1
|
Von Stemann JH, Dungu AM, Laguarda MV, Ryrsø CK, Hegelund MH, Faurholt-Jepsen D, Krogh-Madsen R, Hansen MB, Lindegaard B, Ostrowski SR. Autoantibodies targeting interferons and GM-CSF are associated with adverse outcome risk, comorbidities, and pathogen in community-acquired pneumonia. Front Immunol 2024; 15:1459616. [PMID: 39606243 PMCID: PMC11598332 DOI: 10.3389/fimmu.2024.1459616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/04/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Cytokine autoantibodies (c-aAb) have been associated with pulmonary diseases, including severe novel coronavirus disease 2019 (COVID-19) and pulmonary alveolar proteinosis. This study aimed to determine c-aAb association with community-acquired pneumonia (CAP) etiology (SARS-CoV-2, influenza, or bacteria) and c-aAb associations with CAP-related clinical outcomes and pulmonary comorbidities. Methods In a cohort of 665 patients hospitalized with CAP, c-aAb targeting interferon α (IFNα), IFNβ, IFNγ, interleukin-1α (IL-1α), IL-6, IL-10, and granulocyte-macrophage colony-stimulating factor (GM-CSF) were measured in plasma samples. Associations between c-aAb and baseline characteristics, pulmonary comorbidities, pathogen, intensive care unit (ICU) transferal, time to clinical stability, and mortality were estimated, with results stratified by sex. Results More men infected with SARS-CoV-2 were had high-titer type 1 IFN c-aAb compared to other pathogens. Among patients with CAP, asthma and bronchiectasis comorbidities were associated with high-titer GM-CSF c-aAb in men, and men with high-titer IFNβ c-aAb had increased odds for ICU transferal. High-titer IL-10 c-aAb were associated with faster clinical stability in women. Conclusion In men with CAP, various c-aAb-including type 1 IFN and GM-CSF c-aAb-were associated with adverse clinical events and comorbidities, whereas c-aAb targeting an autoinflammatory cytokine were associated with a positive outcome in women. This suggests that the potentially immunomodulatory effects of c-aAb depend on pathogen, autoantibody specificity, comorbidity, and sex.
Collapse
Affiliation(s)
- Jakob Hjorth Von Stemann
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Arnold Matovu Dungu
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Denmark
| | - Maria Vispe Laguarda
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Camilla Koch Ryrsø
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Maria Hein Hegelund
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Daniel Faurholt-Jepsen
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rikke Krogh-Madsen
- Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Bagge Hansen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Lindegaard
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Denmark
- Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
2
|
Fung NH, Nguyen QA, Owczarek C, Wilson N, Doomun NE, De Souza D, Quinn K, Selemidis S, McQualter J, Vlahos R, Wang H, Bozinovski S. Early-life house dust mite aeroallergen exposure augments cigarette smoke-induced myeloid inflammation and emphysema in mice. Respir Res 2024; 25:161. [PMID: 38614991 PMCID: PMC11016214 DOI: 10.1186/s12931-024-02774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/14/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Longitudinal studies have identified childhood asthma as a risk factor for obstructive pulmonary disease (COPD) and asthma-COPD overlap (ACO) where persistent airflow limitation can develop more aggressively. However, a causal link between childhood asthma and COPD/ACO remains to be established. Our study aimed to model the natural history of childhood asthma and COPD and to investigate the cellular/molecular mechanisms that drive disease progression. METHODS Allergic airways disease was established in three-week-old young C57BL/6 mice using house dust mite (HDM) extract. Mice were subsequently exposed to cigarette smoke (CS) and HDM for 8 weeks. Airspace enlargement (emphysema) was measured by the mean linear intercept method. Flow cytometry was utilised to phenotype lung immune cells. Bulk RNA-sequencing was performed on lung tissue. Volatile organic compounds (VOCs) in bronchoalveolar lavage-fluid were analysed to screen for disease-specific biomarkers. RESULTS Chronic CS exposure induced emphysema that was significantly augmented by HDM challenge. Increased emphysematous changes were associated with more abundant immune cell lung infiltration consisting of neutrophils, interstitial macrophages, eosinophils and lymphocytes. Transcriptomic analyses identified a gene signature where disease-specific changes induced by HDM or CS alone were conserved in the HDM-CS group, and further revealed an enrichment of Mmp12, Il33 and Il13, and gene expression consistent with greater expansion of alternatively activated macrophages. VOC analysis also identified four compounds increased by CS exposure that were paradoxically reduced in the HDM-CS group. CONCLUSIONS Early-life allergic airways disease worsened emphysematous lung pathology in CS-exposed mice and markedly alters the lung transcriptome.
Collapse
Affiliation(s)
- Nok Him Fung
- Centre for Respiratory Science & Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Quynh Anh Nguyen
- Centre for Respiratory Science & Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Catherine Owczarek
- Research and Development, CSL Limited, Bio21 Institute, Melbourne, Australia
| | - Nick Wilson
- Research and Development, CSL Limited, Bio21 Institute, Melbourne, Australia
| | - Nadeem Elahee Doomun
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Melbourne, Australia
| | - David De Souza
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Melbourne, Australia
| | - Kylie Quinn
- Centre for Respiratory Science & Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Stavros Selemidis
- Centre for Respiratory Science & Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Jonathan McQualter
- Centre for Respiratory Science & Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Ross Vlahos
- Centre for Respiratory Science & Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Hao Wang
- Centre for Respiratory Science & Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia.
| | - Steven Bozinovski
- Centre for Respiratory Science & Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia.
| |
Collapse
|
3
|
Wang H, Yip KH, Keam SP, Vlahos R, Nichol K, Wark P, Toubia J, Kral AC, Cildir G, Pant H, Hercus TR, Wilson N, Owczarek C, Lopez AF, Bozinovski S, Tumes DJ. Dual inhibition of airway inflammation and fibrosis by common β cytokine receptor blockade. J Allergy Clin Immunol 2024; 153:672-683.e6. [PMID: 37931708 DOI: 10.1016/j.jaci.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/11/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Patients with severe asthma can present with eosinophilic type 2 (T2), neutrophilic, or mixed inflammation that drives airway remodeling and exacerbations and represents a major treatment challenge. The common β (βc) receptor signals for 3 cytokines, GM-CSF, IL-5, and IL-3, which collectively mediate T2 and neutrophilic inflammation. OBJECTIVE To determine the pathogenesis of βc receptor-mediated inflammation and remodeling in severe asthma and to investigate βc antagonism as a therapeutic strategy for mixed granulocytic airway disease. METHODS βc gene expression was analyzed in bronchial biopsy specimens from patients with mild-to-moderate and severe asthma. House dust mite extract and Aspergillus fumigatus extract (ASP) models were used to establish asthma-like pathology and airway remodeling in human βc transgenic mice. Lung tissue gene expression was analyzed by RNA sequencing. The mAb CSL311 targeting the shared cytokine binding site of βc was used to block βc signaling. RESULTS βc gene expression was increased in patients with severe asthma. CSL311 potently reduced lung neutrophils, eosinophils, and interstitial macrophages and improved airway pathology and lung function in the acute steroid-resistant house dust mite extract model. Chronic intranasal ASP exposure induced airway inflammation and fibrosis and impaired lung function that was inhibited by CSL311. CSL311 normalized the ASP-induced fibrosis-associated extracellular matrix gene expression network and strongly reduced signatures of cellular inflammation in the lung. CONCLUSIONS βc cytokines drive steroid-resistant mixed myeloid cell airway inflammation and fibrosis. The anti-βc antibody CSL311 effectively inhibits mixed T2/neutrophilic inflammation and severe asthma-like pathology and reverses fibrosis gene signatures induced by exposure to commonly encountered environmental allergens.
Collapse
Affiliation(s)
- Hao Wang
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Kwok Ho Yip
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia
| | - Simon P Keam
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Kristy Nichol
- Immune Health Research Program, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
| | - Peter Wark
- Immune Health Research Program, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
| | - John Toubia
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia
| | - Anita C Kral
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia
| | - Gökhan Cildir
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia
| | - Harshita Pant
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia; Faculty of Medicine, University of Adelaide, Adelaide, Australia
| | - Timothy R Hercus
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia
| | - Nick Wilson
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Catherine Owczarek
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia; Faculty of Medicine, University of Adelaide, Adelaide, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia.
| | - Damon J Tumes
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia.
| |
Collapse
|
4
|
Bedford R, Smith G, Rothwell E, Martin S, Medhane R, Casentieri D, Daunt A, Freiberg G, Hollings M. A multi-organ, lung-derived inflammatory response following in vitro airway exposure to cigarette smoke and next-generation nicotine delivery products. Toxicol Lett 2023; 387:35-49. [PMID: 37774809 DOI: 10.1016/j.toxlet.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Despite increasing use of in vitro models that closely resemble in vivo human biology, their application in understanding downstream effects of airway toxicity, such as inflammation, are at an early stage. In this study, we used various assays to examine the inflammatory response induced in MucilAir™ tissues and A549 cells exposed to three products known to induce toxicity. Reduced barrier integrity was observed in tissues following exposure to each product, with reduced viability and increased cytotoxicity also shown. Similar changes in viability were also observed in A549 cells. Furthermore, whole cigarette smoke (CS) induced downstream phenotypic THP-1 changes and endothelial cell adhesion, an early marker of atherosclerosis. In contrast, exposure to next-generation delivery product (NGP) aerosol did not induce this response. Cytokine, histological and RNA analysis highlighted increased biomarkers linked to inflammatory pathways and immune cell differentiation following exposure to whole cigarette smoke, including GM-CSF, IL-1β, cleaved caspase-3 and cytochrome P450 enzymes. As a result of similar observations in human airway inflammation, we propose that our exposure platform could act as a representative model for studying such events in vitro. Furthermore, this model could be used to test the inflammatory or anti-inflammatory impact posed by inhaled compounds delivered to the lung.
Collapse
Affiliation(s)
- R Bedford
- Labcorp Early Development Laboratories Limited, Harrogate, UK.
| | - G Smith
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - E Rothwell
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - S Martin
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - R Medhane
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - D Casentieri
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - A Daunt
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - G Freiberg
- Labcorp Early Development Laboratories Limited, Eye, UK
| | - M Hollings
- Labcorp Early Development Laboratories Limited, Harrogate, UK.
| |
Collapse
|
5
|
Rojas DA, Ponce CA, Bustos A, Cortés V, Olivares D, Vargas SL. Pneumocystis Exacerbates Inflammation and Mucus Hypersecretion in a Murine, Elastase-Induced-COPD Model. J Fungi (Basel) 2023; 9:jof9040452. [PMID: 37108906 PMCID: PMC10142929 DOI: 10.3390/jof9040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammation and mucus hypersecretion are frequent pathology features of chronic respiratory diseases such as asthma and COPD. Selected bacteria, viruses and fungi may synergize as co-factors in aggravating disease by activating pathways that are able to induce airway pathology. Pneumocystis infection induces inflammation and mucus hypersecretion in immune competent and compromised humans and animals. This fungus is a frequent colonizer in patients with COPD. Therefore, it becomes essential to identify whether it has a role in aggravating COPD severity. This work used an elastase-induced COPD model to evaluate the role of Pneumocystis in the exacerbation of pathology, including COPD-like lung lesions, inflammation and mucus hypersecretion. Animals infected with Pneumocystis developed increased histology features of COPD, inflammatory cuffs around airways and lung vasculature plus mucus hypersecretion. Pneumocystis induced a synergic increment in levels of inflammation markers (Cxcl2, IL6, IL8 and IL10) and mucins (Muc5ac/Muc5b). Levels of STAT6-dependent transcription factors Gata3, FoxA3 and Spdef were also synergically increased in Pneumocystis infected animals and elastase-induced COPD, while the levels of the mucous cell-hyperplasia transcription factor FoxA2 were decreased compared to the other groups. Results document that Pneumocystis is a co-factor for disease severity in this elastase-induced-COPD model and highlight the relevance of STAT6 pathway in Pneumocystis pathogenesis.
Collapse
Affiliation(s)
- Diego A Rojas
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Carolina A Ponce
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Adriel Bustos
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Vicente Cortés
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Daniela Olivares
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Sergio L Vargas
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| |
Collapse
|
6
|
Chen Y, Li F, Hua M, Liang M, Song C. Role of GM-CSF in lung balance and disease. Front Immunol 2023; 14:1158859. [PMID: 37081870 PMCID: PMC10111008 DOI: 10.3389/fimmu.2023.1158859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor originally identified as a stimulus that induces the differentiation of bone marrow progenitor cells into granulocytes and macrophages. GM-CSF is now considered to be a multi-origin and pleiotropic cytokine. GM-CSF receptor signals activate JAK2 and induce nuclear signals through the JAK-STAT, MAPK, PI3K, and other pathways. In addition to promoting the metabolism of pulmonary surfactant and the maturation and differentiation of alveolar macrophages, GM-CSF plays a key role in interstitial lung disease, allergic lung disease, alcoholic lung disease, and pulmonary bacterial, fungal, and viral infections. This article reviews the latest knowledge on the relationship between GM-CSF and lung balance and lung disease, and indicates that there is much more to GM-CSF than its name suggests.
