1
|
Li C, Gao X, Liu Y, Yang B, Dai H, Zhao H, Li Y. The role of natural killer T cells in sepsis-associated acute kidney injury. Int Immunopharmacol 2025; 159:114953. [PMID: 40418883 DOI: 10.1016/j.intimp.2025.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 05/12/2025] [Accepted: 05/21/2025] [Indexed: 05/28/2025]
Abstract
The condition of sepsis, defined by the misregulation of the body's defensive mechanisms against infection, culminates in the potential for catastrophic organ damage and stands as a primary driver of mortality in Intensive Care Units (ICU) settings. Among patients in a critical condition, sepsis is a predominant factor in the development of acute kidney injury (AKI), and the death rate among those with both sepsis and AKI is considerably higher, underscoring the importance of addressing this health crisis. Sepsis-associated acute kidney injury (S-AKI) is a complex process involving inflammation, microcirculatory issues, and metabolic disorders. Among these, the inflammatory response has become a focal point of interest. Bridging the innate and adaptive immunity, natural killer T (NKT) cells can be rapidly activated in sepsis, contributing to sepsis-associated injury and downstream activation of inflammatory cells through the emission of Th1 or Th2 cytokines. They also contribute to S-AKI through the TNF-α/FasL and perforin pathways. Alpha-Galactosylceramide (α-GalCer), acting as a powerful activator for type I NKT (iNKT) cells, is able to regulate the secretory profile of iNKT cells, responding to the pro-inflammatory response and immunosuppressive profiles of sepsis. This review examines the part played by NKT cells in S-AKI and whether α-Galcer could function as a significant regulator in sepsis, based on studies of regression-related mechanisms.
Collapse
Affiliation(s)
- Cheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China; Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Xiaopo Gao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China; Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Yuan Liu
- Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi, China
| | - Bin Yang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China; Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Hongkai Dai
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China; Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Hui Zhao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China; Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Yongshen Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China; Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| |
Collapse
|
2
|
Zhang T, Chen L, Kueth G, Shao E, Wang X, Ha T, Williams DL, Li C, Fan M, Yang K. Lactate's impact on immune cells in sepsis: unraveling the complex interplay. Front Immunol 2024; 15:1483400. [PMID: 39372401 PMCID: PMC11449721 DOI: 10.3389/fimmu.2024.1483400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Lactate significantly impacts immune cell function in sepsis and septic shock, transcending its traditional view as just a metabolic byproduct. This review summarizes the role of lactate as a biomarker and its influence on immune cell dynamics, emphasizing its critical role in modulating immune responses during sepsis. Mechanistically, key lactate transporters like MCT1, MCT4, and the receptor GPR81 are crucial in mediating these effects. HIF-1α also plays a significant role in lactate-driven immune modulation. Additionally, lactate affects immune cell function through post-translational modifications such as lactylation, acetylation, and phosphorylation, which alter enzyme activities and protein functions. These interactions between lactate and immune cells are central to understanding sepsis-associated immune dysregulation, offering insights that can guide future research and improve therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Linjian Chen
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Gatkek Kueth
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Emily Shao
- Program in Neuroscience, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tuanzhu Ha
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David L. Williams
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Chuanfu Li
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Min Fan
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kun Yang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
3
|
Ye H, Zou X, Fang X. Advancing cell-based therapy in sepsis: An anesthesia outlook. Chin Med J (Engl) 2024; 137:1522-1534. [PMID: 38708689 PMCID: PMC11230747 DOI: 10.1097/cm9.0000000000003097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 05/07/2024] Open
Abstract
ABSTRACT Sepsis poses a health challenge globally owing to markedly high rates of morbidity and mortality. Despite employing bundle therapy over two decades, approaches including transient organ supportive therapy and clinical trials focusing on signaling pathways have failed in effectively reversing multiple organ failure in patients with sepsis. Prompt and appropriate perioperative management for surgical patients with concurrent sepsis is urgent. Consequently, innovative therapies focusing on remedying organ injuries are necessitated. Cell therapy has emerged as a promising therapeutic avenue for repairing local damage to vital organs and restoring homeostasis during perioperative treatment for sepsis. Given the pivotal role of immune cell responses in the pathogenesis of sepsis, stem cell-based interventions that primarily modulate immune responses by interacting with multiple immune cells have progressed into clinical trials. The strides made in single-cell sequencing and gene-editing technologies have advanced the understanding of disease-specific immune responses in sepsis. Chimeric antigen receptor (CAR)-immune cell therapy offers an intriguing option for the treatment of sepsis. This review provides a concise overview of immune cell therapy, its current status, and the strides made in the context of sepsis research, discussing potential strategies for the management of patients with sepsis during perioperative stages.
Collapse
Affiliation(s)
- Hui Ye
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiaoyu Zou
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 312000, China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
4
|
Wang F, Cui Y, He D, Gong L, Liang H. Natural killer cells in sepsis: Friends or foes? Front Immunol 2023; 14:1101918. [PMID: 36776839 PMCID: PMC9909201 DOI: 10.3389/fimmu.2023.1101918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Sepsis is one of the major causes of death in the hospital worldwide. The pathology of sepsis is tightly associated with dysregulation of innate immune responses. The contribution of macrophages, neutrophils, and dendritic cells to sepsis is well documented, whereas the role of natural killer (NK) cells, which are critical innate lymphoid lineage cells, remains unclear. In some studies, the activation of NK cells has been reported as a risk factor leading to severe organ damage or death. In sharp contrast, some other studies revealed that triggering NK cell activity contributes to alleviating sepsis. In all, although there are several reports on NK cells in sepsis, whether they exert detrimental or protective effects remains unclear. Here, we will review the available experimental and clinical studies about the opposing roles of NK cells in sepsis, and we will discuss the prospects for NK cell-based immunotherapeutic strategies for sepsis.
Collapse
Affiliation(s)
- Fangjie Wang
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yiqin Cui
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dongmei He
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lisha Gong
- School of Laboratory Medicine and Technology, Harbin Medical University, Daqing, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
5
|
Kapp KL, Arul AB, Zhang KC, Du L, Yende S, Kellum JA, Angus DC, Peck-Palmer OM, Robinson RAS. Proteomic changes associated with racial background and sepsis survival outcomes. Mol Omics 2022; 18:923-937. [PMID: 36097965 DOI: 10.1039/d2mo00171c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intra-abdominal infection is a common cause of sepsis, and intra-abdominal sepsis leads to ∼156 000 U.S. deaths annually. African American/Black adults have higher incidence and mortality rates from sepsis compared to Non-Hispanic White adults. A limited number of studies have traced survival outcomes to molecular changes; however, these studies primarily only included Non-Hispanic White adults. Our goal is to better understand molecular changes that may contribute to differences in sepsis survival in African American/Black and Non-Hispanic White adults with primary intra-abdominal infection. We employed discovery-based plasma proteomics of patient samples from the Protocolized Care for Early Septic Shock (ProCESS) cohort (N = 107). We identified 49 proteins involved in the acute phase response and complement system whose expression levels are associated with both survival outcome and racial background. Additionally, 82 proteins differentially-expressed in survivors were specific to African American/Black or Non-Hispanic White patients, suggesting molecular-level heterogeneity in sepsis patients in key inflammatory pathways. A smaller, robust set of 19 proteins were in common in African American/Black and Non-Hispanic White survivors and may represent potential universal molecular changes in sepsis. Overall, this study identifies molecular factors that may contribute to differences in survival outcomes in African American/Black patients that are not fully explained by socioeconomic or other non-biological factors.
Collapse
Affiliation(s)
- Kathryn L Kapp
- Department of Chemistry, Vanderbilt University, 5423 Stevenson Center, Nashville, TN, 37235, USA.,The Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 32732, USA.
| | - Albert B Arul
- Department of Chemistry, Vanderbilt University, 5423 Stevenson Center, Nashville, TN, 37235, USA
| | - Kevin C Zhang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - Liping Du
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.,Vanderbilt Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sachin Yende
- The Clinical Research, Investigation, and Systems Modeling of Acute Illnesses (CRISMA) Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Department of Clinical and Translational Science, University of Pittsburgh, PA, 15261, USA
| | - John A Kellum
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Derek C Angus
- The Clinical Research, Investigation, and Systems Modeling of Acute Illnesses (CRISMA) Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Department of Clinical and Translational Science, University of Pittsburgh, PA, 15261, USA
| | - Octavia M Peck-Palmer
- The Clinical Research, Investigation, and Systems Modeling of Acute Illnesses (CRISMA) Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Department of Clinical and Translational Science, University of Pittsburgh, PA, 15261, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, 5423 Stevenson Center, Nashville, TN, 37235, USA.,The Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 32732, USA.
| |
Collapse
|
6
|
Endt K, Wollmann Y, Haug J, Bernig C, Feigl M, Heiseke A, Kalla M, Hochrein H, Suter M, Chaplin P, Volkmann A. A Recombinant MVA-Based RSV Vaccine Induces T-Cell and Antibody Responses That Cooperate in the Protection Against RSV Infection. Front Immunol 2022; 13:841471. [PMID: 35774800 PMCID: PMC9238321 DOI: 10.3389/fimmu.2022.841471] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes a respiratory disease with a potentially fatal outcome especially in infants and elderly individuals. Several vaccines failed in pivotal clinical trials, and to date, no vaccine against RSV has been licensed. We have developed an RSV vaccine based on the recombinant Modified Vaccinia Virus Ankara-BN® (MVA-RSV), containing five RSV-specific antigens that induced antibody and T-cell responses, which is currently tested in clinical trials. Here, the immunological mechanisms of protection were evaluated to determine viral loads in lungs upon vaccination of mice with MVA-RSV followed by intranasal RSV challenge. Depletion of CD4 or CD8 T cells, serum transfer, and the use of genetically engineered mice lacking the ability to generate either RSV-specific antibodies (T11µMT), the IgA isotype (IgA knockout), or CD8 T cells (β2M knockout) revealed that complete protection from RSV challenge is dependent on CD4 and CD8 T cells as well as antibodies, including IgA. Thus, MVA-RSV vaccination optimally protects against RSV infection by employing multiple arms of the adaptive immune system.
