1
|
de Souza ABF, de Matos NA, Castro TDF, Costa GDP, Talvani A, Nagato AC, de Menezes RCA, Bezerra FS. Preventive effects of hesperidin in an experimental model ofs acute lung inflammation. Respir Physiol Neurobiol 2024; 323:104240. [PMID: 38417564 DOI: 10.1016/j.resp.2024.104240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
In this study, we hypothesized that long-term administration of hesperidin can modulate the inflammatory response and oxidative stress in animals submitted to mechanical ventilation (MV). Twenty-five C57BL/6 male mice were divided into 5 groups: control, MV, animals receiving hesperidin in three doses 10, 25 and 50 mg/kg. The animals received the doses of hesperidin for 30 days via orogastric gavage, and at the end of the period the animals were submitted to MV. In animals submitted to MV, increased lymphocyte, neutrophil and monocyte/macrophage cell counts were observed in the blood and airways. Associated to this, MV promoted an increase in inflammatory cytokine levels such as CCL2, IL-12 and TNFα. The daily administration of hesperidin in the three doses prevented the effects caused by MV, which was observed by a lower influx of inflammatory cells into the airways, a reduction in inflammatory markers and less oxidative damage.
Collapse
Affiliation(s)
- Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Akinori Cardozo Nagato
- Immunopathology Laboratory and Experimental Pathology, Reproductive Biology Center (CRB), Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Rodrigo Cunha Alvim de Menezes
- Laboratory of Cardiovascular Physiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Pokharel MD, Garcia-Flores A, Marciano D, Franco MC, Fineman JR, Aggarwal S, Wang T, Black SM. Mitochondrial network dynamics in pulmonary disease: Bridging the gap between inflammation, oxidative stress, and bioenergetics. Redox Biol 2024; 70:103049. [PMID: 38295575 PMCID: PMC10844980 DOI: 10.1016/j.redox.2024.103049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Once thought of in terms of bioenergetics, mitochondria are now widely accepted as both the orchestrator of cellular health and the gatekeeper of cell death. The pulmonary disease field has performed extensive efforts to explore the role of mitochondria in regulating inflammation, cellular metabolism, apoptosis, and oxidative stress. However, a critical component of these processes needs to be more studied: mitochondrial network dynamics. Mitochondria morphologically change in response to their environment to regulate these processes through fusion, fission, and mitophagy. This allows mitochondria to adapt their function to respond to cellular requirements, a critical component in maintaining cellular homeostasis. For that reason, mitochondrial network dynamics can be considered a bridge that brings multiple cellular processes together, revealing a potential pathway for therapeutic intervention. In this review, we discuss the critical modulators of mitochondrial dynamics and how they are affected in pulmonary diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), acute lung injury (ALI), and pulmonary arterial hypertension (PAH). A dysregulated mitochondrial network plays a crucial role in lung disease pathobiology, and aberrant fission/fusion/mitophagy pathways are druggable processes that warrant further exploration. Thus, we also discuss the candidates for lung disease therapeutics that regulate mitochondrial network dynamics.
Collapse
Affiliation(s)
- Marissa D Pokharel
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Alejandro Garcia-Flores
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA
| | - David Marciano
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Maria C Franco
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, UC San Francisco, San Francisco, CA, 94143, USA
| | - Saurabh Aggarwal
- Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
3
|
Fayad FH, Sellke FW, Feng J. Pulmonary hypertension associated with cardiopulmonary bypass and cardiac surgery. J Card Surg 2022; 37:5269-5287. [PMID: 36378925 DOI: 10.1111/jocs.17160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIM Pulmonary hypertension (PH) is frequently associated with cardiovascular surgery and is a common complication that has been observed after surgery utilizing cardiopulmonary bypass (CPB). The purpose of this review is to explain the characteristics of PH, the mechanisms of PH induced by cardiac surgery and CPB, treatments for postoperative PH, and future directions in treating PH induced by cardiac surgery and CPB using up-to-date findings. METHODS The PubMed database was utilized to find published articles. RESULTS There are many mechanisms that contribute to PH after cardiac surgery and CPB which involve pulmonary vasomotor dysfunction, cyclooxygenase, the thromboxane A2 and prostacyclin pathway, the nitric oxide pathway, inflammation, and oxidative stress. Furthermore, there are several effective treatments for postoperative PH within different types of cardiac surgery. CONCLUSIONS By possessing a deep understanding of the mechanisms that contribute to PH after cardiac surgery and CPB, researchers can develop treatments for clinicians to use which target the mechanisms of PH and ultimately reduce and/or eliminate postoperative PH. Additionally, learning about the most up-to-date studies regarding treatments can allow clinicians to choose the best treatments for patients who are undergoing cardiac surgery and CPB.
Collapse
Affiliation(s)
- Fayez H Fayad
- The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Program in Liberal Medical Education, Brown University, Providence, Rhode Island, USA
| | - Frank W Sellke
- The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Jun Feng
- The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
4
|
da Anunciação LF, Sousa MND, Vidal-dos-Santos M, Armstrong-Jr R, Moreira LFP, Correia CJ, Breithaupt-Faloppa AC. Modulatory effects of 17β-estradiol on acute lung inflammation after total occlusion of the descending aorta in male rats. Int Immunopharmacol 2022; 113:109311. [DOI: 10.1016/j.intimp.2022.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
|
5
|
Diannexin Can Ameliorate Acute Respiratory Distress Syndrome in Rats by Promoting Heme Oxygenase-1 Expression. Mediators Inflamm 2021; 2021:1946384. [PMID: 33927569 PMCID: PMC8052135 DOI: 10.1155/2021/1946384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/04/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
Background The recombinant protein diannexin can inhibit platelet-mediated events, which contribute to acute respiratory distress syndrome (ARDS). Here, we investigated the effect of diannexin and its effect on heme oxygenase-1 (HO-1) in ARDS. Methods A total of 32 rats were randomized into sham, ARDS, diannexin (D), and diannexin+HO-1 inhibitor (DH) groups. Alveolar-capillary permeability was evaluated by testing the partial pressure of oxygen to fraction of inspired oxygen (PaO2/FiO2) ratio, lung wet/dry weight ratio, and protein levels in the lung. Inflammation was assessed by measuring cytokine levels in the bronchial alveolar lavage fluid (BALF) and serum and nuclear factor-κB (NF-κB) in the lung tissue. Inducible nitric oxide synthase (iNOS), malondialdehyde (MDA), and myeloperoxidase (MPO) were measured to evaluate the oxidative stress response. Lung tissue pathology and apoptosis were also evaluated. We measured HO-1 expression in the lung tissue to investigate the effect of diannexin on HO-1 in ARDS. Results Compared with the ARDS group, diannexin improved PaO2/FiO2, lung wet/dry weight ratio, and protein levels in the BALF and decreased levels of cytokines and NF-κB in the lung and serum. Diannexin inhibited the oxidative stress response and significantly ameliorated pathological lung injury and apoptosis. The partial reversal of diannexin effects by a HO-1 inhibitor suggests that diannexin may promote HO-1 expression to ameliorate ARDS. Conclusions We showed that diannexin can improve alveolar-capillary permeability, inhibit the oxidative stress response and inflammation, and protect against ARDS-induced lung injury and apoptosis.
Collapse
|
6
|
Silva FDJ, Drummond FR, Fidelis MR, Freitas MO, Leal TF, de Rezende LMT, de Moura AG, Carlo Reis EC, Natali AJ. Continuous Aerobic Exercise Prevents Detrimental Remodeling and Right Heart Myocyte Contraction and Calcium Cycling Dysfunction in Pulmonary Artery Hypertension. J Cardiovasc Pharmacol 2021; 77:69-78. [PMID: 33060546 DOI: 10.1097/fjc.0000000000000928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/21/2020] [Indexed: 11/27/2022]
Abstract
ABSTRACT Pulmonary artery hypertension (PAH) imposes right heart and lung detrimental remodeling which impairs cardiac contractility, physical effort tolerance, and survival. The effects of an early moderate-intensity continuous aerobic exercise training on the right ventricle and lung structure, and on contractility and the calcium (Ca2+) transient in isolated myocytes from rats with severe PAH induced by monocrotaline were analyzed. Rats were divided into control sedentary (CS), control exercise (CE), monocrotaline sedentary (MS), and monocrotaline exercise (ME) groups. Animals from control exercise and ME groups underwent a moderate-intensity aerobic exercise on a treadmill (60 min/d; 60% intensity) for 32 days, after a monocrotaline (60 mg/kg body weight i.p.) or saline injection. The pulmonary artery resistance was higher in MS than in control sedentary (1.36-fold) and was reduced by 39.39% in ME compared with MS. Compared with MS, the ME group presented reduced alveolus (17%) and blood vessel (46%) wall, fibrosis (25.37%) and type I collagen content (55.78%), and increased alveolus (52.96%) and blood vessel (146.97%) lumen. In the right ventricle, the ME group exhibited diminished hypertrophy index (25.53%) and type I collagen content (40.42%) and improved myocyte contraction [ie, reduced times to peak (29.27%) and to 50% relax (13.79%)] and intracellular Ca2+ transient [ie, decreased times to peak (16.06%) and to 50% decay (7.41%)] compared with MS. Thus, early moderate-intensity continuous aerobic exercise prevents detrimental remodeling in the right heart and lung increases in the pulmonary artery resistance and dysfunction in single myocyte contraction and Ca2+ cycling in this model.
Collapse
MESH Headings
- Airway Remodeling
- Animals
- Arterial Pressure
- Calcium Signaling
- Disease Models, Animal
- Exercise Therapy
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Male
- Myocardial Contraction
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Arterial Hypertension/therapy
- Pulmonary Artery/physiopathology
- Rats, Wistar
- Vascular Resistance
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/pathology
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/prevention & control
- Ventricular Function, Right
- Ventricular Remodeling
- Rats
Collapse
Affiliation(s)
| | - Filipe Rios Drummond
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil; and
| | | | | | - Tiago Ferreira Leal
- Department of Physical Education, Federal University of Viçosa, Viçosa, Brazil
| | | | | | | | - Antônio José Natali
- Department of Physical Education, Federal University of Viçosa, Viçosa, Brazil
| |
Collapse
|
7
|
Wu GC, Peng CK, Liao WI, Pao HP, Huang KL, Chu SJ. Melatonin receptor agonist protects against acute lung injury induced by ventilator through up-regulation of IL-10 production. Respir Res 2020; 21:65. [PMID: 32143642 PMCID: PMC7059294 DOI: 10.1186/s12931-020-1325-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background It is well known that ventilation with high volume or pressure may damage healthy lungs or worsen injured lungs. Melatonin has been reported to be effective in animal models of acute lung injury. Melatonin exerts its beneficial effects by acting as a direct antioxidant and via melatonin receptor activation. However, it is not clear whether melatonin receptor agonist has a protective effect in ventilator-induced lung injury (VILI). Therefore, in this study, we determined whether ramelteon (a melatonin receptor agonist) can attenuate VILI and explore the possible mechanism for protection. Methods VILI was induced by high tidal volume ventilation in a rat model. The rats were randomly allotted into the following groups: control, control+melatonin, control+ramelteon, control+luzindole, VILI, VILI+luzindole, VILI + melatonin, VILI + melatonin + luzindole (melatonin receptor antagonist), VILI + ramelteon, and VILI + ramelteon + luzindole (n = 6 per group). The role of interleukin-10 (IL-10) in the melatonin- or ramelteon-mediated protection against VILI was also investigated. Results Ramelteon treatment markedly reduced lung edema, serum malondialdehyde levels, the concentration of inflammatory cytokines in bronchoalveolar lavage fluid (BALF), NF-κB activation, iNOS levels, and apoptosis in the lung tissue. Additionally, ramelteon treatment significantly increased heat shock protein 70 expression in the lung tissue and IL-10 levels in BALF. The protective effect of ramelteon was mitigated by the administration of luzindole or an anti-IL-10 antibody. Conclusions Our results suggest that a melatonin receptor agonist has a protective effect against VILI, and its protective mechanism is based on the upregulation of IL-10 production.