Collapse
Affiliation(s)
- Yingzi Chen
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
| | - Fan Li
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
| | - Mengqing Hua
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
| | - Meng Liang
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Anhui, China
- *Correspondence: Chuanwang Song, ; Meng Liang,
| | - Chuanwang Song
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
- *Correspondence: Chuanwang Song, ; Meng Liang,
| |
Collapse
|
7
|
Pant H, Hercus TR, Tumes DJ, Yip KH, Parker MW, Owczarek CM, Lopez AF, Huston DP. Translating the biology of β common receptor-engaging cytokines into clinical medicine. J Allergy Clin Immunol 2023; 151:324-344. [PMID: 36424209 DOI: 10.1016/j.jaci.2022.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022]
Abstract
The family of cytokines that comprises IL-3, IL-5, and GM-CSF was discovered over 30 years ago, and their biological activities and resulting impact in clinical medicine has continued to expand ever since. Originally identified as bone marrow growth factors capable of acting on hemopoietic progenitor cells to induce their proliferation and differentiation into mature blood cells, these cytokines are also recognized as key mediators of inflammation and the pathobiology of diverse immunologic diseases. This increased understanding of the functional repertoire of IL-3, IL-5, and GM-CSF has led to an explosion of interest in modulating their functions for clinical management. Key to the successful clinical translation of this knowledge is the recognition that these cytokines act by engaging distinct dimeric receptors and that they share a common signaling subunit called β-common or βc. The structural determination of how IL-3, IL-5, and GM-CSF interact with their receptors and linking this to their differential biological functions on effector cells has unveiled new paradigms of cell signaling. This knowledge has paved the way for novel mAbs and other molecules as selective or pan inhibitors for use in different clinical settings.
Collapse
Affiliation(s)
- Harshita Pant
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Timothy R Hercus
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Damon J Tumes
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Kwok Ho Yip
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Michael W Parker
- Bio 21 Institute, The University of Melbourne, Melbourne, Australia; St Vincent's Institute of Medical Research, Melbourne, Australia
| | | | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - David P Huston
- Texas A&M University School of Medicine, Houston, Tex; Houston Methodist Hospital and Research Institute, Houston, Tex.
| |
Collapse
|
8
|
Wrotek A, Jackowska T. Molecular Mechanisms of RSV and Air Pollution Interaction: A Scoping Review. Int J Mol Sci 2022; 23:12704. [PMID: 36293561 PMCID: PMC9604398 DOI: 10.3390/ijms232012704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
RSV is one of the major infectious agents in paediatrics, and its relationship with air pollution is frequently observed. However, the molecular basis of this interaction is sparsely reported. We sought to systematically review the existing body of literature and identify the knowledge gaps to answer the question: which molecular mechanisms are implied in the air pollutants-RSV interaction? Online databases were searched for original studies published before August 2022 focusing on molecular mechanisms of the interaction. The studies were charted and a narrative synthesis was based upon three expected directions of influence: a facilitated viral entry, an altered viral replication, and an inappropriate host reaction. We identified 25 studies published between 1993 and 2020 (without a noticeable increase in the number of studies) that were performed in human (n = 12), animal (n = 10) or mixed (n = 3) models, and analysed mainly cigarette smoke (n = 11), particulate matter (n = 4), nanoparticles (n = 3), and carbon black (n = 2). The data on a damage to the epithelial barrier supports the hypothesis of facilitated viral entry; one study also reported accelerated viral entry upon an RSV conjugation to particulate matter. Air pollution may result in the predominance of necrosis over apoptosis, and, as an effect, an increased viral load was reported. Similarly, air pollution mitigates epithelium function with decreased IFN-γ and Clara cell secretory protein levels and decreased immune response. Immune response might also be diminished due to a decreased viral uptake by alveolar macrophages and a suppressed function of dendritic cells. On the other hand, an exuberant inflammatory response might be triggered by air pollution and provoke airway hyperresponsiveness (AHR), prolonged lung infiltration, and tissue remodeling, including a formation of emphysema. AHR is mediated mostly by increased IFN-γ and RANTES concentrations, while the risk of emphysema was related to the activation of the IL-17 → MCP-1 → MMP-9 → MMP-12 axis. There is a significant lack of evidence on the molecular basics of the RSV-air pollution interaction, which may present a serious problem with regards to future actions against air pollution effects. The major knowledge gaps concern air pollutants (mostly the influence of cigarette smoke was investigated), the mechanisms facilitating an acute infection or a worse disease course (since it might help plan short-term, especially non-pharmacological, interventions), and the mechanisms of an inadequate response to the infection (which may lead to a prolonged course of an acute infection and long-term sequelae). Thus far, the evidence is insufficient regarding the broadness and complexity of the interaction, and future studies should focus on common mechanisms stimulated by various air pollutants and a comparison of influence of the different contaminants at various concentrations.
Collapse
Affiliation(s)
- August Wrotek
- Department of Pediatrics, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
- Department of Pediatrics, Bielanski Hospital, Cegłowska 80, 01-809 Warsaw, Poland
| | - Teresa Jackowska
- Department of Pediatrics, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
- Department of Pediatrics, Bielanski Hospital, Cegłowska 80, 01-809 Warsaw, Poland
| |
Collapse
|
9
|
Haggadone MD, Speth J, Hong HS, Penke LR, Zhang E, Lyssiotis CA, Peters-Golden M. ATP citrate lyase links increases in glycolysis to diminished release of vesicular suppressor of cytokine signaling 3 by alveolar macrophages. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166458. [PMID: 35700791 PMCID: PMC9940702 DOI: 10.1016/j.bbadis.2022.166458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/29/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are important vectors for intercellular communication. Lung-resident alveolar macrophages (AMs) tonically secrete EVs containing suppressor of cytokine signaling 3 (SOCS3), a cytosolic protein that promotes homeostasis in the distal lung via its actions in recipient neighboring epithelial cells. AMs are metabolically distinct and exhibit low levels of glycolysis at steady state. To our knowledge, whether cellular metabolism influences the packaging and release of an EV cargo molecule has never been explored in any cellular context. Here, we report that increases in glycolysis following in vitro exposure of AMs to the growth and activating factor granulocyte-macrophage colony-stimulating factor inhibit the release of vesicular SOCS3 by primary AMs. Glycolytically diminished SOCS3 secretion requires export of citrate from the mitochondria to the cytosol and its subsequent conversion to acetyl-CoA by ATP citrate lyase. Our data for the first time implicate perturbations in intracellular metabolites in the regulation of vesicular cargo packaging and secretion.
Collapse
Affiliation(s)
- Mikel D Haggadone
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jennifer Speth
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hanna S Hong
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 41809, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 41809, USA
| | - Loka R Penke
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eric Zhang
- Undergraduate Research Opportunity Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 41809, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 41809, USA
| | - Marc Peters-Golden
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
Fung NH, Wang H, Vlahos R, Wilson N, Lopez AF, Owczarek CM, Bozinovski S. Targeting the human β
c
receptor inhibits inflammatory myeloid cells and lung injury caused by acute cigarette smoke exposure. Respirology 2022; 27:617-629. [PMID: 35599245 PMCID: PMC9542426 DOI: 10.1111/resp.14297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/09/2022] [Indexed: 12/23/2022]
Abstract
Background and objective Chronic obstructive pulmonary disease (COPD) is a devastating disease commonly caused by cigarette smoke (CS) exposure that drives tissue injury by persistently recruiting myeloid cells into the lungs. A significant portion of COPD patients also present with overlapping asthma pathology including eosinophilic inflammation. The βc cytokine family includes granulocyte monocyte‐colony‐stimulating factor, IL‐5 and IL‐3 that signal through their common receptor subunit βc to promote the expansion and survival of multiple myeloid cells including monocytes/macrophages, neutrophils and eosinophils. Methods We have used our unique human βc receptor transgenic (hβcTg) mouse strain that expresses human βc instead of mouse βc and βIL3 in an acute CS exposure model. Lung tissue injury was assessed by histology and measurement of albumin and lactate dehydrogenase levels in the bronchoalveolar lavage (BAL) fluid. Transgenic mice were treated with an antibody (CSL311) that inhibits human βc signalling. Results hβcTg mice responded to acute CS exposure by expanding blood myeloid cell numbers and recruiting monocyte‐derived macrophages (cluster of differentiation 11b+ [CD11b+] interstitial and exudative macrophages [IM and ExM]), neutrophils and eosinophils into the lungs. This inflammatory response was associated with lung tissue injury and oedema. Importantly, CSL311 treatment in CS‐exposed mice markedly reduced myeloid cell numbers in the blood and BAL compartment. Furthermore, CSL311 significantly reduced lung CD11b+ IM and ExM, neutrophils and eosinophils, and this decline was associated with a significant reduction in matrix metalloproteinase‐12 (MMP‐12) and IL‐17A expression, tissue injury and oedema. Conclusion This study identifies CSL311 as a therapeutic antibody that potently inhibits immunopathology and lung injury caused by acute CS exposure. Myeloid cells, including macrophages, neutrophils and eosinophils, are important cellular drivers of inflammation and injury. In this study, we blocked granulocyte monocyte‐colony stimulating factor, IL‐5 and IL‐3 signalling with an anti‐βc receptor antibody (CSL311), which greatly reduced lung inflammation and injury in a pre‐clinical model of acute cigarette smoke exposure.
Collapse
Affiliation(s)
- Nok Him Fung
- School of Health & Biomedical Sciences RMIT University Bundoora Victoria
| | - Hao Wang
- School of Health & Biomedical Sciences RMIT University Bundoora Victoria
| | - Ross Vlahos
- School of Health & Biomedical Sciences RMIT University Bundoora Victoria
| | | | - Angel F. Lopez
- Centre for Cancer Biology SA Pathology and UniSA Adelaide South Australia Australia
| | | | - Steven Bozinovski
- School of Health & Biomedical Sciences RMIT University Bundoora Victoria
| |
Collapse
|
11
|
Hirschi-Budge KM, Tsai KYF, Curtis KL, Davis GS, Theurer BK, Kruyer AMM, Homer KW, Chang A, Van Ry PM, Arroyo JA, Reynolds PR. RAGE signaling during tobacco smoke-induced lung inflammation and potential therapeutic utility of SAGEs. BMC Pulm Med 2022; 22:160. [PMID: 35473605 PMCID: PMC9044720 DOI: 10.1186/s12890-022-01935-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Smoke exposure culminates as a progressive lung complication involving airway inflammation and remodeling. While primary smoke poses the greatest risk, nearly half of the US population is also at risk due to exposure to secondhand smoke (SHS). METHODS We used WT, RAGE-/- (KO), and Tet-inducible lung-specific RAGE overexpressing transgenic (TG) mice to study the role of RAGE during short-term responses to SHS. We evaluated SHS effects in mice with and without semi-synthetic glycosaminoglycan ethers (SAGEs), which are anionic, partially lipophilic sulfated polysaccharide derivatives known to inhibit RAGE signaling. TG Mice were weaned and fed doxycycline to induce RAGE at postnatal day (PN) 30. At PN40, mice from each line were exposed to room air (RA) or SHS from three Kentucky 3R4F research cigarettes via a nose-only delivery system (Scireq Scientific, Montreal, Canada) five days a week and i.p. injections of PBS or SAGE (30 mg/kg body weight) occurred three times per week from PN40-70 before mice were sacrificed on PN70. RESULTS RAGE mRNA and protein expression was elevated following SHS exposure of control and TG mice and not detected in RAGE KO mice. Bronchoalveolar lavage fluid (BALF) analysis revealed RAGE-mediated influence on inflammatory cell diapedesis, total protein, and pro-inflammatory mediators following exposure. Lung histological assessment revealed indistinguishable morphology following exposure, yet parenchymal apoptosis was increased. Inflammatory signaling intermediates such as Ras and NF-κB, as well as downstream responses were influenced by the availability of RAGE, as evidenced by RAGE KO and SAGE treatment. CONCLUSIONS These data provide fascinating insight suggesting therapeutic potential for the use of RAGE inhibitors in lungs exposed to SHS smoke.
Collapse
Affiliation(s)
- Kelsey M Hirschi-Budge
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Kary Y F Tsai
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Katrina L Curtis
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Gregg S Davis
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Benjamin K Theurer
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Anica M M Kruyer
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Kyle W Homer
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Ashley Chang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Pam M Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Juan A Arroyo
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Paul R Reynolds
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
12
|
Chronic obstructive pulmonary disease and atherosclerosis: common mechanisms and novel therapeutics. Clin Sci (Lond) 2022; 136:405-423. [PMID: 35319068 PMCID: PMC8968302 DOI: 10.1042/cs20210835] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 12/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and atherosclerosis are chronic irreversible diseases, that share a number of common causative factors including cigarette smoking. Atherosclerosis drastically impairs blood flow and oxygen availability to tissues, leading to life-threatening outcomes including myocardial infarction (MI) and stroke. Patients with COPD are most likely to die as a result of a cardiovascular event, with 30% of all COPD-related deaths being attributed to cardiovascular disease (CVD). Both atherosclerosis and COPD involve significant local (i.e. lung, vasculature) and systemic inflammation and oxidative stress, of which current pharmacological treatments have limited efficacy, hence the urgency for the development of novel life-saving therapeutics. Currently these diseases must be treated individually, with no therapies available that can effectively reduce the likelihood of comorbid CVD other than cessation of cigarette smoking. In this review, the important mechanisms that drive atherosclerosis and CVD in people with COPD are explained and we propose that modulation of both the oxidative stress and the inflammatory burden will provide a novel therapeutic strategy to treat both the pulmonary and systemic manifestations related to these diseases.