Collapse
Affiliation(s)
- Kathrin Endt
- Bavarian Nordic GmbH, Martinsried, Germany
- *Correspondence: Kathrin Endt,
| | | | - Jana Haug
- Bavarian Nordic GmbH, Martinsried, Germany
| | | | | | | | | | | | - Mark Suter
- University of Zürich, Dekanat Vetsuisse-Fakultät Immunology, Zurich, Switzerland
| | | | | |
Collapse
|
7
|
Li M, Ren R, Yan M, Chen S, Chen C, Yan J. Identification of novel biomarkers for sepsis diagnosis via serum proteomic analysis using iTRAQ-2D-LC-MS/MS. J Clin Lab Anal 2021; 36:e24142. [PMID: 34825737 PMCID: PMC8761403 DOI: 10.1002/jcla.24142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/06/2021] [Accepted: 11/13/2021] [Indexed: 11/09/2022] Open
Abstract
Background Sepsis is a common cause of morbidity and mortality in the ICU patients. Early diagnosis and appropriate patient management is the key to improve the patient survival and to limit disabilities in sepsis patients. This study was aimed to find new diagnostic biomarkers of sepsis. Methods In this study, serum proteomic profiles in sepsis patients by iTRAQ2D‐LC‐MS/MS. Thirty seven differentially expressed proteins were identified in patients with sepsis, and six proteins including ApoC3, SERPINA1, VCAM1, B2M, GPX3, and ApoE were selected for further verification by ELISA and immunoturbidimetry in 53 patients of non‐sepsis, 37 patients of sepsis, and 35 patients of septic shock. Descriptive statistics, functional enrichment analysis, and ROC curve analysis were conducted. Results The level of ApoC3 was gradually decreased among non‐sepsis, sepsis, and septic shock groups (p = 0.049). The levels of VCAM1 (p = 0.010), B2M (p = 0.004), and ApoE (p = 0.039) were showing an increased tread in three groups, with the peak values of B2M and ApoE in the sepsis group. ROC curve analysis for septic diagnosis showed that the areas under ROC curve (AUC) of ApoC3, VCAM1, B2M, and ApoE were 0.625, 0.679, 0.581, and 0.619, respectively, which were lower than that of PCT (AUC 0.717) and CRP (AUC 0.706), but there were no significant differences between each index and PCT or CRP. The combination including four validated indexes and two classical infection indexes for septic diagnosis had the highest AUC‐ROC of 0.772. Conclusion Proteins of ApoC3, VCAM1, B2M, and ApoE provide a supplement to classical biomarkers for septic diagnosis.
Collapse
Affiliation(s)
- Meng Li
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Rongrong Ren
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Molei Yan
- Department of Intensive Care, Zhejiang Hospital, Hangzhou, China
| | - Shangzhong Chen
- Department of Intensive Care, Zhejiang Hospital, Hangzhou, China
| | - Chen Chen
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Jing Yan
- Department of Intensive Care, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
8
|
Guo L, Shen S, Rowley JW, Tolley ND, Jia W, Manne BK, McComas KN, Bolingbroke B, Kosaka Y, Krauel K, Denorme F, Jacob SP, Eustes AS, Campbell RA, Middleton EA, He X, Brown SM, Morrell CN, Weyrich AS, Rondina MT. Platelet MHC class I mediates CD8+ T-cell suppression during sepsis. Blood 2021; 138:401-416. [PMID: 33895821 PMCID: PMC8343546 DOI: 10.1182/blood.2020008958] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Circulating platelets interact with leukocytes to modulate host immune and thrombotic responses. In sepsis, platelet-leukocyte interactions are increased and have been associated with adverse clinical events, including increased platelet-T-cell interactions. Sepsis is associated with reduced CD8+ T-cell numbers and functional responses, but whether platelets regulate CD8+ T-cell responses during sepsis remains unknown. In our current study, we systemically evaluated platelet antigen internalization and presentation through major histocompatibility complex class I (MHC-I) and their effects on antigen-specific CD8+ T cells in sepsis in vivo and ex vivo. We discovered that both human and murine platelets internalize and proteolyze exogenous antigens, generating peptides that are loaded onto MHC-I. The expression of platelet MHC-I, but not platelet MHC-II, is significantly increased in human and murine platelets during sepsis and in human megakaryocytes stimulated with agonists generated systemically during sepsis (eg, interferon-γ and lipopolysaccharide). Upregulation of platelet MHC-I during sepsis increases antigen cross-presentation and interactions with CD8+ T cells in an antigen-specific manner. Using a platelet lineage-specific MHC-I-deficient mouse strain (B2Mf/f-Pf4Cre), we demonstrate that platelet MHC-I regulates antigen-specific CD8+ T-cell proliferation in vitro, as well as the number and functional responses of CD8+ T cells in vivo, during sepsis. Loss of platelet MHC-I reduces sepsis-associated mortality in mice in an antigen-specific setting. These data identify a new mechanism by which platelets, through MHC-I, process and cross-present antigens, engage antigen-specific CD8+ T cells, and regulate CD8+ T-cell numbers, functional responses, and outcomes during sepsis.
Collapse
Affiliation(s)
- Li Guo
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Sikui Shen
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- West China Hospital, Sichuan University, Chengdu, China
| | - Jesse W Rowley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Pulmonary and Critical Care Division, Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT
| | - Neal D Tolley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Wenwen Jia
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | | | - Kyra N McComas
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Ben Bolingbroke
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT
| | - Yasuhiro Kosaka
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Krystin Krauel
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany
| | - Frederik Denorme
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Shancy P Jacob
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Alicia S Eustes
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Internal Medicine, University of Iowa, Iowa City, IA
| | - Robert A Campbell
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Division of General Internal Medicine, Department of Medicine, School of Medicine, and
| | - Elizabeth A Middleton
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Pulmonary and Critical Care Division, Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT
| | - Xiao He
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Samuel M Brown
- Pulmonary and Critical Care Division, Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT
- Center for Humanizing Critical Care, Intermountain Healthcare, Murray, UT
- Pulmonary and Critical Care Division, Department of Medicine, Intermountain Medical Center, Murray, UT
| | - Craig N Morrell
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY; and
| | - Andrew S Weyrich
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Pulmonary and Critical Care Division, Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT
| | - Matthew T Rondina
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Division of General Internal Medicine, Department of Medicine, School of Medicine, and
- Department of Pathology, University of Utah, Salt Lake City, UT
- Department of Internal Medicine, George E. Wahlen VA Medical Center and Geriatric Research Education Clinical Center (GRECC), Salt Lake City, UT
| |
Collapse
|
9
|
Abstract
Sepsis is a host immune disorder induced by infection. It can lead to multiple organ dysfunction syndrome (MODS), which has high morbidity and mortality. There has been great progress in the clinical diagnosis and treatment of sepsis, such as improvements in pathogen detection technology, innovations regarding anti-infection drugs, and the development of organ function support. Abnormal immune responses triggered by pathogens, ranging from excessive inflammation to immunosuppression, are recognized to be an important cause of the high mortality rate. However, no drugs have been approved specifically for treating sepsis. Here, we review the recent research progress on immune responses in sepsis to provide a theoretical basis for the treatment of sepsis. Constructing and optimizing a dynamic immune system treatment regimen based on anti-infection treatment, fluid replacement, organ function support, and timely use of immunomodulatory interventions may improve the prognosis of sepsis patients.
Collapse
Affiliation(s)
- Jian Chen
- Department of Intensive Care Medicine, The First Affiliated Hospital of, USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Department of Geriatrics, The First Affiliated Hospital of, USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Jensen IJ, Winborn CS, Fosdick MG, Shao P, Tremblay MM, Shan Q, Tripathy SK, Snyder CM, Xue HH, Griffith TS, Houtman JC, Badovinac VP. Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections. PLoS Pathog 2018; 14:e1007405. [PMID: 30379932 PMCID: PMC6231673 DOI: 10.1371/journal.ppat.1007405] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/12/2018] [Accepted: 10/13/2018] [Indexed: 12/14/2022] Open
Abstract
The sepsis-induced cytokine storm leads to severe lymphopenia and reduced effector capacity of remaining/surviving cells. This results in a prolonged state of immunoparalysis, that contributes to enhanced morbidity/mortality of sepsis survivors upon secondary infection. The impact of sepsis on several lymphoid subsets has been characterized, yet its impact on NK-cells remains underappreciated-despite their critical role in controlling infection(s). Here, we observed numerical loss of NK-cells in multiple tissues after cecal-ligation-and-puncture (CLP)-induced sepsis. To elucidate the sepsis-induced lesions in surviving NK-cells, transcriptional profiles were evaluated and indicated changes consistent with impaired effector functionality. A corresponding deficit in NK-cell capacity to produce effector molecules following secondary infection and/or cytokine stimulation (IL-12,IL-18) further suggested a sepsis-induced NK-cell intrinsic impairment. To specifically probe NK-cell receptor-mediated function, the activating Ly49H receptor, that recognizes the murine cytomegalovirus (MCMV) m157 protein, served as a model receptor. Although relative expression of Ly49H receptor did not change, the number of Ly49H+ NK-cells in CLP hosts was reduced leading to impaired in vivo cytotoxicity and the capacity of NK-cells (on per-cell basis) to perform Ly49H-mediated degranulation, killing, and effector molecule production in vitro was also severely reduced. Mechanistically, Ly49H adaptor protein (DAP12) activation and clustering, assessed by TIRF microscopy, was compromised. This was further associated with diminished AKT phosphorylation and capacity to flux calcium following receptor stimulation. Importantly, DAP12 overexpression in NK-cells restored Ly49H/D receptors-mediated effector functions in CLP hosts. Finally, as a consequence of sepsis-dependent numerical and functional lesions in Ly49H+ NK-cells, host capacity to control MCMV infection was significantly impaired. Importantly, IL-2 complex (IL-2c) therapy after CLP improved numbers but not a function of NK-cells leading to enhanced immunity to MCMV challenge. Thus, the sepsis-induced immunoparalysis state includes numerical and NK-cell-intrinsic functional impairments, an instructive notion for future studies aimed in restoring NK-cell immunity in sepsis survivors.
