1
|
Citherlet T, Raberin A, Manferdelli G, Millet GP. Impact of menopause on responses to hypoxia and incidence of acute mountain sickness. Eur J Appl Physiol 2025:10.1007/s00421-025-05790-6. [PMID: 40299027 DOI: 10.1007/s00421-025-05790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE Menopause results in decreased ovarian hormones, potentially impacting physiological responses to hypoxia and its tolerance. This study explored menopause's influence on physiological responses during rest and exercise in normobaric hypoxia and its role in predicting acute mountain sickness (AMS). METHODS Thirteen eumenorrheic women in their mid-luteal phase (EW, age = 32 ± 8 year) and fifteen postmenopausal women (PW, age = 63 ± 2 year) were examined on two occasions. Their ovarian hormonal levels were measured. In the first visit, hypoxic ventilatory response (HVR), physiological responses (ventilation, pulse oximetry, and heart rate) at rest and exercise in normobaric hypoxia (FiO2 = 0.14) and anxiety levels were tested. On the second visit, cortisol awakening response and oxidative stress markers were measured at low altitude, with cortisol awakening response repeated during an overnight stay at high altitude (3375 m) along with evaluation for AMS using the Lake Louise Score, peripheral oxygen saturation and anxiety levels. RESULTS PW exhibited lower estradiol (16.9 ± 16.7 vs 4.6 ± 2.3 pg/ml, p < 0.01) and progesterone (13.39 ± 7.61 vs 0.06 ± 0.07 ng/ml, p < 0.001) levels than EW. Despite higher ventilation at rest in EW compared to PW in normoxia (10.0 ± 1.5 vs 8.5 ± 0.9 L/min; p < 0.01) and hypoxia (9.4 ± 1.3 vs 8.2 ± 1.3 L/min) , HVR (- 0.34 ± 0.13 vs - 0.27 ± 0.15 L/min/%) was similar between groups (p = 0.26). AMS incidence did not differ between EW (31%) and PW (40%). CONCLUSION In conclusion, EW had higher ventilation at rest in normoxia and normobaric hypoxia compared to PW, but similar responses and AMS incidence at high altitude. Age has minimal impact on HVR in women.
Collapse
Affiliation(s)
- Tom Citherlet
- University of Lausanne, Institute of Sport Sciences, Synathlon, 1015, Lausanne, Switzerland.
| | - Antoine Raberin
- University of Lausanne, Institute of Sport Sciences, Synathlon, 1015, Lausanne, Switzerland
| | - Giorgio Manferdelli
- University of Lausanne, Institute of Sport Sciences, Synathlon, 1015, Lausanne, Switzerland
| | - Grégoire P Millet
- University of Lausanne, Institute of Sport Sciences, Synathlon, 1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Gesang L, Suona Y, Danzeng Z, Ci B, Gesang Q, Cidan W, Dingzeng Q, Baima Z, Zhaxi Q. A machine learning-based severity stratification tool for high altitude pulmonary edema. BMC Med Inform Decis Mak 2025; 25:171. [PMID: 40251543 PMCID: PMC12008950 DOI: 10.1186/s12911-025-02992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/01/2025] [Indexed: 04/20/2025] Open
Abstract
This study aimed to identify key predictors for the severity of High Altitude Pulmonary Edema (HAPE) to assist clinicians in promptly recognizing severely affected patients in the emergency department, thereby reducing associated mortality rates. Multinomail logistic regression, random forest, and decision tree methods were utilized to determine important predictor variables and evaluate model performance. A total of 508 patients diagnosed with HAPE were included in the study, with 53 variables analyzed. Lung rales, sputum sputuming, heart rate, and oxygen saturation were identified as the most relevant predictors for the LASSO model. Subsequently, Multinomail logistic regression, decision tree, and random forest models were trained and evaluated using these factors on a test set. The random forest model showed the highest performance, with an accuracy of 77.94%, precision of 70.27%, recall of 68.22%, and F1 score of 68.96%, outperforming the other models. Further analysis revealed significant differences in predictive capabilities among the models for HAPE patients at varying severity levels. The random forest model demonstrated high predictive accuracy across all severity levels of HAPE, particularly excelling in identifying severely ill patients with an impressive AUC of 0.86. The study assessed the reliability and effectiveness of the HAPE severity scoring model by validating Multinomail logistic regression and random forest models. This study introduces a valuable screening tool for categorizing the severity of HAPE, aiding healthcare providers in recognizing individuals with severe HAPE, enabling prompt treatment and the formulation of suitable therapeutic approaches.