Collapse
|
13
|
Ataya A, Knight V, Carey BC, Lee E, Tarling EJ, Wang T. The Role of GM-CSF Autoantibodies in Infection and Autoimmune Pulmonary Alveolar Proteinosis: A Concise Review. Front Immunol 2021; 12:752856. [PMID: 34880857 PMCID: PMC8647160 DOI: 10.3389/fimmu.2021.752856] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Autoantibodies to multiple cytokines have been identified and some, including antibodies against granulocyte-macrophage colony-stimulating factor (GM-CSF), have been associated with increased susceptibility to infection. High levels of GM-CSF autoantibodies that neutralize signaling cause autoimmune pulmonary alveolar proteinosis (aPAP), an ultrarare autoimmune disease characterized by accumulation of excess surfactant in the alveoli, leading to pulmonary insufficiency. Defective GM-CSF signaling leads to functional deficits in multiple cell types, including macrophages and neutrophils, with impaired phagocytosis and host immune responses against pulmonary and systemic infections. In this article, we review the role of GM-CSF in aPAP pathogenesis and pulmonary homeostasis along with the increased incidence of infections (particularly opportunistic infections). Therefore, recombinant human GM-CSF products may have potential for treatment of aPAP and possibly other infectious and pulmonary diseases due to its pleotropic immunomodulatory actions.
Collapse
Affiliation(s)
- Ali Ataya
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine and Children's Hospital, Aurora, CO, United States
| | - Brenna C Carey
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Elinor Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Elizabeth J Tarling
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Tisha Wang
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
14
|
Makino A, Shibata T, Nagayasu M, Hosoya I, Nishimura T, Nakano C, Nagata K, Ito T, Takahashi Y, Nakamura S. RSV infection-elicited high MMP-12-producing macrophages exacerbate allergic airway inflammation with neutrophil infiltration. iScience 2021; 24:103201. [PMID: 34703996 PMCID: PMC8524145 DOI: 10.1016/j.isci.2021.103201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/20/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection often exacerbates bronchial asthma, but there is no licensed RSV vaccine or specific treatments. Here we show that RSV-induced alveolar macrophages, which produce high levels of matrix metalloproteinase-12 (MMP-12), exacerbate allergic airway inflammation with increased neutrophil infiltration. When mice subjected to allergic airway inflammation via exposure to the house dust mite antigen (HDM) were infected with RSV (HDM/RSV), MMP-12 expression, viral load, neutrophil infiltration, and airway hyperresponsiveness (AHR) were increased compared to those in the HDM and RSV groups. These exacerbations in the HDM/RSV group were attenuated in MMP-12-deficient mice and mice treated with MMP408, a selective MMP-12 inhibitor, but not in mice treated with dexamethasone. Finally, M2-like macrophages produced MMP-12, and its production was promoted by increase of IFN-β-induced IL-4 receptor expression with RSV infection. Thus, targeting MMP-12 represents a potentially novel therapeutic strategy for the exacerbation of asthma.
Collapse
Affiliation(s)
- Airi Makino
- Department of Microbiology, Tokyo Medical University, Tokyo 160-8402, Japan.,Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Takehiko Shibata
- Department of Microbiology, Tokyo Medical University, Tokyo 160-8402, Japan.,Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Mashiro Nagayasu
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Ikuo Hosoya
- Graduate School of Health Care Science, Bunkyo Gakuin University, Tokyo 113-8668, Japan
| | - Toshiyo Nishimura
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Chihiro Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Toho University Ohashi Medical Center, Tokyo 153-0044, Japan
| | - Kisaburo Nagata
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shigeki Nakamura
- Department of Microbiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
15
|
Jamal Jameel K, Gallert WJ, Yanik SD, Panek S, Kronsbein J, Jungck D, Koch A, Knobloch J. Biomarkers for Comorbidities Modulate the Activity of T-Cells in COPD. Int J Mol Sci 2021; 22:ijms22137187. [PMID: 34281240 PMCID: PMC8269158 DOI: 10.3390/ijms22137187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
In smoking-induced chronic obstructive pulmonary disease (COPD), various comorbidities are linked to systemic inflammation and infection-induced exacerbations. The underlying mechanisms are unclear but might provide therapeutic targets. T-cell activity is central in systemic inflammation and for infection-defense mechanisms and might be influenced by comorbidities. Hypothesis: Circulating biomarkers of comorbidities modulate the activity of T-cells of the T-helper type 1 (Th1) and/or T-cytotoxic type 1 (Tc1). T-cells in peripheral blood mononuclear cells (PBMCs) from non-smokers (NS), current smokers without COPD (S), and COPD subjects (total n = 34) were ex vivo activated towards Th1/Tc1 and were then stimulated with biomarkers for metabolic and/or cardiovascular comorbidities (Brain Natriuretic Peptide, BNP; chemokine (C-C motif) ligand 18, CCL18; C-X3-C motif chemokine ligand 1, CX3CL1; interleukin-18, IL-18) or for asthma- and/or cancer-related comorbidities (CCL22; epidermal growth factor, EGF; IL-17; periostin) each at 10 or 50 ng/mL. The Th1/Tc1 activation markers interferon-γ (IFNγ), tumor necrosis factor-α (TNFα), and granulocyte-macrophage colony-stimulating factor (GM-CSF) were analyzed in culture supernatants by Enzyme-Linked Immunosorbent Assay (ELISA). Ex-vivo activation induced IFNγ and TNFα without differences between the groups but GM-CSF more in S vs. NS. At 10 ng/mL, the different biomarkers increased or reduced the T-cell activation markers without a clear trend for one direction in the different categories of comorbidities or for the different T-cell activation markers. At 50 ng/mL, there was a clear shift towards suppressive effects, particularly for the asthma— and cancer-related biomarkers and in cells of S and COPD. Comorbidities might suppress T-cell immunity in COPD. This could explain the association of comorbidities with frequent exacerbations.
Collapse
Affiliation(s)
- Kaschin Jamal Jameel
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; (K.J.J.); (W.-J.G.); (S.D.Y.); (S.P.); (J.K.)
| | - Willem-Jakob Gallert
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; (K.J.J.); (W.-J.G.); (S.D.Y.); (S.P.); (J.K.)
| | - Sarah D. Yanik
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; (K.J.J.); (W.-J.G.); (S.D.Y.); (S.P.); (J.K.)
| | - Susanne Panek
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; (K.J.J.); (W.-J.G.); (S.D.Y.); (S.P.); (J.K.)
| | - Juliane Kronsbein
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; (K.J.J.); (W.-J.G.); (S.D.Y.); (S.P.); (J.K.)
| | - David Jungck
- Department of Internal Medicine II, Pneumology, Allergology and Respiratory Medicine, Bethel Teaching Hospital, 12207 Berlin, Germany;
| | - Andrea Koch
- Pyhrn-Eisenwurzen-Klinikum Steyr, Klinik für Pneumologie, Lehrkrankenhaus der Uniklinik Linz, Sierninger Str. 170, 4400 Steyr, Austria;
- Ludwig-Maximilians-University of Munich (LMU) and DZL (German Center of Lung Science), 81377 Munich, Germany
| | - Jürgen Knobloch
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; (K.J.J.); (W.-J.G.); (S.D.Y.); (S.P.); (J.K.)
- Correspondence: ; Tel.: +49-234-302-3404; Fax: +49-234-302-6420
| |
Collapse
|
16
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
17
|
Brassington K, Chan SMH, Seow HJ, Dobric A, Bozinovski S, Selemidis S, Vlahos R. Ebselen reduces cigarette smoke-induced endothelial dysfunction in mice. Br J Pharmacol 2021; 178:1805-1818. [PMID: 33523477 PMCID: PMC8074626 DOI: 10.1111/bph.15400] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/21/2020] [Accepted: 01/20/2021] [Indexed: 12/26/2022] Open
Abstract
Background and Purpose It is well established that both smokers and patients with COPD are at a significantly heightened risk of cardiovascular disease (CVD), although the mechanisms underpinning the onset and progression of co‐morbid CVD are largely unknown. Here, we explored whether cigarette smoke (CS) exposure impairs vascular function in mice and given the well‐known pathological role for oxidative stress in COPD, whether the antioxidant compound ebselen prevents CS‐induced vascular dysfunction in mice. Experimental Approach Male BALB/c mice were exposed to either room air (sham) or CS generated from nine cigarettes per day, 5 days a week for 8 weeks. Mice were treated with ebselen (10 mg·kg−1, oral gavage once daily) or vehicle (5% w/v CM cellulose in water) 1 h prior to the first CS exposure of the day. Upon killing, bronchoalveolar lavage fluid (BALF) was collected to assess pulmonary inflammation, and the thoracic aorta was excised to investigate vascular endothelial and smooth muscle dilator responses ex vivo. Key Results CS exposure caused a significant increase in lung inflammation which was reduced by ebselen. CS also caused significant endothelial dysfunction in the thoracic aorta which was attributed to a down‐regulation of eNOS expression and increased vascular oxidative stress. Ebselen abolished the aortic endothelial dysfunction seen in CS‐exposed mice by reducing the oxidative burden and preserving eNOS expression. Conclusion and Implications Targeting CS‐induced oxidative stress with ebselen may provide a novel means for treating the life‐threatening pulmonary and cardiovascular manifestations associated with cigarette smoking and COPD.
Collapse
Affiliation(s)
- Kurt Brassington
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Stanley M H Chan
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Huei Jiunn Seow
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Aleksandar Dobric
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Steven Bozinovski
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Stavros Selemidis
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ross Vlahos
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
18
|
Uemasu K, Tanabe N, Tanimura K, Hasegawa K, Mizutani T, Hamakawa Y, Sato S, Ogawa E, Thomas MJ, Ikegami M, Muro S, Hirai T, Sato A. Serine Protease Imbalance in the Small Airways and Development of Centrilobular Emphysema in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2020; 63:67-78. [PMID: 32101459 DOI: 10.1165/rcmb.2019-0377oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Epithelial dysfunction in the small airways may cause the development of emphysema in chronic obstructive pulmonary disease. C/EBPα (CCAAT/enhancer binding protein-α), a transcription factor, is required for lung maturation during development, and is also important for lung homeostasis after birth, including the maintenance of serine protease/antiprotease balance in the bronchiolar epithelium. This study aimed to show the roles of C/EBPα in the distal airway during chronic cigarette smoke exposure in mice and in the small airways in smokers. In a model of chronic smoke exposure using epithelial cell-specific C/EBPα-knockout mice, significant pathological phenotypes, such as higher protease activity, impaired ciliated cell regeneration, epithelial cell barrier dysfunction via reduced zonula occludens-1 (Zo-1), and decreased alveolar attachments, were found in C/EBPα-knockout mice compared with control mice. We found that Spink5 (serine protease inhibitor kazal-type 5) gene (encoding lymphoepithelial Kazal-type-related inhibitor [LEKTI], an anti-serine protease) expression in the small airways is a key regulator of protease activity in this model. Finally, we showed that daily antiprotease treatment counteracted the phenotypes of C/EBPα-knockout mice. In human studies, CEBPA (CCAAT/enhancer binding protein-α) gene expression in the lung was downregulated in patients with emphysema, and six smokers with centrilobular emphysema (CLE) showed a significant reduction in LEKTI in the small airways compared with 22 smokers without CLE. LEKTI downregulation in the small airways was associated with disease development during murine small airway injury and CLE in humans, suggesting that LEKTI might be a key factor linking small airway injury to the development of emphysema.
Collapse
Affiliation(s)
- Kiyoshi Uemasu
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuya Tanimura
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Hasegawa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsushi Mizutani
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoko Hamakawa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Emiko Ogawa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Health Administration Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Matthew J Thomas
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Ko KG, Biberach an der Riss, Germany
| | - Machiko Ikegami
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio; and
| | - Shigeo Muro
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Etemadi T, Momeni HR, Ghafarizadeh AA. Impact of silymarin on cadmium-induced apoptosis in human spermatozoa. Andrologia 2020; 52:e13795. [PMID: 32829504 DOI: 10.1111/and.13795] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress-induced apoptosis in spermatozoa may lead to male infertility. Environmental pollutants and heavy metals such as cadmium cause harmful effects on the reproductive system and sperm parameters through the induction of oxidative stress. Silymarin, as a potent antioxidant, is able to inhibit oxidative stress. This study was performed to investigate the protective effects of silymarin on cadmium-induced toxicity in human spermatozoa. Sperm samples were divided into the following five groups: (a) spermatozoa at 0 min, (b) spermatozoa in the control group, (c) spermatozoa treated with cadmium chloride (20 μM), (d) spermatozoa treated with silymarin (2 μM)+ cadmium chloride (20 μM) and (e) spermatozoa treated with silymarin (2 μM). Sperm parameters related to apoptosis, such as DNA fragmentation, nucleus diameter, mitochondrial membrane potential (MMP) and expression of caspase-3, were evaluated in all groups. After 180 min, spermatozoa treated with cadmium chloride showed a significant decrease in nucleus diameter and MMP but a significant increase in DNA fragmentation; however, caspase-3 expression remained unchanged. At this time point, silymarin in the silymarin + cadmium chloride group could significantly reverse the adverse effects of cadmium chloride on these parameters.Silymarn could partly compensate for the caspase-independent apoptosis in the spermatozoa. Therefore, oxidative stress could be a consequence for cadmium toxicity.