Collapse
Affiliation(s)
- Isaac J. Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Christina S. Winborn
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Micaela G. Fosdick
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Peng Shao
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Mikaela M. Tremblay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Qiang Shan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Sandeep Kumar Tripathy
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Christopher M. Snyder
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Hai-Hui Xue
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Thomas S. Griffith
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Urology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Minneapolis VA Health Care, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jon C. Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Vladimir P. Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
11
|
Guo Y, Patil NK, Luan L, Bohannon JK, Sherwood ER. The biology of natural killer cells during sepsis. Immunology 2017; 153:190-202. [PMID: 29064085 DOI: 10.1111/imm.12854] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells are large granular lymphocytes largely recognized for their importance in tumour surveillance and the host response to viral infections. However, as the major innate lymphocyte population, NK cells also coordinate early responses to bacterial infections by amplifying the antimicrobial functions of myeloid cells, especially macrophages, by production of interferon-γ (IFN-γ). Alternatively, excessive NK cell activation and IFN-γ production can amplify the systemic inflammatory response during sepsis resulting in increased physiological dysfunction and organ injury. Our understanding of NK cell biology during bacterial infections and sepsis is mostly derived from studies performed in mice. Human studies have demonstrated a correlation between altered NK cell functions and outcomes during sepsis. However, mechanistic understanding of NK cell function during human sepsis is limited. In this review, we will review the current understanding of NK cell biology during sepsis and discuss the challenges associated with modulating NK cell function during sepsis for therapeutic benefit.
Collapse
Affiliation(s)
- Yin Guo
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naeem K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edward R Sherwood
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
12
|
Argyropoulos CP, Chen SS, Ng YH, Roumelioti ME, Shaffi K, Singh PP, Tzamaloukas AH. Rediscovering Beta-2 Microglobulin As a Biomarker across the Spectrum of Kidney Diseases. Front Med (Lausanne) 2017; 4:73. [PMID: 28664159 PMCID: PMC5471312 DOI: 10.3389/fmed.2017.00073] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/26/2017] [Indexed: 12/28/2022] Open
Abstract
There is currently an unmet need for better biomarkers across the spectrum of renal diseases. In this paper, we revisit the role of beta-2 microglobulin (β2M) as a biomarker in patients with chronic kidney disease and end-stage renal disease. Prior to reviewing the numerous clinical studies in the area, we describe the basic biology of β2M, focusing in particular on its role in maintaining the serum albumin levels and reclaiming the albumin in tubular fluid through the actions of the neonatal Fc receptor. Disorders of abnormal β2M function arise as a result of altered binding of β2M to its protein cofactors and the clinical manifestations are exemplified by rare human genetic conditions and mice knockouts. We highlight the utility of β2M as a predictor of renal function and clinical outcomes in recent large database studies against predictions made by recently developed whole body population kinetic models. Furthermore, we discuss recent animal data suggesting that contrary to textbook dogma urinary β2M may be a marker for glomerular rather than tubular pathology. We review the existing literature about β2M as a biomarker in patients receiving renal replacement therapy, with particular emphasis on large outcome trials. We note emerging proteomic data suggesting that β2M is a promising marker of chronic allograft nephropathy. Finally, we present data about the role of β2M as a biomarker in a number of non-renal diseases. The goal of this comprehensive review is to direct attention to the multifaceted role of β2M as a biomarker, and its exciting biology in order to propose the next steps required to bring this recently rediscovered biomarker into the twenty-first century.
Collapse
Affiliation(s)
- Christos P Argyropoulos
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Shan Shan Chen
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Yue-Harn Ng
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Maria-Eleni Roumelioti
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Kamran Shaffi
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Pooja P Singh
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Antonios H Tzamaloukas
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States.,Raymond G. Murphy VA Medical Center Albuquerque, Albuquerque, NM, United States
| |
Collapse
|
13
|
a-Lactose Improves the Survival of Septic Mice by Blockade of TIM-3 Signaling to Prevent NKT Cell Apoptosis and Attenuate Cytokine Storm. Shock 2017; 47:337-345. [DOI: 10.1097/shk.0000000000000717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Guo Y, Luan L, Patil NK, Wang J, Bohannon JK, Rabacal W, Fensterheim BA, Hernandez A, Sherwood ER. IL-15 Enables Septic Shock by Maintaining NK Cell Integrity and Function. THE JOURNAL OF IMMUNOLOGY 2016; 198:1320-1333. [PMID: 28031340 DOI: 10.4049/jimmunol.1601486] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/05/2016] [Indexed: 11/19/2022]
Abstract
Interleukin 15 is essential for the development and differentiation of NK and memory CD8+ (mCD8+) T cells. Our laboratory previously showed that NK and CD8+ T lymphocytes facilitate the pathobiology of septic shock. However, factors that regulate NK and CD8+ T lymphocyte functions during sepsis are not well characterized. We hypothesized that IL-15 promotes the pathogenesis of sepsis by maintaining NK and mCD8+ T cell integrity. To test our hypothesis, the pathogenesis of sepsis was assessed in IL-15-deficient (IL-15 knockout, KO) mice. IL-15 KO mice showed improved survival, attenuated hypothermia, and less proinflammatory cytokine production during septic shock caused by cecal ligation and puncture or endotoxin-induced shock. Treatment with IL-15 superagonist (IL-15 SA, IL-15/IL-15Rα complex) regenerated NK and mCD8+ T cells and re-established mortality of IL-15 KO mice during septic shock. Preventing NK cell regeneration attenuated the restoration of mortality caused by IL-15 SA. If given immediately prior to septic challenge, IL-15-neutralizing IgG M96 failed to protect against septic shock. However, M96 caused NK cell depletion if given 4 d prior to septic challenge and conferred protection. IL-15 SA treatment amplified endotoxin shock, which was prevented by NK cell or IFN-γ depletion. IL-15 SA treatment also exacerbated septic shock caused by cecal ligation and puncture when given after the onset of sepsis. In conclusion, endogenous IL-15 does not directly augment the pathogenesis of sepsis but enables the development of septic shock by maintaining NK cell numbers and integrity. Exogenous IL-15 exacerbates the severity of sepsis by activating NK cells and facilitating IFN-γ production.
Collapse
Affiliation(s)
- Yin Guo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212; and
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Naeem K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jingbin Wang
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Whitney Rabacal
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212; and
| | - Benjamin A Fensterheim
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212; and
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Edward R Sherwood
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212; and .,Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
15
|
Sharma A, Yang WL, Matsuo S, Wang P. Differential alterations of tissue T-cell subsets after sepsis. Immunol Lett 2015; 168:41-50. [PMID: 26362089 DOI: 10.1016/j.imlet.2015.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
Abstract
Among immune cells in responding to sepsis, macrophages and neutrophils have been extensively studied, while the contribution of T lymphocytes and natural killer T (NKT) cells is less well characterized. Here we monitored tissue specific changes of T cell subsets in male C57BL/6 mice subjected to sham operation or cecal ligation and puncture (CLP) to induce polymicrobial sepsis. Thymus, spleen, liver, lungs and blood were processed and analyzed 20h later. Total lymphocyte count showed a significant reduction in septic thymus, spleen and blood but not in lungs and liver. The septic thymi were hypocellular with severe reduction in cell numbers of immature CD4(+)CD8(+) subset. CD4(+) T and CD8(+) T lymphocyte numbers in septic spleens were also significantly reduced, but the frequency of CD4(+)CD25(+) Tregs was significantly increased. In addition, naïve and Tcm CD4(+) T cell numbers were significantly reduced in the septic spleens. By contrast, in septic liver the CD8(+) T cell numbers were significantly increased, whereas NKT cell numbers were reduced, but more activated with increased CD69 and CD25 expression. In the septic lungs, the CD4(+) T and CD8(+) T cell numbers showed no significant change, whereas they were severely reduced in the septic blood. Overall, this study provides important information on the alterations of different T-cell subsets in various tissues after sepsis.
Collapse
Affiliation(s)
- Archna Sharma
- Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| | - Weng-Lang Yang
- Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY 11030, USA.
| | - Shingo Matsuo
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY 11030, USA.
| | - Ping Wang
- Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY 11030, USA.
| |
Collapse
|
16
|
Sharma A, Matsuo S, Yang WL, Wang Z, Wang P. Receptor-interacting protein kinase 3 deficiency inhibits immune cell infiltration and attenuates organ injury in sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:R142. [PMID: 24996547 PMCID: PMC4226938 DOI: 10.1186/cc13970] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/19/2014] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Sepsis is defined as a systemic hyper-inflammatory immune response, with a subsequent immune-suppressive phase, which leads to multiple organ dysfunction and late lethality. Receptor-interacting protein kinase 3 (RIPK3)-dependent necrosis is implicated in driving tumor necrosis factor alpha (TNF-α)- and sepsis-induced mortality in mice. However, it is unknown if RIPK3 deficiency has any impact on immune cell trafficking, which contributes to organ damage in sepsis. METHODS To study this, male wild-type (WT) and RIPK3-deficient (Ripk3-/-) mice on C57BL/6 background were subjected to sham operation or cecal ligation and puncture (CLP)-induced sepsis. Blood and tissue samples were collected 20 hours post-CLP for various measurements. RESULTS In our severe sepsis model, the mean survival time of Ripk3-/- mice was significantly extended to 68 hours compared to 41 hours for WT mice. Ripk3-/- mice had significantly decreased plasma levels of TNF-α and IL-6 and organ injury markers compared to WT mice post-CLP. In the lungs, Ripk3-/- mice preserved better integrity of microscopic structure with reduced apoptosis, and decreased levels of IL-6, macrophage inflammatory protein (MIP)-2 and keratinocyte-derived chemokine (KC), compared to WT. In the liver, the levels of MIP-1, MIP-2 and KC were also decreased in septic Ripk3-/- mice. Particularly, the total number of neutrophils in the lungs and liver of Ripk3-/- mice decreased by 59.9% and 66.7%, respectively, compared to WT mice post-CLP. In addition, the number of natural killer (NK) and CD8T cells in the liver decreased by 64.8% and 53.4%, respectively, in Ripk3-/- mice compared to WT mice post-sepsis. CONCLUSIONS Our data suggest that RIPK3 deficiency modestly protected from CLP-induced severe sepsis and altered the immune cell trafficking in an organ-specific manner attenuating organ injury. Thus, RIPK3 acts as a detrimental factor in contributing to the organ deterioration in sepsis.