Collapse
Affiliation(s)
- Luobu Gesang
- High Altitude Medical Research Institute of Tibet Autonomous Region, 18 Linkuo North Road, Lhasa, 850000, China.
- Key Laboratory of Transitional Medicine for Human Adaptation to the High-Altitude of Tibet Autonomous Region, Tibet Autonomous Region People's Hospital, Lhasa, 850000, China.
- Tibet Autonomous Region Clinical Research Center for High Altitude Diseases, Tibet Autonomous Region People's Hospital, Lhasa, 850000, China.
| | - Yangzong Suona
- High Altitude Medical Research Institute of Tibet Autonomous Region, 18 Linkuo North Road, Lhasa, 850000, China.
- Tibet Autonomous Region People's Hospital, Lhasa, 850000, China.
| | - Zhuoga Danzeng
- High Altitude Medical Research Institute of Tibet Autonomous Region, 18 Linkuo North Road, Lhasa, 850000, China
- Tibet Autonomous Region Clinical Research Center for High Altitude Diseases, Tibet Autonomous Region People's Hospital, Lhasa, 850000, China
| | - Bai Ci
- High Altitude Medical Research Institute of Tibet Autonomous Region, 18 Linkuo North Road, Lhasa, 850000, China
- Tibet Autonomous Region Clinical Research Center for High Altitude Diseases, Tibet Autonomous Region People's Hospital, Lhasa, 850000, China
| | - Quzhen Gesang
- High Altitude Medical Research Institute of Tibet Autonomous Region, 18 Linkuo North Road, Lhasa, 850000, China
- Tibet Autonomous Region Clinical Research Center for High Altitude Diseases, Tibet Autonomous Region People's Hospital, Lhasa, 850000, China
| | - WangJiu Cidan
- Tibet Autonomous Region People's Hospital, Lhasa, 850000, China
| | - Qiangba Dingzeng
- High Altitude Medical Research Institute of Tibet Autonomous Region, 18 Linkuo North Road, Lhasa, 850000, China
- Tibet Autonomous Region People's Hospital, Lhasa, 850000, China
| | - Zhuoga Baima
- High Altitude Medical Research Institute of Tibet Autonomous Region, 18 Linkuo North Road, Lhasa, 850000, China
- Tibet Autonomous Region People's Hospital, Lhasa, 850000, China
| | - Quzhen Zhaxi
- Tibet Autonomous Region People's Hospital, Lhasa, 850000, China
| |
Collapse
|
3
|
Marengo A, Tejada M, Zirena IH, Molina S. Neurological Manifestations Associated with Exercise at Altitude. Curr Neurol Neurosci Rep 2025; 25:29. [PMID: 40202557 DOI: 10.1007/s11910-025-01418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
PURPOSE OF REVIEW The effects that exercise at altitude has on the neurological system are diverse and still not well studied, and range from metabolic adaptations to modification of cerebral blood flow and neurotransmitters. In this review we summarise changes with exercise intensity, the implications of ascent, cognitive impairment, psychosis-like symptoms, the role of exercise in the development and prevention of AMS, and use of free radical scavengers to enhance sports performance and acclimatization. RECENT FINDINGS We discuss the impact of oxidative stress in hypobaric hypoxia and reactive oxygen species (ROS) production and its consequences, with special focus on exercise at altitude. Finally we consider how moderate intensity exercise could help prevent AMS, and the necessity of research on high intensity exercise with elevated rate of ascent, the development of specific tools of cognitive assessment, and the role of free-radical scavengers in the prevention of AMS and neurological symptoms.
Collapse
Affiliation(s)
- A Marengo
- Servicio de Neurología. Hospital Perrupato, San Martin, Mendoza, Argentina.
- Càtedra de Neurología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, 5500, Argentina.
| | - M Tejada
- Unidad de Cuidados Críticos, Hospital Santa Caterina, Girona, España.