Collapse
Affiliation(s)
- Geng-Chin Wu
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-I Liao
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Ping Pao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. .,Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan.
| | - Shi-Jye Chu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Road, Neihu, Taipei, 114, Taiwan.
| |
Collapse
|
8
|
Tavares AH, Colby JK, Levy BD, Abdulnour REE. A Model of Self-limited Acute Lung Injury by Unilateral Intra-bronchial Acid Instillation. J Vis Exp 2019:10.3791/60024. [PMID: 31524861 PMCID: PMC7236023 DOI: 10.3791/60024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Selective intra-bronchial instillation of hydrochloric acid (HCl) to the murine left mainstem bronchus causes acute tissue injury with histopathologic findings similar to human acute respiratory distress syndrome (ARDS). The resulting alveolar edema, alveolar-capillary barrier damage, and leukocyte infiltration predominantly affect the left lung, preserving the right lung as an uninjured control and allowing animals to survive. This model of self-limited acute lung injury enables investigation of tissue resolution mechanisms, such as macrophage efferocytosis of apoptotic neutrophils and restitution of alveolar-capillary barrier integrity. This model has helped identify important roles for resolution agonists, including specialized pro-resolving mediators (SPMs), providing a foundation for the development of new therapeutic approaches for patients with ARDS.
Collapse
Affiliation(s)
- Alexander H Tavares
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School
| | - Jennifer K Colby
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School
| | - Raja-Elie Edward Abdulnour
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School;
| |
Collapse
|
9
|
Sciuto AM, Peng X. Pulmonary toxicity following inhalation exposure to VX in anesthetized rats: Possible roles for compromised immunity and oxidative stress-induced lung injury. Exp Lung Res 2019; 44:379-396. [DOI: 10.1080/01902148.2018.1519003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Alfred M. Sciuto
- Biochemical and Physiology Branch, Medical Toxicology Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, USA
| | - Xinqi Peng
- Biochemical and Physiology Branch, Medical Toxicology Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, USA
| |
Collapse
|
10
|
Ju YN, Gong J, Wang XT, Zhu JL, Gao W. Endothelial Colony-forming Cells Attenuate Ventilator-induced Lung Injury in Rats with Acute Respiratory Distress Syndrome. Arch Med Res 2018; 49:172-181. [PMID: 30119979 DOI: 10.1016/j.arcmed.2018.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mechanical ventilation (MV) can cause ventilator-induced lung injury (VILI). AIM OF THE STUDY This study investigated whether endothelial colony-forming cells (ECFC) could inhibit VILI in a rat model of acute respiratory distress syndrome (ARDS). METHODS Male Wistar rats received the femoral artery and venous cannulation (sham group) or were injected intravenously with 500 μg/kg lipopolysaccharide to induce ARDS. The ARDS rats were subjected to MV. Immediately after the MV, the rats were randomized and injected intravenously with vehicle (ARDS group) or ECFC (ECFC group, n = 8 per group). The oxygen index, lung wet-to-dry weight (W/D) ratios, cytokine protein levels in serum or bronchoalveolar lavage fluid (BALF), neutrophil counts, neutrophil elastase and total protein levels in BALF, histology and cell apoptosis in the lung were detected. The protein levels of endothelin-1, inducible nitric oxide synthase (iNOS), endothelial NOS, matrix metalloproteinase (MMP)-9, Bax, Bcl-2, gelsolin, cleaved caspase-3, phosphorylated NF-κBp65 and myosin light chain (MLC) in the lung were analyzed. RESULTS Compared with the ARDS group, treatment with ECFC significantly increased the oxygen index, and decreased the lung W/D ratios and injury, and the numbers of apoptotic cells in the lungs, neutrophils counts, total protein and elastase concentrations in BALF of rats. ECFC treatment significantly minimized the protein levels of pro-inflammatory cytokines in BALF and serum, but increased interleukin 10 in rats. Furthermore, ECFC treatment significantly reduced the protein levels of endothelin-1, iNOS, Bax, Gelsolin, MMP-9, cleaved caspase-3, phosphorylated NF-κBp65 and MLC, but enhanced eNOS and Bcl-2 in the lungs of rats. CONCLUSIONS Therefore, ECFC attenuated inflammation, cell apoptosis and VILI in ARDS rats.
Collapse
Affiliation(s)
- Ying-Nan Ju
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing Gong
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue-Ting Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing-Li Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
11
|
Vieira RF, Breithaupt-Faloppa AC, Matsubara BC, Rodrigues G, Sanches MP, Armstrong-Jr R, Ferreira SG, Correia CDJ, Moreira LFP, Sannomiya P. 17β-Estradiol protects against lung injuries after brain death in male rats. J Heart Lung Transplant 2018; 37:1381-1387. [PMID: 30139547 DOI: 10.1016/j.healun.2018.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/09/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Brain death elicits microvascular dysfunction and inflammation, and thereby compromises lung viability for transplantation. As 17β-estradiol was shown to be anti-inflammatory and vascular protective, we investigated its effects on lung injury after brain death in male rats. METHODS Wistar rats were assigned to: sham-operation by trepanation only (SH, n = 7); brain death (BD, n = 7); administration of 17β-estradiol (280 μg/kg, iv) at 60 minutes after brain death (BD-E2, n = 7). Experiments were performed 180 minutes thereafter. Histopathological changes in the lung were evaluated by histomorphometry. Gene expression of inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and endothelin-1 was measured by real-time polymerase chain reaction. Protein expression of NO synthases, endothelin-1, platelet endothelial cell adhesion molecule-1 (PECAM-1), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), BCL-2, and caspase 3 was assessed by immunohistochemistry. Cytokines were quantified by enzyme-linked immunosorbent assay. RESULTS Treatment with 17β-estradiol after brain death decreased lung edema and hemorrhage (p < 0.0001), and serum levels of cytokine-induced neutrophil chemoattractant-1 (CINC-1; p = 0.0020). iNOS (p < 0.0001) and VCAM-1 (p < 0.0001) also diminished at protein levels, while eNOS accumulated (p = 0.0002). However, gene expression of iNOS, eNOS, and endothelin-1 was comparable among groups, as was protein expression of endothelin-1, ICAM-1, BCL-2, and caspase 3. CONCLUSIONS 17β-Estradiol effectively reduces lung injury in brain-dead rats mainly due to its ability to regulate NO synthases. Thus, the drug may improve lung viability for transplantation.
Collapse
Affiliation(s)
- Roberta Figueiredo Vieira
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Cristina Breithaupt-Faloppa
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Carvalho Matsubara
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Geovana Rodrigues
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Petrof Sanches
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Armstrong-Jr
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sueli Gomes Ferreira
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Cristiano de Jesus Correia
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Felipe P Moreira
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Paulina Sannomiya
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Guivarch E, Voiriot G, Rouzé A, Kerbrat S, Tran Van Nhieu J, Montravers P, Maitre B, Mekontso Dessap A, Desmard M, Boczkowski J. Pulmonary Effects of Adjusting Tidal Volume to Actual or Ideal Body Weight in Ventilated Obese Mice. Sci Rep 2018; 8:6439. [PMID: 29691422 PMCID: PMC5915403 DOI: 10.1038/s41598-018-24615-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/05/2018] [Indexed: 12/22/2022] Open
Abstract
Obese patients could be more susceptible to mechanical ventilation (MV)-induced lung injury than non-obese patients due to weight-dependent changes in lung properties. The aim of this study was therefore to evaluate the pulmonary effects of 2 hours low VT MV in a diet-induced obese mice model, with VT calculated on either the actual body weight (VTaw) or the ideal body weight (VTiw) . First, we hypothesized that a MV with VTaw would be associated with altered lung mechanics and an increased lung inflammation. Second, we hypothesised that a MV with a VTiw would preserve lung mechanics and limit lung inflammation. We analyzed lung mechanics and inflammation using bronchoalveolar lavage (BAL) cell counts, flow cytometry tissue analysis and histology. Lung mechanics and inflammation were comparable in control and obese mice receiving VTiw. By contrast, obese mice receiving VTaw had significantly more alterations in lung mechanics, BAL cellularity and lung influx of monocytes as compared to control mice. Their monocyte expression of Gr1 and CD62L was also increased. Alveolar neutrophil infiltration was significantly increased in all obese mice as compared to controls. In conclusion, our findings suggest that protective MV with a VTaw is deleterious, with a marked alteration in lung mechanics and associated lung inflammation as compared to lean mice. With VTiw, lung mechanics and inflammation were close to that of control mice, except for an increased alveolar infiltrate of polymorphonuclear neutrophils. This inflammation might be attenuated by a blunted recruitment of inflammatory cells associated with obesity.
