1
|
Lin J, Li J, Shu M, Wu W, Zhang W, Dou Q, Wu J, Zeng X. The rCC16 Protein Protects Against LPS-Induced Cell Apoptosis and Inflammatory Responses in Human Lung Pneumocytes. Front Pharmacol 2020; 11:1060. [PMID: 32760279 PMCID: PMC7371929 DOI: 10.3389/fphar.2020.01060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/30/2020] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Our previous clinical study showed that low lung levels of CC16 strongly influence the occurrence and development of ARDS. The aim of the present study was to evaluate the therapeutic effect of rCC16 on LPS-induced inflammation in A549 cells and to determine its mechanism. METHODS Cell apoptosis and inflammation was induced by LPS stimulation. The cytotoxic effect of rCC16 was evaluated using the MTT assay. Cytokine levels were determined using enzyme-linked immunosorbent assays. The molecular mechanism of rCC16 was investigated by analyzing relevant signaling pathways. RESULTS The LPS treatment of A549 cells significantly decreased cell viability, increased the levels of the apoptotic proteins Bax, Bak and Cleaved Caspase-3, the secretion of inflammatory cytokines, and the expression levels of TLR4, p-NF/κB, MAPK proteins. While the levels of Bcl-2, p-AKT, p-mTOR, p-ERK1/2, NF/κB, p-AMPK, and p-p38 were significantly decreased in LPS-treated A549 cells. Our experimental results also confirmed that rCC16 inhibited LPS-induced apoptosis, promoted A549 cell proliferation by activating the PI3K/AKT/mTOR/ERK1/2 pathway, and inhibited the release of certain inflammatory factors, especially HMGB1, through dephosphorylation and inactivation of the TLR4/NF-κB/AMPK signaling pathways. CONCLUSION These results highlight the potential utility of CC16 as an important cytokine for the prevention or treatment of inflammation and show that CC16 may play an important role in the future clinical treatment of ARDS.
Collapse
Affiliation(s)
- Jinle Lin
- Department of Emergency Medicine, Shenzhen Baoan First People’s Hospital, Nanfang Medical University, Shenzhen, China
- Department of Respiratory and Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Jiemei Li
- Center Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Min Shu
- Emergency Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Weigang Wu
- Center Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Wenwu Zhang
- Department of Emergency Medicine, Shenzhen Baoan First People’s Hospital, Nanfang Medical University, Shenzhen, China
| | - Qingli Dou
- Department of Emergency Medicine, Shenzhen Baoan First People’s Hospital, Nanfang Medical University, Shenzhen, China
| | - Jian Wu
- Department of Respiratory and Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Xiaobin Zeng
- Center Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Erratum: Protection from Lipopolysaccharide-induced Lung Injury by Augmentation of Airway S-Nitrosothiols. Am J Respir Crit Care Med 2018; 198:973-974. [PMID: 31074951 PMCID: PMC6173066 DOI: 10.1164/rccm.v198erratum4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
3
|
Zhao G, Zhang T, Ma X, Jiang K, Wu H, Qiu C, Guo M, Deng G. Oridonin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-induced RAW264.7 cells and acute lung injury. Oncotarget 2017; 8:68153-68164. [PMID: 28978105 PMCID: PMC5620245 DOI: 10.18632/oncotarget.19249] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/19/2017] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) is a life-threatening inflammatory disease owing to the lack of specific and effective therapies. Oridonin (Ori) is an active diterpenoid isolated from Rabdosiarubescens (R.rubescens) that has been shown to possess a broadspectrum pharmacological properties including anti-inflammatory, antitumour, antioxidative and neuroregulatory effects. However, its potential protective mechanism in ALI is not well characterized. In this study, we demonstrated that Ori reduces the mortality of mice with ALI induced by a high dose of lipopolysaccharide (LPS), which suggests that Ori has a protective effect on LPS induced ALI. Next, our results confirmed that Ori improves LPS-induced localized pulmonary pathology and decreased the concentration of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in the serum. Nuclear factor-kappa B (NF-κB) is capable of regulating the transcription of pro-inflammatory factors. Interestingly, our results showed that Ori inhibits the expression of TLR4/MyD88 and phosphorylation of NF-κB p65 in lung tissues. To confirm this, we further validated the possible regulatory anti-inflammatory mechanisms of Ori in vitro. LPS-induced RAW264.7 cells, which are widely used as an inflammation model to evaluate the potential protective effect of drugs in vitro, were chosen for this study. Similar results were observed, that is, pre-treatment with Ori, markedly inhibited the nuclear translocation and phosphorylation of NF-κB p65 induced by LPS and subsequently decreased the release of pro-inflammatory cytokines that were increased by LPS. Overall, these results demonstrated that Ori exerts a therapeutic effect on ALI by inhibiting the release of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, through the TLR4/MyD88/NF-κB axis.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Mengyao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
4
|
Yang S, Yu Z, Wang L, Yuan T, Wang X, Zhang X, Wang J, Lv Y, Du G. The natural product bergenin ameliorates lipopolysaccharide-induced acute lung injury by inhibiting NF-kappaB activition. JOURNAL OF ETHNOPHARMACOLOGY 2017; 200:147-155. [PMID: 28192201 DOI: 10.1016/j.jep.2017.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/30/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bergenin, an active constituent of the plants of the genus Bergenia, was reported to have anti-inflammatory effects in the treatment of chronic bronchitis and chronic gastritis clinically. However, its therapeutic effect on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and its potential mechanisms of actions were still unknown. AIM OF THIS STUDY To evaluate the effect of bergenin on murine model of acute lung injury induced by LPS and also to explore its potential mechanisms. MATERIALS AND METHODS Half an hour and 12h after an intranasal inhalation of LPS, male BALB/c mice were treated with bergenin (50,100 and 200mg/kg) or dexamethasone (DEX, 5mg/kg) by gavage. Twenty-four hours after LPS exposure, the lung wet/dry ratio, histological changes, myeloperoxidase (MPO) in lung tissues, inflammatory cells (in BALF) and cytokines (in BALF and serum) were detected. Meanwhile, the protein expression of MyD88 and the phosphorylation of NF-κB p65 in lung tissue were analyzed using immunoblot analysis. Moreover, the nuclear translocation and the phosphorylation of NF-κB p65 in Raw264.7 cells were also analyzed. The viability of Raw264.7 cells was determined by MTT assay. RESULTS Results showed that bergenin significantly decreased pulmonary edema, improved histological changes and reduced MPO activity in lung tissues. Moreover, bergenin obviously decreased inflammatory cells, IL-1β and IL-6 production in BALF, as well as IL-1β, TNF-α and IL-6 production in serum of LPS-induced ALI mice. Furthermore, bergenin markedly inhibited LPS-induced NF-κB p65 phosphorylation, as well as the expression of MyD88 but not the expression of NF-κB p65 in lung tissues. Additionally, bergenin also significantly inhibited the nuclear translocation and the phosphorylation of NF-κB p65 stimulated by LPS in Raw264.7 cells. CONCLUSIONS These findings suggested that bergenin had a therapeutic effect on LPS-induced ALI by inhibiting NF-κB activition.
