1
|
Moustapha A, Andreu P, Gonzalvez F, Fradin D, Tissier JP, Diolez P, Petit PX. Reappraisal of the fundamental mechanisms of the sHA14-1 molecule as a Bcl-2/Bcl-XL ligand in the context of anticancer therapy: A cell biological study. J Biol Methods 2024; 11:e99010040. [PMID: 39839094 PMCID: PMC11744068 DOI: 10.14440/jbm.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/26/2024] [Accepted: 11/05/2024] [Indexed: 01/23/2025] Open
Abstract
Background HA14-1 is a small-molecule, stable B-cell lymphoma 2 (Bcl-2) antagonist that promotes apoptosis in malignant cells through an incompletely-defined mechanism of action. Bcl-2 and related anti-apoptotic proteins, such as B-cell lymphoma-extra-large [Bcl-XL]), are predominantly localized to the outer mitochondrial membrane, where they regulate cell death pathways. However, the notably short half-life of HA14-1 in vitro limits its potential therapeutic application. To address this limitation, a more stable analog, ethyl-2-amino-6-phenyl-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (sHA14-1), was developed. Objective This study investigated the relationship between sHA14-1 and Bcl-2/Bcl-XL. The sHA14-1 molecule acts as a hormetic substance. Therefore, it is crucial to determine whether the hormetic zone corresponds to a putative therapeutic window, that is, the optimal concentration at which sHA14-1 selectively kills cancer cells overexpressing Bcl-2 or Bcl-XL while causing minimal damage to normal cells. Methods Using classical cell biology and flow cytometry, we examined the main signaling pathways involving Bcl-2 or Bcl-XL, and their modification in the presence of sHA14-1. Results We showed that sHA14-1 exerted a dual effect on mitochondria: (i) it sensitized cells to increased permeability, and (ii) it inhibited adenosine diphosphate-stimulated respiration and uncoupled respiration. At relatively low concentrations, sHA14-1 induced mitochondrial swelling, reminiscent of "pore opening" but with distinct characteristics. Over 30 μM, sHA14-1 caused mitochondrial transition depolarization independent of permeability transition and cell death that resembled secondary necrosis (i.e., occurring after maximal mitochondrial permeability) rather than apoptosis. The balance between apoptotic and necrotic cell death induced by sHA14-1 was also evaluated. Conclusion Our results suggested that sHA14-1 plays a multifunctional role, involving both mitochondria and the endoplasmic reticulum. Its actions are more complex than its originally intended role in targeting anti-apoptotic Bcl-2 family members, which may complicate its potential application as an anticancer therapy.
Collapse
Affiliation(s)
- Aoula Moustapha
- National Center for Scientific Research UMR 8003, Paris City University, SSPIN Neuroscience Institute, Saint-Germain Campus, Paris, Île de France 75006, France
- Department of Genetic and Development, INSERM U567/National Center for Scientific Research UMR 8104, Cochin Institut, Paris 750014, France
| | - Pauline Andreu
- Department of Genetic and Development, INSERM U567/National Center for Scientific Research UMR 8104, Cochin Institut, Paris 750014, France
| | - François Gonzalvez
- Department of Genetic and Development, INSERM U567/National Center for Scientific Research UMR 8104, Cochin Institut, Paris 750014, France
| | - Delphine Fradin
- Department of Genetic and Development, INSERM U567/National Center for Scientific Research UMR 8104, Cochin Institut, Paris 750014, France
| | - Jean-Pierre Tissier
- Laboratory of Process Engineering and Food Technologies, INRA Lille Research Center, Villeneuve D’Ascq Cedex, Hauts-de-France 59591, France
| | - Phillippe Diolez
- IHU Liryc, Bordeaux University Foundation, Pessac, Bordeaux, Nouvelle-Aquitaine 33000, France
- National Institute of Health and Medical Research, Cardio-Thoracic Research Center, Bordeaux, Nouvelle-Aquitaine 33000, France
| | - Patrice Xavier Petit
- National Center for Scientific Research UMR 8003, Paris City University, SSPIN Neuroscience Institute, Saint-Germain Campus, Paris, Île de France 75006, France
- Department of Genetic and Development, INSERM U567/National Center for Scientific Research UMR 8104, Cochin Institut, Paris 750014, France
| |
Collapse
|
2
|
Ren C, Hu C, Hu M, Wu Y, Yang Y, Lu F. Melatonin protects RPE cells from necroptosis and NLRP3 activation via promoting SERCA2-related intracellular Ca 2+ homeostasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156088. [PMID: 39341129 DOI: 10.1016/j.phymed.2024.156088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Melatonin is an antioxidant that also has anti-inflammatory effects. It has been reported to delay the progression of age-related macular degeneration (AMD), however, the mechanism has not been fully recognized. PURPOSE The aim of the present study was to investigate the effects of melatonin on sodium iodate (SI)-induced retinal degeneration and elucidate the specific mechanisms, then, provide novel targets in AMD treatment. METHODS Retinal degeneration mouse model and in vitro retinal pigment epithelium (RPE) death model were established by SI treatment. Melatonin was administrated intraperitoneally at a concentration of 20, 40 or 80 mg/kg for in vivo study or treated at 48 h before SI treatment. To confirm the therapeutic effects of melatonin on mouse, the retinal structure and visual function were evaluated. The specific cell death rates were determined by CCK-8 assay, PI staining and protein level of RIPK3. The cytosolic or mitochondrial calcium levels were determined by Fluo-4AM or Rhod-2AM staining. Mitochondrial functions including mitochondrial dynamics, mitochondrial membrane potential, or mitochondrial permeability pore opening were evaluated. The proteins involved in endoplasmic reticulum (ER) stress were measured by western blot assay while the genes expression in calcium signaling pathway were measured by RT-qPCR. RESULTS We show that melatonin protects RPE cells from necroptosis and NLRP3 inflammasome activation induced by SI. Mechanistically, melatonin suppresses ER stress and intracellular calcium overload triggered by SI through restoring the function of SERCA2. Silencing of SERCA2 or blocking of melatonin receptors inhibit the protective effects of melatonin. Melatonin reduces mitochondrial Ca2+ levels and restores mitochondrial membrane potential. Constant mitochondrial Ca2+ overload directly promote cell necroptosis through mitochondrial fission. Inhibition of mitochondrial fission by Mdivi-1 prevent necroptosis induced by SI without altering the level of mitochondrial Ca2+. CONCLUSIONS The results confirmed that melatonin protects RPE cells from SI-induced injury by regulates MT2/SERCA2/Ca2+ axis. This study highlighted the potential of melatonin in the treatment of AMD and elucidated the mechanism and signaling pathway that mediate the protective effects.