Collapse
Affiliation(s)
- Tahereh Etemadi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Hamid Reza Momeni
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | | |
Collapse
|
20
|
Lee KMC, Jarnicki A, Achuthan A, Fleetwood AJ, Anderson GP, Ellson C, Feeney M, Modis LK, Smith JE, Hamilton JA, Cook A. CCL17 in Inflammation and Pain. THE JOURNAL OF IMMUNOLOGY 2020; 205:213-222. [PMID: 32461237 DOI: 10.4049/jimmunol.2000315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
It has been reported that a GM-CSF→CCL17 pathway, originally identified in vitro in macrophage lineage populations, is implicated in the control of inflammatory pain, as well as arthritic pain and disease. We explore, in this study and in various inflammation models, the cellular CCL17 expression and its GM-CSF dependence as well as the function of CCL17 in inflammation and pain. This study used models allowing the convenient cell isolation from Ccl17E/+ reporter mice; it also exploited both CCL17-dependent and unique CCL17-driven inflammatory pain and arthritis models, the latter permitting a radiation chimera approach to help identify the CCL17 responding cell type(s) and the mediators downstream of CCL17 in the control of inflammation and pain. We present evidence that 1) in the particular inflammation models studied, CCL17 expression is predominantly in macrophage lineage populations and is GM-CSF dependent, 2) for its action in arthritic pain and disease development, CCL17 acts on CCR4+ non-bone marrow-derived cells, and 3) for inflammatory pain development in which a GM-CSF→CCL17 pathway appears critical, nerve growth factor, CGRP, and substance P all appear to be required.
Collapse
Affiliation(s)
- Kevin M-C Lee
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia;
| | - Andrew Jarnicki
- Department of Pharmacology, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Adrian Achuthan
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Andrew J Fleetwood
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Gary P Anderson
- Department of Pharmacology, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Christian Ellson
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, United Kingdom; and
| | - Maria Feeney
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, United Kingdom; and
| | - Louise K Modis
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, United Kingdom; and
| | - Julia E Smith
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, United Kingdom; and
| | - John A Hamilton
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia.,Australian Institute for Musculoskeletal Science, The University of Melbourne and Western Health, St. Albans, Victoria 3021, Australia
| | - Andrew Cook
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
21
|
Smoking-Induced Inhibition of Number and Activity of Endothelial Progenitor Cells and Nitric Oxide in Males Were Reversed by Estradiol in Premenopausal Females. Cardiol Res Pract 2020; 2020:9352518. [PMID: 32455001 PMCID: PMC7240658 DOI: 10.1155/2020/9352518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Objectives The number and activity of circulating EPCs were enhanced in premenopausal women contrast to postmenopausal females and age-matched males. Here, we investigated whether this favorable effect exists in premenopausal women and age-matched men with cigarette smoking. Methods In a cross-sectional study, the number and activity of circulating EPCs and nitric oxide production (NO) as well as flow-mediated vasodilation (FMD) in both premenopausal women and age-matched men with or without cigarette smoking were studied. Results Compared with age-matched men with or without smoking, the number and function of circulating EPCs as well as NO level in premenopausal women were obviously higher than that in the former and not affected by smoking. The number and function of circulating EPCs as well as NO level in male smokers were shown to be the most strongly inhibited. Furthermore, there was significant correlation between EPC number and activity, plasma NO level, and NO secretion by EPCs and FMD. Conclusions Estradiol was deemed to play an important role in enhancing the number and activity of EPCs and NO production in premenopausal women even when affected by smoking, which may be the important mechanisms underlying vascular protection of estradiol in premenopausal women, but not in age-matched men.
Collapse
|
22
|
Xue T, Chun-Li A. Role of Pneumocystis jirovecii infection in chronic obstructive pulmonary disease progression in an immunosuppressed rat Pneumocystis pneumonia model. Exp Ther Med 2020; 19:3133-3142. [PMID: 32256801 DOI: 10.3892/etm.2020.8545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/09/2019] [Indexed: 11/05/2022] Open
Abstract
Pneumocystis jirovecii (P. jirovecii), an opportunistic fungal pathogen, is the primary cause of Pneumocystis pneumonia (PCP), which affects immunocompromised individuals and leads to high morbidity and mortality. P. jirovecii colonization is associated with development of chronic obstructive pulmonary disease (COPD) in patients with HIV infection, and also non-sufferers, and in primate models of HIV infection. However, the mechanisms underlying P. jirovecii infection in the pathogenesis of COPD have yet to be fully elucidated. To investigate the pathogenicity of P. jirovecii infection and its role in COPD development, the present study established a PCP rat model induced by dexamethasone sodium phosphate injection. Expression of COPD-related biomarkers, including matrix metalloproteinases (MMPs) MMP-2, MMP-8, MMP-9, and MMP-12, and heat shock protein-27 (HSP-27), were quantified in the rat PCP model using reverse transcription-quantitative polymerase chain reaction, ELISA, western blot analysis, immunohistochemistry and gelatin zymography. Body weight, COPD symptoms, and pulmonary histopathology were assessed. Inflammatory cell counts in splenic tissues were measured using flow cytometry. It was identified that MMP and HSP-27 expression increased in the PCP rats, which was in agreement with previous literature. Therefore, it was hypothesized that P. jirovecii infection may have an important role in COPD development.
Collapse
Affiliation(s)
- Ting Xue
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - An Chun-Li
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
23
|
Suzuki T, McCarthy C, Carey BC, Borchers M, Beck D, Wikenheiser-Brokamp KA, Black D, Chalk C, Trapnell BC. Increased Pulmonary GM-CSF Causes Alveolar Macrophage Accumulation. Mechanistic Implications for Desquamative Interstitial Pneumonitis. Am J Respir Cell Mol Biol 2020; 62:87-94. [PMID: 31310562 PMCID: PMC6938130 DOI: 10.1165/rcmb.2018-0294oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Desquamative interstitial pneumonia (DIP) is a rare, smoking-related, diffuse parenchymal lung disease characterized by marked accumulation of alveolar macrophages (AMs) and emphysema, without extensive fibrosis or neutrophilic inflammation. Because smoking increases expression of pulmonary GM-CSF (granulocyte/macrophage-colony stimulating factor) and GM-CSF stimulates proliferation and activation of AMs, we hypothesized that chronic exposure of mice to increased pulmonary GM-CSF may recapitulate DIP. Wild-type (WT) mice were subjected to inhaled cigarette smoke exposure for 16 months, and AM numbers and pulmonary GM-CSF mRNA levels were measured. After demonstrating that smoke inhalation increased pulmonary GM-CSF in WT mice, transgenic mice overexpressing pulmonary GM-CSF (SPC-GM-CSF+/+) were used to determine the effects of chronic exposure to increased pulmonary GM-CSF (without smoke inhalation) on accumulation and activation of AMs, pulmonary matrix metalloproteinase (MMP) expression and activity, lung histopathology, development of polycythemia, and survival. In WT mice, smoke exposure markedly increased pulmonary GM-CSF and AM accumulation. In unexposed SPC-GM-CSF+/+ mice, AMs were spontaneously activated as shown by phosphorylation of STAT5 (signal inducer and activator of transcription 5) and accumulated progressively with involvement of 84% (interquartile range, 55-90%) of the lung parenchyma by 10 months of age. Histopathologic features also included scattered multinucleated giant cells, alveolar epithelial cell hyperplasia, and mild alveolar wall thickening. SPC-GM-CSF+/+ mice had increased pulmonary MMP-9 and MMP-12 levels, spontaneously developed emphysema and secondary polycythemia, and had increased mortality compared with WT mice. Results show cigarette smoke increased pulmonary GM-CSF and AM proliferation, and chronically increased pulmonary GM-CSF recapitulated the cardinal features of DIP, including AM accumulation, emphysema, secondary polycythemia, and increased mortality in mice. These observations suggest pulmonary GM-CSF may be involved in the pathogenesis of DIP.
Collapse
Affiliation(s)
- Takuji Suzuki
- Translational Pulmonary Science Center
- Division of Pulmonary Biology
| | - Cormac McCarthy
- Translational Pulmonary Science Center
- Division of Pulmonary Biology
- Division of Pulmonary Medicine, and
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Brenna C. Carey
- Translational Pulmonary Science Center
- Division of Pulmonary Biology
| | - Michael Borchers
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David Beck
- Translational Pulmonary Science Center
- Division of Pulmonary Biology
| | - Kathryn A. Wikenheiser-Brokamp
- Division of Pulmonary Biology
- Division of Pathology and Laboratory Medicine, Children’s Hospital Medical Center, Cincinnati, Ohio; and
| | - Dianna Black
- Translational Pulmonary Science Center
- Division of Pulmonary Biology
| | - Claudia Chalk
- Translational Pulmonary Science Center
- Division of Pulmonary Biology
| | - Bruce C. Trapnell
- Translational Pulmonary Science Center
- Division of Pulmonary Biology
- Division of Pulmonary Medicine, and
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
24
|
Sakuma M, Khan MAS, Yasuhara S, Martyn JA, Palaniyar N. Mechanism of pulmonary immunosuppression: extrapulmonary burn injury suppresses bacterial endotoxin-induced pulmonary neutrophil recruitment and neutrophil extracellular trap (NET) formation. FASEB J 2019; 33:13602-13616. [PMID: 31577450 PMCID: PMC6894048 DOI: 10.1096/fj.201901098r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Pulmonary immunosuppression often occurs after burn injury (BI). However, the reasons for BI-induced pulmonary immunosuppression are not clearly understood. Neutrophil recruitment and neutrophil extracellular trap (NET) formation (NETosis) are important components of a robust pulmonary immune response, and we hypothesized that pulmonary inflammation and NETosis are defective after BI. To test this hypothesis, we established a mouse model with intranasal LPS instillation in the presence or absence of BI (15% of body surface burn) and determined the degree of immune cell infiltration, NETosis, and the cytokine levels in the airways and blood on d 2. Presence of LPS recruited monocytes and large numbers of neutrophils to the airways and induced NETosis (citrullinated histone H3, DNA, myeloperoxidase). By contrast, BI significantly reduced LPS-mediated leukocyte recruitment and NETosis. This BI-induced immunosuppression is attributable to the reduction of chemokine (C-C motif) ligand (CCL) 2 (monocyte chemoattractant protein 1) and CCL3 (macrophage inflammatory protein 1α). BI also suppressed LPS-induced increase in IL-17A, IL-17C, and IL-17E/IL-25 levels in the airways. Therefore, BI-mediated reduction in leukocyte recruitment and NETosis in the lungs are attributable to these cytokines. Regulating the levels of some of these key cytokines represents a potential therapeutic option for mitigating BI-mediated pulmonary immunosuppression.-Sakuma, M., Khan, M. A. S., Yasuhara, S., Martyn, J. A., Palaniyar, N. Mechanism of pulmonary immunosuppression: extrapulmonary burn injury suppresses bacterial endotoxin-induced pulmonary neutrophil recruitment and neutrophil extracellular trap (NET) formation.
Collapse
Affiliation(s)
- Miyuki Sakuma
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Mohammed A. S. Khan
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Shingo Yasuhara
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeevendra A. Martyn
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Nades Palaniyar
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Institute of Medical Sciences, Faculty of Medicine, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Nair PM, Starkey MR, Haw TJ, Liu G, Collison AM, Mattes J, Wark PA, Morris JC, Verrills NM, Clark AR, Ammit AJ, Hansbro PM. Enhancing tristetraprolin activity reduces the severity of cigarette smoke-induced experimental chronic obstructive pulmonary disease. Clin Transl Immunology 2019; 8:e01084. [PMID: 31921419 PMCID: PMC6946917 DOI: 10.1002/cti2.1084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Chronic obstructive pulmonary disease (COPD) is a progressive disease that causes significant mortality and morbidity worldwide and is primarily caused by the inhalation of cigarette smoke (CS). Lack of effective treatments for COPD means there is an urgent need to identify new therapeutic strategies for the underlying mechanisms of pathogenesis. Tristetraprolin (TTP) encoded by the Zfp36 gene is an anti-inflammatory protein that induces mRNA decay, especially of transcripts encoding inflammatory cytokines, including those implicated in COPD. METHODS Here, we identify a novel protective role for TTP in CS-induced experimental COPD using Zfp36aa/aa mice, a genetically modified mouse strain in which endogenous TTP cannot be phosphorylated, rendering it constitutively active as an mRNA-destabilising factor. TTP wild-type (Zfp36 +/+) and Zfp36aa/aa active C57BL/6J mice were exposed to CS for four days or eight weeks, and the impact on acute inflammatory responses or chronic features of COPD, respectively, was assessed. RESULTS After four days of CS exposure, Zfp36aa/aa mice had reduced numbers of airway neutrophils and lymphocytes and mRNA expression levels of cytokines compared to wild-type controls. After eight weeks, Zfp36aa/aa mice had reduced pulmonary inflammation, airway remodelling and emphysema-like alveolar enlargement, and lung function was improved. We then used pharmacological treatments in vivo (protein phosphatase 2A activator, AAL(S), and the proteasome inhibitor, bortezomib) to promote the activation and stabilisation of TTP and show that hallmark features of CS-induced experimental COPD were ameliorated. CONCLUSION Collectively, our study provides the first evidence for the therapeutic potential of inducing TTP as a treatment for COPD.