Collapse
Affiliation(s)
- Shengqian Yang
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Ziru Yu
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Lin Wang
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Tianyi Yuan
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Xue Wang
- Xinjiang Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang, Urumqi 830004, PR China.
| | - Xue Zhang
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Yang Lv
- Beijing Key Laboratory of Drug Crystal Research, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
5
|
He HQ, Wu YX, Nie YJ, Wang J, Ge M, Qian F. LYRM03, an ubenimex derivative, attenuates LPS-induced acute lung injury in mice by suppressing the TLR4 signaling pathway. Acta Pharmacol Sin 2017; 38:342-350. [PMID: 28112185 DOI: 10.1038/aps.2016.141] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022]
Abstract
Toll-like receptor 4 (TLR4)-mediated signaling plays a critical role in sepsis-induced acute lung injury (ALI). LYRM03 (3-amino-2-hydroxy-4-phenyl-valyl-isoleucine) is a novel derivative of ubenimex, a widely used antineoplastic medicine. We previously found that LYRM03 has anti-inflammatory effects in cecal ligation puncture mouse model. In this study we determined whether LYRM03 attenuated LPS-induced ALI in mice. LPS-induced ALI mouse model was established by challenging the mice with intratracheal injection of LPS (5 mg/kg), which was subsequently treated with LYRM03 (10 mg/kg, ip). LYRM03 administration significantly alleviated LPS-induced lung edema, inflammatory cell (neutrophils and macrophages) infiltration and myeloperoxidase (MPO) activity, decreased pro-inflammatory and chemotactic cytokine (TNF-α, IL-6, IL-1β, MIP-2) generation and reduced iNOS and COX-2 expression in the lung tissues. In cultured mouse alveolar macrophages in vitro, pretreatment with LYRM03 (100 μmol/L) suppressed LPS-induced macrophage activation by reducing Myd88 expression, increasing IκB stability and inhibiting p38 phosphorylation. These results suggest that LYRM03 effectively attenuates LPS-induced ALI by inhibiting the expression of pro-inflammatory mediators and Myd88-dependent TLR4 signaling pathways in alveolar macrophages. LYRM03 may serve as a potential treatment for sepsis-mediated lung injuries.
Collapse
|
6
|
Zhang X, Sun CY, Zhang YB, Guo HZ, Feng XX, Peng SZ, Yuan J, Zheng RB, Chen WP, Su ZR, Huang XD. Kegan Liyan oral liquid ameliorates lipopolysaccharide-induced acute lung injury through inhibition of TLR4-mediated NF-κB signaling pathway and MMP-9 expression. JOURNAL OF ETHNOPHARMACOLOGY 2016; 186:91-102. [PMID: 27036629 DOI: 10.1016/j.jep.2016.03.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kegan Liyan oral liquid (KGLY), a Chinese prescription modified from classic formulas Yin-Qiao-San (from TCM classic Wenbing Tiaobian) and Shen-Jie-San (first mentioned in Shanghan Wenyi Tiaobian), has been reported to exert heat-clearing and detoxifying effects and used extensively for the treatment of severe pulmonary diseases in clinics including influenza, cough and pneumonia. AIM OF THIS STUDY The purpose of this study was to investigate the protective effect of KGLY on lipopolysaccharide (LPS) induced acute lung injury (ALI) in mice and to illuminate the underlying mechanisms. MATERIALS AND METHODS Mice were orally administrated with KGLY (50, 100 and 150mg/kg) before intratracheal instillation of LPS. 24h post LPS challenge, lung tissues and the bronchoalveolar lavage fluid (BALF) were collected for lung wet/dry (W/D) weight ratio, histopathological examinations and biochemical analyses. The cell counts, protein concentration, interleukin-1β (IL-1β), interleukin-6 (IL-6), necrosis factor-α (TNF-α), macrophage inflammatory protein-2 (MIP-2) in BALF, superoxide dismutase (SOD), glutathione (GSH), myeloperoxidase (MPO) and malondialdehyde (MDA) levels were detected. Meanwhile, the activation of toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), as well as matrix metalloproteinases 9 (MMP-9) were determined by western blot assay. RESULTS KGLY significantly prolonged mice survival time and ameliorated LPS-induced edema, thickening of alveolar septa and inflammatory cell infiltration in a dose-dependent manner. Additionally, KGLY markedly attenuated LPS-induced acute pulmonary inflammation via decreasing the expressions of cytokines and chemokines (IL-1β, IL-6, TNF-α, and MIP-2), enhanced the activities of anti-oxidative indicators (SOD and GSH), suppressed the levels of MPO and MDA, and down-regulated the expressions of TLR4, NF-κB and MMP9. CONCLUSIONS The results suggested that the relieving effect of KGLY against LPS-induced ALI might be partially due to suppression of oxidative stress and inflammatory response, inhibition of TLR4-mediated NF-κB activation, and down-regulation of MMP9 expression, indicating it may be a potential therapeutic agent for ALI.
Collapse
Affiliation(s)
- Xie Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Guangzhou 510006, PR China.
| | - Chao-Yue Sun
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Guangzhou 510006, PR China.
| | - Yong-Bin Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Hui-Zhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, PR China.
| | - Xue-Xuan Feng
- Guangdong Medical Laboratory Animal Center, Foshan 528248, PR China.
| | - Shao-Zhong Peng
- Guangzhou Wanglaoji Pharmaceutical Company Limited, Guangzhou 510450, PR China.
| | - Jie Yuan
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Guangzhou 510006, PR China.
| | - Rong-Bo Zheng
- Guangzhou Wanglaoji Pharmaceutical Company Limited, Guangzhou 510450, PR China.
| | - Wei-Ping Chen
- Guangzhou Wanglaoji Pharmaceutical Company Limited, Guangzhou 510450, PR China.
| | - Zi-Ren Su
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Guangzhou 510006, PR China.
| | - Xiao-Dan Huang
- Guangzhou Wanglaoji Pharmaceutical Company Limited, Guangzhou 510450, PR China.
| |
Collapse
|
7
|
Expression of Concern: Protection from Lipopolysaccharide-induced Lung Injury by Augmentation of Airway S-Nitrosothiols. Am J Respir Crit Care Med 2016; 193:1320. [DOI: 10.1164/rccm.19311eoc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Bi QR, Hou JJ, Qi P, Ma CH, Feng RH, Yan BP, Wang JW, Shi XJ, Zheng YY, Wu WY, Guo DA. TXNIP/TRX/NF-κB and MAPK/NF-κB pathways involved in the cardiotoxicity induced by Venenum Bufonis in rats. Sci Rep 2016; 6:22759. [PMID: 26961717 PMCID: PMC4785358 DOI: 10.1038/srep22759] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/04/2016] [Indexed: 01/24/2023] Open
Abstract
Venenum Bufonis (VB) is a widely used traditional medicine with serious cardiotoxic effects. The inflammatory response has been studied to clarify the mechanism of the cardiotoxicity induced by VB for the first time. In the present study, Sprague Dawley (SD) rats, were administered VB (100, 200, and 400 mg/kg) intragastrically, experienced disturbed ECGs (lowered heart rate and elevated ST-segment), increased levels of serum indicators (creatine kinase (CK), creatine kinase isoenzyme-MB (CK-MB), alanine aminotransferase (ALT), aspartate aminotransferase (AST)) and serum interleukin (IL-6, IL-1β, TNF-α) at 2 h, 4 h, 6 h, 8 h, 24 h, and 48 h, which reflected that an inflammatory response, together with cardiotoxicity, were involved in VB-treated rats. In addition, the elevated serum level of MDA and the down-regulated SOD, CAT, GSH, and GPx levels indicated the appearance of oxidative stress in the VB-treated group. Furthermore, based on the enhanced expression levels of TXNIP, p-NF-κBp65, p-IκBα, p-IKKα, p-IKKβ, p-ERK, p-JNK, and p-P38 and the obvious myocardial degeneration, it is proposed that VB-induced cardiotoxicity may promote an inflammatory response through the TXNIP/TRX/NF-κB and MAPK/NF-κB pathways. The observed inflammatory mechanism induced by VB may provide a theoretical reference for the toxic effects and clinical application of VB.
