.
Collapse
Affiliation(s)
- David Pascucci
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Perceptual Networks Group, University of Fribourg, Fribourg, Switzerland
| | - Maria Rubega
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Joan Rué-Queralt
- Perceptual Networks Group, University of Fribourg, Fribourg, Switzerland
- Connectomics Lab, Department of Radiology, University Hospital of Lausanne and University of Lausanne (CHUV-SUNIL), Lausanne, Switzerland
| | - Sebastien Tourbier
- Connectomics Lab, Department of Radiology, University Hospital of Lausanne and University of Lausanne (CHUV-SUNIL), Lausanne, Switzerland
| | - Patric Hagmann
- Connectomics Lab, Department of Radiology, University Hospital of Lausanne and University of Lausanne (CHUV-SUNIL), Lausanne, Switzerland
| | - Gijs Plomp
- Perceptual Networks Group, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
20
|
Varangis E, Qi W, Stern Y, Lee S. The role of neural flexibility in cognitive aging. Neuroimage 2021; 247:118784. [PMID: 34902547 DOI: 10.1016/j.neuroimage.2021.118784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/09/2021] [Accepted: 12/04/2021] [Indexed: 11/28/2022] Open
Abstract
Studies assessing relationships between neural and cognitive changes in healthy aging have shown that a variety of aspects of brain structure and function explain a significant portion of the variability in cognitive outcomes throughout adulthood. Many studies assessing relationships between brain function and cognition have utilized time-averaged, or static functional connectivity methods to explore ways in which brain network organization may contribute to aspects of cognitive aging. However, recent studies in this field have suggested that time-varying, or dynamic measures of functional connectivity, which assess changes in functional connectivity over the course of a scan session, may play a stronger role in explaining cognitive outcomes in healthy young adults. Further, both static and dynamic functional connectivity studies suggest that there may be differences in patterns of brain-cognition relationships as a function of whether or not the participant is performing a task during the scan. Thus, the goals of the present study were threefold: (1) assess whether neural flexibility during both resting as well as task-based scans is related to participant age and cognitive performance in a lifespan aging sample, (2) determine whether neural flexibility moderates relationships between age and cognitive performance, and (3) explore differences in neural flexibility between rest and task. Participants in the study were 386 healthy adults between the ages of 20-80 who provided resting state and/or task-based (Matrix Reasoning) functional magnetic resonance imaging (fMRI) scan data as part of their participation in two ongoing studies of cognitive aging. Neural flexibility measures from both resting and task-based scans reflected the number of times each node changed network assignment, and were averaged both across the whole brain (global neural flexibility) as well as within ten somatosensory/cognitive networks. Results showed that neural flexibility was not related to participant age, and that task-based global neural flexibility, as well as task-based neural flexibility in several networks, tended to be negatively related to reaction times during the Matrix Reasoning task, however these effects did not survive strict multiple comparisons correction. Resting state neural flexibility was not significantly related to either participant age or cognitive performance. Additionally, no neural flexibility measures significantly moderated relationships between participant age and cognitive outcomes. Further, neural flexibility differed as a function of scan type, with resting state neural flexibility being significantly greater than task-based neural flexibility. Thus, neural flexibility measures computed during a cognitive task may be more meaningfully related to cognitive performance across the adult lifespan then resting state measures of neural flexibility.
Collapse
Affiliation(s)
- Eleanna Varangis
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Weiwei Qi
- Mental Health Data Science, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 48, New York, NY 10032, USA; Department of Biostatistics, Columbia University, New York, NY 10032, USA
| | - Yaakov Stern
- Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Seonjoo Lee
- Mental Health Data Science, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 48, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Biostatistics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
21
|
Zhang J, Kucyi A, Raya J, Nielsen AN, Nomi JS, Damoiseaux JS, Greene DJ, Horovitz SG, Uddin LQ, Whitfield-Gabrieli S. What have we really learned from functional connectivity in clinical populations? Neuroimage 2021; 242:118466. [PMID: 34389443 DOI: 10.1016/j.neuroimage.2021.118466] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/06/2021] [Accepted: 08/09/2021] [Indexed: 02/09/2023] Open
Abstract
Functional connectivity (FC), or the statistical interdependence of blood-oxygen dependent level (BOLD) signals between brain regions using fMRI, has emerged as a widely used tool for probing functional abnormalities in clinical populations due to the promise of the approach across conceptual, technical, and practical levels. With an already vast and steadily accumulating neuroimaging literature on neurodevelopmental, psychiatric, and neurological diseases and disorders in which FC is a primary measure, we aim here to provide a high-level synthesis of major concepts that have arisen from FC findings in a manner that cuts across different clinical conditions and sheds light on overarching principles. We highlight that FC has allowed us to discover the ubiquity of intrinsic functional networks across virtually all brains and clarify typical patterns of neurodevelopment over the lifespan. This understanding of typical FC maturation with age has provided important benchmarks against which to evaluate divergent maturation in early life and degeneration in late life. This in turn has led to the important insight that many clinical conditions are associated with complex, distributed, network-level changes in the brain, as opposed to solely focal abnormalities. We further emphasize the important role that FC studies have played in supporting a dimensional approach to studying transdiagnostic clinical symptoms and in enhancing the multimodal characterization and prediction of the trajectory of symptom progression across conditions. We highlight the unprecedented opportunity offered by FC to probe functional abnormalities in clinical conditions where brain function could not be easily studied otherwise, such as in disorders of consciousness. Lastly, we suggest high priority areas for future research and acknowledge critical barriers associated with the use of FC methods, particularly those related to artifact removal, data denoising and feasibility in clinical contexts.
Collapse
Affiliation(s)
- Jiahe Zhang
- Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA.
| | - Aaron Kucyi
- Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Jovicarole Raya
- Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Ashley N Nielsen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jason S Nomi
- Department of Psychology, University of Miami, Miami, FL 33124, USA
| | - Jessica S Damoiseaux
- Institute of Gerontology and Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Lucina Q Uddin
- Department of Psychology, University of Miami, Miami, FL 33124, USA
| | - Susan Whitfield-Gabrieli
- Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|