Collapse
Affiliation(s)
- Prema M Nair
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
| | - Malcolm R Starkey
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
| | - Tatt Jhong Haw
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
| | - Gang Liu
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
| | - Adam M Collison
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
| | - Joerg Mattes
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
| | - Peter A. Wark
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
| | | | - Nikki M Verrills
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
| | - Andrew R Clark
- Institute of Inflammation and AgeingCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Alaina J Ammit
- Woolcock Emphysema CentreWoolcock Institute of Medical ResearchUniversity of SydneyNSWAustralia
- School of Life SciencesFaculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
| | - Philip M Hansbro
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
- School of Life SciencesFaculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
- Centenary InstituteCentre for InflammationUniversity of Technology SydneySydneyNSWAustralia
| |
Collapse
|
26
|
Losartan does not inhibit cigarette smoke-induced lung inflammation in mice. Sci Rep 2019; 9:15053. [PMID: 31636311 PMCID: PMC6803700 DOI: 10.1038/s41598-019-51504-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a progressive lung disease largely caused by cigarette smoking (CS) and is characterized by lung inflammation and airflow limitation that is not fully reversible. Approximately 50% of people with COPD die of a cardiovascular comorbidity and current pharmacological strategies provide little benefit. Therefore, drugs that target the lung and the cardiovascular system concurrently may be an advantageous therapeutic strategy. The aim of this study was to see whether losartan, an angiotensin-II AT1a receptor antagonist widely used to treat hypertension associated with cardiovascular disease, protects against CS-induced lung inflammation in mice. Male BALB/c mice were exposed to CS for 8 weeks and treated with either losartan (30 mg/kg) or vehicle daily. Mice were euthanized and bronchoalveolar lavage fluid (BALF) inflammation, and whole lung cytokine, chemokine and protease mRNA expression assessed. CS caused significant increases in BALF total cells, macrophages, neutrophils and whole lung IL-6, TNF-α, CXCL-1, IL-17A and MMP12 mRNA expression compared to sham-exposed mice. However, losartan only reduced CS-induced increases in IL-6 mRNA expression. Angiotensin-II receptor expression was reduced in lung tissue from CS-exposed mice. In conclusion, losartan did not inhibit CS-induced BALF cellularity despite reducing whole lung IL-6 mRNA and Ang-II receptor expression.
Collapse
|
27
|
Prior cigarette smoke exposure does not affect acute post-stroke outcomes in mice. PLoS One 2019; 14:e0214246. [PMID: 30897180 PMCID: PMC6428410 DOI: 10.1371/journal.pone.0214246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/09/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death globally and is characterized by airflow limitation that is progressive and not fully reversible. Cigarette smoking is the major cause of COPD. Fifty percent of deaths in the COPD population are due to a cardiovascular event and it is now recognised that COPD is a risk factor for stroke. Whether COPD increases stroke severity has not been explored. The aim of this study was to investigate whether functional and histological endpoints of stroke outcomes in mice after transient middle cerebral artery occlusion (tMCAo) were more severe in mice exposed to cigarette smoke (CS). 7-week-old male C57BL/6 mice were exposed to room air or CS generated from 9 cigarettes/day, 5 days/week for 2, 8 and 12 weeks. Following air or CS exposure, mice underwent tMCAO surgery with an ischaemic period of 30-40 min or sham surgery. Mice were euthanised 24 h following the induction of ischaemia and bronchoalveolar lavage fluid (BALF), lungs and brains collected. Mice exposed to CS for 2 weeks and subjected to a stroke had similar BALF macrophages to air-exposed and stroke mice. However, CS plus stroke mice had significantly more BALF total cells, neutrophils and lymphocytes than air plus stroke mice. Mice exposed to CS for 8 and 12 weeks had significantly greater BALF total cells, macrophages, neutrophils and lymphocytes than air-exposed mice, but stroke did not affect CS-induced BALF cellularity. Prior CS exposure did not worsen stroke-induced neurological deficit scores, reduced foregrip strength, infarct and oedema volumes. Collectively, we found that although CS exposure caused significant BALF inflammation, it did not worsen acute post-stroke outcomes in mice. This data suggests that while patients with COPD are at increased risk of stroke, it may not translate to COPD patients having more severe stroke outcomes.
Collapse
|
28
|
Ischaemic stroke in mice induces lung inflammation but not acute lung injury. Sci Rep 2019; 9:3622. [PMID: 30842652 DOI: 10.1038/s41598-019-40392-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/12/2019] [Indexed: 01/11/2023] Open
Abstract
Stroke is a major cause of death worldwide and ischemic stroke is the most common subtype accounting for approximately 80% of all cases. Pulmonary complications occur in the first few days to weeks following ischemic stroke and are a major contributor to morbidity and mortality. Acute lung injury (ALI) occurs in up to 30% of patients with subarachnoid haemorrhage but the incidence of ALI after ischemic stroke is unclear. As ischemic stroke is the most common subtype of stroke, it is important to understand the development of ALI following the initial ischemic injury to the brain. Therefore, this study investigated whether focal ischemic stroke causes lung inflammation and ALI in mice. Ischemic stroke caused a significant increase in bronchoalveolar lavage fluid (BALF) macrophages and neutrophils and whole lung tissue proinflammatory IL-1β mRNA expression but this did not translate into histologically evident ALI. Thus, it appears that lung inflammation, but not ALI, occurs after experimental ischemic stroke in mice. This has significant implications for organ donors as the lungs from patient's dying of ischemic stroke are not severely damaged and could thus be used for transplantation in people awaiting this life-saving therapy.
Collapse
|
29
|
Matrine reduces cigarette smoke-induced airway neutrophilic inflammation by enhancing neutrophil apoptosis. Clin Sci (Lond) 2019; 133:551-564. [PMID: 30733313 DOI: 10.1042/cs20180912] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 02/06/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a major incurable global health burden and will become the third largest cause of death in the world by 2030. It is well established that an exaggerated inflammatory and oxidative stress response to cigarette smoke (CS) leads to, emphysema, small airway fibrosis, mucus hypersecretion, and progressive airflow limitation. Current treatments have limited efficacy in inhibiting chronic inflammation and consequently do not reverse the pathology that initiates and drives the long-term progression of disease. In particular, there are no effective therapeutics that target neutrophilic inflammation in COPD, which is known to cause tissue damage by degranulation of a suite of proteolytic enzymes including neutrophil elastase (NE). Matrine, an alkaloid compound extracted from Sophora flavescens Ait, has well known anti-inflammatory activity. Therefore, the aim of the present study was to investigate whether matrine could inhibit CS-induced lung inflammation in mice. Matrine significantly reduced CS-induced bronchoalveolar lavage fluid (BALF) neutrophilia and NE activity in mice. The reduction in BALF neutrophils in CS-exposed mice by matrine was not due to reductions in pro-neutrophil cytokines/chemokines, but rather matrine's ability to cause apoptosis of neutrophils, which we demonstrated ex vivo Thus, our data suggest that matrine has anti-inflammatory actions that could be of therapeutic potential in treating CS-induced lung inflammation observed in COPD.
Collapse
|
30
|
Lee SH, Heng D, Xavier VJ, Chan KP, Ng WK, Zhao Y, Chan HK, Tan RB. Inhaled non-steroidal polyphenolic alternatives for anti-inflammatory combination therapy. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Effects of cigarette smoke on immunity, neuroinflammation and multiple sclerosis. J Neuroimmunol 2018; 329:24-34. [PMID: 30361070 DOI: 10.1016/j.jneuroim.2018.10.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 09/30/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
Cigarette smoking is the most prominent significant cause of death and morbidity. It is recognised as a risk factor for a number of immune mediated, inflammatory diseases including multiple sclerosis (MS). Here, we review the complex immunological effects of smoking on the immune system, which include enhancement of inflammatory responses with a parallel reduction of some immune defences, resulting in an increased susceptibility to infection and a persistent proinflammatory environment. We discuss the effect of smoking on the susceptibility, clinical course, disability, and mortality in MS, the likely benefits of smoking cessation, and the specific immunological effects of smoking in MS. In conclusion, smoking is an important environmental risk factor for MS occurrence and outcome, and it acts in significant part through immunological mechanisms.
Collapse
|
32
|
Tada R, Hidaka A, Kiyono H, Kunisawa J, Aramaki Y. Intranasal administration of cationic liposomes enhanced granulocyte-macrophage colony-stimulating factor expression and this expression is dispensable for mucosal adjuvant activity. BMC Res Notes 2018; 11:472. [PMID: 30005702 PMCID: PMC6045820 DOI: 10.1186/s13104-018-3591-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/10/2018] [Indexed: 12/24/2022] Open
Abstract
Objective Infectious diseases remain a threat to human life. Vaccination against pathogenic microbes is a primary method of treatment as well as prevention of infectious diseases. Particularly mucosal vaccination is a promising approach to fight against most infectious diseases, because mucosal surfaces are a major point of entry for most pathogens. We recently developed an effective mucosal adjuvant of cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl] (DC-chol) (DOTAP/DC-chol liposomes). However, the mechanism(s) underlying the mucosal adjuvant effects exerted by the cationic liposomes have been unclear. In this study, we investigated the role of granulocyte–macrophage colony-stimulating factor (GM-CSF), which was reported to act as a mucosal adjuvant, on the mucosal adjuvant activities of DOTAP/DC-chol liposomes when administered intranasally to mice. Results Here, we show that, although intranasal vaccination with cationic liposomes in combination with antigenic protein elicited GM-CSF expression at the site of administration, blocking GM-CSF function by using an anti-GM-CSF neutralizing antibody did not alter antigen-specific antibody production induced by DOTAP/DC-chol liposomes, indicating that GM-CSF may not contribute to the mucosal adjuvant activity of the cationic liposomes when administered intranasally. Electronic supplementary material The online version of this article (10.1186/s13104-018-3591-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Akira Hidaka
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jun Kunisawa
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yukihiko Aramaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
33
|
Takahashi K, Pavlidis S, Ng Kee Kwong F, Hoda U, Rossios C, Sun K, Loza M, Baribaud F, Chanez P, Fowler SJ, Horvath I, Montuschi P, Singer F, Musial J, Dahlen B, Dahlen SE, Krug N, Sandstrom T, Shaw DE, Lutter R, Bakke P, Fleming LJ, Howarth PH, Caruso M, Sousa AR, Corfield J, Auffray C, De Meulder B, Lefaudeux D, Djukanovic R, Sterk PJ, Guo Y, Adcock IM, Chung KF. Sputum proteomics and airway cell transcripts of current and ex-smokers with severe asthma in U-BIOPRED: an exploratory analysis. Eur Respir J 2018; 51:13993003.02173-2017. [PMID: 29650557 DOI: 10.1183/13993003.02173-2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Severe asthma patients with a significant smoking history have airflow obstruction with reported neutrophilia. We hypothesise that multi-omic analysis will enable the definition of smoking and ex-smoking severe asthma molecular phenotypes.The U-BIOPRED cohort of severe asthma patients, containing current-smokers (CSA), ex-smokers (ESA), nonsmokers and healthy nonsmokers was examined. Blood and sputum cell counts, fractional exhaled nitric oxide and spirometry were obtained. Exploratory proteomic analysis of sputum supernatants and transcriptomic analysis of bronchial brushings, biopsies and sputum cells was performed.Colony-stimulating factor (CSF)2 protein levels were increased in CSA sputum supernatants, with azurocidin 1, neutrophil elastase and CXCL8 upregulated in ESA. Phagocytosis and innate immune pathways were associated with neutrophilic inflammation in ESA. Gene set variation analysis of bronchial epithelial cell transcriptome from CSA showed enrichment of xenobiotic metabolism, oxidative stress and endoplasmic reticulum stress compared to other groups. CXCL5 and matrix metallopeptidase 12 genes were upregulated in ESA and the epithelial protective genes, mucin 2 and cystatin SN, were downregulated.Despite little difference in clinical characteristics, CSA were distinguishable from ESA subjects at the sputum proteomic level, with CSA patients having increased CSF2 expression and ESA patients showing sustained loss of epithelial barrier processes.