Collapse
Affiliation(s)
- Elise Guivarch
- INSERM U955, Université Paris Est (UPEC), Faculté de Médecine, 94000, Créteil, France. .,AP-HP, HU Hôpital Bichat-Claude Bernard, Département d'anesthésie-réanimation, 75018, Paris, France. .,Hôpital Paris Saint Joseph, Service d'anesthésie, 75014, Paris, France.
| | - Guillaume Voiriot
- INSERM U955, Université Paris Est (UPEC), Faculté de Médecine, 94000, Créteil, France.,AP-HP, HU Hôpital Tenon, Service de réanimation, 75020, Paris, France.,Université Paris Est Créteil (UPEC), Faculté de Médecine de Créteil, IMRB, GRC CARMAS, Créteil, 94000, France
| | - Anahita Rouzé
- INSERM U955, Université Paris Est (UPEC), Faculté de Médecine, 94000, Créteil, France.,CHU Lille, Centre de Réanimation, Lille, 59000, France
| | - Stéphane Kerbrat
- INSERM U955, Université Paris Est (UPEC), Faculté de Médecine, 94000, Créteil, France
| | | | - Philippe Montravers
- AP-HP, HU Hôpital Bichat-Claude Bernard, Département d'anesthésie-réanimation, 75018, Paris, France.,INSERM UMR 1152, Faculté de médecine Paris Diderot Paris 7, 94000, Paris, France
| | - Bernard Maitre
- INSERM U955, Université Paris Est (UPEC), Faculté de Médecine, 94000, Créteil, France.,Université Paris Est Créteil (UPEC), Faculté de Médecine de Créteil, IMRB, GRC CARMAS, Créteil, 94000, France.,AP-HP, HU Hôpital Henri Mondor, DHU A-TVB, Antenne de Pneumologie, 94000, Créteil, France.,AP-HP, HU Hôpital Henri Mondor, DHU A-TVB, Service de réanimation médicale, 94000, Créteil, France
| | - Armand Mekontso Dessap
- Université Paris Est Créteil (UPEC), Faculté de Médecine de Créteil, IMRB, GRC CARMAS, Créteil, 94000, France.,AP-HP, HU Hôpital Henri Mondor, DHU A-TVB, Service de réanimation médicale, 94000, Créteil, France
| | - Mathieu Desmard
- AP-HP, HU Hôpital Bichat-Claude Bernard, Département d'anesthésie-réanimation, 75018, Paris, France.,Centre hospitalier sud francilien, Service de réanimation, 91100, Corbeil-Essonnes, France
| | - Jorge Boczkowski
- INSERM U955, Université Paris Est (UPEC), Faculté de Médecine, 94000, Créteil, France.,AP-HP, HU Hôpital Henri Mondor, DHU A-TVB, Service de réanimation médicale, 94000, Créteil, France
| |
Collapse
|
13
|
Sun LC, Zhang HB, Gu CD, Guo SD, Li G, Lian R, Yao Y, Zhang GQ. Protective effect of acacetin on sepsis-induced acute lung injury via its anti-inflammatory and antioxidative activity. Arch Pharm Res 2017; 41:1199-1210. [PMID: 29243040 PMCID: PMC7101724 DOI: 10.1007/s12272-017-0991-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 11/19/2017] [Indexed: 01/14/2023]
Abstract
Sepsis is a clinical syndrome with no effective protective or therapeutic treatments. Acacetin, a natural flavonoid compound, has anti-oxidative and anti-inflammatory effects which can potentially work to reduce sepsis. We investigated the potential protective effect of acacetin on sepsis-induced acute lung injury (ALI) ALI and dissect out the underlying mechanisms. Mice were divided into five groups: a sham group, a sepsis-induced ALI group, and three sepsis groups pre-treated with 20, 40, and 80 mg/kg body weight of acacetin. We found that acacetin significantly attenuated sepsis-induced ALI, in histological examinations and lung edema. Additionally, acacetin treatment decreased protein and inflammatory cytokine concentration and the number of infiltrated inflammatory cells in BALF compared with that in the non-treated sepsis mice. Pulmonary myeloperoxidase (MPO) activity was lower in the acacetin-pre-treated sepsis groups than in the sepsis group. The mechanism underlying the protective effect of acacetin on sepsis is related to the regulation of certain antioxidation genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), superoxide dismutases (SODs), and heme oxygenase 1 (HO-1).Taken together, our results indicate that acacetin pre-treatment inhibits sepsis-induced ALI through its anti-inflammatory and antioxidative activity, suggesting that acacetin may be a potential protective agent for sepsis-induced ALI.
Collapse
Affiliation(s)
- Li-Chao Sun
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Hong-Bo Zhang
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Cheng-Dong Gu
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Shi-Dong Guo
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Gang Li
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Rui Lian
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Yao Yao
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Guo-Qiang Zhang
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China.
| |
Collapse
|
14
|
Wu NC, Liao FT, Cheng HM, Sung SH, Yang YC, Wang JJ. Intravenous superoxide dismutase as a protective agent to prevent impairment of lung function induced by high tidal volume ventilation. BMC Pulm Med 2017; 17:105. [PMID: 28747201 PMCID: PMC5530466 DOI: 10.1186/s12890-017-0448-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 07/19/2017] [Indexed: 12/12/2022] Open
Abstract
Background Positive-pressure mechanical ventilation is essential in assisting patients with respiratory failure in the intensive care unit and facilitating oxygenation in the operating room. However, it was also recognized as a primary factor leading to hospital-acquired pulmonary dysfunction, in which pulmonary oxidative stress and lung inflammation had been known to play important roles. Cu/Zn superoxide dismutase (SOD) is an important antioxidant, and possesses anti-inflammatory capacity. In this study, we aimed to study the efficacy of Cu/Zn SOD, administered intravenously during high tidal volume (HTV) ventilation, to prevent impairment of lung function. Methods Thirty-eight male Sprague-Dawley rats were divided into 3 groups: 5 h ventilation with (A) low tidal volume (LTV; 8 mL/kg; n = 10), (B) high tidal volume (HTV; 18 mL/kg; n = 14), or (C) HTV and intravenous treatment of Cu/Zn SOD at a dose of 1000 U/kg/h (HTV + SOD; n = 14). Lung function was evaluated both at baseline and after 5-h ventilation. Lung injury was assessed by histological examination, lung water and protein contents in the bronchoalveolar lavage fluid (BALF). Pulmonary oxidative stress was examined by concentrations of methylguanidine (MG) and malondialdehyde (MDA) in BALF, and antioxidative activity by protein expression of glutathione peroxidase-1 (GPx-1) in the lung. Severity of lung inflammation was evaluated by white blood cell and differential count in BALF, and protein expression of inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), and mRNA expression of nuclear factor-κB (NF-κB) in the lung. We also examined protein expression of surfactant protein (SP)-A and D and we measured hourly changes in serum nitric oxide (NO) level. Results Five hours of LTV ventilation did not induce a major change in lung function, whereas 5 h of HTV ventilation induced apparent combined restrictive and obstructive lung disorder, together with increased pulmonary oxidative stress, decreased anti-oxidative activity and increased lung inflammation (P < 0.05). HTV ventilation also decreased SP-A and SP-D expression and suppressed serum NO level during the time course of ventilation. Cu/Zn SOD administered intravenously during HTV ventilation effectively reversed associated pulmonary oxidative stress and lung inflammation (P < 0.05); moreover, it preserved SP-A and SP-D expressions in the lung and increased serum nitric oxide (NO) level, enhancing vascular NO bioavailability. Conclusions HTV ventilation can induce combined restrictive and obstructive lung disorders. Intravenous administration of Cu/Zn SOD during HTV ventilation can prevent lung function impairment and lung injury via reducing pulmonary oxidative stress and lung inflammation, preserving pulmonary surfactant expression, and enhancing vascular NO bioavailability.
Collapse
Affiliation(s)
- Nan-Chun Wu
- Division of Cardiovascular Surgery, Department of Surgery, Chi-Mei Foundation Hospital, 901, Chung Hwa Rd. Yung Kang, Tainan, Taiwan
| | - Fan-Ting Liao
- School of Medicine, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan
| | - Hao-Min Cheng
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Public Health and Community Medicine Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hsien Sung
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Public Health and Community Medicine Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chun Yang
- School of Medicine, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan
| | - Jiun-Jr Wang
- School of Medicine, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan.
| |
Collapse
|
15
|
Boudreault F, Pinilla-Vera M, Englert JA, Kho AT, Isabelle C, Arciniegas AJ, Barragan-Bradford D, Quintana C, Amador-Munoz D, Guan J, Choi KM, Sholl L, Hurwitz S, Tschumperlin DJ, Baron RM. Zinc deficiency primes the lung for ventilator-induced injury. JCI Insight 2017; 2:86507. [PMID: 28570269 DOI: 10.1172/jci.insight.86507] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/25/2017] [Indexed: 01/13/2023] Open
Abstract
Mechanical ventilation is necessary to support patients with acute lung injury, but also exacerbates injury through mechanical stress-activated signaling pathways. We show that stretch applied to cultured human cells, and to mouse lungs in vivo, induces robust expression of metallothionein, a potent antioxidant and cytoprotective molecule critical for cellular zinc homeostasis. Furthermore, genetic deficiency of murine metallothionein genes exacerbated lung injury caused by high tidal volume mechanical ventilation, identifying an adaptive role for these genes in limiting lung injury. Stretch induction of metallothionein required zinc and the zinc-binding transcription factor MTF1. We further show that mouse dietary zinc deficiency potentiates ventilator-induced lung injury, and that plasma zinc levels are significantly reduced in human patients who go on to develop acute respiratory distress syndrome (ARDS) compared with healthy and non-ARDS intensive care unit (ICU) controls, as well as with other ICU patients without ARDS. Taken together, our findings identify a potentially novel adaptive response of the lung to stretch and a critical role for zinc in defining the lung's tolerance for mechanical ventilation. These results demonstrate that failure of stretch-adaptive responses play an important role in exacerbating mechanical ventilator-induced lung injury, and identify zinc and metallothionein as targets for lung-protective interventions in patients requiring mechanical ventilation.
Collapse
Affiliation(s)
- Francis Boudreault
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Miguel Pinilla-Vera
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua A Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - Alvin T Kho
- Boston Children's Hospital Informatics Program, Boston, Massachusetts, USA
| | - Colleen Isabelle
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Antonio J Arciniegas
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diana Barragan-Bradford
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carolina Quintana
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diana Amador-Munoz
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jiazhen Guan
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Shelley Hurwitz
- Center for Clinical Investigation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Rebecca M Baron
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Meng FY, Gao W, Ju YN. Parecoxib reduced ventilation induced lung injury in acute respiratory distress syndrome. BMC Pharmacol Toxicol 2017; 18:25. [PMID: 28356130 PMCID: PMC5372249 DOI: 10.1186/s40360-017-0131-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/24/2017] [Indexed: 11/25/2022] Open
Abstract
Background Cyclooxygenase-2 (COX-2) contributes to ventilation induced lung injury (VILI) and acute respiratory distress syndrome (ARDS). The objective of present study was to observe the therapeutic effect of parecoxib on VILI in ARDS. Methods In this parallel controlled study performed at Harbin Medical University, China between January 2016 and March 2016, 24 rats were randomly allocated into sham group (S), volume ventilation group/ARDS (VA), parecoxib/volume ventilation group/ARDS (PVA). Rats in the S group only received anesthesia; rats in the VA and PVA group received intravenous injection of endotoxin to induce ARDS, and then received ventilation. Rats in the VA and PVA groups were treated with intravenous injection of saline or parecoxib. The ratio of arterial oxygen pressure to fractional inspired oxygen (PaO2/FiO2), the wet to dry weight ratio of lung tissue, inflammatory factors in serum and bronchoalveolar lavage fluid (BALF), and histopathologic analyses of lung tissue were examined. In addition, survival was calculated at 24 h after VILI. Results Compared to the VA group, in the PVA group, PaO2/FiO2 was significantly increased; lung tissue wet to dry weight ratio; macrophage and neutrophil counts, total protein and neutrophil elastase levels in BALF; tumor necrosis factor-α, interleukin-1β, and prostaglandin E2 levels in BALF and serum; and myeloperoxidase (MPO) activity, malondialdehyde levels, and Bax and COX-2 protein levels in lung tissue were significantly decreased, while Bcl-2 protein levels were significantly increased. Lung histopathogical changes and apoptosis were reduced by parecpxib in the PVA group. Survival was increased in the PVA group. Conclusions Parecoxib improves gas exchange and epithelial permeability, decreases edema, reduces local and systemic inflammation, ameliorates lung injury and apoptosis, and increases survival in a rat model of VILI.