Collapse
Affiliation(s)
- Chengda Ren
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| | - Chengyu Hu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China.
| | - Ming Hu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Yang Yang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, PR China.
| | - Fang Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
3
|
De Lorenzis E, Wasson CW, Del Galdo F. Alveolar epithelial-to-mesenchymal transition in scleroderma interstitial lung disease: Technical challenges, available evidence and therapeutic perspectives. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2024; 9:7-15. [PMID: 38333528 PMCID: PMC10848925 DOI: 10.1177/23971983231181727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/27/2023] [Indexed: 02/10/2024]
Abstract
The alveolar epithelial-to-mesenchymal transition is the process of transformation of differentiated epithelial cells into mesenchymal-like cells through functional and morphological changes. A partial epithelial-to-mesenchymal transition process can indirectly contribute to lung fibrosis through a paracrine stimulation of the surrounding cells, while a finalized process could also directly enhance the pool of pulmonary fibroblasts and the extracellular matrix deposition. The direct demonstration of alveolar epithelial-to-mesenchymal transition in scleroderma-related interstitial lung disease is challenging due to technical pitfalls and the limited availability of lung tissue samples. Similarly, any inference on epithelial-to-mesenchymal transition occurrence driven from preclinical models should consider the limitations of cell cultures and animal models. Notwithstanding, while the occurrence or the relevance of this phenomenon in scleroderma-related interstitial lung disease have not been directly and conclusively demonstrated until now, pre-clinical and clinical evidence supports the potential role of epithelial-to-mesenchymal transition in the development and progression of lung fibrosis. Evidence consolidation on scleroderma-related interstitial lung disease epithelial-to-mesenchymal transition would pave the way for new therapeutic opportunities to prevent, slow or even reverse lung fibrosis, drawing lessons from current research lines in neoplastic epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Enrico De Lorenzis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
4
|
Huang YP, Huang WW, Tsai KF, Shiao LR, Yang ZH, Tseng SY, Lin YH, Chen CY, Chan P, Leung YM. CDN1163, a SERCA activator, causes intracellular Ca 2+ leak, mitochondrial hyperpolarization and cell cycle arrest in mouse neuronal N2A cells. Neurotoxicology 2023; 98:9-15. [PMID: 37429421 DOI: 10.1016/j.neuro.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/11/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
OBJECTIVE Activity or expression of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) is diminished in some disease states such as cardiac failure and diabetes mellitus. A newly developed activator of SERCA, CDN1163, reportedly rescued or alleviated pathological conditions attributed to dysfunctional SERCA. We examined whether CDN1163 could relieve mouse neuronal N2A cell growth inhibition caused by cyclopiazonic acid (CPA, SERCA inhibitor). We also examined how CDN1163 affected cytosolic Ca2+, mitochondrial Ca2+ and mitochondrial membrane potential. METHODS Cell viability was measured by MTT assay and trypan blue exclusion test. Cytosolic Ca2+, mitochondrial Ca2+ and mitochondrial membrane potential were measured using fura 2, Rhod-2 and JC-1, respectively, as fluorescent probes. RESULTS CDN1163 (10 μM) itself suppressed cell proliferation, and did not alleviate CPA's inhibitory effect (and vice versa). Cell cycle was arrested at the G1 phase after CDN1163 treatment. CDN1163 treatment caused a slow yet persistent cytosolic [Ca2+] elevation partly due to Ca2+ release from an internal store other than the CPA-sensitive endoplasmic reticulum (ER). Treatment with CDN1163 for 3 h raised mitochondrial Ca2+ level and such increase was suppressed by MCU-i4 (an inhibitor of mitochondria Ca2+ uniporter, MCU), suggesting Ca2+ entered the mitochondrial matrix through MCU. Treatment of cells with CDN1163 up to 2 days resulted in mitochondrial hyperpolarization. CONCLUSION CDN1163 caused internal Ca2+ leak, cytosolic Ca2+ overload, mitochondrial Ca2+ elevation and hyperpolarization, cell cycle arrest and cell growth inhibition.
Collapse
Affiliation(s)
- Yi-Ping Huang
- Department of Physiology, China Medical University, Taichung 40402, Taiwan
| | - Wen-Wei Huang
- Department of Internal Medicine, Gastroenterology and Hepatology Section, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Kun-Feng Tsai
- Department of Internal Medicine, Gastroenterology and Hepatology Section, An Nan Hospital, China Medical University, Tainan, Taiwan; Department of Medical Sciences Industry, Chang Jung Christian University, Tainan, Taiwan
| | - Lian-Ru Shiao
- Department of Physiology, China Medical University, Taichung 40402, Taiwan
| | - Zih-He Yang
- Department of Physiology, China Medical University, Taichung 40402, Taiwan
| | - Shao-Yun Tseng
- Department of Physiology, China Medical University, Taichung 40402, Taiwan
| | - Yu-Hsien Lin
- Department of Physiology, China Medical University, Taichung 40402, Taiwan
| | - Cing-Yu Chen
- Department of Cosmetic Science, Providence University, Taichung, Taiwan; School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Paul Chan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yuk-Man Leung
- Department of Physiology, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
5
|
Suppression of Ca 2+ oscillations by SERCA inhibition in human alveolar type 2 A549 cells: rescue by ochratoxin A but not CDN1163. Life Sci 2022; 308:120913. [PMID: 36037871 DOI: 10.1016/j.lfs.2022.120913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
AIMS Lung type 2 alveolar cells, by secreting surfactant to lower surface tension, contribute to enhance lung compliance. Stretching, as a result of lung expansion, triggers type 1 alveolar cell to release ATP, which in turn stimulates Ca2+-dependent surfactant secretion by neighboring type 2 cells. In this report, we studied ATP-triggered Ca2+ signaling in human alveolar type 2 A549 cells. MAIN METHODS Ca2+ signaling was examined using microfluorimetric measurement with fura-2 as fluorescent dye. KEY FINDINGS Ca2+ oscillations triggered by ATP relied on inositol 1,4,5-trisphosphate-induced Ca2+ release and store-operated Ca2+ entry. Pathological conditions such as influenza virus infection and diabetes reportedly inhibit sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA). We found that a very mild inhibition of SERCA by cyclopiazonic acid (CPA) sufficed to decrease Ca2+ oscillation frequency and the percentage of cells exhibiting Ca2+ oscillations. Ochratoxin A (OTA), an activator of SERCA, could prevent the suppressive effects by CPA. Inhibition of SERCA by hydrogen peroxide also suppressed Ca2+ oscillations. Interestingly, hydrogen peroxide-induced inhibition was prevented by OTA but aggravated by CDN1163, an allosteric activator of SERCA. CDN1163 also had an untoward effect of releasing intracellular Ca2+. SIGNIFICANCE Different modes of activation of SERCA may determine the outcome of rescue of Ca2+ oscillations in case of SERCA inhibition in alveolar type 2 cells.