Collapse
Affiliation(s)
- Kentaro Takahashi
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK.,Research Centre for Allergy and Clinical Immunology, Asahi General Hospital, Matsudo, Japan
| | - Stelios Pavlidis
- Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Francois Ng Kee Kwong
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Uruj Hoda
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Christos Rossios
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Kai Sun
- Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Matthew Loza
- Janssen Research and Development, High Wycombe, UK
| | | | - Pascal Chanez
- Assistance Publique des Hôpitaux de Marseille, Clinique des Bronches, Allergies et Sommeil, Aix Marseille Université, Marseille, France
| | - Steve J Fowler
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester and University Hospital of South Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | | | | | - Florian Singer
- Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jacek Musial
- Dept of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Barbro Dahlen
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Eric Dahlen
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Thomas Sandstrom
- Dept of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Dominic E Shaw
- Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Rene Lutter
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Per Bakke
- Dept of Clinical Science, University of Bergen, Bergen, Norway
| | - Louise J Fleming
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Peter H Howarth
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences and Human Development and Health, Southampton, UK
| | - Massimo Caruso
- Dept Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Ana R Sousa
- Respiratory Therapeutic Unit, GSK, Stockley Park, UK
| | - Julie Corfield
- AstraZeneca R&D, Molndal, Sweden.,Areteva R&D, Nottingham, UK
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Diane Lefaudeux
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences and Human Development and Health, Southampton, UK
| | - Peter J Sterk
- Dept of Clinical Science, University of Bergen, Bergen, Norway
| | - Yike Guo
- Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK.,Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK.,Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | | |
Collapse
|
34
|
Tsantikos E, Lau M, Castelino CM, Maxwell MJ, Passey SL, Hansen MJ, McGregor NE, Sims NA, Steinfort DP, Irving LB, Anderson GP, Hibbs ML. Granulocyte-CSF links destructive inflammation and comorbidities in obstructive lung disease. J Clin Invest 2018; 128:2406-2418. [PMID: 29708507 DOI: 10.1172/jci98224] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an incurable inflammatory lung disease that afflicts millions of people worldwide, and it is the fourth leading cause of death. Systemic comorbidities affecting the heart, skeletal muscle, bone, and metabolism are major contributors to morbidity and mortality. Given the surprising finding in large prospective clinical biomarker studies that peripheral white blood cell count is more closely associated with disease than inflammatory biomarkers, we probed the role of blood growth factors. Using the SHIP-1-deficient COPD mouse model, which manifests a syndrome of destructive lung disease and a complex of comorbid pathologies, we have identified a critical and unexpected role for granulocyte-CSF (G-CSF) in linking these conditions. Deletion of G-CSF greatly reduced airway inflammation and lung tissue destruction, and attenuated systemic inflammation, right heart hypertrophy, loss of fat reserves, and bone osteoporosis. In human clinical translational studies, bronchoalveolar lavage fluid of patients with COPD demonstrated elevated G-CSF levels. These studies suggest that G-CSF may play a central and unforeseen pathogenic role in COPD and its complex comorbidities, and identify G-CSF and its regulators as potential therapeutic targets.
Collapse
Affiliation(s)
- Evelyn Tsantikos
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Maverick Lau
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia.,Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Cassandra Mn Castelino
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Mhairi J Maxwell
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Samantha L Passey
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle J Hansen
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Narelle E McGregor
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Daniel P Steinfort
- Department of Respiratory and Sleep Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Louis B Irving
- Department of Respiratory and Sleep Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Gary P Anderson
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Vlahos R, Bozinovski S. Protocols to Evaluate Cigarette Smoke-Induced Lung Inflammation and Pathology in Mice. Methods Mol Biol 2018; 1725:53-63. [PMID: 29322408 DOI: 10.1007/978-1-4939-7568-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cigarette smoking is a major cause of chronic obstructive pulmonary disease (COPD). Inhalation of cigarette smoke causes inflammation of the airways, airway wall remodelling, mucus hypersecretion and progressive airflow limitation. Much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities and infectious (viral and bacterial) exacerbations (AECOPD). Comorbidities, in particular skeletal muscle wasting, cardiovascular disease and lung cancer markedly impact on disease morbidity, progression and mortality. The mechanisms and mediators underlying COPD and its comorbidities are poorly understood and current COPD therapy is relatively ineffective. Many researchers have used animal modelling systems to explore the mechanisms underlying COPD, AECOPD and comorbidities of COPD with the goal of identifying novel therapeutic targets. Here we describe a mouse model that we have developed to define the cellular, molecular and pathological consequences of cigarette smoke exposure and the development of comorbidities of COPD.
Collapse
Affiliation(s)
- Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
36
|
Bao A, Che KF, Bozinovski S, Ji J, Gregory JA, Kumlien Georén S, Adner M, Cardell LO, Lindén A. Recombinant human IL-26 facilitates the innate immune response to endotoxin in the bronchoalveolar space of mice in vivo. PLoS One 2017; 12:e0188909. [PMID: 29206862 PMCID: PMC5716532 DOI: 10.1371/journal.pone.0188909] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022] Open
Abstract
Interleukin (IL)-26 is released in response to bacterial endotoxin (LPS) in the bronchoalveolar space of humans in vivo and it may potentiate neutrophil chemotaxis by enhanced IL-26 receptor stimulation. However, the effects of extracellular IL-26 protein on the innate immune response in the lungs in vivo remain unknown. Here, we characterized these effects of IL-26 on a wide range of aspects of the innate immune response to LPS in different compartments of the lungs in vivo over time. We administrated recombinant human (rh) IL-26 protein in the bronchoalveolar space using intranasal instillation in a mouse in vivo model, with and without prior instillation of LPS. We verified gene expression of the IL-26 receptor complex in mouse lungs and observed that, after instillation of LPS, rhIL-26 increases the phosphorylation of STAT3, a signaling molecule of the IL-26 receptor complex. We also observed that rhIL-26 exerted additional stimulatory and inhibitory actions that are compartment- and time-dependent, resulting in alterations of cytokines, proteinases, tissue inflammation and the accumulation of innate effector cells. Without the prior instillation of LPS, rhIL-26 exerted time-dependent effects on total gelatinase activity but few other effects. Most important, after instillation of LPS, rhIL-26 cleared inflammatory cells from local tissue and increased the accumulation of innate effector cells in the bronchoalveolar space. Tentatively, rhIL-26 may facilitate the innate immune response towards the bronchoalveolar space in vivo and represents a potential target for therapy in lung disorders involving the innate immune response.
Collapse
Affiliation(s)
- Aihua Bao
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Respiratory Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Karlhans Fru Che
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Steven Bozinovski
- RMIT University, School of Health and Biomedical Sciences, Bundoora, Victoria, Australia
| | - Jie Ji
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joshua A Gregory
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Unit for Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Stockholm, Sweden
| | - Susanna Kumlien Georén
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Division of ENT Diseases, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Adner
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Unit for Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Stockholm, Sweden
| | - Lars-Olaf Cardell
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Division of ENT Diseases, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Lung Allergy Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
37
|
Willinger CM, Rong J, Tanriverdi K, Courchesne PL, Huan T, Wasserman GA, Lin H, Dupuis J, Joehanes R, Jones MR, Chen G, Benjamin EJ, O’Connor GT, Mizgerd JP, Freedman JE, Larson MG, Levy D. MicroRNA Signature of Cigarette Smoking and Evidence for a Putative Causal Role of MicroRNAs in Smoking-Related Inflammation and Target Organ Damage. CIRCULATION. CARDIOVASCULAR GENETICS 2017; 10:e001678. [PMID: 29030400 PMCID: PMC5683429 DOI: 10.1161/circgenetics.116.001678] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/13/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cigarette smoking increases risk for multiple diseases. MicroRNAs regulate gene expression and may play a role in smoking-induced target organ damage. We sought to describe a microRNA signature of cigarette smoking and relate it to smoking-associated clinical phenotypes, gene expression, and lung inflammatory signaling. METHODS AND RESULTS Expression profiling of 283 microRNAs was conducted on whole blood-derived RNA from 5023 Framingham Heart Study participants (54.0% women; mean age, 55±13 years) using TaqMan assays and high-throughput reverse transcription quantitative polymerase chain reaction. Associations of microRNA expression with smoking status and associations of smoking-related microRNAs with inflammatory biomarkers and pulmonary function were tested with linear mixed effects models. We identified a 6-microRNA signature of smoking. Five of the 6 smoking-related microRNAs were associated with serum levels of C-reactive protein or interleukin-6; miR-1180 was associated with pulmonary function measures at a marginally significant level. Bioinformatic evaluation of smoking-associated genes coexpressed with the microRNA signature of cigarette smoking revealed enrichment for immune-related pathways. Smoking-associated microRNAs altered expression of selected inflammatory mediators in cell culture gain-of-function assays. CONCLUSIONS We characterized a novel microRNA signature of cigarette smoking. The top microRNAs were associated with systemic inflammatory markers and reduced pulmonary function, correlated with expression of genes involved in immune function, and were sufficient to modulate inflammatory signaling. Our results highlight smoking-associated microRNAs and are consistent with the hypothesis that smoking-associated microRNAs serve as mediators of smoking-induced inflammation and target organ damage. These findings call for further mechanistic studies to explore the diagnostic and therapeutic use of smoking-related microRNAs.
Collapse
Affiliation(s)
- Christine M. Willinger
- Framingham Heart Study, Framingham, MA
- Division of Intramural Research and Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Jian Rong
- Framingham Heart Study, Framingham, MA
- Boston University School of Public Health, Boston
| | - Kahraman Tanriverdi
- Department of Medicine and UMass Memorial Heart & Vascular Center, University of Massachusetts Medical School, Worcester
| | - Paul L. Courchesne
- Framingham Heart Study, Framingham, MA
- Division of Intramural Research and Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Tianxiao Huan
- Framingham Heart Study, Framingham, MA
- Division of Intramural Research and Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| | | | - Honghuang Lin
- Framingham Heart Study, Framingham, MA
- Boston University School of Medicine
| | - Josée Dupuis
- Framingham Heart Study, Framingham, MA
- Boston University School of Public Health, Boston
| | - Roby Joehanes
- Framingham Heart Study, Framingham, MA
- Division of Intramural Research and Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | | | - George Chen
- Framingham Heart Study, Framingham, MA
- Division of Intramural Research and Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Emelia J. Benjamin
- Framingham Heart Study, Framingham, MA
- Boston University School of Public Health, Boston
- Boston University School of Medicine
| | | | | | - Jane E. Freedman
- Department of Medicine and UMass Memorial Heart & Vascular Center, University of Massachusetts Medical School, Worcester
| | - Martin G. Larson
- Framingham Heart Study, Framingham, MA
- Boston University School of Public Health, Boston
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA
- Division of Intramural Research and Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
- Boston University School of Medicine
| |
Collapse
|
38
|
Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond) 2017; 131:1541-1558. [PMID: 28659395 DOI: 10.1042/cs20160487] [Citation(s) in RCA: 330] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/19/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) both cause airway obstruction and are associated with chronic inflammation of the airways. However, the nature and sites of the inflammation differ between these diseases, resulting in different pathology, clinical manifestations and response to therapy. In this review, the inflammatory and cellular mechanisms of asthma and COPD are compared and the differences in inflammatory cells and profile of inflammatory mediators are highlighted. These differences account for the differences in clinical manifestations of asthma and COPD and their response to therapy. Although asthma and COPD are usually distinct, there are some patients who show an overlap of features, which may be explained by the coincidence of two common diseases or distinct phenotypes of each disease. It is important to better understand the underlying cellular and molecular mechanisms of asthma and COPD in order to develop new treatments in areas of unmet need, such as severe asthma, curative therapy for asthma and effective anti-inflammatory treatments for COPD.