Collapse
Affiliation(s)
- Qi-Rui Bi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China.,College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Jin-Jun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Peng Qi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Chun-Hua Ma
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Rui-Hong Feng
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Bing-Peng Yan
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China.,College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Wei Wang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China.,College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Jian Shi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China.,College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan-Yuan Zheng
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Wan-Ying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| |
Collapse
|
9
|
Fu J, Wang Y, Zhang J, Wu W, Chen X, Yang Y. Anti-inflammatory and anti-apoptotic effects of oxysophoridine on lipopolysaccharide-induced acute lung injury in mice. Am J Transl Res 2015; 7:2672-2682. [PMID: 26885265 PMCID: PMC4731665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023]
Abstract
Oxysophoridine (OSR) is an alkaloid with multiple pharmacological activities. This study aimed to investigate the protective effects and underlying mechanisms of OSR on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Here, we found that OSR treatment markedly mitigated LPS-induced body weight loss and significant lung injury characterized by the deterioration of histopathology, histologic scores, wet-to-dry ratio, exduate volume, and protein leakage. OSR dramatically attenuated LPS-induced lung inflammation, as evidenced by the reduced levels of total cells, neutrophils, lymphocytes, and macrophages and pro-inflammatory cytokines (i.e., tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein-1) in bronchoalveolar lavage fluid and of their mRNA expression in lung tissues. OSR also inhibited LPS-induced expression and activation of nuclear factor-κB p65 in pulmonary tissue. Additionally, OSR administration markedly prevented LPS-induced pulmonary cell apoptosis in mice, as reflected by the decrease in expression of procaspase-8, procaspase-3, cleaved caspase-8, and cleaved caspase-3, and Bcl-2-associated X/B-cell lymphoma 2 ratio. These results indicate that OSR is a potential therapeutic drug for treating LPS-induced ALI.
Collapse
Affiliation(s)
- Junjing Fu
- Department of Intensive Care Unit, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui, Henan 453100, PR China
| | - Yongtao Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui, Henan 453100, PR China
| | - Jianxin Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui, Henan 453100, PR China
| | - Wei Wu
- Department of Emergency Medicine, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui, Henan 453100, PR China
| | - Xiyan Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui, Henan 453100, PR China
| | - Yanrong Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui, Henan 453100, PR China
| |
Collapse
|
10
|
Abstract
The versatile chemistry of nitrogen is important to pulmonary physiology. Indeed, almost all redox forms of nitrogen are relevant to pulmonary physiology and to pathophysiology. Here we review the relevance to pulmonary biology of (a) elemental nitrogen; (b) reduced forms of nitrogen such as amines, ammonia, and hydroxylamine; and (c) oxidized forms of nitrogen such as the nitroxyl anion, the nitric oxide free radical, and S-nitrosothiols. Our focus is on oxidized nitrogen in the form of S-nitrosothiol bond-containing species, which are now appreciated to be important to every type of cell-signaling process in the lung. We also review potential clinical applications of nitrogen oxide biochemistry. These principles are being translated into clinical practice as diagnostic techniques and therapies for a range of pulmonary diseases including asthma, cystic fibrosis, adult respiratory distress syndrome, primary ciliary dyskinesia, and pulmonary hypertension.
Collapse
Affiliation(s)
- Nadzeya V Marozkina
- Department of Pediatrics, Rainbow Babies and Children's Hospital and Case Western Reserve University, Cleveland, Ohio 44106; ,
| | | |
Collapse
|
11
|
Gao W, Ju N. Budesonide inhalation ameliorates endotoxin-induced lung injury in rabbits. Exp Biol Med (Maywood) 2015; 240:1708-16. [PMID: 25956681 DOI: 10.1177/1535370215584938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/07/2015] [Indexed: 11/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a serious clinical problem that has a 30-50% mortality rate. Budesonide has been used to reduce lung injury. This study aims to investigate the effects of nebulized budesonide on endotoxin-induced ARDS in a rabbit model. Twenty-four rabbits were randomized into three groups. Rabbits in the control and budesonide groups were injected with endotoxin. Thereafter, budesonide or saline was instilled, ventilated for four hours, and recovered spontaneous respiratory. Peak pressure, compliance, and PaO2/FiO2 were monitored for 4 h. After seven days, PaO2/FiO2 ratios were measured. Wet-to-dry weight ratios, total protein, neutrophil elastase, white blood cells, and percentage of neutrophils in BALF were evaluated. TNF-α, IL-1β, IL-8, and IL-10 in BALF were detected. Lung histopathologic injury and seven-day survival rate of the three groups were recorded. Peak pressure was downregulated, but compliance and PaO2/FiO2 were upregulated by budesonide. PaO2/FiO2 ratios significantly increased due to budesonide. Wet-to-dry weight ratios, total protein, neutrophil elastase, white blood cells and percentage of neutrophils in BALF decreased in the budesonide group. TNF-α, IL-1β, and IL-8 levels decreased in BALF, while IL-10 levels increased in the budesonide group. Lung injuries were reduced and survival rate was upregulated by budesonide. Budesonide effectively ameliorated respiratory function, attenuated endotoxin-induced lung injury, and improved the seven-day survival rate.
Collapse
Affiliation(s)
- Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Nanying Ju
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| |
Collapse
|
12
|
Niu X, Wang Y, Li W, Mu Q, Li H, Yao H, Zhang H. Protective effects of Isofraxidin against lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 2015; 24:432-439. [DOI: 10.1016/j.intimp.2014.12.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/27/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
|
13
|
Dong L, Zheng S, Zhang Y, Jiang X, Wu J, Zhang X, Shan X, Liang D, Ying S, Feng J, Liang G. Design, synthesis, and evaluation of semi-conservative mono-carbonyl analogs of curcumin as anti-inflammatory agents against lipopolysaccharide-induced acute lung injury. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00113g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute lung injury (ALI), one of a few severe diseases with high mortality, cannot be tackled by any effective therapies so far.