Collapse
|
17
|
Arias M, Jiménez de Bagües M, Aguiló N, Menao S, Hervás-Stubbs S, de Martino A, Alcaraz A, Simon M, Froelich C, Pardo J. Elucidating Sources and Roles of Granzymes A and B during Bacterial Infection and Sepsis. Cell Rep 2014; 8:420-9. [DOI: 10.1016/j.celrep.2014.06.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/05/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022] Open
|
18
|
Herzig DS, Luan L, Bohannon JK, Toliver-Kinsky TE, Guo Y, Sherwood ER. The role of CXCL10 in the pathogenesis of experimental septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:R113. [PMID: 24890566 PMCID: PMC4075230 DOI: 10.1186/cc13902] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/15/2014] [Indexed: 12/22/2022]
Abstract
Introduction The chemokine CXCL10 is produced during infection and inflammation to activate the chemokine receptor CXCR3, an important regulator of lymphocyte trafficking and activation. The goal of this study was to assess the contributions of CXCL10 to the pathogenesis of experimental septic shock in mice. Methods Septic shock was induced by cecal ligation and puncture (CLP) in mice resuscitated with lactated Ringer’s solution and, in some cases, the broad spectrum antibiotic Primaxin. Studies were performed in CXCL10 knockout mice and mice treated with anti-CXCL10 immunoglobulin G (IgG). Endpoints included leukocyte trafficking and activation, core body temperature, plasma cytokine concentrations, bacterial clearance and survival. Results CXCL10 was present at high concentrations in plasma and peritoneal cavity during CLP-induced septic shock. Survival was significantly improved in CXCL10 knockout (CXCL10KO) mice and mice treated with anti-CXCL10 IgG compared to controls. CXCL10KO mice and mice treated with anti-CXCL10 IgG showed attenuated hypothermia, lower concentrations of interleukin-6 (IL-6) and macrophage inhibitory protein-2 (MIP-2) in plasma and lessened natural killer (NK) cell activation compared to control mice. Compared to control mice, bacterial burden in blood and lungs was lower in CXCL10-deficient mice but not in mice treated with anti-CXCL10 IgG. Treatment of mice with anti-CXCL10 IgG plus fluids and Primaxin at 2 or 6 hours after CLP significantly improved survival compared to mice treated with non-specific IgG under the same conditions. Conclusions CXCL10 plays a role in the pathogenesis of CLP-induced septic shock and could serve as a therapeutic target during the acute phase of septic shock.
Collapse
|
19
|
Juarez GE, Villena J, Salva S, de Valdez GF, Rodriguez AV. Lactobacillus reuteri CRL1101 beneficially modulate lipopolysaccharide-mediated inflammatory response in a mouse model of endotoxic shock. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
20
|
Sulfatide attenuates experimental Staphylococcus aureus sepsis through a CD1d-dependent pathway. Infect Immun 2013; 81:1114-20. [PMID: 23340309 DOI: 10.1128/iai.01334-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural killer T (NKT) lymphocytes are implicated in the early response to microbial infection. Further, sulfatide, a myelin self-glycosphingolipid, activates a type II NKT cell subset and can modulate disease in murine models. We examined the role of NKT cells and the effect of sulfatide treatment in a murine model of Staphylococcus aureus sepsis. The lack of CD1d-restricted NKT cells did not alter survival after a lethal inoculum of S. aureus. In contrast, sulfatide treatment significantly improved the survival rate of mice with S. aureus sepsis, accompanied by decreased levels of tumor necrosis factor alpha and interleukin-6 in the blood. The protective effect of sulfatide treatment depended on CD1d but not on type I NKT cells, suggesting that activation of type II NKT cells by sulfatide has beneficial effects on the outcome of S. aureus sepsis in this model.
Collapse
|
21
|
Herzig DS, Driver BR, Fang G, Toliver-Kinsky TE, Shute EN, Sherwood ER. Regulation of lymphocyte trafficking by CXC chemokine receptor 3 during septic shock. Am J Respir Crit Care Med 2011; 185:291-300. [PMID: 22135342 DOI: 10.1164/rccm.201108-1560oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Lymphocytes have been shown to facilitate systemic inflammation and physiologic dysfunction in experimental models of severe sepsis. Our previous studies show that natural killer (NK) cells migrate into the peritoneal cavity during intraabdominal sepsis, but the trafficking of NKT and T lymphocytes has not been determined. The factors that regulate lymphocyte trafficking during sepsis are currently unknown. OBJECTIVES To ascertain the importance of CXC chemokine receptor 3 (CXCR3) as a regulator of lymphocyte trafficking during sepsis and determine the contribution of CXCR3-mediated lymphocyte trafficking to the pathogenesis of septic shock. METHODS Lymphocyte trafficking was evaluated in control and CXCR3-deficient mice using flow cytometry during sepsis caused by cecal ligation and puncture (CLP). Survival, core temperature, cytokine production, and bacterial clearance were measured as pathobiological endpoints. MEASUREMENTS AND MAIN RESULTS This study shows that concentrations of the CXCR3 ligands CXCL9 (monokine induced by interferon γ, MIG) and CXCL10 (interferon γ-induced protein 10, IP-10) increase in plasma and the peritoneal cavity after CLP, peak at 8 hours after infection, and are higher in the peritoneal cavity than in plasma. The numbers of CXCR3(+) NK cells progressively decreased in spleen after CLP with a concomitant increase within the peritoneal cavity, a pattern that was ablated in CXCR3-deficient mice. CXCR3-dependent recruitment of T cells was also evident at 16 hours after CLP. Treatment of mice with anti-CXCR3 significantly attenuated CLP-induced hypothermia, decreased systemic cytokine production, and improved survival. CONCLUSIONS CXCR3 regulates NK- and T-cell trafficking during sepsis and blockade of CXCR3 attenuates the pathogenesis of septic shock.
Collapse
Affiliation(s)
- Daniela S Herzig
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, 77555-0591, USA
| | | | | | | | | | | |
Collapse
|
22
|
Leung B, Harris HW. NKT cells: the culprits of sepsis? J Surg Res 2010; 167:87-95. [PMID: 21035139 DOI: 10.1016/j.jss.2010.09.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 06/08/2010] [Accepted: 09/23/2010] [Indexed: 11/28/2022]
Abstract
Sepsis is currently a leading cause of death in hospital intensive care units. Previous studies suggest that the pathophysiology of sepsis involves the hyperactivation of complex pro-inflammatory cascades that include the activation of various immune cells and the exuberant secretion of pro-inflammatory cytokines by these cells. Natural killer T-cells (NKT) are a sub-lineage of T cells that share characteristics of conventional T cells and NK cells, and bridge innate and adaptive immunity. More recently, NKT cells have been implicated in microbial immunity, including the onset of sepsis. Moreover, apolipoprotein E (apoE), a component of triglyceride-rich lipoproteins, has been shown to be protective in endotoxemia and gram-negative infections in addition to its well-known role in lipid metabolism. Here, we will review the role of NKT cells in sepsis and septic shock, the immunoregulatory role of apoE in the host immune response to infection, and propose a mechanism for this immunoregulation.
Collapse
Affiliation(s)
- Briana Leung
- Department of Surgery, University of California, San Francisco, California 94143-0104, USA
| | | |
Collapse
|
23
|
Abstract
Sepsis is currently a leading cause of death in hospital intensive care units. Previous studies suggest that the pathophysiology of sepsis involves the hyperactivation of complex proinflammatory cascades that include the activation of various immune cells and the exuberant secretion of proinflammatory cytokines by these cells. Natural killer T-cells (NKTs) are a sublineage of T cells that share characteristics of conventional T cells and NK cells and bridge innate and adaptive immunity. More recently, NKT cells have been implicated in microbial immunity, including the onset of sepsis. Moreover, apolipoprotein E (apoE), a component of triglyceride-rich lipoproteins, has been shown to be protective in endotoxemia and gram-negative infections in addition to its well-known role in lipid metabolism. Here, we will review the role of NKT cells in sepsis and septic shock, the immunoregulatory role of apoE in the host immune response to infection, and propose a mechanism for this immunoregulation.
Collapse
|
24
|
Gammadelta T cells but not NK cells are essential for cell-mediated immunity against Plasmodium chabaudi malaria. Infect Immun 2010; 78:4331-40. [PMID: 20660608 DOI: 10.1128/iai.00539-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Blood-stage Plasmodium chabaudi infections are suppressed by antibody-mediated immunity and/or cell-mediated immunity (CMI). To determine the contributions of NK cells and γδ T cells to protective immunity, C57BL/6 (wild-type [WT]) mice and B-cell-deficient (J(H(-/-))) mice were infected with P. chabaudi and depleted of NK cells or γδ T cells with monoclonal antibody. The time courses of parasitemia in NK-cell-depleted WT mice and J(H(-/-)) mice were similar to those of control mice, indicating that deficiencies in NK cells, NKT cells, or CD8(+) T cells had little effect on parasitemia. In contrast, high levels of noncuring parasitemia occurred in J(H(-/-)) mice depleted of γδ T cells. Depletion of γδ T cells during chronic parasitemia in B-cell-deficient J(H(-/-)) mice resulted in an immediate and marked exacerbation of parasitemia, suggesting that γδ T cells have a direct killing effect in vivo on blood-stage parasites. Cytokine analyses revealed that levels of interleukin-10, gamma interferon (IFN-γ), and macrophage chemoattractant protein 1 (MCP-1) in the sera of γδ T-cell-depleted mice were significantly (P < 0.05) decreased compared to hamster immunoglobulin-injected controls, but these cytokine levels were similar in NK-cell-depleted mice and their controls. The time courses of parasitemia in CCR2(-/-) and J(H(-/-)) × CCR2(-/-) mice and in their controls were nearly identical, indicating that MCP-1 is not required for the control of parasitemia. Collectively, these data indicate that the suppression of acute P. chabaudi infection by CMI is γδ T cell dependent, is independent of NK cells, and may be attributed to the deficient IFN-γ response seen early in γδ T-cell-depleted mice.