Collapse
|
39
|
Lefaudeux D, De Meulder B, Loza MJ, Peffer N, Rowe A, Baribaud F, Bansal AT, Lutter R, Sousa AR, Corfield J, Pandis I, Bakke PS, Caruso M, Chanez P, Dahlén SE, Fleming LJ, Fowler SJ, Horvath I, Krug N, Montuschi P, Sanak M, Sandstrom T, Shaw DE, Singer F, Sterk PJ, Roberts G, Adcock IM, Djukanovic R, Auffray C, Chung KF, Adriaens N, Ahmed H, Aliprantis A, Alving K, Badorek P, Balgoma D, Barber C, Bautmans A, Behndig AF, Bel E, Beleta J, Berglind A, Berton A, Bigler J, Bisgaard H, Bochenek G, Boedigheimer MJ, Bøonnelykke K, Brandsma J, Braun A, Brinkman P, Burg D, Campagna D, Carayannopoulos L, Carvalho da Purfição Rocha JP, Chaiboonchoe A, Chaleckis R, Coleman C, Compton C, D'Amico A, Dahlén B, De Alba J, de Boer P, De Lepeleire I, Dekker T, Delin I, Dennison P, Dijkhuis A, Draper A, Edwards J, Emma R, Ericsson M, Erpenbeck V, Erzen D, Faulenbach C, Fichtner K, Fitch N, Flood B, Frey U, Gahlemann M, Galffy G, Gallart H, Garret T, Geiser T, Gent J, Gerhardsson de Verdier M, Gibeon D, Gomez C, Gove K, Gozzard N, Guo YK, Hashimoto S, Haughney J, Hedlin G, Hekking PP, Henriksson E, Hewitt L, Higgenbottam T, Hoda U, Hohlfeld J, et alLefaudeux D, De Meulder B, Loza MJ, Peffer N, Rowe A, Baribaud F, Bansal AT, Lutter R, Sousa AR, Corfield J, Pandis I, Bakke PS, Caruso M, Chanez P, Dahlén SE, Fleming LJ, Fowler SJ, Horvath I, Krug N, Montuschi P, Sanak M, Sandstrom T, Shaw DE, Singer F, Sterk PJ, Roberts G, Adcock IM, Djukanovic R, Auffray C, Chung KF, Adriaens N, Ahmed H, Aliprantis A, Alving K, Badorek P, Balgoma D, Barber C, Bautmans A, Behndig AF, Bel E, Beleta J, Berglind A, Berton A, Bigler J, Bisgaard H, Bochenek G, Boedigheimer MJ, Bøonnelykke K, Brandsma J, Braun A, Brinkman P, Burg D, Campagna D, Carayannopoulos L, Carvalho da Purfição Rocha JP, Chaiboonchoe A, Chaleckis R, Coleman C, Compton C, D'Amico A, Dahlén B, De Alba J, de Boer P, De Lepeleire I, Dekker T, Delin I, Dennison P, Dijkhuis A, Draper A, Edwards J, Emma R, Ericsson M, Erpenbeck V, Erzen D, Faulenbach C, Fichtner K, Fitch N, Flood B, Frey U, Gahlemann M, Galffy G, Gallart H, Garret T, Geiser T, Gent J, Gerhardsson de Verdier M, Gibeon D, Gomez C, Gove K, Gozzard N, Guo YK, Hashimoto S, Haughney J, Hedlin G, Hekking PP, Henriksson E, Hewitt L, Higgenbottam T, Hoda U, Hohlfeld J, Holweg C, Howarth P, Hu R, Hu S, Hu X, Hudson V, James AJ, Kamphuis J, Kennington EJ, Kerry D, Klüglich M, Knobel H, Knowles R, Knox A, Kolmert J, Konradsen J, Kots M, Krueger L, Kuo S, Kupczyk M, Lambrecht B, Lantz AS, Larsson L, Lazarinis N, Lone-Satif S, Marouzet L, Martin J, Masefield S, Mathon C, Matthews JG, Mazein A, Meah S, Maiser A, Menzies-Gow A, Metcalf L, Middelveld R, Mikus M, Miralpeix M, Monk P, Mores N, Murray CS, Musial J, Myles D, Naz S, Nething K, Nicholas B, Nihlen U, Nilsson P, Nordlund B, Östling J, Pacino A, Pahus L, Palkonnen S, Pavlidis S, Pennazza G, Petrén A, Pink S, Postle A, Powel P, Rahman-Amin M, Rao N, Ravanetti L, Ray E, Reinke S, Reynolds L, Riemann K, Riley J, Robberechts M, Roberts A, Rossios C, Russell K, Rutgers M, Santini G, Sentoninco M, Schoelch C, Schofield JP, Seibold W, Sigmund R, Sjödin M, Skipp PJ, Smids B, Smith C, Smith J, Smith KM, Söderman P, Sogbesan A, Staykova D, Strandberg K, Sun K, Supple D, Szentkereszty M, Tamasi L, Tariq K, Thörngren JO, Thornton B, Thorsen J, Valente S, van Aalderenm W, van de Pol M, van Drunen K, van Geest M, Versnel J, Vestbo J, Vink A, Vissing N, von Garnier C, Wagerner A, Wagers S, Wald F, Walker S, Ward J, Weiszhart Z, Wetzel K, Wheelock CE, Wiegman C, Williams S, Wilson SJ, Woosdcock A, Yang X, Yeyashingham E, Yu W, Zetterquist W, Zwinderman K. U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. J Allergy Clin Immunol 2017; 139:1797-1807. [DOI: 10.1016/j.jaci.2016.08.048] [Show More Authors] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 07/23/2016] [Accepted: 08/08/2016] [Indexed: 01/20/2023]
|
40
|
New Anti-inflammatory Drugs for COPD: Is There a Possibility of Developing Drugs That Can Fundamentally Suppress Inflammation? RESPIRATORY DISEASE SERIES: DIAGNOSTIC TOOLS AND DISEASE MANAGEMENTS 2017. [DOI: 10.1007/978-981-10-0839-9_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Jarnicki AG, Schilter H, Liu G, Wheeldon K, Essilfie AT, Foot JS, Yow TT, Jarolimek W, Hansbro PM. The inhibitor of semicarbazide-sensitive amine oxidase, PXS-4728A, ameliorates key features of chronic obstructive pulmonary disease in a mouse model. Br J Pharmacol 2016; 173:3161-3175. [PMID: 27495192 PMCID: PMC5071557 DOI: 10.1111/bph.13573] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/20/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic obstructive pulmonary disease (COPD) is a major cause of illness and death, often induced by cigarette smoking (CS). It is characterized by pulmonary inflammation and fibrosis that impairs lung function. Existing treatments aim to control symptoms but have low efficacy, and there are no broadly effective treatments. A new potential target is the ectoenzyme, semicarbazide-sensitive mono-amine oxidase (SSAO; also known as vascular adhesion protein-1). SSAO is elevated in smokers' serum and is a pro-inflammatory enzyme facilitating adhesion and transmigration of leukocytes from the vasculature to sites of inflammation. EXPERIMENTAL APPROACH PXS-4728A was developed as a low MW inhibitor of SSAO. A model of COPD induced by CS in mice reproduces key aspects of human COPD, including chronic airway inflammation, fibrosis and impaired lung function. This model was used to assess suppression of SSAO activity and amelioration of inflammation and other characteristic features of COPD. KEY RESULTS Treatment with PXS-4728A completely inhibited lung and systemic SSAO activity induced by acute and chronic CS-exposure. Daily oral treatment inhibited airway inflammation (immune cell influx and inflammatory factors) induced by acute CS-exposure. Therapeutic treatment during chronic CS-exposure, when the key features of experimental COPD develop and progress, substantially suppressed inflammatory cell influx and fibrosis in the airways and improved lung function. CONCLUSIONS AND IMPLICATIONS Treatment with a low MW inhibitor of SSAO, PXS-4728A, suppressed airway inflammation and fibrosis and improved lung function in experimental COPD, demonstrating the therapeutic potential of PXS-4728A for this debilitating disease.
Collapse
Affiliation(s)
- A G Jarnicki
- Centre for Asthma and Respiratory Disease, The University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - H Schilter
- Drug Discovery Department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - G Liu
- Centre for Asthma and Respiratory Disease, The University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - K Wheeldon
- Centre for Asthma and Respiratory Disease, The University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - A-T Essilfie
- Centre for Asthma and Respiratory Disease, The University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - J S Foot
- Drug Discovery Department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - T T Yow
- Drug Discovery Department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - W Jarolimek
- Drug Discovery Department, Pharmaxis Ltd., Sydney, NSW, Australia
| | - P M Hansbro
- Centre for Asthma and Respiratory Disease, The University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
42
|
Lewis JB, Milner DC, Lewis AL, Dunaway TM, Egbert KM, Albright SC, Merrell BJ, Monson TD, Broberg DS, Gassman JR, Thomas DB, Arroyo JA, Reynolds PR. Up-Regulation of Claudin-6 in the Distal Lung Impacts Secondhand Smoke-Induced Inflammation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E1018. [PMID: 27763528 PMCID: PMC5086757 DOI: 10.3390/ijerph13101018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/30/2016] [Accepted: 10/13/2016] [Indexed: 01/06/2023]
Abstract
It has long been understood that increased epithelial permeability contributes to inflammation observed in many respiratory diseases. Recently, evidence has revealed that environmental exposure to noxious material such as cigarette smoke reduces tight junction barrier integrity, thus enhancing inflammatory conditions. Claudin-6 (Cldn6) is a tetraspanin transmembrane protein found within the tight junctional complex and is implicated in maintaining lung epithelial barriers. To test the hypothesis that increased Cldn6 ameliorates inflammation at the respiratory barrier, we utilized the Tet-On inducible transgenic system to conditionally over-express Clnd6 in the distal lung. Cldn6 transgenic (TG) and control mice were continuously provided doxycycline from postnatal day (PN) 30 until euthanasia date at PN90. A subset of Cldn6 TG and control mice were also subjected to daily secondhand tobacco smoke (SHS) via a nose only inhalation system from PN30-90 and compared to room air (RA) controls. Animals were euthanized on PN90 and lungs were harvested for histological and molecular characterization. Bronchoalveolar lavage fluid (BALF) was procured for the assessment of inflammatory cells and molecules. Quantitative RT-PCR and immunoblotting revealed increased Cldn6 expression in TG vs. control animals and SHS decreased Cldn6 expression regardless of genetic up-regulation. Histological evaluations revealed no adverse pulmonary remodeling via Hematoxylin and Eosin (H&E) staining or any qualitative alterations in the abundance of type II pneumocytes or proximal non-ciliated epithelial cells via staining for cell specific propeptide of Surfactant Protein-C (proSP-C) or Club Cell Secretory Protein (CCSP), respectively. Immunoblotting and qRT-PCR confirmed the differential expression of Cldn6 and the pro-inflammatory cytokines TNF-α and IL-1β. As a general theme, inflammation induced by SHS exposure was influenced by the availability of Cldn6. These data reveal captivating information suggesting a role for Cldn6 in lungs exposed to tobacco smoke. Further research is critically necessary in order to fully explain roles for tight junctional components such as Cldn6 and other related molecules in lungs coping with exposure.
Collapse
Affiliation(s)
- Joshua B Lewis
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Dallin C Milner
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Adam L Lewis
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Todd M Dunaway
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Kaleb M Egbert
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Scott C Albright
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Brigham J Merrell
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Troy D Monson
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Dallin S Broberg
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Jason R Gassman
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Daniel B Thomas
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Juan A Arroyo
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Paul R Reynolds
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
43
|
Bajrami B, Zhu H, Kwak HJ, Mondal S, Hou Q, Geng G, Karatepe K, Zhang YC, Nombela-Arrieta C, Park SY, Loison F, Sakai J, Xu Y, Silberstein LE, Luo HR. G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling. J Exp Med 2016; 213:1999-2018. [PMID: 27551153 PMCID: PMC5030805 DOI: 10.1084/jem.20160393] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
Luo et al. report that CXCR2 ligands are responsible for rapid neutrophil mobilization during early-stage acute inflammation and that G-CSF suppresses this mobilization by negatively regulating CXCR2-mediated intracellular signaling. Cytokine-induced neutrophil mobilization from the bone marrow to circulation is a critical event in acute inflammation, but how it is accurately controlled remains poorly understood. In this study, we report that CXCR2 ligands are responsible for rapid neutrophil mobilization during early-stage acute inflammation. Nevertheless, although serum CXCR2 ligand concentrations increased during inflammation, neutrophil mobilization slowed after an initial acute fast phase, suggesting a suppression of neutrophil response to CXCR2 ligands after the acute phase. We demonstrate that granulocyte colony-stimulating factor (G-CSF), usually considered a prototypical neutrophil-mobilizing cytokine, was expressed later in the acute inflammatory response and unexpectedly impeded CXCR2-induced neutrophil mobilization by negatively regulating CXCR2-mediated intracellular signaling. Blocking G-CSF in vivo paradoxically elevated peripheral blood neutrophil counts in mice injected intraperitoneally with Escherichia coli and sequestered large numbers of neutrophils in the lungs, leading to sterile pulmonary inflammation. In a lipopolysaccharide-induced acute lung injury model, the homeostatic imbalance caused by G-CSF blockade enhanced neutrophil accumulation, edema, and inflammation in the lungs and ultimately led to significant lung damage. Thus, physiologically produced G-CSF not only acts as a neutrophil mobilizer at the relatively late stage of acute inflammation, but also prevents exaggerated neutrophil mobilization and the associated inflammation-induced tissue damage during early-phase infection and inflammation.
Collapse
Affiliation(s)
- Besnik Bajrami
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Haiyan Zhu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Hyun-Jeong Kwak
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Subhanjan Mondal
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Qingming Hou
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Guangfeng Geng
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Kutay Karatepe
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Yu C Zhang
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - César Nombela-Arrieta
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115 Department of Experimental Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Shin-Young Park
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Fabien Loison
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Jiro Sakai
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Yuanfu Xu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Leslie E Silberstein
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Hongbo R Luo
- Department of Pathology, Harvard Medical School, Boston, MA 02115 Department of Lab Medicine, The Stem Cell Program, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA 02115 Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| |
Collapse
|
44
|
A pathogenic role for tumor necrosis factor-related apoptosis-inducing ligand in chronic obstructive pulmonary disease. Mucosal Immunol 2016; 9:859-72. [PMID: 26555706 DOI: 10.1038/mi.2015.111] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/18/2015] [Indexed: 02/04/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a life-threatening inflammatory respiratory disorder, often induced by cigarette smoke (CS) exposure. The development of effective therapies is impaired by a lack of understanding of the underlining mechanisms. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with inflammatory and apoptotic properties. We interrogated a mouse model of CS-induced experimental COPD and human tissues to identify a novel role for TRAIL in COPD pathogenesis. CS exposure of wild-type mice increased TRAIL and its receptor messenger RNA (mRNA) expression and protein levels, as well as the number of TRAIL(+)CD11b(+) monocytes in the lung. TRAIL and its receptor mRNA were also increased in human COPD. CS-exposed TRAIL-deficient mice had decreased pulmonary inflammation, pro-inflammatory mediators, emphysema-like alveolar enlargement, and improved lung function. TRAIL-deficient mice also developed spontaneous small airway changes with increased epithelial cell thickness and collagen deposition, independent of CS exposure. Importantly, therapeutic neutralization of TRAIL, after the establishment of early-stage experimental COPD, reduced pulmonary inflammation, emphysema-like alveolar enlargement, and small airway changes. These data provide further evidence for TRAIL being a pivotal inflammatory factor in respiratory diseases, and the first preclinical evidence to suggest that therapeutic agents that target TRAIL may be effective in COPD therapy.