Collapse
|
6
|
Blayac M, Coll P, Urbach V, Fanen P, Epaud R, Lanone S. The Impact of Air Pollution on the Course of Cystic Fibrosis: A Review. Front Physiol 2022; 13:908230. [PMID: 35721541 PMCID: PMC9202997 DOI: 10.3389/fphys.2022.908230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal and widespread autosomal recessive disorder affecting over 80,000 people worldwide. It is caused by mutations of the CFTR gene, which encodes an epithelial anion channel. CF is characterized by a great phenotypic variability which is currently not fully understood. Although CF is genetically determined, the course of the disease might also depend on multiple other factors. Air pollution, whose effects on health and contribution to respiratory diseases are well established, is one environmental factor suspected to modulate the disease severity and influence the lung phenotype of CF patients. This is of particular interest as pulmonary failure is the primary cause of death in CF. The present review discusses current knowledge on the impact of air pollution on CF pathogenesis and aims to explore the underlying cellular and biological mechanisms involved in these effects.
Collapse
Affiliation(s)
- Marion Blayac
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Patrice Coll
- Université Paris Cité and Univ Paris Est Créteil, CNRS, LISA, Paris, France
| | | | - Pascale Fanen
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- AP-HP, Hopital Henri-Mondor, Service Génétique, Creteil, France
| | - Ralph Epaud
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- Centre Hospitalier Intercommunal, Centre des Maladies Respiratoires Rares (RespiRare®)-CRCM, Creteil, France
| | - Sophie Lanone
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| |
Collapse
|
7
|
Jheng YT, Putri DU, Chuang HC, Lee KY, Chou HC, Wang SY, Han CL. Prolonged exposure to traffic-related particulate matter and gaseous pollutants implicate distinct molecular mechanisms of lung injury in rats. Part Fibre Toxicol 2021; 18:24. [PMID: 34172050 PMCID: PMC8235648 DOI: 10.1186/s12989-021-00417-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exposure to air pollution exerts direct effects on respiratory organs; however, molecular alterations underlying air pollution-induced pulmonary injury remain unclear. In this study, we investigated the effect of air pollution on the lung tissues of Sprague-Dawley rats with whole-body exposure to traffic-related PM1 (particulate matter < 1 μm in aerodynamic diameter) pollutants and compared it with that in rats exposed to high-efficiency particulate air-filtered gaseous pollutants and clean air controls for 3 and 6 months. Lung function and histological examinations were performed along with quantitative proteomics analysis and functional validation. RESULTS Rats in the 6-month PM1-exposed group exhibited a significant decline in lung function, as determined by decreased FEF25-75% and FEV20/FVC; however, histological analysis revealed earlier lung damage, as evidenced by increased congestion and macrophage infiltration in 3-month PM1-exposed rat lungs. The lung tissue proteomics analysis identified 2673 proteins that highlighted the differential dysregulation of proteins involved in oxidative stress, cellular metabolism, calcium signalling, inflammatory responses, and actin dynamics under exposures to PM1 and gaseous pollutants. The presence of PM1 specifically enhanced oxidative stress and inflammatory reactions under subchronic exposure to traffic-related PM1 and suppressed glucose metabolism and actin cytoskeleton signalling. These factors might lead to repair failure and thus to lung function decline after chronic exposure to traffic-related PM1. A detailed pathogenic mechanism was proposed to depict temporal and dynamic molecular regulations associated with PM1- and gaseous pollutants-induced lung injury. CONCLUSION This study explored several potential molecular features associated with early lung damage in response to traffic-related air pollution, which might be used to screen individuals more susceptible to air pollution.
Collapse
Affiliation(s)
- Yu-Teng Jheng
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Mailing address: 250 Wuxing St, Taipei, 11031, Taiwan
| | - Denise Utami Putri
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - San-Yuan Wang
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Mailing address: 250 Wuxing St, Taipei, 11031, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Mailing address: 250 Wuxing St, Taipei, 11031, Taiwan.
| |
Collapse
|
8
|
Kulkarni HS, Elvington ML, Perng YC, Liszewski MK, Byers DE, Farkouh C, Yusen RD, Lenschow DJ, Brody SL, Atkinson JP. Intracellular C3 Protects Human Airway Epithelial Cells from Stress-associated Cell Death. Am J Respir Cell Mol Biol 2019; 60:144-157. [PMID: 30156437 DOI: 10.1165/rcmb.2017-0405oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The complement system provides host defense against pathogens and environmental stress. C3, the central component of complement, is present in the blood and increases in BAL fluid after injury. We recently discovered that C3 is taken up by certain cell types and cleaved intracellularly to C3a and C3b. C3a is required for CD4+ T-cell survival. These observations made us question whether complement operates at environmental interfaces, particularly in the respiratory tract. We found that airway epithelial cells (AECs, represented by both primary human tracheobronchial cells and BEAS-2B [cell line]) cultured in C3-free media were unique from other cell types in that they contained large intracellular stores of de novo synthesized C3. A fraction of this protein reduced ("storage form") but the remainder did not, consistent with it being pro-C3 ("precursor form"). These two forms of intracellular C3 were absent in CRISPR knockout-induced C3-deficient AECs and decreased with the use of C3 siRNA, indicating endogenous generation. Proinflammatory cytokine exposure increased both stored and secreted forms of C3. Furthermore, AECs took up C3 from exogenous sources, which mitigated stress-associated cell death (e.g., from oxidative stress or starvation). C3 stores were notably increased within AECs in lung tissues from individuals with different end-stage lung diseases. Thus, at-risk cells furnish C3 through biosynthesis and/or uptake to increase locally available C3 during inflammation, while intracellularly, these stores protect against certain inducers of cell death. These results establish the relevance of intracellular C3 to airway epithelial biology and suggest novel pathways for complement-mediated host protection in the airway.