Collapse
|
25
|
He Z, Zhang H, Zhang X, Xie D, Chen Y, Wangensteen KJ, Ekker SC, Firpo M, Liu C, Xiang D, Zi X, Hui L, Yang G, Ding X, Hu Y, Wang X. Liver xeno-repopulation with human hepatocytes in Fah-/-Rag2-/- mice after pharmacological immunosuppression. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1311-9. [PMID: 20651238 DOI: 10.2353/ajpath.2010.091154] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Functional human hepatocytes xeno-engrafted in mouse liver can be used as a model system to study hepatitis virus infection and vaccine efficacy. Significant liver xeno-repopulation has been reported in two kinds of genetically modified mice that have both immune deficiency and liver injury-induced donor hepatocyte selection: the uPA/SCID mice and Fah(-/-) Rag2(-/-)Il2rg(-/-) mice. The lack of hardy breeding and the overly elaborated technique in these two models may hinder the potential future application of these models to hepatitis virus infection and vaccination studies. Improving the transplantation protocol for liver xeno-repopulation from human hepatocytes will increase the model efficiency and application. In this study, we successfully apply immunosuppressive drug treatments of anti-asialo GM1 and FK506 in Fah(-/-)Rag2(-/-) mice, resulting in significant liver xeno-repopulation from human hepatocytes and human fetal liver cells. This methodology decreases the risk of animal mortality during breeding and surgery. When infected with hepatitis B virus (HBV) sera, Fah(-/-)Rag2(-/-) mice with liver xeno-repopulation from human hepatocytes accumulate significant levels of HBV DNA and HBV proteins. Our new protocol for humanized liver could be applied in the study of human hepatitis virus infection in vivo, as well as the pharmacokinetics and efficacy of potential vaccines.
Collapse
Affiliation(s)
- Zhiying He
- Department of Cell Biology, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
OBJECTIVE This study was designed to determine the ability of insulin to improve outcome following a Pseudomonas aeruginosa wound infection in a rodent model of severe burn injury. BACKGROUND Severe burn injury predisposes patients to burn wound infections that can disseminate, lead to uncontrolled inflammation, and induce septic shock. Whereas insulin administration has been extensively discussed to improve morbidity and mortality in critically ill patients, the ability of insulin to improve outcomes of severely burned patients with infected burn wounds is not known. DESIGN Sprague-Dawley rats. SETTING University setting. INTERVENTION Burn-injured Sprague Dawley rats were randomized into treatment groups that received either saline or insulin. Burn wounds were topically inoculated with a lethal dose of Pseudomonas aeruginosa 6 days after injury. MEASUREMENTS AND MAIN RESULTS Survival, systemic dissemination of bacteria, systemic inflammation, and immune activation were examined. Insulin decreased the early inflammatory response to a severe burn injury. Treatment with low doses of insulin following burn injury improved the outcome of rats in response to a lethal burn wound infection. Specifically, survival was improved and systemic dissemination of bacteria from the wound was decreased. Systemic inflammation, indicated by serum interleukin-6 levels, was significantly decreased by insulin treatments after injury. Additionally, insulin treatments were associated with alterations in B and T lymphocyte responses to wound infection. CONCLUSIONS Although the mechanisms by which insulin improves outcome following a lethal burn wound infection are not known, the data suggest that immunologic responses to infection may be altered by postburn insulin treatments.
Collapse
|
27
|
Wang L, Quan J, Johnston WE, Maass DL, Horton JW, Thomas JA, Tao W. Age-dependent differences of interleukin-6 activity in cardiac function after burn complicated by sepsis. Burns 2009; 36:232-8. [PMID: 19501973 DOI: 10.1016/j.burns.2009.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 02/26/2009] [Indexed: 11/15/2022]
Abstract
Interleukin (IL)-6 is a pleiotropic cytokine that is activated after acute injuries, and plays an important role during aging. We aim to define the role of IL-6 on myocardial dysfunction following a 40% total body surface area burn followed by late (7 days) Streptococcus pneumoniae sepsis (burn plus sepsis) in 2- and 14-month-old wild type and IL-6(-/-) mice. We measured global hemodynamic and cardiac contractile function with left ventricular pressure-volume analysis 24h after sepsis induction, and measured phosphorylated signal transducer and activator of transcription 3 (p-STAT-3), tumor necrosis factor (TNF)-alpha, and IL-1beta in the heart with Western blot analysis. We also measured mRNA expression of IL-6, TNF-alpha, and IL-1beta. Sham injured mice did not manifest any appreciable level of p-STAT-3 or functional deficiencies regardless of age or presence of the IL-6 gene. Burn plus sepsis injury was associated with a significant deterioration of global hemodynamic and cardiac contractile function in WT mice in both age groups. This dysfunction was attenuated by IL-6 deficiency at age 2 months, but accentuated at age 14 months. Aging was associated with an increase in mRNA expression of IL-6 (WT mice), TNF-alpha, and IL-1beta (all mice). At age 14 months, IL-6 deficient mice exhibited a greater TNF-alpha mRNA expression than the wild type mice. We conclude aging is associated with changed cytokine gene transcription, and burn plus sepsis injury further intensifies such gene responses. IL-6 deficiency does not abrogate STAT-3 phosphorylation and it may enhance expression of other inflammatory cytokines. The differential effects of IL-6 deficiency on the cardiac function in young and aging mice cannot be explained by cytokine gene expression alone, and require further studies.
Collapse
Affiliation(s)
- Lin Wang
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-9068, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Beta2-microglobulin-dependent bacterial clearance and survival during murine Klebsiella pneumoniae bacteremia. Infect Immun 2008; 77:360-6. [PMID: 18981251 DOI: 10.1128/iai.00909-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Klebsiella pneumoniae is a leading cause of both community-acquired and nosocomial gram-negative bacterial pneumonia. A significant clinical complication of Klebsiella pulmonary infections is peripheral blood dissemination, resulting in a systemic infection concurrent with the localized pulmonary infection. We report here on the critical importance of beta(2)-microglobulin expression during murine K. pneumoniae bacteremia. Beta(2)-microglobulin knockout mice displayed significantly increased mortality upon intravenous inoculation that correlated with increased bacterial burden in the blood, liver, and spleen. As beta(2)-microglobulin knockout mice lack both CD8(+) T cells and invariant NK T cells, mouse models specifically deficient in either cell population were examined to see if this would account for the increased mortality noted in beta(2)-microglobulin knockout mice. Surprisingly, neither CD8 T-cell-deficient (TAP-1 knockout; in vivo anti-CD8 antibody treatment) nor invariant NK (iNK) T-cell-deficient (CD1d knockout, J alpha281 knockout) mice were more susceptible to K. pneumoniae bacteremia. Combined, these studies clearly indicate the importance of a beta(2)-microglobulin-dependent but CD8 T-cell- and iNK T-cell-independent mechanism critical for survival during K. pneumoniae bacteremia.
Collapse
|
29
|
Ayala A, Wesche-Soldato DE, Perl M, Lomas-Neira JL, Swan R, Chung CS. Blockade of apoptosis as a rational therapeutic strategy for the treatment of sepsis. NOVARTIS FOUNDATION SYMPOSIUM 2008; 280:37-49; discussion 49-52, 160-4. [PMID: 17380787 PMCID: PMC1838573 DOI: 10.1002/9780470059593.ch4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Over time it has become clear that, much like other organ systems, the function and responsiveness of the immune system is impaired during the course of sepsis and that this is a precipitous event in the decline of the critically ill patient/animal. One hypothesis put forward to explain the development of septic immune dysfunction is that it is a pathological result of increased immune cell apoptosis. Alternatively, it has been proposed that the clearance of increased numbers of apoptotic cells may actively drive immune suppression through the cells that handle them. Here we review the data from studies involving septic animals and patients, which indicate that loss of immune cells, as well as non-immune cells, in some cases, is a result of dysregulated apoptosis. Subsequently, we will consider the cell death pathways, i.e. 'extrinsic' and/or 'intrinsic', which are activated and what cell populations may orchestrate this dysfunctional apoptotic process, immune and/or non-immune. Finally, we will discuss potentially novel therapeutic targets, such as caspases, death receptor family members (e.g. tumour necrosis factor, Fas) and pro-/anti apoptotic Bcl-family members, and approaches such as caspase inhibitors, the use of fusion proteins, peptidomimetics and siRNA, which might be considered for the treatment of the septic patient.