Collapse
|
45
|
Koo HK, Hong Y, Lim MN, Yim JJ, Kim WJ. Relationship between plasma matrix metalloproteinase levels, pulmonary function, bronchodilator response, and emphysema severity. Int J Chron Obstruct Pulmon Dis 2016; 11:1129-37. [PMID: 27313452 PMCID: PMC4890689 DOI: 10.2147/copd.s103281] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Objective Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation in the airway and lung. A protease–antiprotease imbalance has been suggested as a possible pathogenic mechanism for COPD. We evaluated the relationship between matrix metalloproteinase (MMP) levels and COPD severity. Methods Plasma levels of MMP-1, MMP-8, MMP-9, and MMP-12 were measured in 57 COPD patients and 36 normal controls. The relationship between MMP levels and lung function, emphysema index, bronchial wall thickness, pulmonary artery pressure, and quality of life was examined using general linear regression analyses. Results There were significant associations of MMP-1 with bronchodilator reversibility and of MMP-8 and MMP-9 with lung function. Also, MMP-1, MMP-8, and MMP-9 levels were correlated with the emphysema index, independent of lung function. However, MMP-12 was not associated with lung function or emphysema severity. Associations between MMP levels and bronchial wall thickness, pulmonary artery pressure, and quality of life were not statistically significant. Conclusion Plasma levels of MMP-1, MMP-8, and MMP-9 are associated with COPD severity and can be used as a biomarker to better understand the characteristics of COPD patients.
Collapse
Affiliation(s)
- Hyeon-Kyoung Koo
- Department of Internal Medicine, Division of Pulmonary and Critical Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Yoonki Hong
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Myoung Nam Lim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Jae-Joon Yim
- Department of Internal Medicine and Lung Institute, Division of Pulmonary and Critical Care Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon-si, Republic of Korea
| |
Collapse
|
46
|
Newby AC. Metalloproteinase production from macrophages - a perfect storm leading to atherosclerotic plaque rupture and myocardial infarction. Exp Physiol 2016; 101:1327-1337. [PMID: 26969796 DOI: 10.1113/ep085567] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/08/2016] [Indexed: 12/26/2022]
Abstract
What is the topic of this review? The review discusses how in atherosclerotic plaques, a combination of inflammatory mediators together with loss of anti inflammatory factors is most likely to be responsible for the excess of MMP over TIMP expression that causes plaque rupture and myocardial infarction. What advances does it highlight? Regulation of matrix metalloproteinases (MMPs) and tissue inhibitors of MMP (TIMPs) is divergent between human and mouse macrophages. There is prostaglandin E2 -dependent and -independent regulation. Inflammatory cytokines act through distinct (albeit overlapping) signalling pathways to elicit different patterns of MMP and TIMP expression. Transcriptional and epigenetic regulation occurs. Matrix metalloproteinases (MMPs) produced from macrophages contribute to plaque rupture, atherothrombosis and myocardial infarction. New treatments could emerge from defining the mediators and underlying mechanisms. In human monocytes, prostaglandin E2 (PGE2 ) stimulates MMP production, and inflammatory mediators such as tumour necrosis factor α, interleukin-1 and Toll-like receptor ligands can act either through or independently of PGE2 . Differentiation of human monocytes to non-foamy macrophages increases constitutive expression of MMP-7, -8, -9, -14 and -19 and tissue inhibitor of MMP (TIMP)-1 to -3 through unknown, PGE2 -independent mechanisms. Human macrophages express more MMP-1, -7 and -9 and TIMP-3 and less MMP-12 and -13 than mouse macrophages. Inflammatory mediators working through activator protein-1 and nuclear factor-κB transcription factor pathways upregulate MMP-1, -3, -10, -12 and -14 in human macrophages (MMP-9, -12 and -13 in mice), and studies with plaque tissue sections and isolated foam cells confirm this conclusion in vivo. Classical activation with granulocyte-macrophage colony-stimulating factor upregulates MMP-12, whereas interferon-γ upregulates MMP-12, -14 and -25 and downregulates TIMP-3 in human but not mouse macrophages. Alternative activation with interleukin-4 markedly stimulates the expression of only MMP-12 in humans and MMP-19 in mice. The anti-inflammatory cytokines interleukin-10 and transforming growth factor-β decrease production of several MMPs. Epigenetic upregulation of MMP-14 during foam cell formation or by granulocyte-macrophage colony-stimulating factor occurs by decreasing miRNA-24. A 'perfect storm' caused by a combination of these mechanisms is most likely to promote MMP-mediated macrophage invasion, tissue destruction and atherosclerotic plaque rupture.
Collapse
Affiliation(s)
- Andrew C Newby
- University of Bristol, School of Clinical Sciences and Bristol Heart Institute, Bristol, UK.
| |
Collapse
|
47
|
Oostwoud LC, Gunasinghe P, Seow HJ, Ye JM, Selemidis S, Bozinovski S, Vlahos R. Apocynin and ebselen reduce influenza A virus-induced lung inflammation in cigarette smoke-exposed mice. Sci Rep 2016; 6:20983. [PMID: 26877172 PMCID: PMC4753462 DOI: 10.1038/srep20983] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022] Open
Abstract
Influenza A virus (IAV) infections are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Oxidative stress is increased in COPD, IAV-induced lung inflammation and AECOPD. Therefore, we investigated whether targeting oxidative stress with the Nox2 oxidase inhibitors and ROS scavengers, apocynin and ebselen could ameliorate lung inflammation in a mouse model of AECOPD. Male BALB/c mice were exposed to cigarette smoke (CS) generated from 9 cigarettes per day for 4 days. On day 5, mice were infected with 1 × 10(4.5) PFUs of the IAV Mem71 (H3N1). BALF inflammation, viral titers, superoxide production and whole lung cytokine, chemokine and protease mRNA expression were assessed 3 and 7 days post infection. IAV infection resulted in a greater increase in BALF inflammation in mice that had been exposed to CS compared to non-smoking mice. This increase in BALF inflammation in CS-exposed mice caused by IAV infection was associated with elevated gene expression of pro-inflammatory cytokines, chemokines and proteases, compared to CS alone mice. Apocynin and ebselen significantly reduced the exacerbated BALF inflammation and pro-inflammatory cytokine, chemokine and protease expression caused by IAV infection in CS mice. Targeting oxidative stress using apocynin and ebselen reduces IAV-induced lung inflammation in CS-exposed mice and may be therapeutically exploited to alleviate AECOPD.
Collapse
Affiliation(s)
- L. C. Oostwoud
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
- Department of Molecular Pharmacology, The University of Groningen, Groningen, The Netherlands
| | - P. Gunasinghe
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
| | - H. J. Seow
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - J. M. Ye
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - S. Selemidis
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - S. Bozinovski
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - R. Vlahos
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
48
|
Molfino NA, Kuna P, Leff JA, Oh CK, Singh D, Chernow M, Sutton B, Yarranton G. Phase 2, randomised placebo-controlled trial to evaluate the efficacy and safety of an anti-GM-CSF antibody (KB003) in patients with inadequately controlled asthma. BMJ Open 2016; 6:e007709. [PMID: 26739717 PMCID: PMC4716197 DOI: 10.1136/bmjopen-2015-007709] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES We wished to evaluate the effects of an antigranulocyte-macrophage colony-stimulating factor monoclonal antibody (KB003) on forced expiratory volume in 1 s (FEV1), asthma control and asthma exacerbations in adult asthmatics inadequately controlled by long-acting bronchodilators and inhaled/oral corticosteroids. SETTINGS 47 ambulatory asthma care centres globally. PRIMARY OUTCOME MEASURES Change in FEV1 at week 24. PARTICIPANTS 311 were screened, 160 were randomised and 129 completed the study. INTERVENTIONS 7 intravenous infusions of either 400 mg KB003 or placebo at baseline and weeks 2, 4, 8, 12, 16 and 20. PRIMARY AND SECONDARY OUTCOME MEASURES FEV1 at week 24, asthma control, exacerbation rates and safety in all participants as well as prespecified subgroups. MAIN RESULTS In the KB003 treated group, FEV1 at week 24 improved to 118 mL compared with 54 mL in the placebo group (p=0.224). However, FEV1 improved to 253 vs 26 mL at week 24 (p=0.02) in eosinophilic asthmatics (defined as >300 peripheral blood eosinophils/mL at baseline) and comparable improvements were seen at weeks 20 (p=0.034) and 24 (p=0.077) in patients with FEV1 reversibility ≥ 20% at baseline and at weeks 4 (p=0.029), 16 (p=0.018) and 20 (p=0.006) in patients with prebronchodilator FEV1 ≤ 50% predicted at baseline. There were no effects on asthma control or exacerbation rates. The most frequent adverse events in the KB003 group were rhinosinusitis and headache. There was no significant difference in antidrug antibody response between placebo and treated groups. There were no excess infections or changes in biomarkers known to be associated with the development of pulmonary alveolar proteinosis. CONCLUSIONS Higher doses and/or further asthma phenotyping may be required in future studies with KB003. TRIAL REGISTRATION NUMBER NCT01603277; Results.
Collapse
Affiliation(s)
| | - Piotr Kuna
- Barlicki University Hospital, Medical University of Lodz, Lodz, Poland
| | | | - Chad K Oh
- Glenmark Pharmaceuticals, Mahwah, New Jersey, USA
| | - Dave Singh
- Medicines Evaluation Unit, University of Manchester, University Hospital of South Manchester Foundations Trust, Manchester, UK
| | | | | | | |
Collapse
|
49
|
Zhang JQ, Zhang JQ, Fang LZ, Liu L, Fu WP, Dai LM. Effect of oral N-acetylcysteine on COPD patients with microsatellite polymorphism in the heme oxygenase-1 gene promoter. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:6379-87. [PMID: 26674585 PMCID: PMC4676509 DOI: 10.2147/dddt.s91823] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Heme oxygenase-1 (HO-1) plays a protective role as an antioxidant in the lung, and HO-1 gene promoter polymorphism has been shown to be associated with the severity and prognosis of COPD patients. N-acetylcysteine (NAC), an antioxidant/mucous modifier, has shown an uncertain benefit in COPD patients. We hypothesized that this polymorphism could be associated with the effectiveness of oral NAC. Methods A total of 368 patients with COPD were recruited and the polymorphisms of their HO-1 gene promoter were classified into three subclasses according to the number of (GT)n repeats, as previously reported: class S (<27 (GT)n repeats), class M (27–32 (GT)n repeats), and class L (>32 (GT)n repeats). These subjects were then classified as L+ group (with the L allele: L/L, L/M, L/S) and L− group (without the L allele: M/M, M/S, S/S). All the patients were allocated to standard therapy plus NAC 600 mg bid over a 1-year period and were observed over that year. Results The L− group saw improvements in forced expiratory volume in 1 second (FEV1) (from 1.44±0.37 to 1.58±0.38, P=0.04) and FEV1% predicted (from 56.6±19.2 to 59.7±17.2, P=0.03). No improvement was found in forced vital capacity of each group and the decline of forced vital capacity in both of the groups was not statistical significant. The number of yearly COPD exacerbations of the L− group was 1.5±0.66 which was lower than the 2.1±0.53 of the L+ group (P<0.01). For the changes of St George’s Respiratory Questionnaire (SGRQ) score, only the activity score of the L− group was more significant than that of the L+ group (P=0.02). The improvement of the outcome of 6-minute walking distance test in L− group (from 290.1±44.9 meters to 309.7±46.9 m) was higher than that in the L+ group (from 289.7±46.2 m to 300.3±44.2 m) (P=0.03). Conclusion A 600 mg bid oral NAC treatment for 1-year on COPD patients without the L allele can improve the FEV1, FEV1% predicted, the SGRQ activity score, and the result of 6-minute walking distance test, and the exacerbation rate of the L allele carrier in COPD patients is much higher than in the COPD patients without the L allele.
Collapse
Affiliation(s)
- Jia-Qiang Zhang
- The Second Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Jian-Qing Zhang
- The Second Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Li-Zhou Fang
- The Second Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Ling Liu
- The Second Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Wei-Ping Fu
- The Second Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Lu-Ming Dai
- The Second Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
50
|
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF) is a growth factor first identified as an inducer of differentiation and proliferation of granulocytes and macrophages derived from haematopoietic progenitor cells. Later studies have shown that GM-CSF is involved in a wide range of biological processes in both innate and adaptive immunity, with its production being tightly linked to the response to danger signals. Given that the functions of GM-CSF span multiple tissues and biological processes, this cytokine has shown potential as a new and important therapeutic target in several autoimmune and inflammatory disorders - particularly in rheumatoid arthritis. Indeed, GM-CSF was one of the first cytokines detected in human synovial fluid from inflamed joints. Therapies that target GM-CSF or its receptor have been tested in preclinical studies with promising results, further supporting the potential of targeting the GM-CSF pathway. In this Review, we discuss our expanding view of the biology of GM-CSF, outline what has been learnt about GM-CSF from studies of animal models and human diseases, and summarize the results of early phase clinical trials evaluating GM-CSF antagonism in inflammatory disorders.
Collapse
|