| | - I Hancco Zirena
- Facultad de Medicina Humana, Centro de Investigación en Medicina de Altura (CIMA), Universidad de San Martín de Porres, Lima, Perú
| | - S Molina
- Psg Medicina Urgencia en Montaña, Diplomatura Medicina de Urgencia en Montaña EUCS-Universidad nacional de San Juan, San Juan, Argentina
| |
Collapse
|
4
|
Citherlet T, Raberin A, Manferdelli G, Bourdillon N, Millet GP. Impact of the Menstrual Cycle on the Cardiovascular and Ventilatory Responses During Exercise in Normoxia and Hypoxia. High Alt Med Biol 2025; 26:55-62. [PMID: 39321041 DOI: 10.1089/ham.2024.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Citherlet, Tom, Antoine Raberin, Giorgio Manferdelli, Nicolas Bourdillon, and Grégoire P Millet. Impact of the menstrual cycle on the cardiovascular and ventilatory responses during exercise in normoxia and hypoxia. High Alt Med Biol. 26:55-62, 2025. Introduction: Ovarian hormones influence several physiological functions in women. This study investigated how the hormonal variations across the menstrual cycle (MC) impact cardiovascular and ventilatory responses during rest and moderate exercise in normobaric hypoxia. Methods: Thirteen eumenorrheic women were tested during the early follicular (Fol1), late follicular (Fol2), and mid-luteal (Lut3) phases with measurement of hormonal levels. Heart rate (HR) variability, blood pressure, and baroreflex sensitivity (BRS) were evaluated at rest in normoxia. Ventilation (VE), peripheral oxygen saturation, and HR were monitored at rest and during moderate-intensity cycling exercise in hypoxia (FiO2 = 14%). Results: Despite expected hormone level variations, no significant changes were observed across the MC in HR variability (root mean square of successive differences; 64 (95% confidence interval [47, 81]) at Fol1, 54 [42, 66] at Fol2, 60 [44, 77] ms at Lut3), blood pressure (mean blood pressure; 85 [79, 90]), 87 [81, 93]), 84 [77, 92] mmHg), BRS (26 [17, 36], 28 [20, 35], 23 [17, 29] ms/mmHg), VE (rest: 8.9 [7.9, 9.8], 9.5 [9.0, 9.9], 9.0 [8.1, 9.9]; exercise: 53 [41, 66], 51.1 [36.4, 65.7], 54.4 [34.0, 74.8] l/min), peripheral oxygen saturation (rest: 89.8 [87.4, 92.1], 91.9 [88.7, 95.0], 90.2 [87.8, 92.6]; exercise: 80.5 [77.4, 83.5], 84.4 [80.4, 88.3], 81.9 [78.3, 85.4] %) HR (rest: 69.7 [60.2, 79.1], 70.8 [63.2, 78.3], 70.5 [64.0, 77.0]; exercise: 148 [136, 160], 146 [132, 161], 146 [132, 160] bpm), and cycling efficiency (0.17 [0.16, 0.18], 0.17 [0.13, 0.21], 0.16 [0.15, 0.18] %) (all p > 0.05). Discussion: From a practical point of view, there is no strong evidence of any usefulness of monitoring hormonal variations and the MC phases for women exercising in hypoxia.
Collapse
Affiliation(s)
- Tom Citherlet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | | | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Miserocchi G. Physiopathology of High-Altitude Pulmonary Edema. High Alt Med Biol 2025; 26:1-12. [PMID: 39331568 DOI: 10.1089/ham.2024.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Miserocchi, Giuseppe. Physiopathology of high-altitude pulmonary edema. High Alt Med Biol. 26:1-12, 2025.-The air-blood barrier is well designed to accomplish the matching of gas diffusion with blood flow. This function is achieved by maintaining its thickness at ∼0.5 µm, a feature implying to keep extravascular lung water to the minimum. Exposure to hypobaric hypoxia, especially when associated with exercise, is a condition potentially leading to the development of the so-called high-altitude pulmonary edema (HAPE). This article presents a view of the physiopathology of HAPE by merging available data in humans exposed to high altitude with data from animal experimental approaches. A model is also presented to characterize HAPE nonsusceptible versus susceptible individuals based on the efficiency of alveolar-capillary oxygen uptake and estimated morphology of the air-blood barrier.
Collapse
Affiliation(s)
- Giuseppe Miserocchi
- Department of Medicine and Surgery, School of Medicine, University of Milano Bicocca, Monza, Italy
| |
Collapse
|
6
|
Park A, Brillhart A, Sethi S, Abramor B, Duplessis R, Pronce R, Seufferheld J, Schlein S. Characteristics of Climbers with High Altitude Pulmonary Edema on Mount Aconcagua. Wilderness Environ Med 2025; 36:113-118. [PMID: 39692528 DOI: 10.1177/10806032241303438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
INTRODUCTION— Mount Aconcagua (6961 m) in Argentina is the highest peak in the Americas, and more than 3000 climbers attempt to summit annually. High altitude pulmonary edema (HAPE) is a leading cause of mortality and evacuation on Aconcagua. OBJECTIVE— This study sought to describe the characteristics of climbers who developed HAPE on Aconcagua to aid in future prevention efforts. METHODS— Climbers diagnosed with HAPE in January 2024 were surveyed regarding demographics, preparation, acclimatization, and illness. Healthy climbers on Aconcagua also were surveyed for the same period, providing a control population. RESULTS— Seventeen climbers were diagnosed with HAPE. These climbers were similar to climbers without HAPE in age, sex, origin, home elevation, hypoxic tent use, staged ascent, recent virus exposure, fitness metrics, and ascent-rate plans. Climbers with HAPE spent fewer nights at the 4300-m base camp (3.6 vs 5.0 nights). Prior to developing HAPE, 71% of patients reported unresolved acute mountain sickness symptoms. HAPE onset median elevation was 5500 m, with a median of 8.0 days over 3000 m and a median lowest SpO2 of 60% at diagnosis. There was a nonsignificant trend between acetazolamide use and increased HAPE. All surveyed HAPE patients descended, required helicopter evacuation, and survived. CONCLUSION— This study examined climbers who developed HAPE on Mount Aconcagua, yielding implications for high altitude illness prevention efforts and further study. HAPE cases were associated with insufficient nights at the 4300-m base camp and unresolved acute mountain sickness symptoms. The relationship between acetazolamide and HAPE warrants further study on Aconcagua.