Collapse
Affiliation(s)
- Alfred Ayala
- Shock-Trauma Research Laboratory, Division of Surgical Research, Department of Surgery, Rhode Island Hospital / Brown University School of Medicine, Providence, RI 02903, USA
| | | | | | | | | | | |
Collapse
|
30
|
Martignoni A, Tschöp J, Goetzman HS, Choi LG, Reid MD, Johannigman JA, Lentsch AB, Caldwell CC. CD4-expressing cells are early mediators of the innate immune system during sepsis. Shock 2008; 29:591-7. [PMID: 17885647 PMCID: PMC2747655 DOI: 10.1097/shk.0b013e318157f427] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is well established that the immune response to sepsis is mediated by leukocytes associated with the innate immune system. However, there is an emerging view that T lymphocytes can also mediate this response. Here, we observed a significant depletion of both CD4 and CD8 T cells in human patients after blunt trauma. To determine what effect the loss of these cells may have during a subsequent infection, we obtained CD4- and CD8-deficient mice and subjected them to cecal ligation and puncture (CLP). We observed that CD4 knockout (KO) mice showed increased CLP-induced mortality compared with CD8-deficient and wild-type (WT) mice especially within the first 30 h of injury. CD4 KO mice also exhibited significantly increased IL-6 concentrations after the CLP. The CD4 KO mice had an increased concentration of bacteremia as compared with WT mice. Antibiotic treatment decreased mortality in the CD4 KO mice as compared with no changes in the wild mice after CLP. Neutrophils isolated from septic CD4 KO mice showed decreased spontaneous oxidative burst compared with neutrophils taken from septic controls. We examined the role of IFN-gamma by using mice deficient in this cytokine and found these mice to have significantly higher mortality as compared with WT mice. Finally, we detected a 2-fold increase in CD11b+ cells that exhibited intracellular IFN-gamma staining in the peritoneum of WT mice after CLP. The data suggest that CD4+ cells may facilitate the early clearance of bacteria by regulating neutrophils function possibly through an IFN-gamma-dependent mechanism.
Collapse
Affiliation(s)
- André Martignoni
- The Laboratory of Trauma, Sepsis & Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Research, Shriner’s Hospital for Children, Cincinnati, Ohio
- Department of Anesthesiology, Klinikum Grosshadern, Munich, Germany
| | - Johannes Tschöp
- The Laboratory of Trauma, Sepsis & Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Anesthesiology, Klinikum Grosshadern, Munich, Germany
| | - Holly S. Goetzman
- The Laboratory of Trauma, Sepsis & Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Lisa G. Choi
- The Laboratory of Trauma, Sepsis & Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Research, Shriner’s Hospital for Children, Cincinnati, Ohio
| | - Maria D. Reid
- The Laboratory of Trauma, Sepsis & Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Research, Shriner’s Hospital for Children, Cincinnati, Ohio
| | - Jay A. Johannigman
- The Laboratory of Trauma, Sepsis & Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Alex B. Lentsch
- The Laboratory of Trauma, Sepsis & Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Charles C. Caldwell
- The Laboratory of Trauma, Sepsis & Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Research, Shriner’s Hospital for Children, Cincinnati, Ohio
| |
Collapse
|
31
|
Etogo AO, Nunez J, Lin CY, Toliver-Kinsky TE, Sherwood ER. NK but not CD1-restricted NKT cells facilitate systemic inflammation during polymicrobial intra-abdominal sepsis. THE JOURNAL OF IMMUNOLOGY 2008; 180:6334-45. [PMID: 18424757 DOI: 10.4049/jimmunol.180.9.6334] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Evidence suggests that NK and NKT cells contribute to inflammation and mortality during septic shock caused by cecal ligation and puncture (CLP). However, the specific contributions of these cell types to the pathogenesis of CLP-induced septic shock have not been fully defined. The goal of the present study was to determine the mechanisms by which NK and NKT cells mediate the host response to CLP. Control, NK cell-deficient, and NKT cell-deficient mice underwent CLP. Survival, cytokine production, and bacterial clearance were measured. NK cell trafficking and interaction with myeloid cells was also studied. Results show that mice treated with anti-asialoGM1 (NK cell deficient) or anti-NK1.1 (NK/NKT cell deficient) show less systemic inflammation and have improved survival compared with IgG-treated controls. CD1 knockout mice (NKT cell deficient) did not demonstrate decreased cytokine production or improved survival compared with wild type mice. Trafficking studies show migration of NK cells from blood and spleen into the inflamed peritoneal cavity where they appear to facilitate the activation of peritoneal macrophages (F4-80(+)GR-1(-)) and F4-80(+)Gr-1(+) myeloid cells. These findings indicate that NK but not CD1-restricted NKT cells contribute to acute CLP-induced inflammation. NK cells appear to mediate their proinflammatory functions during septic shock, in part, by migration into the peritoneal cavity and amplification of the proinflammatory activities of specific myeloid cell populations. These findings provide new insights into the mechanisms used by NK cells to facilitate acute inflammation during septic shock.
Collapse
Affiliation(s)
- Anthony O Etogo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
32
|
Enoh VT, Lin SH, Lin CY, Toliver-Kinsky T, Murphey ED, Varma TK, Sherwood ER. Mice depleted of alphabeta but not gammadelta T cells are resistant to mortality caused by cecal ligation and puncture. Shock 2007; 27:507-19. [PMID: 17438456 DOI: 10.1097/shk.0b013e31802b5d9f] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The present study was undertaken to determine whether the mice depleted of alphabeta or gammadelta T cells show resistance to acute polymicrobial sepsis caused by cecal ligation and puncture (CLP). T-cell receptor beta knockout (betaTCRKO) and T-cell receptor delta knockout (deltaTCRKO) mice were used. An additional group of mice was treated with an antibody against the alphabeta T-cell receptor to induce alphabeta T-cell depletion; a subset of alphabeta T cell-deficient mice was also treated with anti-asialoGM1 to deplete natural killer (NK) cells. The mice underwent CLP and were monitored for survival, temperature, acid-base balance, bacterial counts, and cytokine production. The betaTCRKO mice and the wild-type mice treated with anti-beta T-cell receptor (anti-TCRbeta) antibody showed improved survival after CLP compared with wild-type mice. The treatment of alphabeta T cell-deficient mice with anti-asialoGM1further improved survival after CLP, especially when the mice were treated with imipenem. The improved survival observed in alphabeta T cell-deficient mice was associated with less hypothermia, improved acid-base balance, and decreased production of the proinflammatory cytokines interleukin (IL) 6 and macrophage inflammatory protein (MIP) 2. Compared with wild-type controls, the overall survival was not improved in deltaTCRKO mice. The concentrations of IL-6 and MIP-2 in plasma and cytokine mRNA expression in tissues were not significantly different between wild-type and deltaTCRKO mice. These studies indicate that mice depleted of alphabeta but not of gammadelta T cells are resistant to mortality in an acutely lethal model of CLP. The depletion of NK cells caused further survival benefit in alphabeta T cell-deficient mice. These findings suggest that alphabeta T and NK cells mediate or facilitate CLP-induced inflammatory injury.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/therapeutic use
- Bacteremia/drug therapy
- Bacteremia/immunology
- Bacteremia/mortality
- Bacteria/drug effects
- Bacteria/growth & development
- Cecum/injuries
- Chemokine CXCL2
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Imipenem/therapeutic use
- Interleukin-6/metabolism
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Ligation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Monokines/metabolism
- Punctures
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Sepsis/drug therapy
- Sepsis/immunology
- Sepsis/mortality
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Temperature
- Time Factors
Collapse
Affiliation(s)
- Victor T Enoh
- *Departments of Anesthesiology , The University of Texas Medical Branch, Galveston, Galveston, Texas 77555-0591, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Wesche-Soldato DE, Chung CS, Gregory SH, Salazar-Mather TP, Ayala CA, Ayala A. CD8+ T cells promote inflammation and apoptosis in the liver after sepsis: role of Fas-FasL. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:87-96. [PMID: 17591956 PMCID: PMC1941594 DOI: 10.2353/ajpath.2007.061099] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although studies blocking the Fas pathway indicate it can decrease organ damage while improving septic (cecal ligation and puncture, CLP) mouse survival, little is known about how Fas-Fas ligand (FasL) interactions mediate this protection at the tissue level. Here, we report that although Fas expression on splenocytes and hepatocytes is up-regulated by CLP and is inhibited by in vivo short interfering RNA, FasL as well as the frequency of CD8(+) T cells are differentially altered by sepsis in the spleen (no change in FasL, decreased percentage of CD8(+) and CD4(+) T cells) versus the liver (increased FasL expression on CD8(+) T cells and increase in percentage/number). Adoptive transfer of CLP FasL(+/+) versus FasL(-/-) mouse liver CD8(+) T cells to severe combined immunodeficient or RAG1(-/-) recipient mice indicated that these cells could induce inflammation. The FasL-mediated cytotoxic capacity of these septic mouse liver CD8(+) T cells was shown by their ability to damage directly cultured hepatocytes. Finally, although CD8(-/-) mice exhibited a reduction in both CLP-induced liver active caspase-3 staining and blood interleukin-6 levels, only FasL(-/-) (but not CD8(-/-)) protected the septic mouse spleen from increasing apoptosis. Thus, although truncating Fas-FasL signaling ameliorates many untoward effects of sepsis, the pathological mode of action is distinct at the tissue level.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Although enthusiasm of intensivists has been raised during the last 2-3 years due to several successful clinical trials, severe sepsis and septic shock still have an increasing incidence with more or less unchanged mortality. Within the last 12 months, the progress in sepsis research covering definitions, epidemiology, pathophysiology, diagnosis, standard and adjunctive therapy, as well as experimental approaches is encouraging. In this review, state-of-the-art publications of 2003 are presented to elucidate the possible impact on clinical routine. RECENT FINDINGS The rationale for using a new definition based on the PIRO system has been widely acknowledged, although it is not yet applicable in clinical practice. This includes genomic information for stratifying subgroups of patients, and a broader field of laboratory diagnostics due to clinical studies and basic research on the cellular mechanisms of inflammation and organ dysfunction. Early diagnosis is important for a fast implementation of specific therapies, and it has been confirmed that the time until the start of therapy has an impact on patient outcome. Thorough data analysis of successful trials with activated protein C has revealed encouraging details on long-term outcome and subgroup effects. Together with new findings on low-dose hydrocortisone, this stresses the relevance of adjunctive therapy in severe sepsis and septic shock. SUMMARY Scientific progress in areas of sepsis has been continuing throughout 2003, although the challenges are still enormous. The identification of more specific markers and new therapeutic approaches will hopefully improve the diagnosis, monitoring of therapy, and outcome in the septic patient.