Collapse
|
14
|
Hu J, Zhang Y, Dong L, Wang Z, Chen L, Liang D, Shi D, Shan X, Liang G. Design, Synthesis, and Biological Evaluation of Novel Quinazoline Derivatives as Anti-inflammatory Agents against Lipopolysaccharide-induced Acute Lung Injury in Rats. Chem Biol Drug Des 2014; 85:672-84. [PMID: 25327896 DOI: 10.1111/cbdd.12454] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 08/12/2014] [Accepted: 10/12/2014] [Indexed: 01/19/2023]
Abstract
Quinazoline has been reported to exhibit multiple bioactivities. The aim of this study was to discover new quinazoline derivatives with preventive effect on lipopolysaccharide-induced acute lung injury via anti-inflammatory actions. Thirty-three 4-amino quinazolin derivatives were synthesized and screened for anti-inflammatory activities in lipopolysaccharide-induced macrophages. The most potent four compounds, 6h, 6m, 6p, and 6q, were shown dose-dependent inhibition against lipopolysaccharide-induced TNF-α and IL-6 release. Then, the preliminary structure-activity relationship and quantitative structure-activity relationship analyses were conducted. To further determine the effects of quinazolines on acute lung injury treatment, lipopolysaccharide-induced acute lung injury model was employed. Male Sprague Dawley rats were pretreated with 6m or 6q before instillation of lipopolysaccharide. The results showed that 6m and 6q, especially 6q, obviously alleviated lung histopathological changes, inflammatory cells infiltration, and cytokines mRNA expression initiated by lipopolysaccharide. Taken together, this work suggests that 6m and 6q suppressed the lipopolysaccharide-induced acute lung injury through inhibition of the inflammatory response in vivo and in vitro, indicating that quinazolines might serve as potential agents for the treatment of acute lung injury and deserve the continuing drug development and research.
Collapse
Affiliation(s)
- Jie Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang, 325035, China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang, 325035, China
| | - Lili Dong
- Department of Pediatric, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Zhe Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang, 325035, China
| | - Lingfeng Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang, 325035, China
| | - Dandan Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang, 325035, China
| | - Dengjian Shi
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang, 325035, China
| | - Xiaoou Shan
- Department of Pediatric, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
15
|
Niu X, Hu H, Li W, Li Y, Huang H, Mu Q, Yao H, Li H. Protective effect of total alkaloids on lipopolysaccharide-induced acute lung injury. J Surg Res 2014; 189:126-34. [DOI: 10.1016/j.jss.2014.01.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/03/2014] [Accepted: 01/31/2014] [Indexed: 12/22/2022]
|
16
|
Kelleher ZT, Sha Y, Foster MW, Foster WM, Forrester MT, Marshall HE. Thioredoxin-mediated denitrosylation regulates cytokine-induced nuclear factor κB (NF-κB) activation. J Biol Chem 2013; 289:3066-72. [PMID: 24338024 DOI: 10.1074/jbc.m113.503938] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-nitrosylation of nuclear factor κB (NF-κB) on the p65 subunit of the p50/p65 heterodimer inhibits NF-κB DNA binding activity. We have recently shown that p65 is constitutively S-nitrosylated in the lung and that LPS-induced injury elicits a decrease in SNO-p65 levels concomitant with NF-κB activation in the respiratory epithelium and initiation of the inflammatory response. Here, we demonstrate that TNFα-mediated activation of NF-κB in the respiratory epithelium similarly induces p65 denitrosylation. This process is mediated by the denitrosylase thioredoxin (Trx), which becomes activated upon cytokine-induced degradation of thioredoxin-interacting protein (Txnip). Similarly, inhibition of Trx activity in the lung attenuates LPS-induced SNO-p65 denitrosylation, NF-κB activation, and airway inflammation, supporting a pathophysiological role for this mechanism in lung injury. These data thus link stimulus-coupled activation of NF-κB to a specific, protein-targeted denitrosylation mechanism and further highlight the importance of S-nitrosylation in the regulation of the immune response.
Collapse
Affiliation(s)
- Zachary T Kelleher
- From the Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina 27710 and
| | | | | | | | | | | |
Collapse
|
17
|
Simvastatin attenuates the lipopolysaccharideinduced inflammatory response of rat pulmonary microvascular endothelial cells by downregulating toll-like receptor 4 expression. Open Med (Wars) 2013; 9:133-140. [PMID: 32288932 PMCID: PMC7101868 DOI: 10.2478/s11536-013-0245-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 05/14/2013] [Indexed: 12/31/2022] Open
Abstract
Objective The therapeutic potential of simvastatin as an anti-inflammatory agent was explored by investigating its effect on the lipopolysaccharide (LPS)-induced inflammatory response in rat pulmonary microvascular endothelial cells (RPMVECs). Methods RPMVECs were isolated and the mRNA and protein levels of different toll-like receptors (TLR) were assessed by qRT-PCR and western blotting. The LPS-induced expressions of TLR4, TNF-α and iNOS were analyzed in RPMVECs treated with different concentrations of simvastatin for different times. NF-κB activation was examined by immuofluroscence, luciferase reporter assay and western blotting. Results TLR4 is abundantly expressed in RPMVECs, and its expression is induced by LPS stimulation. Simvastatin inhibited LPS-induced TLR4 expression at the mRNA and protein levels in a time-dependent manner (p<0.01), and alleviated inflammation in RPMVECs by inhibiting the release of inflammatory factors such as TNF-α and iNOS. Further study indicated that simvastatin significantly attenuated NF-κB activity by inhibiting the degradation of IκB-α. Pretreatment with pyrrolidine dithiocarbamate (PDTC) and knock-down of TLR4 expression by RNA interference down-regulated the LPS-induced inflammatory response in RPMVECs. Conclusion Simvastatin inhibits the LPS-induced inflammatory response in RPMVECs by down-regulating TLR4 expression, suggesting its role as a potential inhibitor of LPS-induced inflammation
Collapse
|
18
|
Repletion of S-nitrosohemoglobin improves organ function and physiological status in swine after brain death. Ann Surg 2013; 257:971-7. [PMID: 23360919 DOI: 10.1097/sla.0b013e3182822c52] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To determine if reduction in nitric oxide bioactivity contributes to the physiological instability that occurs after brain death and, if so, to also determine in this setting whether administration of a renitrosylating agent could improve systemic physiological status. BACKGROUND Organ function after brain death is negatively impacted by reduced perfusion and increased inflammation; the magnitude of these responses can impact post-graft function. Perfusion and inflammation are normally regulated by protein S-nitrosylation but systemic assessments of nitric oxide bioactivity after brain death have not been performed. METHODS Brain death was induced in instrumented swine by inflation of a balloon catheter placed under the cranium. The subjects were then serially assigned to receive either standard supportive care or care augmented by 20 ppm of the nitrosylating agent, ethyl nitrite, blended into the ventilation circuit. RESULTS Circulating nitric oxide bioactivity (in the form of S-nitrosohemoglobin) was markedly diminished 10 hours after induction of brain death-a decline that was obviated by administration of ethyl nitrite. Maintenance of S-nitrosohemoglobin was associated with improvements in tissue blood flow and oxygenation, reductions in markers of immune activation and cellular injury, and preservation of organ function. CONCLUSIONS In humans, the parameters monitored in this study are predictive of post-graft function. As such, maintenance of endocrine nitric oxide bioactivity after brain death may provide a novel means to improve the quality of organs available for donation.