Collapse
Affiliation(s)
- Hrishikesh S Kulkarni
- 1 Division of Pulmonary and Critical Care Medicine, and.,2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Michelle L Elvington
- 2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Yi-Chieh Perng
- 2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - M Kathryn Liszewski
- 2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Derek E Byers
- 1 Division of Pulmonary and Critical Care Medicine, and
| | - Christopher Farkouh
- 2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Roger D Yusen
- 1 Division of Pulmonary and Critical Care Medicine, and
| | - Deborah J Lenschow
- 2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | | - John P Atkinson
- 2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
9
|
Ahmad S, Zafar I, Mariappan N, Husain M, Wei CC, Vetal N, Eltoum IA, Ahmad A. Acute pulmonary effects of aerosolized nicotine. Am J Physiol Lung Cell Mol Physiol 2018; 316:L94-L104. [PMID: 30358437 DOI: 10.1152/ajplung.00564.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nicotine is a highly addictive principal component of both tobacco and electronic cigarette that is readily absorbed in blood. Nicotine-containing electronic cigarettes are promoted as a safe alternative to cigarette smoking. However, the isolated effects of inhaled nicotine are largely unknown. Here we report a novel rat model of aerosolized nicotine with a particle size (~1 μm) in the respirable diameter range. Acute nicotine inhalation caused increased pulmonary edema and lung injury as measured by enhanced bronchoalveolar lavage fluid protein, IgM, lung wet-to-dry weight ratio, and high-mobility group box 1 (HMGB1) protein and decreased lung E-cadherin protein. Immunohistochemical analysis revealed congested blood vessels and increased neutrophil infiltration. Lung myeloperoxidase mRNA and protein increased in the nicotine-exposed rats. Complete blood counts also showed an increase in neutrophils, white blood cells, eosinophils, and basophils. Arterial blood gas measurements showed an increase in lactate. Lungs of nicotine-inhaling animals revealed increased mRNA levels of IL-1A and CXCL1. There was also an increase in IL-1α protein. In in vitro air-liquid interface cultures of airway epithelial cells, there was a dose dependent increase in HMGB1 release with nicotine treatment. Air-liquid cultures exposed to nicotine also resulted in a dose-dependent loss of barrier as measured by transepithelial electrical resistance and a decrease in E-cadherin expression. Nicotine also caused a dose-dependent increase in epithelial cell death and an increase in caspase-3/7 activities. These results show that the nicotine content of electronic cigarettes may have adverse pulmonary and systemic effects.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Iram Zafar
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Nithya Mariappan
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Maroof Husain
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Chih-Chang Wei
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Nilam Vetal
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Isam A Eltoum
- Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
10
|
Bower DV, Lansdale N, Navarro S, Truong TV, Bower DJ, Featherstone NC, Connell MG, Al Alam D, Frey MR, Trinh LA, Fernandez GE, Warburton D, Fraser SE, Bennett D, Jesudason EC. SERCA directs cell migration and branching across species and germ layers. Biol Open 2017; 6:1458-1471. [PMID: 28821490 PMCID: PMC5665464 DOI: 10.1242/bio.026039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/14/2017] [Indexed: 12/24/2022] Open
Abstract
Branching morphogenesis underlies organogenesis in vertebrates and invertebrates, yet is incompletely understood. Here, we show that the sarco-endoplasmic reticulum Ca2+ reuptake pump (SERCA) directs budding across germ layers and species. Clonal knockdown demonstrated a cell-autonomous role for SERCA in Drosophila air sac budding. Live imaging of Drosophila tracheogenesis revealed elevated Ca2+ levels in migratory tip cells as they form branches. SERCA blockade abolished this Ca2+ differential, aborting both cell migration and new branching. Activating protein kinase C (PKC) rescued Ca2+ in tip cells and restored cell migration and branching. Likewise, inhibiting SERCA abolished mammalian epithelial budding, PKC activation rescued budding, while morphogens did not. Mesoderm (zebrafish angiogenesis) and ectoderm (Drosophila nervous system) behaved similarly, suggesting a conserved requirement for cell-autonomous Ca2+ signaling, established by SERCA, in iterative budding.
Collapse
Affiliation(s)
- Danielle V Bower
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland, and the Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Nick Lansdale
- Department of Biochemistry & Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Division of Child Health, Institute of Translational Medicine, University of Liverpool, Liverpool L12 2AP, UK
| | - Sonia Navarro
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Craniofacial Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Thai V Truong
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Biological Sciences and Molecular and Computational Biology, Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Dan J Bower
- Center for Space and Habitability, University of Bern, 3012 Bern, Switzerland
| | - Neil C Featherstone
- Department of Biochemistry & Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Marilyn G Connell
- Department of Biochemistry & Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Denise Al Alam
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Mark R Frey
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Le A Trinh
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Biological Sciences and Molecular and Computational Biology, Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - G Esteban Fernandez
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - David Warburton
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Scott E Fraser
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Biological Sciences and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Biological Sciences and Molecular and Computational Biology, Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Daimark Bennett
- Department of Biochemistry & Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Edwin C Jesudason
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- NHS Lothian, Edinburgh, EH14 1TY, UK
| |
Collapse
|
11
|
Ghosh M, Ahmad S, White CW, Reynolds SD. Transplantation of Airway Epithelial Stem/Progenitor Cells: A Future for Cell-Based Therapy. Am J Respir Cell Mol Biol 2017; 56:1-10. [PMID: 27632244 DOI: 10.1165/rcmb.2016-0181ma] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cell therapy has the potential to cure disease through replacement of malfunctioning cells. Although the tissue stem cell (TSC) is thought to be the optimal therapeutic cell, transplantation of TSC/progenitor cell mixtures has saved lives. We previously purified the mouse tracheobronchial epithelial TSCs and reported that in vitro amplification generated numerous TSCs. However, these cultures also contained TSC-derived progenitor cells and TSC repurification by flow cytometry compromised TSC self-renewal. These limitations prompted us to determine if a TSC/progenitor cell mixture would repopulate the injured airway epithelium. We developed a cell transplantation protocol and demonstrate that transplanted mouse and human tracheobronchial epithelial TSC/progenitor cell mixtures are 20-25% of airway epithelial cells, actively contribute to epithelial repair, and persist for at least 43 days. At 2 weeks after transplantation, TSCs/progenitor cells differentiated into the three major epithelial cell types: basal, secretory, and ciliated. We conclude that cell therapy that uses adult tracheobronchial TSCs/progenitor cells is an effective therapeutic option.
Collapse
Affiliation(s)
- Moumita Ghosh
- 1 Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Shama Ahmad
- 2 Department of Anaesthesiology and Perioperative Medicine, University of Alabama, Birmingham, Alabama
| | - Carl W White
- 3 Department of Pediatric Pulmonology, University of Colorado, Aurora, Colorado; and
| | - Susan D Reynolds
- 4 Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
12
|
Bcl-2 proteins and calcium signaling: complexity beneath the surface. Oncogene 2016; 35:5079-92. [DOI: 10.1038/onc.2016.31] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022]
|
13
|
Ahmad S, Ahmad A, Hendry-Hofer TB, Loader JE, Claycomb WC, Mozziconacci O, Schöneich C, Reisdorph N, Powell RL, Chandler JD, Day BJ, Veress LA, White CW. Sarcoendoplasmic reticulum Ca(2+) ATPase. A critical target in chlorine inhalation-induced cardiotoxicity. Am J Respir Cell Mol Biol 2016; 52:492-502. [PMID: 25188881 DOI: 10.1165/rcmb.2014-0005oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation-induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute high-concentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by genetic SERCA2 overexpression. We also investigated a U.S. Food and Drug Administration-approved drug, ranolazine, used in treatment of cardiac diseases, and previously shown to stabilize SERCA in animal models of ischemia-reperfusion. Pretreatment with ranolazine or istaroxime, another SERCA activator, prevented chlorine-induced cardiomyocyte death. Further investigation of responsible mechanisms showed that ranolazine- and istaroxime-treated cells preserved mitochondrial membrane potential and ATP after chlorine exposure. Thus, these studies demonstrate a novel critical target for chlorine in the heart and identify potentially useful therapies to mitigate toxicity of acute chlorine exposure.