Collapse
Affiliation(s)
- Herwig Gerlach
- Department of Anaesthesiology and Intensive Care, Vivantes--Neukoelln Clinic, Berlin, Germany.
| | | |
Collapse
|
35
|
Schneider DF, Glenn CH, Faunce DE. Innate Lymphocyte Subsets and Their Immunoregulatory Roles in Burn Injury and Sepsis. J Burn Care Res 2007; 28:365-79. [PMID: 17438501 DOI: 10.1097/bcr.0b013e318053d40b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The vast majority of clinical and basic science research on the immune consequences of burn injury and sepsis conducted during the last three decades has focused mainly on the roles of macrophages, neutrophils and, to a lesser extent, conventional T lymphocytes. During recent years, however, it has become increasingly clear that minor subsets of innate immune cells, innate regulatory lymphocytes in particular, are central to processes involved in both protective immunity and immunopathology. Recent reports by our laboratory and others have just begun to shed light on the critical roles of innate lymphocyte subsets, including natural killer T cells, natural killer cells, gamma-delta T cells, and naturally occurring CD4+CD25+ regulatory T cells during the immune response to burn injury and sepsis. Given their emerging importance and documented upstream regulatory capacities over macrophage, dendritic cell, and T lymphocyte functions, innate regulatory lymphocytes represent attractive new targets for therapeutic intervention for the overall immune paralysis that occurs with injury and sepsis. Here, we provide an overview of the current state of knowledge of these particular cell subsets in the immune response to burn injury and sepsis.
Collapse
Affiliation(s)
- David F Schneider
- Department of Surgery, Burn and Shock Trauma Institute, Loyola University Medical Center, Bldg 110, Room 4236, 2160 South 1st Avenue, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
36
|
Abstract
Recent research has yielded many interesting and potentially important therapeutic targets in sepsis. Specifically, the effects of antagonistic anti-cytokine therapies (tumor necrosis factor-alpha [TNF-alpha], interleukin-1 [IL-1]) and anti-endotoxin strategies utilizing antibodies against endotoxin or endotoxin receptor/carrier molecules (anti-CD14 or anti-LPS-binding protein) have been studied. Unfortunately, these approaches often failed clinically, and in many cases, the efficacy of these treatments was dependent on the severity of sepsis. Recently, clinical trials using insulin to lock blood glucose levels and activated protein C treatment have showed that while they provided some survival benefit, their efficacy does not appear to be predicated solely upon anti-inflammatory effects. Here, we will review work done in animal models of polymicrobial sepsis and clinical findings that support the hypothesis that apoptosis in the immune system is a pathologic event in sepsis that can be a therapeutic target. In this respect, experimental studies looking at the septic animal suggest that loss of lymphocytes during sepsis may be due to dysregulated apoptosis and that this appears to be brought on by a variety of mediators effecting 'intrinsic' as well as 'extrinsic' cell death pathways. From a therapeutic perspective this has provided a number of novel targets for clinically successful current, as well as future therapies, such as caspases (caspase inhibition/protease inhibition), pro-apoptotic protein-expression (via administration and/or over-expression of Bcl-2) and the death receptor family Fas-FasL (via. FasFP [fas fusion protein] and the application of siRNA against a number pro-apoptotic factors).
Collapse
Affiliation(s)
- Doreen E Wesche-Soldato
- Div. Surg. Res./Dept. Surgery, RI Hospital/Brown University Sch. Med., Providence, RI 02903, USA
| | | | | | | |
Collapse
|
37
|
Enoh VT, Lin CY, Varma TK, Sherwood ER. Differential effect of imipenem treatment on injury caused by cecal ligation and puncture in wild-type and NK cell-deficient beta(2)-microgloblin knockout mice. Am J Physiol Gastrointest Liver Physiol 2006; 290:G277-84. [PMID: 16166341 DOI: 10.1152/ajpgi.00338.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our previous studies showed that beta(2)-microglobulin knockout mice treated with anti-asialoGM1 (beta2MKO/alphaAsGM1 mice) are resistant to injury caused by cecal ligation and puncture (CLP). However, CLP-induced injury is complex. Potential mechanisms of injury include systemic infection, cecal ischemia, and translocation of bacterial toxins such as endotoxin and superantigens. Currently, it is unclear which of these mechanisms of injury contributes to mortality in wild-type mice and whether beta2MKO/alphaAsGM1 mice are resistant to any particular mechanisms of injury. In the present study, we hypothesized that systemic infection is the major cause of injury after CLP in wild-type mice and that beta2MKO/alphaAsGM1 mice are resistant to infection-induced injury. To test this hypothesis, wild-type and beta2MKO/alphaAsGM1 mice were treated with the broad-spectrum antibiotic imipenem immediately after CLP to decrease the impact of systemic infection in our model. Treatment of wild-type and beta2MKO/alphaAsGM1 mice with imipenem decreased bacterial counts by at least two orders of magnitude. However, all wild-type mice, whether treated with saline or imipenem, died by 42 h after CLP and had significant hypothermia, metabolic acidosis, and high plasma concentrations of the cytokines interleukin-6, macrophage inflammatory protein-2, and keratinocyte-derived chemokine. beta2MKO/alphaAsGM1 mice showed 40% long-term survival, which was increased to 90% by imipenem treatment. beta2MKO/alphaAsGM1 mice had less hypothermia, decreased metabolic acidosis, and lower cytokine concentrations at 18 h after CLP compared with wild-type mice. These results suggest that infection is not the major cause of mortality for wild-type mice in our model of CLP. Other mechanisms of injury such as cecal ischemia or translocation of microbial toxins may be more important. beta2MKO/alphaAsGM1 mice appear resistant to these early, non-infection-related causes of CLP-induced injury but showed delayed mortality associated with bacterial dissemination, which was ablated by treatment with imipenem.
Collapse
Affiliation(s)
- Victor T Enoh
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555-0591, USA
| | | | | | | |
Collapse
|
38
|
Enoh VT, Fairchild CD, Lin CY, Varma TK, Sherwood ER. Differential effect of imipenem treatment on wild-type and NK cell-deficient CD8 knockout mice during acute intra-abdominal injury. Am J Physiol Regul Integr Comp Physiol 2005; 290:R685-93. [PMID: 16269570 DOI: 10.1152/ajpregu.00678.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CD8 knockout mice depleted of natural killer (NK) cells by treatment with anti-asialoGM1 (CD8KO/alphaAsGM1 mice) are resistant to injury caused by cecal ligation and puncture (CLP). However, CLP-induced injury is complex. Potential sources of injury include bacterial dissemination, cecal ischemia, and translocation of bacterial toxins. We treated wild-type and CD8KO/alphaAsGM1 mice with imipenem after CLP to decrease bacterial dissemination. Additional mice were subjected to cecal ligation without puncture of the cecal wall or cecal ligation and removal of cecal contents. Imipenem treatment decreased bacterial counts by at least two orders of magnitude. However, all wild-type mice, whether treated with saline or imipenem, died by 42 h after CLP and exhibited significant hypothermia, metabolic acidosis, and high plasma cytokine concentrations. Wild-type mice subjected to cecal ligation without puncture also died, despite very low bacterial counts in blood, but wild-type mice subjected to cecal ligation and washout of cecal contents survived. In CD8KO/alphaAsGM1 mice subjected to CLP, imipenem treatment increased survival from 50% to 100%. After cecal ligation without puncture, long-term survival was 80-90% in CD8KO/alphaAsGM1 mice. Hypothermia, metabolic acidosis, and cytokine production were attenuated in CD8KO/alphaAsGM1 mice compared with wild-type controls. These results indicate that bacterial dissemination is not a major source of injury in wild-type mice after CLP, but the presence of gut flora in the cecal lumen is required for induction of systemic inflammation after cecal injury. CD8KO/alphaAsGM1 mice are resistant to the systemic manifestations of cecal injury.
Collapse
Affiliation(s)
- Victor T Enoh
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas 77555-0591, USA
| | | | | | | | | |
Collapse
|
39
|
Tao W, Enoh VT, Lin CY, Johnston WE, Li P, Sherwood ER. Cardiovascular dysfunction caused by cecal ligation and puncture is attenuated in CD8 knockout mice treated with anti-asialoGM1. Am J Physiol Regul Integr Comp Physiol 2005; 289:R478-R485. [PMID: 15845883 DOI: 10.1152/ajpregu.00081.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to assess hemodynamics and myocardial function at 18 h after injury caused by cecal ligation and puncture (CLP) in CD8-knockout mice treated with anti-asialoGM1 (CD8KO/alphaAsGM1 mice). Arterial pressure was measured by carotid artery cannulation, and left ventricular pressure-volume measurements were obtained by use of a 1.4-Fr conductance catheter. Blood acid-base balance and indexes of hepatic, renal, and pulmonary injury were also measured. CD8KO/alphaAsGM1 mice exhibited higher mean arterial pressure and increased systemic vascular resistance compared with wild-type mice. Cardiac output was significantly decreased in wild-type, but not CD8KO/alphaAsGM1, mice compared with sham controls. Myocardial function was better preserved in CD8KO/alphaAsGM1 mice as indicated by less impairment of left ventricular pressure development over time, time varying maximum elastance, end-systolic pressure-volume relationship, and preload recruitable stroke work. The impairment in myocardial function was associated with induction of proinflammatory cytokine mRNAs in the hearts of wild-type mice. The hemodynamic derangements in wild-type mice were coupled with significant metabolic acidosis and elevated serum creatinine levels. Overall, this study shows that cardiovascular collapse and shock characterized by hypotension, myocardial depression, low systemic vascular resistance, and metabolic acidosis occurs after CLP in wild-type mice but is attenuated in CD8KO/alphaAsGM1 mice. These observations likely explain, in part, the previously observed survival advantage of CD8KO/alphaAsGM1 mice following CLP.