Collapse
Affiliation(s)
- Fan-You Meng
- Department of Anesthesiology, the Second Affiliated Hospital of the Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Wei Gao
- Department of Anesthesiology, the Second Affiliated Hospital of the Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Ying-Nan Ju
- Department of Intensive Care Unit, the Third Affiliated Hospital of the Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
17
|
Effects of aerobic exercise training on metabolism of nitric oxide and endothelin-1 in lung parenchyma of rats with pulmonary arterial hypertension. Mol Cell Biochem 2017; 429:73-89. [DOI: 10.1007/s11010-016-2937-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022]
|
18
|
Kumar S, Sun X, Noonepalle SK, Lu Q, Zemskov E, Wang T, Aggarwal S, Gross C, Sharma S, Desai AA, Hou Y, Dasarathy S, Qu N, Reddy V, Lee SG, Cherian-Shaw M, Yuan JXJ, Catravas JD, Rafikov R, Garcia JGN, Black SM. Hyper-activation of pp60 Src limits nitric oxide signaling by increasing asymmetric dimethylarginine levels during acute lung injury. Free Radic Biol Med 2017; 102:217-228. [PMID: 27838434 PMCID: PMC5449193 DOI: 10.1016/j.freeradbiomed.2016.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 10/17/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022]
Abstract
The molecular mechanisms by which the endothelial barrier becomes compromised during lipopolysaccharide (LPS) mediated acute lung injury (ALI) are still unresolved. We have previously reported that the disruption of the endothelial barrier is due, at least in part, to the uncoupling of endothelial nitric oxide synthase (eNOS) and increased peroxynitrite-mediated nitration of RhoA. The purpose of this study was to elucidate the molecular mechanisms by which LPS induces eNOS uncoupling during ALI. Exposure of pulmonary endothelial cells (PAEC) to LPS increased pp60Src activity and this correlated with an increase in nitric oxide (NO) production, but also an increase in NOS derived superoxide, peroxynitrite formation and 3-nitrotyrosine (3-NT) levels. These effects could be simulated by the over-expression of a constitutively active pp60Src (Y527FSrc) mutant and attenuated by over-expression of dominant negative pp60Src mutant or reducing pp60Src expression. LPS induces both RhoA nitration and endothelial barrier disruption and these events were attenuated when pp60Src expression was reduced. Endothelial NOS uncoupling correlated with an increase in the levels of asymmetric dimethylarginine (ADMA) in both LPS exposed and Y527FSrc over-expressing PAEC. The effects in PAEC were also recapitulated when we transiently over-expressed Y527FSrc in the mouse lung. Finally, we found that the pp60-Src-mediated decrease in DDAH activity was mediated by the phosphorylation of DDAH II at Y207 and that a Y207F mutant DDAH II was resistant to pp60Src-mediated inhibition. We conclude that pp60Src can directly inhibit DDAH II and this is involved in the increased ADMA levels that enhance eNOS uncoupling during the development of ALI.
Collapse
Affiliation(s)
- Sanjiv Kumar
- Vascular Biology Center and the Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Xutong Sun
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | | | - Qing Lu
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Evgeny Zemskov
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Ting Wang
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Saurabh Aggarwal
- Department of Anesthesiology, The University of Alabama, Birmingham, AL, United States
| | - Christine Gross
- Vascular Biology Center and the Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Shruti Sharma
- Center for Biotechnology & Genomic Medicine, Old Dominion University, Norfolk, VA, United States
| | - Ankit A Desai
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Yali Hou
- Vascular Biology Center and the Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Sridevi Dasarathy
- Vascular Biology Center and the Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Ning Qu
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Vijay Reddy
- Vascular Biology Center and the Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Sung Gon Lee
- Vascular Biology Center and the Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Mary Cherian-Shaw
- Vascular Biology Center and the Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - John D Catravas
- Center for Biotechnology & Genomic Medicine, Old Dominion University, Norfolk, VA, United States
| | - Ruslan Rafikov
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Stephen M Black
- Department of Medicine, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
19
|
Trotta V, Lee WH, Loo CY, Young PM, Traini D, Scalia S. Co-spray dried resveratrol and budesonide inhalation formulation for reducing inflammation and oxidative stress in rat alveolar macrophages. Eur J Pharm Sci 2016; 86:20-8. [PMID: 26944422 DOI: 10.1016/j.ejps.2016.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 01/08/2023]
Abstract
Oxidative stress is instrumental in the pathogenesis and progression of chronic obstructive pulmonary disease (COPD). Novel therapeutic strategies that target macrophages, based on the use of antioxidant compounds, could be explored to improve corticosteroid responses in COPD patients. In this study, inhalable microparticles containing budesonide (BD) and resveratrol (RES) were prepared and characterized. This approach was undertaken to develop a multi-drug inhalable formulation with anti-oxidant and anti-inflammatory activities for treatment of chronic lung diseases. The inhalable microparticles containing different ratios of BD and RES were prepared by spray drying. The physico-chemical properties of the formulations were characterized in terms of surface morphology, particle size, physical and thermal stability. Additionally, in vitro aerosol performances of these formulations were evaluated with the multi-stage liquid impinger (MSLI) at 60 and 90 l/min, respectively. The cytotoxicity effect of the formulations was evaluated using rat alveolar macrophages. The biological responses of alveolar macrophages in terms of cytokine expressions, nitric oxide (NO) production and free radical scavenging activities were also tested. The co-spray dried (Co-SD) microparticles of all formulations exhibited morphologies appropriate for inhalation administration. Analysis of the deposition profiles showed an increase in aerosol performance proportional to BD concentration. Cell viability assay demonstrated that alveolar macrophages could tolerate a wide range of RES and BD concentrations. In addition, RES and BD were able to decrease the levels of tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in lipopolysaccharide (LPS) induced alveolar macrophages. This study has successfully established the manufacture of Co-SD formulations of RES and BD with morphology and aerosol properties suitable for inhalation drug delivery, negligible in vitro toxicity and enhanced efficacy to control inflammation and oxidative stress in LPS-induced alveolar macrophages.
Collapse
Affiliation(s)
- Valentina Trotta
- Respiratory Technology, Woolcock Institute of Medical Research, Australia; Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Wing-Hin Lee
- Respiratory Technology, Woolcock Institute of Medical Research, Australia; Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Ching-Yee Loo
- Respiratory Technology, Woolcock Institute of Medical Research, Australia; Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research, Australia; Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Australia; Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW 2006, Australia.
| | - Santo Scalia
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
20
|
Wu CS, Chou HC, Huang LT, Lin YK, Chen CM. Bubble CPAP Support after Discontinuation of Mechanical Ventilation Protects Rat Lungs with Ventilator-Induced Lung Injury. Respiration 2016; 91:171-179. [DOI: 10.1159/000443528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
<b><i>Background:</i></b> Bubble continuous positive airway pressure (BCPAP) has been used in neonates with respiratory distress for decades, but its lung-protective effect and underlying mechanism has not been investigated. <b><i>Objectives:</i></b> To test the hypothesis that BCPAP use after extubation decreases lung injury and that alterations to lung nitric oxide synthase (NOS) 3 expression may be one of the underlying mechanisms. <b><i>Methods:</i></b> We compared gas exchange, lung injury severity, and lung NOS expression among rats with ventilator-induced lung injury (VILI) treated with either BCPAP or spontaneous breathing. After high tidal volume ventilation for 30 min, the rats were randomly divided to three groups: a control group underwent spontaneous breathing (n = 7), and two BCPAP groups were treated with the bubble technique with either a 2.5-mm-diameter (n = 7) or a 5.5-mm-diameter (n = 7) expiratory limb for 2 h. <b><i>Results:</i></b> The bubble technique (2.5 and 5.5 mm diameter combined) resulted in a significantly higher Pa<smlcap>O</smlcap><sub>2</sub>, decreased alveolar protein levels (1.01 vs. 1.43 mg/kg, p < 0.05), a lower lung injury score (3.87 vs. 4.86, p < 0.05), and decreased NOS3 expression (1.99 vs. 3.32, p < 0.05) compared to spontaneous breathing in the control group. BCPAP with a 2.5-mm-diameter and with a 5.5-mm-diameter expiratory limb was not different with regard to gas exchange, alveolar protein levels, and lung injury scores, but there was a trend for lower NOS3 expression in the 5.5-mm group (1.41 vs. 2.56, p = 0.052). <b><i>Conclusions:</i></b> BCPAP decreases lung injury in rats with VILI after stopping mechanical ventilation. Attenuation of lung NOS3 expression may be one of the underlying mechanisms.
Collapse
|
21
|
Isoflurane Ameliorates Acute Lung Injury by Preserving Epithelial Tight Junction Integrity. Anesthesiology 2015; 123:377-88. [PMID: 26068207 DOI: 10.1097/aln.0000000000000742] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Isoflurane may be protective in preclinical models of lung injury, but its use in patients with lung injury remains controversial and the mechanism of its protective effects remains unclear. The authors hypothesized that this protection is mediated at the level of alveolar tight junctions and investigated the possibility in a two-hit model of lung injury that mirrors human acute respiratory distress syndrome. METHODS Wild-type mice were treated with isoflurane 1 h after exposure to nebulized endotoxin (n = 8) or saline control (n = 9) and then allowed to recover for 24 h before mechanical ventilation (MV; tidal volume, 15 ml/kg, 2 h) producing ventilator-induced lung injury. Mouse lung epithelial cells were similarly treated with isoflurane 1 h after exposure to lipopolysaccharide. Cells were cyclically stretched the following day to mirror the MV protocol used in vivo. RESULTS Mice treated with isoflurane following exposure to inhaled endotoxin and before MV exhibited significantly less physiologic lung dysfunction. These effects appeared to be mediated by decreased vascular leak, but not altered inflammatory indices. Mouse lung epithelial cells treated with lipopolysaccharide and cyclic stretch and lungs harvested from mice after treatment with lipopolysaccharide and MV had decreased levels of a key tight junction protein (i.e., zona occludens 1) that was rescued by isoflurane treatment. CONCLUSIONS Isoflurane rescued lung injury induced by a two-hit model of endotoxin exposure followed by MV by maintaining the integrity of the alveolar-capillary barrier possibly by modulating the expression of a key tight junction protein.