Collapse
Affiliation(s)
- Shama Ahmad
- 1 Pediatric Airway Research Center, Department of Pediatrics, University of Colorado, Denver, Aurora, Colorado
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Regulation of the ryanodine receptor by anti-apoptotic Bcl-2 is independent of its BH3-domain-binding properties. Biochem Biophys Res Commun 2015; 463:174-9. [DOI: 10.1016/j.bbrc.2015.04.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 04/28/2015] [Indexed: 11/21/2022]
|
15
|
Fan H, Shen YX, Yuan YF. Expression and prognostic roles of TRPV5 and TRPV6 in non-small cell lung cancer after curative resection. Asian Pac J Cancer Prev 2015; 15:2559-63. [PMID: 24761864 DOI: 10.7314/apjcp.2014.15.6.2559] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE We investigated the expression of epithelial Ca2+ channel transient receptor potential vanilloid (TRPV) 5 and 6 in non-small-cell lung cancer (NSCLC) and assessed their prognostic role in patients after surgical resection. MATERIALS AND METHODS From January 2008 to January 2009, 145 patients who had undergone surgical resection of NSCLCs were enrolled in the study. Patient clinical characteristics were retrospectively reviewed. Fresh tumor samples as well as peritumor tissues were analyzed for TRPV5/6 expression using immune-histochemistry (IHC) and quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). Patients were grouped based on their TRPV5 and TRPV6 levels in the tumor tissues, followed up after surgery, and statistically analyzed to examine the prognostic roles of TRPV5 and TRPV6 on patients' survival after surgical resection of NSCLCs. RESULTS Using IHC, among the 145 patients who had undergone surgical resection of NSCLCs, strong protein expression (grade ≥ 2) of TRPV5 and TRPV6 was observed in a lower percentage of primary tumor tissues than in non-tumor tissues of same patients. Similar findings were obtained with the RT-PCR test for mRNA levels. Decreased overall mRNA levels of TRPV5 and TRPV6 were associated with a worse overall survival rate (p=0.004 and p=0.003 respectively) and shorter recurrence-free survival (p?0.001 and p?0.001 respectively). The combining effect of TRPV5 and TRPV6 on survival was further investigated using multivariate analysis. The results showed that a combination of low expression of TRPV5 and TRPV6 could be an independent predictor of poor recurrence-free survival (p=0.002). CONCLUSIONS Decreased expression of TRPV5/6 in tumor tissues was observed in NSCLC patients and was associated with shorter median survival time after surgical resection. Combined expression of TRPV5 and TRPV6 in tumor tissues demonstrated promising prognostic value in NSCLC patients.
Collapse
Affiliation(s)
- Hong Fan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Fudan, PR China E-mail :
| | | | | |
Collapse
|
16
|
Ahmad S, Ahmad A, Neeves KB, Hendry-Hofer T, Loader JE, White CW, Veress L. In vitro cell culture model for toxic inhaled chemical testing. J Vis Exp 2014. [PMID: 24837339 DOI: 10.3791/51539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cell cultures are indispensable to develop and study efficacy of therapeutic agents, prior to their use in animal models. We have the unique ability to model well differentiated human airway epithelium and heart muscle cells. This could be an invaluable tool to study the deleterious effects of toxic inhaled chemicals, such as chlorine, that can normally interact with the cell surfaces, and form various byproducts upon reacting with water, and limiting their effects in submerged cultures. Our model using well differentiated human airway epithelial cell cultures at air-liqiuid interface circumvents this limitation as well as provides an opportunity to evaluate critical mechanisms of toxicity of potential poisonous inhaled chemicals. We describe enhanced loss of membrane integrity, caspase release and death upon toxic inhaled chemical such as chlorine exposure. In this article, we propose methods to model chlorine exposure in mammalian heart and airway epithelial cells in culture and simple tests to evaluate its effect on these cell types.
Collapse
Affiliation(s)
- Shama Ahmad
- Pediatric Airway Research Center, Department of Pediatrics, University of Colorado;
| | - Aftab Ahmad
- Pediatric Airway Research Center, Department of Pediatrics, University of Colorado
| | - Keith B Neeves
- Department of Chemical and Biological Engineering, Colorado School of Mines
| | - Tara Hendry-Hofer
- Pediatric Airway Research Center, Department of Pediatrics, University of Colorado
| | - Joan E Loader
- Pediatric Airway Research Center, Department of Pediatrics, University of Colorado
| | - Carl W White
- Pediatric Airway Research Center, Department of Pediatrics, University of Colorado
| | - Livia Veress
- Pediatric Airway Research Center, Department of Pediatrics, University of Colorado
| |
Collapse
|
17
|
Kilduff CE, Counter MJ, Thomas GA, Harrison NK, Hope-Gill BD. Effect of acid suppression therapy on gastroesophageal reflux and cough in idiopathic pulmonary fibrosis: an intervention study. COUGH 2014; 10:4. [PMID: 24876887 PMCID: PMC4038107 DOI: 10.1186/1745-9974-10-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/04/2014] [Indexed: 01/24/2023]
Abstract
Background Chronic cough affects more than 70 percent of patients with Idiopathic Pulmonary Fibrosis and causes significant morbidity. Gastroesophageal reflux is the cause of some cases of chronic cough; and also has a postulated role in the aetiology of Idiopathic Pulmonary Fibrosis. A high prevalence of acid; and more recently non-acid, reflux has been observed in Idiopathic Pulmonary Fibrosis cohorts. Therefore, gastroesophageal reflux may be implicated in the pathogenesis of cough in Idiopathic Pulmonary Fibrosis. Methods Eighteen subjects with Idiopathic Pulmonary Fibrosis underwent 24-hour oesophageal impedance and cough count monitoring after the careful exclusion of causes of chronic cough other than gastroesophageal reflux. All 18 were then treated with high dose acid suppression therapies. Fourteen subjects underwent repeat 24-hour oesophageal impedance and cough count monitoring after eight weeks. Results Total reflux and acid reflux frequencies were within the normal range in the majority of this cohort. The frequencies of non-acid and proximal reflux events were above the normal range. Following high dose acid suppression therapy there was a significant decrease in the number of acid reflux events (p = 0.02), but an increase in the number of non-acid reflux events (p = 0.01). There was no change in cough frequency (p = 0.70). Conclusions This study confirms that non-acid reflux is prevalent; and that proximal oesophageal reflux occurs in the majority, of subjects with Idiopathic Pulmonary Fibrosis. It is the first study to investigate the effect of acid suppression therapy on gastroesophageal reflux and cough in patients with Idiopathic Pulmonary Fibrosis. The observation that cough frequency does not improve despite verifiable reductions in oesophageal acid exposure challenges the role of acid reflux in Idiopathic Pulmonary Fibrosis associated cough. The finding that non-acid reflux is increased following the use of acid suppression therapies cautions against the widespread use of acid suppression in patients with Idiopathic Pulmonary Fibrosis given the potential role for non-acid reflux in the pathogenesis of cough and Idiopathic Pulmonary Fibrosis itself. Study registration The study was registered with the Cardiff and Vale University Local Health Board Research and Development Committee (09/CMC/4619) and the South East Wales Ethics Committee (09/WSE04/57).