Collapse
|
19
|
Hernansanz-Agustín P, Izquierdo-Álvarez A, García-Ortiz A, Ibiza S, Serrador JM, Martínez-Ruiz A. Nitrosothiols in the immune system: signaling and protection. Antioxid Redox Signal 2013; 18:288-308. [PMID: 22746191 PMCID: PMC3518543 DOI: 10.1089/ars.2012.4765] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE In the immune system, nitric oxide (NO) has been mainly associated with antibacterial defenses exerted through oxidative, nitrosative, and nitrative stress and signal transduction through cyclic GMP-dependent mechanisms. However, S-nitrosylation is emerging as a post-translational modification (PTM) involved in NO-mediated cell signaling. RECENT ADVANCES Precise roles for S-nitrosylation in signaling pathways have been described both for innate and adaptive immunity. Denitrosylation may protect macrophages from their own S-nitrosylation, while maintaining nitrosative stress compartmentalized in the phagosomes. Nitrosothiols have also been shown to be beneficial in experimental models of autoimmune diseases, mainly through their role in modulating T-cell differentiation and function. CRITICAL ISSUES Relationship between S-nitrosylation, other thiol redox PTMs, and other NO-signaling pathways has not been always taken into account, particularly in the context of immune responses. Methods for assaying S-nitrosylation in individual proteins and proteomic approaches to study the S-nitrosoproteome are constantly being improved, which helps to move this field forward. FUTURE DIRECTIONS Integrated studies of signaling pathways in the immune system should consider whether S-nitrosylation/denitrosylation processes are among the PTMs influencing the activity of key signaling and adaptor proteins. Studies in pathophysiological scenarios will also be of interest to put these mechanisms into broader contexts. Interventions modulating nitrosothiol levels in autoimmune disease could be investigated with a view to developing new therapies.
Collapse
Affiliation(s)
- Pablo Hernansanz-Agustín
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Tilton SC, Waters KM, Karin NJ, Webb-Robertson BJM, Zangar RC, Lee KM, Bigelow DJ, Pounds JG, Corley RA. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin. Toxicol Appl Pharmacol 2013; 267:137-48. [PMID: 23306164 DOI: 10.1016/j.taap.2012.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/11/2012] [Accepted: 12/18/2012] [Indexed: 01/24/2023]
Abstract
The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures.
Collapse
Affiliation(s)
- Susan C Tilton
- Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Brahmajothi MV, Sun NZ, Auten RL. S-nitrosothiol transport via PEPT2 mediates biological effects of nitric oxide gas exposure in macrophages. Am J Respir Cell Mol Biol 2012; 48:230-9. [PMID: 23239496 DOI: 10.1165/rcmb.2012-0305oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The pharmacological effects of nitric oxide (NO) administered as a gas are dependent on the conversion to S-nitrosocysteine, and as such are largely mediated by the L-type amino-acid transporters (LATs) in several cell types. The dipeptide transporter PEPT2 has been proposed as a second route for S-nitrosothiol (SNO) transport, but this has never been demonstrated. Because NO governs important immune functions in alveolar macrophages, we exposed rat alveolar macrophages (primary and NR8383 cells) to NO gas at the air-liquid interface ± LPS stimulation in the presence of PEPT2 substrate Cys-Gly (or the LAT substrate L-Cys) ± transporter competitors. We found that SNO uptake and NO-dependent actions, such as the activation of soluble guanylyl cyclase (sGC), the augmentation of sGC-dependent filamentous actin (F-actin) polymerization, phagocytosis, and the inhibition of NF-κB activation, were significantly augmented by the addition of Cys-Gly in a manner dependent on PEPT2 transport. We found parallel (and greater) effects that were dependent on LAT transport. The contribution of cystine/cysteine shuttling via system x cystine transporter (xCT) to SNO uptake was relatively minor. The observed effects were unaffected by NO synthase inhibition. The NO gas treatment of alveolar macrophages increased SNO uptake, the activation of sGC, F-actin polymerization, and phagocytosis, and inhibited NF-κB activation, in a manner dependent on SNO transport via PEPT2, as well as via LAT.
Collapse
Affiliation(s)
- Mulugu V Brahmajothi
- Division of Neonatal Medicine, Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC 27710, USA
| | | | | |
Collapse
|
22
|
Bai GZ, Yu HT, Ni YF, Li XF, Zhang ZP, Su K, Lei J, Liu BY, Ke CK, Zhong DX, Wang YJ, Zhao JB. Shikonin attenuates lipopolysaccharide-induced acute lung injury in mice. J Surg Res 2012; 182:303-11. [PMID: 23158409 DOI: 10.1016/j.jss.2012.10.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Shikonin, a natural naphthoquinone pigment extracted from the root of Lithospermum erythrorhizon, has shown a variety of pharmacologic properties including anti-inflammatory effect. In the present study, we analyzed the role of shikonin in acute lung injury induced by lipopolysaccharide (LPS) in mice. MATERIALS AND METHODS Sixty male BALB/C mice were randomly allocated into six groups (n = 10, each): control group, shikonin group (50 mg/kg), LPS group, and three different doses (12.5, 25, and 50 mg/kg) for shikonin-treated groups. Shikonin or vehicle was given with an intragastric administration 1 h before an intratracheal instillation of LPS (5 mg/kg). The severity of pulmonary injury was evaluated 6 h after LPS challenge. RESULTS Shikonin pretreatment significantly attenuated LPS-induced pulmonary histopathologic changes, alveolar hemorrhage, and neutrophil infiltration. The lung wet-to-dry weight ratios, as the index of pulmonary edema, were markedly decreased by shikonin pretreatment. Moreover, shikonin decreased the productions of the proinflammatory cytokines including tumor necrosis factor alpha and interleukin 1β and the concentration of total proteins in the bronchoalveolar lavage fluid. Shikonin pretreatment also reduced the concentrations of myeloperoxidase and nitric oxide in lung tissues. In addition, shikonin pretreatment significantly suppressed LPS-induced activation of cyclooxygenase 2 and inducible nitric oxide synthase and the nuclear factor κB DNA-binding activity in lung tissues. CONCLUSIONS This study indicates that shikonin may have a protective effect against LPS-induced acute lung injury, and the potential mechanism of this action may attribute partly to the inhibition of inducible nitric oxide synthase and cyclooxygenase 2 expression by downregulating nuclear factor κB activation.
Collapse
Affiliation(s)
- Guang-Zhen Bai
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Solid-phase capture for the detection and relative quantification of S-nitrosoproteins by mass spectrometry. Methods 2012; 62:130-7. [PMID: 23064468 DOI: 10.1016/j.ymeth.2012.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 04/04/2012] [Accepted: 10/02/2012] [Indexed: 01/18/2023] Open
Abstract
The proteomic analysis of S-nitrosylated protein (SNO-proteins) has long depended on the biotin switch technique (BST), which requires blocking of free thiols, ascorbate-based denitrosylation of SNO-Cys, biotinylation of nascent thiol and avidin-based affinity isolation. A more recent development is resin assisted-capture of SNO-proteins (SNO-RAC), which substitutes thiopropyl Sepharose (TPS) for biotin-avidin, thus reducing the number of steps required for enrichment of S-nitrosylated proteins. In addition, SNO-RAC facilitates on-resin proteolytic digestion following SNO-protein capture, greatly simplifying the purification of peptides containing sites of S-nitrosylation ("SNO-sites"). This resin-based approach has also now been applied to detection of alternative Cys-based modifications, including S-palmitoylation (Acyl-RAC) and S-oxidation (Ox-RAC). Here, we review the important steps to minimize false-positive identification of SNO-proteins, give detailed methods for processing of protein-bound TPS for mass spectrometry (MS) based analysis, and discuss the various quantitative MS methods that are compatible with SNO-RAC. We also discuss strategies to overcome the current limitations surrounding MS-based SNO-site localization in peptides containing more than one potential target Cys residue. This article therefore serves as a starting point and guide for the MS-focused exploration of SNO-proteomes by SNO-RAC.