Collapse
|
22
|
Inhibition of Nitro-Oxidative Stress Attenuates Pulmonary and Systemic Injury Induced by High–Tidal Volume Mechanical Ventilation. Shock 2015; 44:36-43. [DOI: 10.1097/shk.0000000000000381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Müller-Redetzky HC, Lienau J, Witzenrath M. The Lung Endothelial Barrier in Acute Inflammation. THE VERTEBRATE BLOOD-GAS BARRIER IN HEALTH AND DISEASE 2015. [PMCID: PMC7123850 DOI: 10.1007/978-3-319-18392-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Chacon-Cabrera A, Rojas Y, Martínez-Caro L, Vila-Ubach M, Nin N, Ferruelo A, Esteban A, Lorente JA, Barreiro E. Influence of mechanical ventilation and sepsis on redox balance in diaphragm, myocardium, limb muscles, and lungs. Transl Res 2014; 164:477-95. [PMID: 25168016 DOI: 10.1016/j.trsl.2014.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 11/16/2022]
Abstract
Mechanical ventilation (MV), using high tidal volumes (V(T)), causes lung (ventilator-induced lung injury [VILI]) and distant organ injury. Additionally, sepsis is characterized by increased oxidative stress. We tested whether MV is associated with enhanced oxidative stress in sepsis, the commonest underlying condition in clinical acute lung injury. Protein carbonylation and nitration, antioxidants, and inflammation (immunoblotting) were evaluated in diaphragm, gastrocnemius, soleus, myocardium, and lungs of nonseptic and septic (cecal ligation and puncture 24 hours before MV) rats undergoing MV (n = 7 per group) for 150 minutes using 3 different strategies (low V(T) [V(T) = 9 mL/kg], moderate V(T) [V(T) = 15 mL/kg], and high V(T) [V(T) = 25 mL/kg]) and in nonventilated control animals. Compared with nonventilated control animals, in septic and nonseptic rodents (1) diaphragms, limb muscles, and myocardium of high-V(T) rats exhibited a decrease in protein oxidation and nitration levels, (2) antioxidant levels followed a specific fiber-type distribution in slow- and fast-twitch muscles, (3) tumor necrosis factor α (TNF-α) levels were higher in respiratory and limb muscles, whereas no differences were observed in myocardium, and (4) in lungs, protein oxidation was increased, antioxidants were rather decreased, and TNF-α remained unmodified. In this model of VILI, oxidative stress does not occur in distant organs or skeletal muscles of rodents after several hours of MV with moderate-to-high V(T), whereas protein oxidation levels were increased in the lungs of the animals. Inflammatory events were moderately expressed in skeletal muscles and lungs of the MV rats. Concomitant sepsis did not strongly affect the MV-induced effects on muscles, myocardium, or lungs in the rodents.
Collapse
Affiliation(s)
- Alba Chacon-Cabrera
- Pulmonology Department-Muscle and Respiratory System Research Unit, Institut Municipal d'Investigació Mèdica (IMIM)-Hospital del Mar, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain; Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, PRBB, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Yeny Rojas
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Servicio de Medicina Intensiva, Fundación para la Investigación Biomédica, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Leticia Martínez-Caro
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Servicio de Medicina Intensiva, Fundación para la Investigación Biomédica, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Monica Vila-Ubach
- Pulmonology Department-Muscle and Respiratory System Research Unit, Institut Municipal d'Investigació Mèdica (IMIM)-Hospital del Mar, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain; Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, PRBB, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Nicolas Nin
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Servicio de Medicina Intensiva, Fundación para la Investigación Biomédica, Hospital Universitario de Getafe, Getafe, Madrid, Spain; Servicio de Medicina Intensiva, Hospital Universitario de Torrejón, Torrejón de Ardoz, Madrid, Spain
| | - Antonio Ferruelo
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Servicio de Medicina Intensiva, Fundación para la Investigación Biomédica, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Andrés Esteban
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Servicio de Medicina Intensiva, Fundación para la Investigación Biomédica, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - José A Lorente
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Servicio de Medicina Intensiva, Fundación para la Investigación Biomédica, Hospital Universitario de Getafe, Getafe, Madrid, Spain; Universidad Europea de Madrid, Madrid, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle and Respiratory System Research Unit, Institut Municipal d'Investigació Mèdica (IMIM)-Hospital del Mar, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain; Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, PRBB, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
25
|
Vergadi E, Vaporidi K, Theodorakis EE, Doxaki C, Lagoudaki E, Ieronymaki E, Alexaki VI, Helms M, Kondili E, Soennichsen B, Stathopoulos EN, Margioris AN, Georgopoulos D, Tsatsanis C. Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:394-406. [PMID: 24277697 DOI: 10.4049/jimmunol.1300959] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of respiratory failure, with limited effective treatments available. Alveolar macrophages participate in the pathogenesis of ARDS. To investigate the role of macrophage activation in aseptic lung injury and identify molecular mediators with therapeutic potential, lung injury was induced in wild-type (WT) and Akt2(-/-) mice by hydrochloric acid aspiration. Acid-induced lung injury in WT mice was characterized by decreased lung compliance and increased protein and cytokine concentration in bronchoalveolar lavage fluid. Alveolar macrophages acquired a classical activation (M1) phenotype. Acid-induced lung injury was less severe in Akt2(-/-) mice compared with WT mice. Alveolar macrophages from acid-injured Akt2(-/-) mice demonstrated the alternative activation phenotype (M2). Although M2 polarization suppressed aseptic lung injury, it resulted in increased lung bacterial load when Akt2(-/-) mice were infected with Pseudomonas aeruginosa. miR-146a, an anti-inflammatory microRNA targeting TLR4 signaling, was induced during the late phase of lung injury in WT mice, whereas it was increased early in Akt2(-/-) mice. Indeed, miR-146a overexpression in WT macrophages suppressed LPS-induced inducible NO synthase (iNOS) and promoted M2 polarization, whereas miR-146a inhibition in Akt2(-/-) macrophages restored iNOS expression. Furthermore, miR-146a delivery or Akt2 silencing in WT mice exposed to acid resulted in suppression of iNOS in alveolar macrophages. In conclusion, Akt2 suppression and miR-146a induction promote the M2 macrophage phenotype, resulting in amelioration of acid-induced lung injury. In vivo modulation of macrophage phenotype through Akt2 or miR-146a could provide a potential therapeutic approach for aseptic ARDS; however, it may be deleterious in septic ARDS because of impaired bacterial clearance.
Collapse
Affiliation(s)
- Eleni Vergadi
- Department of Clinical Chemistry, University of Crete, Medical School, 71003 Heraklion, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Khan M, Frankel H. Adjuncts to ventilatory support part 1: nitric oxide, surfactants, prostacyclin, steroids, sedation, and neuromuscular blockade. Curr Probl Surg 2013; 50:424-33. [PMID: 24156839 DOI: 10.1067/j.cpsurg.2013.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Abstract
Mechanical ventilation (MV) is, by definition, the application of external forces to the lungs. Depending on their magnitude, these forces can cause a continuum of pathophysiological alterations ranging from the stimulation of inflammation to the disruption of cell-cell contacts and cell membranes. These side effects of MV are particularly relevant for patients with inhomogeneously injured lungs such as in acute lung injury (ALI). These patients require supraphysiological ventilation pressures to guarantee even the most modest gas exchange. In this situation, ventilation causes additional strain by overdistension of the yet non-injured region, and additional stress that forms because of the interdependence between intact and atelectatic areas. Cells are equipped with elaborate mechanotransduction machineries that respond to strain and stress by the activation of inflammation and repair mechanisms. Inflammation is the fundamental response of the host to external assaults, be they of mechanical or of microbial origin and can, if excessive, injure the parenchymal tissue leading to ALI. Here, we will discuss the forces generated by MV and how they may injure the lungs mechanically and through inflammation. We will give an overview of the mechanotransduction and how it leads to inflammation and review studies demonstrating that ventilator-induced lung injury can be prevented by blocking pathways of mechanotransduction or inflammation.
Collapse
Affiliation(s)
- Ulrike Uhlig
- Department of Pharmacology & Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
28
|
Parker JC. Acute lung injury and pulmonary vascular permeability: use of transgenic models. Compr Physiol 2013; 1:835-82. [PMID: 23737205 DOI: 10.1002/cphy.c100013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute lung injury is a general term that describes injurious conditions that can range from mild interstitial edema to massive inflammatory tissue destruction. This review will cover theoretical considerations and quantitative and semi-quantitative methods for assessing edema formation and increased vascular permeability during lung injury. Pulmonary edema can be quantitated directly using gravimetric methods, or indirectly by descriptive microscopy, quantitative morphometric microscopy, altered lung mechanics, high-resolution computed tomography, magnetic resonance imaging, positron emission tomography, or x-ray films. Lung vascular permeability to fluid can be evaluated by measuring the filtration coefficient (Kf) and permeability to solutes evaluated from their blood to lung clearances. Albumin clearances can then be used to calculate specific permeability-surface area products (PS) and reflection coefficients (σ). These methods as applied to a wide variety of transgenic mice subjected to acute lung injury by hyperoxic exposure, sepsis, ischemia-reperfusion, acid aspiration, oleic acid infusion, repeated lung lavage, and bleomycin are reviewed. These commonly used animal models simulate features of the acute respiratory distress syndrome, and the preparation of genetically modified mice and their use for defining specific pathways in these disease models are outlined. Although the initiating events differ widely, many of the subsequent inflammatory processes causing lung injury and increased vascular permeability are surprisingly similar for many etiologies.
Collapse
Affiliation(s)
- James C Parker
- Department of Physiology, University of South Alabama, Mobile, Alabama, USA.
| |
Collapse
|
29
|
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) remain major causes of morbidity and mortality in critical care medicine despite advances in therapeutic modalities. ALI can be associated with sepsis, trauma, pharmaceutical or xenobiotic exposures, high oxygen therapy (hyperoxia), and mechanical ventilation. Of the small gas molecules (NO, CO, H₂S) that arise in human beings from endogenous enzymatic activities, the physiological significance of NO is well established, whereas that of CO or H₂S remains controversial. Recent studies have explored the potential efficacy of inhalation therapies using these small gas molecules in animal models of ALI. NO has vasoregulatory and redox-active properties and can function as a selective pulmonary vasodilator. Inhaled NO (iNO) has shown promise as a therapy in animal models of ALI including endotoxin challenge, ischemia/reperfusion (I/R) injury, and lung transplantation. CO, another diatomic gas, can exert cellular tissue protection through antiapoptotic, anti-inflammatory, and antiproliferative effects. CO has shown therapeutic potential in animal models of endotoxin challenge, oxidative lung injury, I/R injury, pulmonary fibrosis, ventilator-induced lung injury, and lung transplantation. H₂S, a third potential therapeutic gas, can induce hypometabolic states in mice and can confer both pro- and anti-inflammatory effects in rodent models of ALI and sepsis. Clinical studies have shown variable results for the efficacy of iNO in lung transplantation and failure for this therapy to improve mortality in ARDS patients. No clinical studies have been conducted with H₂S. The clinical efficacy of CO remains unclear and awaits further controlled clinical studies in transplantation and sepsis.