Collapse
Affiliation(s)
- Claire E Kilduff
- Department of Respiratory Medicine, Cardiff and Vale University Health Board, Cardiff, UK
| | - Melanie J Counter
- Department of Gastrointestinal Medicine, Cardiff and Vale University Health Board, Cardiff, UK
| | - Gareth A Thomas
- Department of Gastrointestinal Medicine, Cardiff and Vale University Health Board, Cardiff, UK
| | | | - Benjamin D Hope-Gill
- Department of Respiratory Medicine, Cardiff and Vale University Health Board, Cardiff, UK
| |
Collapse
|
18
|
Ghosh M, Ahmad S, Jian A, Li B, Smith RW, Helm KM, Seibold MA, Groshong SD, White CW, Reynolds SD. Human tracheobronchial basal cells. Normal versus remodeling/repairing phenotypes in vivo and in vitro. Am J Respir Cell Mol Biol 2014; 49:1127-34. [PMID: 23927678 DOI: 10.1165/rcmb.2013-0049oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human tracheobronchial epithelial (TBE) basal cells (BCs) function as progenitors in normal tissue. However, mechanistic studies are typically performed in vitro and frequently use BCs recovered from patients who die of nonrespiratory disease. It is not known whether the cadaveric epithelium (1) is undergoing homeostatic remodeling and/or repair, or (2) yields BC clones that represent homeostatic processes identified in tissue. We sought to compare the phenotype of TBE-BCs with that of BCs cultured under optimal clone-forming conditions. TBE pathology was evaluated using quantitative histomorphometry. The cultured BC phenotype was determined by fluorescence-activated cell sorter analysis. Clone organization and cell phenotype were determined by immunostaining. The cadaveric TBE is 20% normal. In these regions, BCs are keratin (K)-5(+) and tetraspanin CD151(+), and demonstrate a low mitotic index. In contrast, 80% of the cadaveric TBE exhibits homeostatic remodeling/repair processes. In these regions, BCs are K5(+)/K14(+), and a subset expresses tissue factor (TF). Passage 1 TBE cells are BCs that are K5(+)/TF(+), and half coexpress CD151. Optimal clone formation conditions use an irradiated NIH3T3 fibroblast feeder layer (American Type Culture Collection, Frederick, MD) and serum-supplemented Epicult-B medium (Stemcell Technologies, La Jolla, CA). The TF(+)/CD151(-) BC subpopulation is the most clonogenic BC subtype, and is enriched with K14(+) cells. TF(+)/CD151(-) BCs generate clones containing BCs that are K5(+)/Trp63(+), but K14(-)/CD151(-). TF(+) cells are limited to the clone edge. In conclusion, clonogenic human TBE BCs (1) exhibit a molecular phenotype that is a composite of the normal and remodeling/reparative BC phenotypes observed in tissue, and (2) generate organoid clones that contain phenotypically distinct BC subpopulations.
Collapse
|
19
|
A novel RING finger E3 ligase RNF186 regulate ER stress-mediated apoptosis through interaction with BNip1. Cell Signal 2013; 25:2320-33. [PMID: 23896122 DOI: 10.1016/j.cellsig.2013.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/04/2013] [Accepted: 07/22/2013] [Indexed: 01/08/2023]
Abstract
Disturbances in the normal functions of the endoplasmic reticulum (ER) can lead to the accumulation of unfolded proteins and disturbance of Ca(2+) regulation within the lumen of ER, and arouse a series of complicated response termed unfolded protein response (UPR), which is aimed initially at reestablishing homeostasis and normal physiology but can ultimately trigger cell death if the UPR fails to compensate for damage. Here we show that ER locating human RING finger E3 ligase RNF186 participates in the process of ER stress-mediated apoptosis. Overexpression of RNF186 stimulates upregulation of ER sensor proteins and rapid transmission of ER Ca(2+) in Hela cells, while RNF186 knockdown exhibits a moderate degree of resistance to ER stress, indicating RNF186 can arouse stress signaling at ER. We further identified the Bcl-2 family protein BNip1 as one of the substrates of RNF186. BNip1 co-localizes with RNF186 at ER and is poly-ubiquitinated by RNF186 through K29 and K63 linkage in vivo. This modification promotes BNip1 transportation to mitochondria but has no influence on its protein level. The half-life of RNF186 is prolonged under ER stress, probably because of the inhibition on its self-ubiquitination and subsequent degradation by proteasomes. In addition, the ubiquitination of BNip1 is greatly enhanced when ER stress occurred, possibly due to RNF186 accumulation. More importantly, knockdown of BNip1 attenuates the stress signals at ER induced by RNF186. These results collectively indicate that BNip1 functions as a downstream modulator of RNF186 to direct ER stress-associated apoptotic signaling. Our study might reveal a novel E3 ligase-mediated mechanism for modulating ER stress.
Collapse
|
20
|
Liu G, Cheresh P, Kamp DW. Molecular basis of asbestos-induced lung disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 8:161-87. [PMID: 23347351 DOI: 10.1146/annurev-pathol-020712-163942] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Asbestos causes asbestosis and malignancies by molecular mechanisms that are not fully understood. The modes of action underlying asbestosis, lung cancer, and mesothelioma appear to differ depending on the fiber type, lung clearance, and genetics. After reviewing the key pathologic changes following asbestos exposure, we examine recently identified pathogenic pathways, with a focus on oxidative stress. Alveolar epithelial cell apoptosis, which is an important early event in asbestosis, is mediated by mitochondria- and p53-regulated death pathways and may be modulated by the endoplasmic reticulum. We review mitochondrial DNA (mtDNA)-damage and -repair mechanisms, focusing on 8-oxoguanine DNA glycosylase, as well as cross talk between reactive oxygen species production, mtDNA damage, p53, OGG1, and mitochondrial aconitase. These new insights into the molecular basis of asbestos-induced lung diseases may foster the development of novel therapeutic targets for managing degenerative diseases (e.g., asbestosis and idiopathic pulmonary fibrosis), tumors, and aging, for which effective management is lacking.