Collapse
Affiliation(s)
- Weike Tao
- Dept. of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555-0591, USA
| | | | | | | | | | | |
Collapse
|
40
|
Hirsh M, Kaplan V, Dyugovskaya L, Krausz MM. Response of lung NK1.1-positive natural killer cells to experimental sepsis in mice. Shock 2005; 22:40-5. [PMID: 15201700 DOI: 10.1097/01.shk.0000129758.81361.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Natural killer cells (NKC) participate in the initiation of the immune response and coordination between innate and adaptive immune mechanisms. Their role in systemic inflammation induced by trauma or infection (sepsis) is still controversial. In the present study, lung NKC and their response to experimental sepsis were investigated. Mice were subjected to cecal ligation and puncture (CLP) to induce sepsis and acute lung injury (ALI). Animals were sacrificed 1, 4, and 7 days postoperatively, and lung histopathology, pulmonary vascular permeability, and inflammatory cells accumulation were assessed. On day 4, parameters of ALI were most prominent, and lung NK1.1+CD3- cells were isolated and studied by flow cytometry. Although CLP did not change the absolute number of lung NKC (2.47 +/- 0.52 x 10(5)/lung compared with 2.97 +/- 0.27 x 10(5)/lung in the sham group), the peak of the CLP-induced ALI was associated with severe dysfunction of lung NKC. Cell cytotoxicity decreased to 25.1 +/- 2.4% (P = 0.002), and percentage of perforin-positive NKC to 2.7 +/- 0.5% (P = 0.03). Cytokine profile of lung NK1.1+CD3- cells was prominently changed. The percentage of IFN-gamma-positive cells decreased to 19.7 +/- 5.7% (P = 0.047), but TNF-alpha-positive cells grew to 26.7 +/- 3.3% (P = 0.02). In summary, severe CLP-induced dysfunction of lung NK1.1+CD-3 cells was demonstrated. This may influence the outcome of the animals during sepsis and acute lung damage.
Collapse
Affiliation(s)
- Mark Hirsh
- Department of Surgery A and Laboratory for Shock and Trauma Research, Rambam Medical Center, Haifa, Israel.
| | | | | | | |
Collapse
|
41
|
Toliver-Kinsky TE, Cui W, Murphey ED, Lin C, Sherwood ER. Enhancement of dendritic cell production by fms-like tyrosine kinase-3 ligand increases the resistance of mice to a burn wound infection. THE JOURNAL OF IMMUNOLOGY 2005; 174:404-10. [PMID: 15611264 DOI: 10.4049/jimmunol.174.1.404] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fms-like tyrosine kinase-3 ligand (Flt3L) is a hemopoietic cytokine that stimulates the production of dendritic cells. This study evaluated the ability of Flt3L-enhanced dendritic cell production to increase the resistance of mice to a burn wound infection with Pseudomonas aeruginosa, a common source of infections in burn patients that have impaired immunity and are susceptible to opportunistic microorganisms. Treatment of mice with Flt3L for 5 days caused a significant increase in dendritic cell numbers in the spleen and significantly increased survival upon a subsequent burn wound infection. Improved survival in Flt3L-treated mice was associated with limited bacterial growth and spread within the burn wounds and a decrease in systemic dissemination of P. aeruginosa. Resistance to burn wound infection could also be conferred to recipient mice by the adoptive transfer of dendritic cells that had been isolated from spleens of Flt3L-treated mice. Adoptive transfer of the same number of splenic dendritic cells from nontreated mice did not confer resistance to burn wound infection. These data indicate that Flt3L can increase the resistance of mice to a P. aeruginosa burn wound infection through both stimulation of dendritic cell production and enhancement of dendritic cell function.
Collapse
Affiliation(s)
- Tracy E Toliver-Kinsky
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| | | | | | | | | |
Collapse
|
42
|
Sherwood ER, Enoh VT, Murphey ED, Lin CY. Mice depleted of CD8+ T and NK cells are resistant to injury caused by cecal ligation and puncture. J Transl Med 2004; 84:1655-65. [PMID: 15448711 DOI: 10.1038/labinvest.3700184] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We previously showed that beta 2 microglobulin knockout mice depleted of NK cells by treatment with anti-asialoGM1 (beta2MKO/alphaAsGM1 mice) are resistant to sepsis caused by cecal ligation and puncture (CLP). beta2MKO mice possess multiple immunological defects including depletion of CD8+ T cells. This study was designed to determine the contribution of CD8+ T and NK cell deficiency to the resistance of beta2MKO/alphaAsGM1 mice to CLP-induced injury. beta2MKO/alphaAsGM1 mice and CD8 knockout mice treated with anti-asialoGM1 (CD8KO/alphaAsGM1 mice) survived significantly longer than wild-type mice following CLP. Improved long-term survival was also observed in wild-type mice rendered CD8+ T/NK cell-deficient by treatment with both anti-CD8alpha and anti-asialoGM1. Blood gas analysis and body temperature measurements showed that CD8+ T and NK cell-deficient mice have significantly reduced metabolic acidosis and less hypothermia compared to control mice at 18 h after CLP. CD8+ T/NK cell-deficient mice also showed an attenuated proinflammatory response as indicated by decreased expression of mRNAs for IL-1, IL-6 and MIP-2 in spleen and heart. IL-6, KC and MIP-2 levels in blood and peritoneal fluid were also significantly decreased CD8+ T/NK cell-deficient mice compared to controls. CD8+ T/NK cell-deficient mice exhibited decreased bacterial concentrations in blood, but not in peritoneal fluid or lung, compared to wild-type controls. These data show that mice depleted of CD8+ T and NK cells exhibit survival benefit, improved physiologic function and an attenuated proinflammatory response following CLP that is comparable to beta2M/alphaAsGM1 mice.
Collapse
Affiliation(s)
- Edward R Sherwood
- Department of Anesthesiology, The University of Texas Medical Branch, Shriners Hospital for Children, Galveston, TX 77555-0591, USA.
| | | | | | | |
Collapse
|
43
|
Pravinkumar E. Balance of inflammation in sepsis. Am J Respir Crit Care Med 2004; 169:655-6; author reply 656. [PMID: 14982827 DOI: 10.1164/ajrccm.169.5.954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
44
|
Affiliation(s)
- Martin J Tobin
- Division of Pulmonary and Critical Care Medicine, Loyola University of Chicago Stritch School of Medicine and Hines Veterans Affairs Hospital, Hines, IL 60141, USA.
| |
Collapse
|
45
|
Tao W, Deyo DJ, Traber DL, Johnston WE, Sherwood ER. Hemodynamic and Cardiac Contractile Function During Sepsis Caused by Cecal Ligation and Puncture in Mice. Shock 2004; 21:31-7. [PMID: 14676681 DOI: 10.1097/01.shk.0000101673.49265.5d] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sepsis is among the leading causes of death in the critically ill, yet the pathophysiology of sepsis is incompletely understood. Genetically engineered mice offer a unique opportunity to explore the cellular and molecular pathogenesis of sepsis. However, the hemodynamic responses of mice during sepsis are not completely understood because of the difficulty in performing cardiovascular measurements in mice. We used a 1.4-F pressure and conductance catheter to measure hemodynamics in wild-type C57BL/6J mice during sepsis caused by cecal ligation and puncture. Septic mice exhibited significant hypothermia compared with the sham group. In addition, there was a progressive decrease in mean arterial blood pressure and systemic vascular resistance in septic mice as well as an increase in stroke volume and cardiac output. Sepsis also caused a significant time-dependent impairment of left ventricular function as indicated by decreased dp/dtmax and dp/dtmin. The slope of end systolic pressure volume relationship also decreased over time, as did the time varying maximum elastance and preload-recruitable stroke work of the left ventricle. In conclusion, septic mice exhibit hemodynamic alterations during sepsis that are similar to those observed in humans. The miniaturized conductance catheter allows for effective measurements of hemodynamic function in septic mice and provides measurements that cannot be obtained using other cardiovascular monitoring techniques.
Collapse
Affiliation(s)
- Weike Tao
- Department of Anesthesiology, University of Texas Medical Branch and Shriners Hospital for Children, Galveston, Texas 77555-0591, USA
| | | | | | | | | |
Collapse
|
46
|
Tao W, Sherwood ER. Beta2-microglobulin knockout mice treated with anti-asialoGM1 exhibit improved hemodynamics and cardiac contractile function during acute intra-abdominal sepsis. Am J Physiol Regul Integr Comp Physiol 2003; 286:R569-75. [PMID: 14630624 DOI: 10.1152/ajpregu.00470.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed that beta2-microglobulin knockout mice treated with anti-asialoGM1 (beta2M/alphaAsGM1 mice) exhibit less hypothermia, reduced production of proinflammatory cytokines, less metabolic acidosis, and improved survival after cecal ligation and puncture (CLP) compared with wild-type mice. The present study was designed to assess hemodynamics and left ventricular contractility at 18 h after CLP. Arterial pressure was measured by carotid artery cannulation, and left ventricular pressure-volume loops were obtained by insertion of a 1.4-F conductance catheter into the left ventricle. Heart rate, stroke volume, and cardiac output were not significantly different between wild-type and beta2M/alphaAsGM1 mice after CLP. However, beta2M/alphaAsGM1 mice exhibited improved mean arterial pressure and systemic vascular resistance compared with wild-type mice. Myocardial function was also better preserved in beta2M/alphaAsGM1 mice as indicated by improved left ventricular pressure development over time, time-varying maximum elastance, endsystolic pressure-volume relationship, and preload recruitable stroke work. Overall, this study shows that cardiovascular collapse characterized by hypotension, myocardial depression, and low systemic vascular resistance occurs after CLP in wild-type mice. However, beta2M/alphaAsGM1 mice exhibit improved hemodynamics and cardiac contractile function after CLP that may account, in part, for our previously observed survival benefit.
Collapse
Affiliation(s)
- Weike Tao
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas 77555-0591, USA
| | | |
Collapse
|