Collapse
Affiliation(s)
- Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
30
|
Ning J, Mo L, Zhao H, Lu K, Lai X, Luo X, Zhao H, Ma D. Sodium Hydrosulphide alleviates remote lung injury following limb traumatic injury in rats. PLoS One 2013; 8:e59100. [PMID: 23527096 PMCID: PMC3602436 DOI: 10.1371/journal.pone.0059100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/11/2013] [Indexed: 12/28/2022] Open
Abstract
Hydrogen sulphide (H2S) was found to attenuate ventilator or oleic acid induced lung injury. The aim of this study was to explore the effects of exogenous H2S donor, sodium Hydrosulphide (NaHS), on lung injury following blast limb trauma and the underlying mechanisms. For in vitro experiments, pulmonary micro-vessel endothelial cells (PMVECs) were cultured and treated with NaHS or vehicle in the presence of TNF-α. For in vivo, blast limb traumatic rats, induced by using chartaceous electricity detonators, were randomly treated with NaHS, cystathionine gamma-lyase inhibitor (PAG) or vehicle. In vitro, NaHS (100 µM) treatment increased PMVECs viability and decreased LDH release into culture media after tumor necrosis factor (TNF) α challenge. In addition, NaHS treatment prevented the increase of nitric oxide, Intercellular Adhesion Molecule 1(ICAM-1) and interleukin (IL)-6 production and inducible nitric oxide synthase activation induced by TNF-α. Knock-down of NF-E2-Related Factor 2 (Nrf2) partially abolished the protective effect of NaHS. In vivo, NaHS treatment significantly alleviated lung injury following blast limb trauma, demonstrated by a decreased histopathological score and lung water content. Furthermore, NaHS treatment reversed the decrease of H2S concentration in plasma, prevented the increase of TNF-α, IL-6, malondialdehyde and myeloperoxidase, increased the Nrf2 downstream effector glutathione in both plasma and lungs, and reversed the decrease of superoxide dismutase in both plasma and lungs induced by blast limb trauma. Our data indicated that NaHS protects against lung injury following blast limb trauma which is likely associated with suppression of the inflammatory and oxidative response and activation of Nrf2 cellular signal.
Collapse
Affiliation(s)
- Jiaolin Ning
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Leppänen T, Korhonen R, Laavola M, Nieminen R, Tuominen RK, Moilanen E. Down-regulation of protein kinase Cδ inhibits inducible nitric oxide synthase expression through IRF1. PLoS One 2013; 8:e52741. [PMID: 23326354 PMCID: PMC3541401 DOI: 10.1371/journal.pone.0052741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/21/2012] [Indexed: 12/15/2022] Open
Abstract
In inflammation, pro-inflammatory cytokines and bacterial products induce the production of high amounts of NO by inducible nitric oxide synthase (iNOS) in inflammatory and tissue cells. NO is an effector molecule in innate immunity, and it also has regulatory and pro-inflammatory/destructive effects in the inflammatory process. Protein kinase Cδ (PKCδ) is an important signaling protein regulating B lymphocyte functions, but less is known about its effects in innate immunity and inflammatory gene expression. In the present study we investigated the role of PKCδ in the regulation of iNOS expression in inflammatory conditions. NO production and iNOS expression were induced by LPS or a combination of cytokines IFNγ, IL-1β, and TNFα. Down-regulation of PKCδ by siRNA and inhibition of PKCδ by rottlerin suppressed NO production and iNOS expression in activated macrophages and fibroblasts. PKCδ directed siRNA and inhibition of PKCδ by rottlerin suppressed also the expression of transcription factor IRF1, possibly through inhibition of STAT1 activation. Accordingly, down-regulation of IRF1 by siRNA reduced iNOS expression in response to inflammatory stimuli. In addition, inhibition of PKCδ showed anti-inflammatory effects in carrageenan induced paw inflammation in mice as did iNOS inhibitor L-NIL. These results suggest that inhibitors of PKCδ have anti-inflammatory effects in disease states complicated by enhanced NO production through iNOS pathway.
Collapse
Affiliation(s)
- Tiina Leppänen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Riku Korhonen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Mirka Laavola
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Riina Nieminen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Raimo K. Tuominen
- The Division of Pharmacology and Toxicology, University of Helsinki Faculty of Pharmacy, Helsinki, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
- * E-mail:
| |
Collapse
|
32
|
Vobruba V, Klimenko OV, Kobr J, Cerna O, Pokorna P, Mikula I, Hridel J, Brantova O, Martasek P. Effects of high tidal volume mechanical ventilation on production of cytokines, iNOS, and MIP-1β proteins in pigs. Exp Lung Res 2012; 39:1-8. [DOI: 10.3109/01902148.2012.737404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
D'Alessio FR, Tsushima K, Aggarwal NR, Mock JR, Eto Y, Garibaldi BT, Files DC, Avalos CR, Rodriguez JV, Waickman AT, Reddy SP, Pearse DB, Sidhaye VK, Hassoun PM, Crow MT, King LS. Resolution of experimental lung injury by monocyte-derived inducible nitric oxide synthase. THE JOURNAL OF IMMUNOLOGY 2012; 189:2234-45. [PMID: 22844117 DOI: 10.4049/jimmunol.1102606] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although early events in the pathogenesis of acute lung injury (ALI) have been defined, little is known about the mechanisms mediating resolution. To search for determinants of resolution, we exposed wild type (WT) mice to intratracheal LPS and assessed the response at intervals to day 10, when injury had resolved. Inducible NO synthase (iNOS) was significantly upregulated in the lung at day 4 after LPS. When iNOS-/- mice were exposed to intratracheal LPS, early lung injury was attenuated; however, recovery was markedly impaired compared with WT mice. iNOS-/- mice had increased mortality and sustained increases in markers of lung injury. Adoptive transfer of WT (iNOS+/+) bone marrow-derived monocytes or direct adenoviral gene delivery of iNOS into injured iNOS-/- mice restored resolution of ALI. Irradiated bone marrow chimeras confirmed the protective effects of myeloid-derived iNOS but not of epithelial iNOS. Alveolar macrophages exhibited sustained expression of cosignaling molecule CD86 in iNOS-/- mice compared with WT mice. Ab-mediated blockade of CD86 in iNOS-/- mice improved survival and enhanced resolution of lung inflammation. Our findings show that monocyte-derived iNOS plays a pivotal role in mediating resolution of ALI by modulating lung immune responses, thus facilitating clearance of alveolar inflammation and promoting lung repair.
Collapse
Affiliation(s)
- Franco R D'Alessio
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Suborov EV, Smetkin AA, Kondratiev TV, Valkov AY, Kuzkov VV, Kirov MY, Bjertnaes LJ. Inhibitor of neuronal nitric oxide synthase improves gas exchange in ventilator-induced lung injury after pneumonectomy. BMC Anesthesiol 2012; 12:10. [PMID: 22720843 PMCID: PMC3441363 DOI: 10.1186/1471-2253-12-10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 06/06/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Mechanical ventilation with high tidal volumes may cause ventilator-induced lung injury (VILI) and enhanced generation of nitric oxide (NO). We demonstrated in sheep that pneumonectomy followed by injurious ventilation promotes pulmonary edema. We wished both to test the hypothesis that neuronal NOS (nNOS), which is distributed in airway epithelial and neuronal tissues, could be involved in the pathogenesis of VILI and we also aimed at investigating the influence of an inhibitor of nNOS on the course of VILI after pneumonectomy. METHODS Anesthetized sheep underwent right pneumonectomy, mechanical ventilation with tidal volumes (VT) of 6 mL/kg and FiO2 0.5, and were subsequently randomized to a protectively ventilated group (PROTV; n = 8) keeping VT and FiO2 unchanged, respiratory rate (RR) 25 inflations/min and PEEP 4 cm H2O for the following 8 hrs; an injuriously ventilated group with VT of 12 mL/kg, zero end-expiratory pressure, and FiO2 and RR unchanged (INJV; n = 8) and a group, which additionally received the inhibitor of nNOS, 7-nitroindazole (NI) 1.0 mg/kg/h intravenously from 2 hours after the commencement of injurious ventilation (INJV + NI; n = 8). We assessed respiratory, hemodynamic and volumetric variables, including both the extravascular lung water index (EVLWI) and the pulmonary vascular permeability index (PVPI). We measured plasma nitrite/nitrate (NOx) levels and examined lung biopsies for lung injury score (LIS). RESULTS Both the injuriously ventilated groups demonstrated a 2-3-fold rise in EVLWI and PVPI, with no significant effects of NI. In the INJV group, gas exchange deteriorated in parallel with emerging respiratory acidosis, but administration of NI antagonized the derangement of oxygenation and the respiratory acidosis significantly. NOx displayed no significant changes and NI exerted no significant effect on LIS in the INJV group. CONCLUSION Inhibition of nNOS improved gas exchange, but did not reduce lung water extravasation following injurious ventilation after pneumonectomy in sheep.
Collapse
Affiliation(s)
- Evgeny V Suborov
- Anesthesia and Critical Care Research Group, Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
| | - Alexey A Smetkin
- Anesthesia and Critical Care Research Group, Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
- Department of Anesthesiology, Northern State Medical University, Arkhangelsk, Russian Federation
| | - Timofey V Kondratiev
- Anesthesia and Critical Care Research Group, Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
| | - Andrey Y Valkov
- Department of Clinical Pathology, University Hospital of Northern Norway, 9038, Tromsø, Norway
- Institute of Medical Biology, University of Tromsø, 9037, Tromsø, Norway
| | - Vsevolod V Kuzkov
- Anesthesia and Critical Care Research Group, Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
- Department of Anesthesiology, Northern State Medical University, Arkhangelsk, Russian Federation
| | - Mikhail Y Kirov
- Anesthesia and Critical Care Research Group, Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
- Department of Anesthesiology, Northern State Medical University, Arkhangelsk, Russian Federation
| | - Lars J Bjertnaes
- Anesthesia and Critical Care Research Group, Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
| |
Collapse
|
35
|
Li HH, Li Q, Liu P, Liu Y, Li J, Wasserloos K, Chao W, You M, Oury TD, Chhinder S, Hackam DJ, Billiar TR, Leikauf GD, Pitt BR, Zhang LM. WNT1-inducible signaling pathway protein 1 contributes to ventilator-induced lung injury. Am J Respir Cell Mol Biol 2012; 47:528-35. [PMID: 22700866 DOI: 10.1165/rcmb.2012-0127oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although strides have been made to reduce ventilator-induced lung injury (VILI), critically ill patients can vary in sensitivity to VILI, suggesting gene-environment interactions could contribute to individual susceptibility. This study sought to uncover candidate genes associated with VILI using a genome-wide approach followed by functional analysis of the leading candidate in mice. Alveolar-capillary permeability after high tidal volume (HTV) ventilation was measured in 23 mouse strains, and haplotype association mapping was performed. A locus was identified on chromosome 15 that contained ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (Asap1), adenylate cyclase 8 (Adcy8), WNT1-inducible signaling pathway protein 1 (Wisp1), and N-myc downstream regulated 1 (Ndrg1). Information from published studies guided initial assessment to Wisp1. After HTV, lung WISP1 protein increased in sensitive A/J mice, but was unchanged in resistant CBA/J mice. Anti-WISP1 antibody decreased HTV-induced alveolar-capillary permeability in sensitive A/J mice, and recombinant WISP1 protein increased HTV-induced alveolar-capillary permeability in resistant CBA/J mice. HTV-induced WISP1 coimmunoprecipitated with glycosylated Toll-like receptor (TLR) 4 in A/J lung homogenates. After HTV, WISP1 increased in strain-matched control lungs, but was unchanged in TLR4 gene-targeted lungs. In peritoneal macrophages from strain-matched mice, WISP1 augmented LPS-induced TNF release that was inhibited in macrophages from TLR4 or CD14 antigen gene-targeted mice, and was attenuated in macrophages from myeloid differentiation primary response gene 88 gene-targeted or TLR adaptor molecule 1 mutant mice. These findings support a role for WISP1 as an endogenous signal that acts through TLR4 signaling to increase alveolar-capillary permeability in VILI.