Collapse
Affiliation(s)
- Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical College, Zhangjiang, China.
| | | | | |
Collapse
|
21
|
Monaco G, Vervliet T, Akl H, Bultynck G. The selective BH4-domain biology of Bcl-2-family members: IP3Rs and beyond. Cell Mol Life Sci 2013; 70:1171-83. [PMID: 22955373 PMCID: PMC11113329 DOI: 10.1007/s00018-012-1118-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 01/08/2023]
Abstract
Anti-apoptotic Bcl-2-family members not only neutralize pro-apoptotic proteins but also directly regulate intracellular Ca(2+) signaling from the endoplasmic reticulum (ER), critically controlling cellular health, survival, and death initiation. Furthermore, distinct Bcl-2-family members may selectively regulate inositol 1,4,5-trisphosphate receptor (IP3R): Bcl-2 likely acts as an endogenous inhibitor of the IP3R, preventing pro-apoptotic Ca(2+) transients, while Bcl-XL likely acts as an endogenous IP3R-sensitizing protein promoting pro-survival Ca(2+) oscillations. Furthermore, distinct functional domains in Bcl-2 and Bcl-XL may underlie the divergence in IP3R regulation. The Bcl-2 homology (BH) 4 domain, which targets the central modulatory domain of the IP3R, is likely to be Bcl-2's determining factor. In contrast, the hydrophobic cleft targets the C-terminal Ca(2+)-channel tail and might be more crucial for Bcl-XL's function. Furthermore, one amino acid critically different in the sequence of Bcl-2's and Bcl-XL's BH4 domains underpins their selective effect on Ca(2+) signaling and distinct biological properties of Bcl-2 versus Bcl-XL. This difference is evolutionary conserved across five classes of vertebrates and may represent a fundamental divergence in their biological function. Moreover, these insights open novel avenues to selectively suppress malignant Bcl-2 function in cancer cells by targeting its BH4 domain, while maintaining essential Bcl-XL functions in normal cells. Thus, IP3R-derived molecules that mimic the BH4 domain's binding site on the IP3R may function synergistically with BH3-mimetic molecules selectivity suppressing Bcl-2's proto-oncogenic activity. Finally, a more general role for the BH4 domain on IP3Rs, rather than solely anti-apoptotic, may not be excluded as part of a complex network of molecular interactions.
Collapse
MESH Headings
- Animals
- Calcium Signaling/genetics
- Calcium Signaling/physiology
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/chemistry
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/physiology
- Models, Biological
- Multigene Family/genetics
- Multigene Family/physiology
- Protein Binding/genetics
- Protein Binding/physiology
- Protein Structure, Tertiary/genetics
- Protein Structure, Tertiary/physiology
- Proto-Oncogene Proteins c-bcl-2/chemistry
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/physiology
- Substrate Specificity
Collapse
Affiliation(s)
- Giovanni Monaco
- Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-1 bus 802, 3000 Leuven, Belgium
| | - Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-1 bus 802, 3000 Leuven, Belgium
| | - Haidar Akl
- Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-1 bus 802, 3000 Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-1 bus 802, 3000 Leuven, Belgium
| |
Collapse
|
22
|
Ahmad S, Ahmad A, Rancourt RC, Neeves KB, Loader JE, Hendry-Hofer T, Di Paola J, Reynolds SD, White CW. Tissue factor signals airway epithelial basal cell survival via coagulation and protease-activated receptor isoforms 1 and 2. Am J Respir Cell Mol Biol 2012; 48:94-104. [PMID: 23065128 DOI: 10.1165/rcmb.2012-0189oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tissue factor (TF) initiates the extrinsic coagulation cascade and is a high-affinity receptor for coagulation factor VII. TF also participates in protease-activated receptor (PAR)1 and PAR2 activation. Human epithelial basal cells were previously purified on the basis of TF expression. The purpose of this study was to determine if tracheobronchial epithelial basal cell-associated TF drives coagulation and/or activates PARs to promote basal cell functions. We used human tracheobronchial tissues to isolate human airway epithelial cells using specific cell surface markers by flow cytometry and studied TF expression by immunostaining. TF-dependent fibrin network formation was observed by confocal and scanning electron microscopy. TF knockdown was done using short hairpin RNA, and TF mRNA was measured using quantitative RT-PCR. We found that 97 ± 5% of first-passage human tracheobronchial epithelial cells were basal cells, and 100% of these basal cells expressed TF. Basal cell-associated TF was active, but TF activity was dependent on added extrinsic coagulation cascade factors. TF inhibition caused basal cell apoptosis and necrosis. This was due to two parallel but interdependent TF-regulated processes: failure to generate a basal cell-associated fibrin network and suboptimal PAR1 and PAR2 activity. The data indicate that membrane surface TF mediates airway epithelial basal cell attachment, which maintains cell survival and mitotic potential. The implications of these findings are discussed in the context of basal cell-associated TF activity in normal and injured tissues and of the potential for repair of airway epithelium in lung disease.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chand HS, Woldegiorgis Z, Schwalm K, McDonald J, Tesfaigzi Y. Acute inflammation induces insulin-like growth factor-1 to mediate Bcl-2 and Muc5ac expression in airway epithelial cells. Am J Respir Cell Mol Biol 2012; 47:784-91. [PMID: 22878411 DOI: 10.1165/rcmb.2012-0079oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Generally, exposure to LPS in human airways occurs in the form of aerosols and causes an acute inflammatory response or exacerbates existing chronic inflammatory conditions by enhancing airway remodeling and associated pathologies. The present study evaluated which inflammatory mediators may be responsible for the expression of Bcl-2 and mucus cell metaplasia when mice are exposed to aerosolized LPS. At 3 days after exposure, aerosolized LPS (for 20-40 min) with the estimated lung deposited dosage of 0, 0.02, 0.2, 1.4, and 20.2 μg showed a characteristic dose-dependent increase in polymorphonuclear neutrophils. Significant increases of proinflammatory mediators, including IL-1β, TNF-α, IL-6, growth-related oncogene or keratinocyte-derived cytokine, IFN-γ-induced protein-10, monocyte chemotactic protein-1, and macrophage inflammatory protein-1α, were detected at the highest doses. In addition to increased numbers of airway epithelial cells, mucus cell numbers and mucus production were increased in a dose-dependent manner. Hyperplastic epithelial cells expressed insulin-like growth factor (IGF)-1 and, similar to previous studies, increased expression of the prosurvival protein Bcl-2 and induced expression of Muc5ac. Suppression of IGF-1 expression using retroviral shRNA blocked Bcl-2 expression in human and murine airway epithelial cells and Muc5ac in primary murine airway epithelial cells. These findings show that acute inflammation induces IGF-1 to mediate Bcl-2 and Muc5ac expression in airway epithelial cells.