Collapse
|
24
|
Raffay TM, Martin RJ, Reynolds JD. Can nitric oxide-based therapy prevent bronchopulmonary dysplasia? Clin Perinatol 2012; 39:613-38. [PMID: 22954273 PMCID: PMC3437658 DOI: 10.1016/j.clp.2012.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A growing understanding of endogenous nitric oxide (NO) biology is helping to explain how and when exogenous NO may confer benefit or harm; this knowledge is also helping to identify new better-targeted NO-based therapies. In this review, results of the bronchopulmonary dysplasia clinical trials that used inhaled NO in the preterm population are placed in context, the biologic basis for novel NO therapeutics is considered, and possible future directions for NO-focused clinical and basic research in developmental lung disease are identified.
Collapse
Affiliation(s)
- Thomas M. Raffay
- Division of Neonatology, Department of Pediatrics Rainbow Babies & Children’s Hospital, Case Medical Center/University Hospitals, Cleveland, Ohio
| | - Richard J. Martin
- Division of Neonatology, Department of Pediatrics Rainbow Babies & Children’s Hospital, Case Medical Center/University Hospitals, Cleveland, Ohio
| | - James D. Reynolds
- Department of Anesthesia and Perioperative Medicine, Case Medical Center/University Hospitals, Cleveland, Ohio
,Institute for Transformative Molecular Medicine, Case Medical Center/University Hospitals, Cleveland, Ohio
| |
Collapse
|
25
|
Gowdy KM, Nugent JL, Martinu T, Potts E, Snyder LD, Foster WM, Palmer SM. Protective role of T-bet and Th1 cytokines in pulmonary graft-versus-host disease and peribronchiolar fibrosis. Am J Respir Cell Mol Biol 2011; 46:249-56. [PMID: 21960548 PMCID: PMC3297167 DOI: 10.1165/rcmb.2011-0131oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
T-box expressed in T cells (T-bet) is a critical transcription factor for T helper (Th) 1 responses. Although Th1 cells are thought to contribute to certain alloimmune responses, their role in pulmonary graft-versus-host disease (GVHD) is uncertain. We have established a murine model of acute pulmonary GVHD after hematopoietic cell transplant (HCT) and inhaled LPS exposure. We tested the hypothesis that pulmonary GVHD can occur independent of Th1 cells using T-bet-deficient donors. B10.BR(H2(k)) mice underwent allogeneic (Allo) or syngeneic (Syn) HCT with cells from either C57Bl/6J(H2(b)) mice (Allo wild-type [WT] or SynWT) or C57Bl/6J mice lacking T-bet (AlloTbet(-/-) or SynTbet(-/-)). After HCT, mice were exposed daily to aerosolized LPS and subsequently bronchoalveolar lavage and lung tissue were analyzed for cytokines, lymphocytic inflammation, pathology, and fibrosis. Independent of LPS exposure, AlloTbet(-/-) mice developed pulmonary GVHD manifested by lymphocytic inflammation. Furthermore, AlloTbet(-/-) mice developed features of chronic pulmonary GVHD, including increased peribronchiolar fibrosis and collagen content. LPS exposure increased neutrophil recruitment and decreased static compliance in AlloTbet(-/-) mice as compared with LPS-exposed AlloWT mice or LPS-exposed SynTbet(-/-) mice. In addition, LPS-exposed AlloTbet(-/-) mice had increased pulmonary IL-17, IL-13, and Th17 cells, and diminished regulatory T cells compared with the other groups. Our results demonstrate that Th1 cytokines are dispensable in pulmonary GVHD. In the absence of T-bet, there is increased production of Th17 and Th2 cytokines that is associated with peribronchiolar fibrosis and is further enhanced by LPS. These results suggest that the interplay between local innate immunity and non-Th1 T cell subsets contribute to chronic pulmonary GVHD.
Collapse
Affiliation(s)
- Kymberly M Gowdy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Foster MW, Yang Z, Potts EN, Michael Foster W, Que LG. S-nitrosoglutathione supplementation to ovalbumin-sensitized and -challenged mice ameliorates methacholine-induced bronchoconstriction. Am J Physiol Lung Cell Mol Physiol 2011; 301:L739-44. [PMID: 21784966 PMCID: PMC3213990 DOI: 10.1152/ajplung.00134.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
S-nitrosoglutathione (GSNO) is an endogenous bronchodilator present in micromolar concentrations in airway lining fluid. Airway GSNO levels decrease in severe respiratory failure and asthma, which is attributable to increased metabolism by GSNO reductase (GSNOR). Indeed, we have found that GSNOR expression and activity correlate inversely with lung S-nitrosothiol (SNO) content and airway hyperresponsiveness (AHR) to methacholine (MCh) challenge in humans with asthmatic phenotypes (Que LG, Yang Z, Stamler JS, Lugogo NL, Kraft M. Am J Respir Crit Care Med 180: 226-231, 2009). Accordingly, we hypothesized that local aerosol delivery of GSNO could ameliorate AHR and inflammation in the ovalbumin-sensitized and -challenged (OVA) mouse model of allergic asthma. Anesthetized, paralyzed, and tracheotomized 6-wk-old male control and OVA C57BL/6 mice were administered a single 15-s treatment of 0-100 mM GSNO. Five minutes later, airway resistance to MCh was measured and SNOs were quantified in bronchoalveolar lavage (BAL). Duration of protection was evaluated following nose-only exposure to 10 mM GSNO for 10 min followed by measurements of airway resistance, inflammatory cells, and cytokines and chemokines at up to 4 h later. Acute delivery of GSNO aerosol protected OVA mice from MCh-induced AHR, with no benefit seen above 20 mM GSNO. The antibronchoconstrictive effects of GSNO aerosol delivered via nose cone were sustained for at least 4 h. However, administration of GSNO did not alter total BAL cell counts or cell differentials and had modest effects on cytokine and chemokine levels. In conclusion, in the OVA mouse model of allergic asthma, aerosolized GSNO has rapid and sustained antibronchoconstrictive effects but does not substantially alter airway inflammation.