Collapse
Affiliation(s)
- Hui-Hua Li
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu D, Yan Z, Minshall RD, Schwartz DE, Chen Y, Hu G. Activation of calpains mediates early lung neutrophilic inflammation in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2012; 302:L370-L379. [PMID: 22140070 PMCID: PMC3289265 DOI: 10.1152/ajplung.00349.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/28/2011] [Indexed: 12/14/2022] Open
Abstract
Lung inflammatory responses in the absence of infection are considered to be one of primary mechanisms of ventilator-induced lung injury. Here, we determined the role of calpain in the pathogenesis of lung inflammation attributable to mechanical ventilation. Male C57BL/6J mice were subjected to high (28 ml/kg) tidal volume ventilation for 2 h in the absence and presence of calpain inhibitor I (10 mg/kg). To address the isoform-specific functions of calpain 1 and calpain 2 during mechanical ventilation, we utilized a liposome-based delivery system to introduce small interfering RNAs targeting each isoform in pulmonary vasculature in vivo. Mechanical ventilation with high tidal volume induced rapid (within minutes) and persistent calpain activation and lung inflammation as evidenced by neutrophil recruitment, production of TNF-α and IL-6, pulmonary vascular hyperpermeability, and lung edema formation. Pharmaceutical calpain inhibition significantly attenuated these inflammatory responses caused by lung hyperinflation. Depletion of calpain 1 or calpain 2 had a protective effect against ventilator-induced lung inflammatory responses. Inhibition of calpain activity by means of siRNA silencing or pharmacological inhibition also reduced endothelial nitric oxide (NO) synthase (NOS-3)-mediated NO production and subsequent ICAM-1 phosphorylation following high tidal volume ventilation. These results suggest that calpain activation mediates early lung inflammation during ventilator-induced lung injury via NOS-3/NO-dependent ICAM-1 phosphorylation and neutrophil recruitment. Inhibition of calpain activation may therefore provide a novel and promising strategy for the prevention and treatment of ventilator-induced lung injury.
Collapse
Affiliation(s)
- Dejie Liu
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, 60612, USA
| | | | | | | | | | | |
Collapse
|
37
|
Kvietys PR, Granger DN. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic Biol Med 2012; 52:556-592. [PMID: 22154653 PMCID: PMC3348846 DOI: 10.1016/j.freeradbiomed.2011.11.002] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 12/23/2022]
Abstract
Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation.
Collapse
Affiliation(s)
- Peter R Kvietys
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - D Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| |
Collapse
|
38
|
Baron RM, Choi AJS, Owen CA, Choi AMK. Genetically manipulated mouse models of lung disease: potential and pitfalls. Am J Physiol Lung Cell Mol Physiol 2011; 302:L485-97. [PMID: 22198907 DOI: 10.1152/ajplung.00085.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gene targeting in mice (transgenic and knockout) has provided investigators with an unparalleled armamentarium in recent decades to dissect the cellular and molecular basis of critical pathophysiological states. Fruitful information has been derived from studies using these genetically engineered mice with significant impact on our understanding, not only of specific biological processes spanning cell proliferation to cell death, but also of critical molecular events involved in the pathogenesis of human disease. This review will focus on the use of gene-targeted mice to study various models of lung disease including airways diseases such as asthma and chronic obstructive pulmonary disease, and parenchymal lung diseases including idiopathic pulmonary fibrosis, pulmonary hypertension, pneumonia, and acute lung injury. We will attempt to review the current technological approaches of generating gene-targeted mice and the enormous dataset derived from these studies, providing a template for lung investigators.
Collapse
Affiliation(s)
- Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
39
|
Fanelli V, Zhang H, Slutsky AS. Year in review 2010: Critical Care--Respirology. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:240. [PMID: 22146748 PMCID: PMC3388674 DOI: 10.1186/cc10541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this review, 21 original papers published last year in the respirology and critical care sections of Critical Care are classified and analyzed in the following categories: mechanical ventilation, lung recruitment maneuvers, and weaning; the role of positive end-expiratory pressure in acute lung injury models; animal models of ventilator-induced lung injury; diaphragmatic dysfunction; the role of mechanical ventilation in heart-lung interaction; and miscellanea.
Collapse
Affiliation(s)
- Vito Fanelli
- Keenan Research Centre at the Li Ka Shing Knowledge Institute of St, Michael's Hospital, Toronto, ON, Canada M5B 1W8
| | | | | |
Collapse
|
40
|
Bhaskar B, Fraser JF. Negative pressure pulmonary edema revisited: Pathophysiology and review of management. Saudi J Anaesth 2011; 5:308-13. [PMID: 21957413 PMCID: PMC3168351 DOI: 10.4103/1658-354x.84108] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Negative pressure pulmonary edema (NPPE) is a dangerous and potentially fatal condition with a multifactorial pathogenesis. Frequently, NPPE is a manifestation of upper airway obstruction, the large negative intrathoracic pressure generated by forced inspiration against an obstructed airway is thought to be the principal mechanism involved. This negative pressure leads to an increase in pulmonary vascular volume and pulmonary capillary transmural pressure, creating a risk of disruption of the alveolar-capillary membrane. The early detection of the signs of this syndrome is vital to the treatment and to patient outcome. The purpose of this review is to highlight the available literature on NPPE, while probing the pathophysiological mechanisms relevant in both the development of this condition and that involved in its resolution.
Collapse
Affiliation(s)
- Balu Bhaskar
- Critical Care Research Group, John B McCarthy Adult Intensive Care Service, The Prince Charles Hospital, Brisbane, Australia
| | | |
Collapse
|
41
|
Mabley J, Gordon S, Pacher P. Nicotine exerts an anti-inflammatory effect in a murine model of acute lung injury. Inflammation 2011; 34:231-237. [PMID: 20625922 PMCID: PMC3008511 DOI: 10.1007/s10753-010-9228-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Activation of the cholinergic anti-inflammatory pathway through direct activation of nicotinic acetylcholine receptors on immune cells can inhibit pro-inflammatory chemokine and cytokine release and thereby protect in a variety of inflammatory diseases. The aim of this study was to investigate whether nicotine treatment protected against acute lung inflammation. Mice challenged with intratracheal lipopolysaccharide (LPS, 50 μg) were treated with nicotine (0.2 or 0.4 mg/kg, sc). After 24 h, bronchoalveolar lavage fluid (BALF) was obtained to measure leukocyte infiltration, lung edema, and pro-inflammatory chemokine (MIP-1α, MIP-2, and eotaxin) and cytokine (IL-1, IL-6, and TNF-α) levels. Nicotine treatment reduced the LPS-mediated infiltration of leukocytes and edema as evidenced by decreased BALF inflammatory cells, myeloperoxidase, and protein. Nicotine also downregulated lung production of pro-inflammatory chemokines and cytokines. These data support the proposal that activation of the cholinergic anti-inflammatory pathway may represent a useful addition to the therapy of acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Jon Mabley
- School of Pharmacy & Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| | | | | |
Collapse
|
42
|
Kelleher ZT, Potts EN, Brahmajothi MV, Foster MW, Auten RL, Foster WM, Marshall HE. NOS2 regulation of LPS-induced airway inflammation via S-nitrosylation of NF-{kappa}B p65. Am J Physiol Lung Cell Mol Physiol 2011; 301:L327-33. [PMID: 21724860 DOI: 10.1152/ajplung.00463.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inducible nitric oxide synthase (NOS2) expression is increased in the airway epithelium in acute inflammatory disorders although the physiological impact remains unclear. We have previously shown that NOS2 inhibits NF-κB (p50-p65) activation in respiratory epithelial cells by inducing S-nitrosylation of the p65 monomer (SNO-p65). In addition, we have demonstrated that mouse lung SNO-p65 levels are acutely depleted in a lipopolysaccharide (LPS) model of lung injury and that augmenting SNO-p65 levels before LPS treatment results in decreased airway epithelial NF-κB activation, airway inflammation, and lung injury. We now show that aerosolized LPS induces NOS2 expression in the respiratory epithelium concomitant with an increase in lung SNO-p65 levels and a decrease in airway NF-κB activity. Genetic deletion of NOS2 results in an absence of SNO-p65 formation, persistent NF-κB activity in the respiratory epithelium, and prolonged airway inflammation. These results indicate that a primary function of LPS-induced NOS2 expression in the respiratory epithelium is to modulate the inflammatory response through deactivation of NF-κB via S-nitrosylation of p65, thereby counteracting the initial stimulus-coupled denitrosylation.