Collapse
Affiliation(s)
- Hitendra S Chand
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108, USA
| | | | | | | | | |
Collapse
|
24
|
Heat-shock proteins attenuate SERCA inactivation by the anti-apoptotic protein Bcl-2: possible implications for the ER Ca2+-mediated apoptosis. Biochem J 2012; 444:127-39. [PMID: 22360692 DOI: 10.1042/bj20111114] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have demonstrated previously that Bcl-2 and Bcl-2Δ21, a C-terminally truncated Bcl-2 sequence, inactivate SERCA (sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase) 1 in isolated SR (sarcoplasmic reticulum), accompanied by a translocation from CRDs (caveolae-related domains) of the SR. In the present study, we obtained evidence for the interaction of Bcl-2 with SERCA2b in C2C12 myoblasts and HEK (human embryonic kidney)-293 cells. Bcl-2 and SERCA2b co-immunoprecipitated from lysate and microsomal fractions of Bcl-2-overexpressing cells. However, Bcl-2 overexpression resulted only in a slight translocation from the CRDs and no significant SERCA inactivation. In isolated HEK-293 cell microsomes, incubation with Bcl-2Δ21 afforded SERCA2b inactivation and some translocation. HSP (heat-shock protein) 70, HSP90, HSP27 and α-crystallin attenuated Bcl-2Δ21-dependent SERCA2b inactivation. An in vitro mechanistic study with the SERCA1 isoform shows that HSP70 (i) protects SERCA1 from the inactivation by Bcl-2Δ21, (ii) inhibits SERCA1 translocation from CRD fractions, and (iii) prevents the Bcl-2Δ21-dependent loss of FITC labelling. Our data demonstrate that the mechanism of SERCA inactivation by Bcl-2 established in vitro for the SERCA1 isoform can be extended to the main housekeeping SERCA2b isoform, and that functional interactions of SERCA2b and Bcl-2 in the cell may be modulated by HSP70 and other chaperones and stress-regulated proteins.
Collapse
|
25
|
Abstract
The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases.
Collapse
|
26
|
Ahmad S, Nichols DP, Strand M, Rancourt RC, Randell SH, White CW, Ahmad A. SERCA2 regulates non-CF and CF airway epithelial cell response to ozone. PLoS One 2011; 6:e27451. [PMID: 22096575 PMCID: PMC3214057 DOI: 10.1371/journal.pone.0027451] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 10/17/2011] [Indexed: 11/21/2022] Open
Abstract
Calcium mobilization can regulate a wide range of essential functions of respiratory epithelium, including ion transport, ciliary beat frequency, and secretion of mucus, all of which are modified in cystic fibrosis (CF). SERCA2, an important controller of calcium signaling, is deficient in CF epithelium. We conducted this study to determine whether SERCA2 deficiency can modulate airway epithelial responses to environmental oxidants such as ozone. This could contribute to the pathogenesis of pulmonary exacerbations, which are important and frequent clinical events in CF. To address this, we used air-liquid interface (ALI) cultures of non-CF and CF cell lines, as well as differentiated cultures of cells derived from non-CF and CF patients. We found that ozone exposure caused enhanced membrane damage, mitochondrial dysfunction and apoptotic cell death in CF airway epithelial cell lines relative to non-CF. Ozone exposure caused increased proinflammatory cytokine production in CF airway epithelial cell lines. Elevated proinflammatory cytokine production also was observed in shRNA-mediated SERCA2 knockdown cells. Overexpression of SERCA2 reversed ozone-induced proinflammatory cytokine production. Ozone-induced proinflammatory cytokine production was NF-κB- dependent. In a stable NF-κB reporter cell line, SERCA2 inhibition and knockdown both upregulated cytomix-induced NF-κB activity, indicating importance of SERCA2 in modulating NF-κB activity. In this system, increased NF-κB activity was also accompanied by increased IL-8 production. Ozone also induced NF-κB activity and IL-8 release, an effect that was greater in SERCA2-silenced NF-κB-reporter cells. SERCA2 overexpression reversed cytomix-induced increased IL-8 release and total nuclear p65 in CFTR-deficient (16HBE-AS) cells. These studies suggest that SERCA2 is an important regulator of the proinflammatory response of airway epithelial cells and could be a potential therapeutic target.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America.
| | | | | | | | | | | | | |
Collapse
|
27
|
Ahmad S, Raemy DO, Loader JE, Kailey JM, Neeves KB, White CW, Ahmad A, Gehr P, Rothen-Rutishauser BM. Interaction and localization of synthetic nanoparticles in healthy and cystic fibrosis airway epithelial cells: effect of ozone exposure. J Aerosol Med Pulm Drug Deliv 2011; 25:7-15. [PMID: 22007674 DOI: 10.1089/jamp.2011.0889] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Nanoparticles (NPs) produced by nanotechnology processes have taken the field of medicine by storm. Concerns about safety of these NPs in humans, however, have recently been raised. Although studies of NP toxicity have focused on lung disease the mechanistic link between NP exposure and lung injury remained unclear. This is primarily due to a lack of availability of appropriate airway disease models and sophisticated microscopic techniques to study nano-sized particulate delivery and resulting responses. METHODS Air-liquid interface (ALI) cultures of non-cystic fibrosis (CF) and CF airway epithelial cells were exposed to the FITC-labeled NPs using a PennCentury microsprayer™. Uptake of NPs was assessed by FACS. Laser scanning microscopy (LSM) was performed and the images were analyzed by an advanced imaging software to study particle deposition and uptake. RESULTS Flow cytometry data revealed that CF cells accumulated increased amounts of NPs. The increased NP uptake could be attributed to the reduced CF transmembrane conductance regulator (CFTR) function as a similar increased retention/uptake was observed in cells whose CFTR expression was downregulated by antisense oligonucleotide. NPs alone did not induce pro-inflammatory cytokine release or cell death. The cell culture system was sensitive to ozone but exposure to the uncoated synthetic NPs used in this study, did not cause any synergistic or suppressive effects. LSM imaging and subsequent image restoration further indicated particle uptake and intracellular localization. Exposure to ozone increased nuclear uptake in both non-CF and CF cells. CONCLUSION Our findings demonstrate the uptake of NPs using ALI cultures of non-CF and CF airway epithelial cells. The NPs used here were useful in demonstrating uptake by airway epithelial cells without causing adverse effects in presence or absence of ozone. However, to totally exclude toxic effects, chronic studies under in vivo conditions using coated particulates are required.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|