Collapse
Affiliation(s)
- Matthew W Foster
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
27
|
Kelleher ZT, Potts EN, Brahmajothi MV, Foster MW, Auten RL, Foster WM, Marshall HE. NOS2 regulation of LPS-induced airway inflammation via S-nitrosylation of NF-{kappa}B p65. Am J Physiol Lung Cell Mol Physiol 2011; 301:L327-33. [PMID: 21724860 DOI: 10.1152/ajplung.00463.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inducible nitric oxide synthase (NOS2) expression is increased in the airway epithelium in acute inflammatory disorders although the physiological impact remains unclear. We have previously shown that NOS2 inhibits NF-κB (p50-p65) activation in respiratory epithelial cells by inducing S-nitrosylation of the p65 monomer (SNO-p65). In addition, we have demonstrated that mouse lung SNO-p65 levels are acutely depleted in a lipopolysaccharide (LPS) model of lung injury and that augmenting SNO-p65 levels before LPS treatment results in decreased airway epithelial NF-κB activation, airway inflammation, and lung injury. We now show that aerosolized LPS induces NOS2 expression in the respiratory epithelium concomitant with an increase in lung SNO-p65 levels and a decrease in airway NF-κB activity. Genetic deletion of NOS2 results in an absence of SNO-p65 formation, persistent NF-κB activity in the respiratory epithelium, and prolonged airway inflammation. These results indicate that a primary function of LPS-induced NOS2 expression in the respiratory epithelium is to modulate the inflammatory response through deactivation of NF-κB via S-nitrosylation of p65, thereby counteracting the initial stimulus-coupled denitrosylation.
Collapse
Affiliation(s)
- Zachary T Kelleher
- Division of Pulmonary Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Sha Y, Marshall HE. S-nitrosylation in the regulation of gene transcription. Biochim Biophys Acta Gen Subj 2011; 1820:701-11. [PMID: 21640163 DOI: 10.1016/j.bbagen.2011.05.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/14/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND Post-translational modification of proteins by S-nitrosylation serves as a major mode of signaling in mammalian cells and a growing body of evidence has shown that transcription factors and their activating pathways are primary targets. S-nitrosylation directly modifies a number of transcription factors, including NF-κB, HIF-1, and AP-1. In addition, S-nitrosylation can indirectly regulate gene transcription by modulating other cell signaling pathways, in particular JNK kinase and ras. SCOPE OF REVIEW The evolution of S-nitrosylation as a signaling mechanism in the regulation of gene transcription, physiological advantages of protein S-nitrosylation in the control of gene transcription, and discussion of the many transcriptional proteins modulated by S-nitrosylation is summarized. MAJOR CONCLUSIONS S-nitrosylation plays a crucial role in the control of mammalian gene transcription with numerous transcription factors regulated by this modification. Many of these proteins serve as immunomodulators, and inducible nitric oxide synthase (iNOS) is regarded as a principal mediatiator of NO-dependent S-nitrosylation. However, additional targets within the nucleus (e.g. histone deacetylases) and alternative mechanisms of S-nitrosylation (e.g. GAPDH-mediated trans-nitrosylation) are thought to play a role in NOS-dependent transcriptional regulation. GENERAL SIGNIFICANCE Derangement of SNO-regulated gene transcription is an important factor in a variety of pathological conditions including neoplasia and sepsis. A better understanding of protein S-nitrosylation as it relates to gene transcription and the physiological mechanisms behind this process is likely to lead to novel therapies for these disorders. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation.
Collapse
Affiliation(s)
- Yonggang Sha
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
29
|
Sheng H, Reynolds JD, Auten RL, Demchenko IT, Piantadosi CA, Stamler JS, Warner DS. Pharmacologically augmented S-nitrosylated hemoglobin improves recovery from murine subarachnoid hemorrhage. Stroke 2010; 42:471-6. [PMID: 21193749 DOI: 10.1161/strokeaha.110.600569] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE S-nitrosylated hemoglobin (S-nitrosohemoglobin) has been implicated in the delivery of O(2) to tissues through the regulation of microvascular blood flow. This study tested the hypothesis that enhancement of S-nitrosylated hemoglobin by ethyl nitrite inhalation improves outcome after experimental subarachnoid hemorrhage (SAH). METHODS A preliminary dosing study identified 20 ppm ethyl nitrite as a concentration that produced a 4-fold increase in S-nitrosylated hemoglobin concentration with no increase in methemoglobin. Mice were subjected to endovascular perforation of the right anterior cerebral artery and were treated with 20 ppm ethyl nitrite in air, or air alone for 72 hours, after which neurologic function, cerebral vessel diameter, brain water content, cortical tissue Po(2), and parenchymal red blood cell flow velocity were measured. RESULTS At 72 hours after hemorrhage, air- and ethyl nitrite-exposed mice had similarly sized blood clots. Ethyl nitrite improved neurologic score and rotarod performance; abated SAH-induced constrictions in the ipsilateral anterior, middle cerebral, and internal carotid arteries; and prevented an increase in ipsilateral brain water content. Ethyl nitrite inhalation increased red blood cell flow velocity and cortical tissue Po(2) in the ipsilateral cortex with no effect on systemic blood pressure. CONCLUSIONS Targeted S-nitrosylation of hemoglobin improved outcome parameters, including vessel diameter, tissue blood flow, cortical tissue Po(2), and neurologic function in a murine SAH model. Augmenting endogenous Po(2)-dependent delivery of NO bioactivity to selectively dilate the compromised cerebral vasculature has significant clinical potential in the treatment of SAH.
Collapse
Affiliation(s)
- Huaxin Sheng
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Olson N, Kasahara DI, Hristova M, Bernstein R, Janssen-Heininger Y, van der Vliet A. Modulation of NF-κB and hypoxia-inducible factor--1 by S-nitrosoglutathione does not alter allergic airway inflammation in mice. Am J Respir Cell Mol Biol 2010; 44:813-23. [PMID: 20693401 DOI: 10.1165/rcmb.2010-0035oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Induction of nitric oxide synthase (NOS)-2 and production of nitric oxide (NO) are common features of allergic airway disease. Conditions of severe asthma are associated with deficiency of airway S-nitrosothiols, a biological product of NO that can suppress inflammation by S-nitrosylation of the proinflammatory transcription factor, NF-κB. Therefore, restoration of airway S-nitrosothiols might have therapeutic benefit, and this was tested in a mouse model of ovalbumin (OVA)-induced allergic inflammation. Naive or OVA-sensitized animals were administered S-nitrosoglutathione (GSNO; 50 μl, 10 mM) intratracheally before OVA challenge and analyzed 48 hours later. GSNO administration enhanced lung tissue S-nitrosothiol levels and reduced NF-κB activity in OVA-challenged animals compared with control animals, but did not lead to significant changes in total bronchoalveolar lavage cell counts, differentials, or mucus metaplasia markers. Administration of GSNO also altered the activation of hypoxia-inducible factor (HIF)-1, leading to HIF-1 activation in naive mice, but suppressed HIF-1 activation in OVA-challenged mice. We assessed the contribution of endogenous NOS2 in regulating NF-κB and/or HIF-1 activation and allergic airway inflammation using NOS2(-/-) mice. Although OVA-induced NF-κB activation was slightly increased in NOS2(-/-) mice, associated with small increases in bronchoalveolar lavage neutrophils, other markers of allergic inflammation and HIF-1 activation were similar in NOS2(-/-) and wild-type mice. Collectively, our studies indicate that instillation of GSNO can suppress NF-κB activation during allergic airway inflammation, but does not significantly affect overall markers of inflammation or mucus metaplasia, thus potentially limiting its therapeutic potential due to effects on additional signaling pathways, such as HIF-1.