Collapse
Affiliation(s)
- Zachary T Kelleher
- Division of Pulmonary Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Rentsendorj O, Damarla M, Aggarwal NR, Choi JY, Johnston L, D'Alessio FR, Crow MT, Pearse DB. Knockdown of lung phosphodiesterase 2A attenuates alveolar inflammation and protein leak in a two-hit mouse model of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2011; 301:L161-70. [PMID: 21571906 DOI: 10.1152/ajplung.00073.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Phosphodiesterase 2A (PDE2A) is stimulated by cGMP to hydrolyze cAMP, a potent endothelial barrier-protective molecule. We previously found that lung PDE2A contributed to a mouse model of ventilator-induced lung injury (VILI). The purpose of the present study was to determine the contribution of PDE2A in a two-hit mouse model of 1-day intratracheal (IT) LPS followed by 4 h of 20 ml/kg tidal volume ventilation. Compared with IT water controls, LPS alone (3.75 μg/g body wt) increased lung PDE2A mRNA and protein expression by 6 h with a persistent increase in protein through day 4 before decreasing to control levels on days 6 and 10. Similar to the PDE2A time course, the peak in bronchoalveolar lavage (BAL) neutrophils, lactate dehydrogenase (LDH), and protein concentration also occurred on day 4 post-LPS. IT LPS (1 day) and VILI caused a threefold increase in lung PDE2A and inducible nitric oxide synthase (iNOS) and a 24-fold increase in BAL neutrophilia. Compared with a control adenovirus, PDE2A knockdown with an adenovirus expressing a short hairpin RNA administered IT 3 days before LPS/VILI effectively decreased lung PDE2A expression and significantly attenuated BAL neutrophilia, LDH, protein, and chemokine levels. PDE2A knockdown also reduced lung iNOS expression by 53%, increased lung cAMP by nearly twofold, and improved survival from 47 to 100%. We conclude that in a mouse model of LPS/VILI, a synergistic increase in lung PDE2A expression increased lung iNOS and alveolar inflammation and contributed significantly to the ensuing acute lung injury.
Collapse
Affiliation(s)
- Otgonchimeg Rentsendorj
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 2011; 44:725-38. [PMID: 21531958 PMCID: PMC7328339 DOI: 10.1165/rcmb.2009-0210st] [Citation(s) in RCA: 1438] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is well defined in humans, but there is no agreement as to the main features of acute lung injury in animal models. A Committee was organized to determine the main features that characterize ALI in animal models and to identify the most relevant methods to assess these features. We used a Delphi approach in which a series of questionnaires were distributed to a panel of experts in experimental lung injury. The Committee concluded that the main features of experimental ALI include histological evidence of tissue injury, alteration of the alveolar capillary barrier, presence of an inflammatory response, and evidence of physiological dysfunction; they recommended that, to determine if ALI has occurred, at least three of these four main features of ALI should be present. The Committee also identified key "very relevant" and "somewhat relevant" measurements for each of the main features of ALI and recommended the use of least one "very relevant" measurement and preferably one or two additional separate measurements to determine if a main feature of ALI is present. Finally, the Committee emphasized that not all of the measurements listed can or should be performed in every study, and that measurements not included in the list are by no means "irrelevant." Our list of features and measurements of ALI is intended as a guide for investigators, and ultimately investigators should choose the particular measurements that best suit the experimental questions being addressed as well as take into consideration any unique aspects of the experimental design.
Collapse
|
45
|
Abstract
Nitric oxide (NO) in combination with superoxide produces peroxynitrites and induces protein nitration, which participates in a number of chronic degenerative diseases. NO is produced at high levels in the human emphysematous lung, but its role in this disease is unknown. The aim of this study was to determine whether the NO synthases contribute to the development of elastase-induced emphysema in mice. nNOS, iNOS, and eNOS were quantified and immunolocalized in the lung after a tracheal instillation of elastase in mice. To determine whether eNOS or iNOS had a role in the development of emphysema, mice bearing a germline deletion of the eNOS and iNOS genes and mice treated with a pharmacological iNOS inhibitor were exposed to elastase. Protein nitration was determined by immunofluorescence, protein oxidation was determined by ELISA. Inflammation and MMP activity were quantified by cell counts, RT-PCR and zymography in bronchoalveolar lavage fluid. Cell proliferation was determined by Ki67 immunostaining. Emphysema was quantified morphometrically. iNOS and eNOS were diffusely upregulated in the lung of elastase-treated mice and a 12-fold increase in the number of 3-nitrotyrosine-expressing cells was observed. Over 80% of these cells were alveolar type 2 cells. In elastase-instilled mice, iNOS inactivation reduced protein nitration and increased protein oxidation but had no effect on inflammation, MMP activity, cell proliferation or the subsequent development of emphysema. eNOS inactivation had no effect. In conclusion, in the elastase-injured lung, iNOS mediates protein nitration in alveolar type 2 cells and alleviates oxidative injury. Neither eNOS nor iNOS are required for the development of elastase-induced emphysema.
Collapse
|
46
|
Glycyrrhizin Treatment Is Associated with Attenuation of Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression. J Surg Res 2011; 165:e29-35. [DOI: 10.1016/j.jss.2010.10.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/01/2010] [Accepted: 10/05/2010] [Indexed: 11/22/2022]
|
47
|
Fanelli V, Puntorieri V, Assenzio B, Martin EL, Elia V, Bosco M, Delsedime L, Del Sorbo L, Ferrari A, Italiano S, Ghigo A, Slutsky AS, Hirsch E, Ranieri VM. Pulmonary-derived phosphoinositide 3-kinase gamma (PI3Kγ) contributes to ventilator-induced lung injury and edema. Intensive Care Med 2010; 36:1935-45. [PMID: 20721532 DOI: 10.1007/s00134-010-2018-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 07/13/2010] [Indexed: 01/14/2023]
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) occurs in part by increased vascular permeability and impaired alveolar fluid clearance. Phosphoinositide 3-kinase gamma (PI3Kγ) is activated by mechanical stress, induces nitric oxide (NO) production, and participates in cyclic adenosine monophosphate (cAMP) hydrolysis, each of which contributes to alveolar edema. We hypothesized that lungs lacking PI3Kγ or treated with PI3Kγ inhibitors would be protected from ventilation-induced alveolar edema and lung injury. METHODS Using an isolated and perfused lung model, wild-type (WT) and PI3Kγ-knockout (KO) mice underwent negative-pressure cycled ventilation at either -25 cmH₂O and 0 cmH₂O positive end-expiratory pressure (PEEP) (HIGH STRESS) or -10 cmH₂O and -3 cmH₂O PEEP (LOW STRESS). RESULTS Compared with WT, PI3Kγ-knockout mice lungs were partially protected from VILI-induced derangement of respiratory mechanics (lung elastance) and edema formation [bronchoalveolar lavage (BAL) protein concentration, wet/dry ratio, and lung histology]. In PI3Kγ-knockout mice, VILI induced significantly less phosphorylation of protein kinase B (Akt), endothelial nitric oxide synthase (eNOS), production of nitrate and nitrotyrosine, as well as hydrolysis of cAMP, compared with wild-type animals. PI3Kγ wild-type lungs treated with AS605240, an inhibitor of PI3Kγ kinase activity, in combination with enoximone, an inhibitor of phosphodiesterase-3 (PDE3)-induced cAMP hydrolysis, were protected from VILI at levels comparable to knockout lungs. CONCLUSIONS Phosphoinositide 3-kinase gamma in resident lung cells mediates part of the alveolar edema induced by high-stress ventilation. This injury is mediated via altered Akt, eNOS, NO, and/or cAMP signaling. Anti-PI3Kγ therapy aimed at resident lung cells represents a potential pharmacologic target to mitigate VILI.
Collapse
Affiliation(s)
- Vito Fanelli
- Department of Anesthesia and Critical Care, Ospedale S. Giovanni Battista-Molinette, University of Torino, Corso Dogliotti 14, 10126, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ameredes BT. Translating airway biomarker information into practice: from theoretical science to applied medicine. Pulm Pharmacol Ther 2010; 24:187-92. [PMID: 20883807 DOI: 10.1016/j.pupt.2010.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 09/21/2010] [Indexed: 11/17/2022]
Abstract
Biomarkers ranging from simple to sophisticated have been used by man for many years of his existence. The main use for biomarkers over that time has been to assess relative states health and well-being, including the presence of functional limitations that presage debilitation and even death. In recent years, there has been intense interest in the development of non-invasive biomarkers to accurately predict disease state and progression, as well as potential drug therapy to assist in early mitigation of morbidity and possibly, forestall premature mortality. The development of biomarkers of airway status has followed a similar pattern, and in recent years, several biomarkers have followed the progression from basic and pre-clinical development, to clinical/translational application, and finally to potential clinical therapeutic application. Inherent in this progression is the refinement of technology that has allowed measurement of these biomarkers in a fast, convenient, and reliable fashion, such that they can be obtainable within a clinical practice setting, to allow the physician to make treatment decisions for diseases such as asthma and COPD. While the clinical therapeutic application of airway biomarkers such as exhaled nitric oxide and β(2)-adrenoreceptor Arg-16 polymorphism are still in their infancy, they have followed this common pathway of development, and now will require some years of application to demonstrate their true utility as predictive biomarkers of airway status and treatment response.
Collapse
Affiliation(s)
- Bill T Ameredes
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch, Medical Research Building 8.104, 301 University Blvd., Galveston, TX 77555-1083, USA.
| |
Collapse
|
49
|
Vaporidi K, Francis RC, Bloch KD, Zapol WM. Nitric oxide synthase 3 contributes to ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2010; 299:L150-9. [PMID: 20453164 PMCID: PMC2928605 DOI: 10.1152/ajplung.00341.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 05/06/2010] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide synthase (NOS) depletion or inhibition reduces ventilator-induced lung injury (VILI), but the responsible mechanisms remain incompletely defined. The aim of this study was to elucidate the role of endothelial NOS, NOS3, in the pathogenesis of VILI in an in vivo mouse model. Wild-type and NOS3-deficient mice were ventilated with high-tidal volume (HV(T); 40 ml/kg) for 4 h, with and without adding NO to the inhaled gas. Additional wild-type mice were pretreated with tetrahydrobiopterin and ascorbic acid, agents that can prevent NOS-generated superoxide production. Arterial blood gas tensions, histology, and lung mechanics were evaluated after 4 h of HV(T) ventilation. The concentration of protein, IgM, cytokines, malondialdehyde, and 8-isoprostane were measured in bronchoalveolar lavage fluid (BALF). Myeloperoxidase activity, total and oxidized glutathione levels, and NOS-derived superoxide production were measured in lung tissue homogenates. HV(T) ventilation induced VILI in wild-type mice, as reflected by decreased lung compliance, increased concentrations of protein and cytokines in BALF, and oxidative stress. All indices of VILI were ameliorated in NOS3-deficient mice. Augmenting pulmonary NO levels by breathing NO during mechanical ventilation did not increase lung injury in NOS3-deficient mice. HV(T) ventilation increased NOS-inhibitable superoxide production in lung extracts from wild-type mice but not in those from NOS3-deficient mice. Administration of tetrahydrobiopterin and ascorbic acid ameliorated VILI in wild-type mice. Our results indicate that NOS3 contributes to ventilator-induced lung injury via increased production of superoxide.
Collapse
Affiliation(s)
- Katerina Vaporidi
- Anesthesia Center for Critical Care Research, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston Massachusetts, USA
| | | | | | | |
Collapse
|
50
|
Ware LB, Summar M. Understanding the role of NOS-3 in ventilator-induced lung injury: don't take NO for an answer. Am J Physiol Lung Cell Mol Physiol 2010; 299:L147-9. [PMID: 20525916 DOI: 10.1152/ajplung.00179.2010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|