Collapse
Affiliation(s)
- Nels Olson
- Department of Pathology, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | |
Collapse
|
31
|
Brahmajothi MV, Mason SN, Whorton AR, McMahon TJ, Auten RL. Transport rather than diffusion-dependent route for nitric oxide gas activity in alveolar epithelium. Free Radic Biol Med 2010; 49:294-300. [PMID: 20423728 PMCID: PMC2916064 DOI: 10.1016/j.freeradbiomed.2010.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 01/24/2023]
Abstract
The pathway by which inhaled NO gas enters pulmonary alveolar epithelial cells has not been directly tested. Although the expected mechanism is diffusion, another route is the formation of S-nitroso-L-cysteine, which then enters the cell through the L-type amino acid transporter (LAT). To determine if NO gas also enters alveolar epithelium this way, we exposed alveolar epithelial-rat type I, type II, L2, R3/1, and human A549-cells to NO gas at the air liquid interface in the presence of L- and D-cysteine+/-LAT competitors. NO gas exposure concentration dependently increased intracellular NO and S-nitrosothiol levels in the presence of L- but not D-cysteine, which was inhibited by LAT competitors, and was inversely proportional to diffusion distance. The effect of L-cysteine on NO uptake was also concentration dependent. Without preincubation with L-cysteine, NO uptake was significantly reduced. We found similar effects using ethyl nitrite gas in place of NO. Exposure to either gas induced activation of soluble guanylyl cylase in a parallel manner, consistent with LAT dependence. We conclude that NO gas uptake by alveolar epithelium achieves NO-based signaling predominantly by forming extracellular S-nitroso-L-cysteine that is taken up through LAT, rather than by diffusion. Augmenting extracellular S-nitroso-L-cysteine formation may augment pharmacological actions of inhaled NO gas.
Collapse
Affiliation(s)
| | - S. Nicholas Mason
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - A. Richard Whorton
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Timothy J. McMahon
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Richard L. Auten
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
32
|
Matthay MA, Idell S. Update on acute lung injury and critical care medicine 2009. Am J Respir Crit Care Med 2010; 181:1027-32. [PMID: 20460547 PMCID: PMC3269230 DOI: 10.1164/rccm.201001-0074up] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 02/12/2010] [Indexed: 01/23/2023] Open
Affiliation(s)
- Michael A Matthay
- Department of Medicine, University of California-San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0624, USA.
| | | |
Collapse
|
33
|
Abstract
Pulmonary edema occurs when fluid flux into the lung interstitium exceeds its removal, resulting in hypoxemia and even death. Noncardiogenic pulmonary edema (NPE) generally results when microvascular and alveolar permeability to plasma proteins increase, one possible etiology being oxidant injury. Reactive oxygen and nitrogen species (RONS) can modify or damage ion channels, such as epithelial sodium channels, which alters fluid balance. Experimental systems in which either RONS are increased or protective antioxidant mechanisms are decreased result in alterations of epithelial sodium channel activity and support the hypothesis that RONS are important in NPE. Both basic and clinical studies are needed to critically define the RONS-NPE connection and the capacity of antioxidant therapy (either alone or as a supplement to β-agonists) to improve patient outcome.
Collapse
Affiliation(s)
- Karen E Iles
- Department of Anesthesiology, University of Alabama at Birmingham, 901 19th Street South, 304 BMR II, Birmingham, AL 35294-2172, USA, Tel.: +1 205 975 2761, , and Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
34
|
Foster MW, Hess DT, Stamler JS. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 2009; 15:391-404. [PMID: 19726230 DOI: 10.1016/j.molmed.2009.06.007] [Citation(s) in RCA: 577] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 12/24/2022]
Abstract
Protein S-nitrosylation constitutes a large part of the ubiquitous influence of nitric oxide on cellular signal transduction and accumulating evidence indicates important roles for S-nitrosylation both in normal physiology and in a broad spectrum of human diseases. Here we review recent findings that implicate S-nitrosylation in cardiovascular, pulmonary, musculoskeletal and neurological (dys)function, as well as in cancer. The emerging picture shows that, in many cases, pathophysiology correlates with hypo- or hyper-S-nitrosylation of specific protein targets rather than a general cellular insult due to loss of or enhanced nitric oxide synthase activity. In addition, it is increasingly evident that dysregulated S-nitrosylation can not only result from alterations in the expression, compartmentalization and/or activity of nitric oxide synthases, but can also reflect a contribution from denitrosylases, including prominently the S-nitrosoglutathione (GSNO)-metabolizing enzyme GSNO reductase. Finally, because exogenous mediators of protein S-nitrosylation or denitrosylation can substantially affect the development or progression of disease, potential therapeutic agents that modulate S-nitrosylation could well have broad clinical utility.
Collapse
Affiliation(s)
- Matthew W Foster
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
35
|
Kobzik L. Translating NO biology into clinical advances: still searching for the right dictionary? Am J Respir Cell Mol Biol 2009; 41:9-13. [PMID: 19448151 DOI: 10.1165/rcmb.2009-0156tr] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Lester Kobzik
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Auten RL, Mason SN, Auten KM, Brahmajothi M. Hyperoxia impairs postnatal alveolar epithelial development via NADPH oxidase in newborn mice. Am J Physiol Lung Cell Mol Physiol 2009; 297:L134-42. [PMID: 19411313 DOI: 10.1152/ajplung.00112.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperoxia disrupts postnatal lung development in part through inducing inflammation. To determine the contribution of leukocyte-derived reactive oxygen species, we exposed newborn wild-type and NADPH oxidase p47(phox) subunit null (p47(phox-/-)) mice to air or acute hyperoxia (95% O(2)) for up to 11 days. Hyperoxia-induced pulmonary neutrophil influx was similar in wild-type and p47(-/-) mice at postnatal days (P) 7 and 11. Macrophages were decreased in wild-type hyperoxia-exposed mice compared with p47(phox-/-) mice at P11. Hyperoxia impaired type II alveolar epithelial cell and bronchiolar epithelial cell proliferation, but depression of type II cell proliferation was significantly less in p47(-/-) mice at P3 and P7, when inflammation was minimal. We found reciprocal results for the expression of the cell cycle inhibitor p21(cip/waf) in type II cells, which was induced in 95% O(2)-exposed wild-type mice, but significantly less in p47(phox-/-) littermates at P7. Despite partial preservation of type II cell proliferation, deletion of p47(phox) did not prevent the major adverse effects of hyperoxia on alveolar development estimated by morphometry at P11, but hyperoxia impairment of elastin deposition at alveolar septal crests was significantly worse in wild-type vs. p47(phox-/-) mice at P11. Since we found that p47(phox) is expressed in a subset of alveolar epithelial cells, its deletion may protect postnatal type II alveolar epithelial proliferation from hyperoxia through effects on epithelial as well as phagocyte-generated superoxide.
Collapse
Affiliation(s)
- Richard L Auten
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, Neonatal-Perinatal Research Institute, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|