Collapse
Affiliation(s)
- Andrew Park
- Department of Emergency Medicine, University of Vermont, Burlington, VT
| | - Aaron Brillhart
- Department of Emergency Medicine, University of Vermont, Burlington, VT
| | - Sameer Sethi
- Department of Emergency Medicine, University of Vermont, Burlington, VT
| | - Bernabé Abramor
- Extreme Medicine, Aconcagua Provincial Park, Mendoza, Argentina
| | | | - Roxana Pronce
- Extreme Medicine, Aconcagua Provincial Park, Mendoza, Argentina
| | | | - Sarah Schlein
- Department of Emergency Medicine, University of Vermont, Burlington, VT
| |
Collapse
|
7
|
Burtscher J, Gatterer H, Niederseer D, Vonbank K, Burtscher M. Flying to high-altitude destinations. Minerva Med 2025; 116:43-61. [PMID: 39101381 DOI: 10.23736/s0026-4806.24.09286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Every year millions of people fly to high-altitude destinations. They thereby expose themselves to specific high-altitude conditions. The hypoxic environment (low ambient oxygen availability) constitutes a major factor affecting health and well-being at high altitude. While the oxygen availability is already moderately reduced inside the aircraft cabin, this reduction becomes aggravated when leaving the plane at high-altitude destinations. Especially if not pre-acclimatized, the risk of suffering from high-altitude illnesses, e.g., acute mountain sickness, high-altitude cerebral or pulmonary edema, increases with the level of altitude. In addition, diminished oxygen availability impairs exercise tolerance, which not only limits physical activity at high altitude but may also provoke symptomatic exacerbation of pre-existing diseases. Moreover, the cold and dry ambient air and increased levels of solar radiation may contribute to adverse health effects at higher altitude. Thus, medical pre-examination and pre-flight advice, and proper preparation (pre-acclimatization, exercise training, and potentially adaptation of pharmacological regimes) are of utmost importance to reduce negative health impacts and frustrating travel experiences.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - David Niederseer
- Hochgebirgsklink Davos, Medicine Campus Davos, Davos, Switzerland
- Christine Kühne - Center for Allergy Research and Education, Medicine Campus Davos, Davos, Switzerland
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Martin Burtscher
- Department Sport Science, University of Innsbruck, Innsbruck, Austria -
| |
Collapse
|
8
|
Han Y, Li W, Duan H, Jia N, Liu J, Zhang H, Song W, Li M, He Y, Wu C, He Y. Ligustrazine hydrochloride Prevents Ferroptosis by Activating the NRF2 Signaling Pathway in a High-Altitude Cerebral Edema Rat Model. Int J Mol Sci 2025; 26:1110. [PMID: 39940878 PMCID: PMC11817441 DOI: 10.3390/ijms26031110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
High-altitude cerebral edema (HACE) is a disorder caused by low pressure and hypoxia at high altitudes. Nevertheless, as of now, there is still a scarcity of safe and effective prevention and treatment methods. The active component of Ligusticum Chuanxiong, namely Ligustrazine hydrochloride (LH), has shown potential in the prevention and treatment of HACE due to its anti-inflammatory, antioxidant, and neuroprotective effects in nervous system disorders. Consequently, the potential protective effect of LH on HACE and its mechanism still need to be further explored. Prior to modeling, 90 male Sprague-Dawley rats were pretreated with different doses of drugs, including LH (100 mg/kg and 50 mg/kg), dexamethasone (4 mg/kg), and ML385 (30 mg/kg). Subsequently, the pretreated rats were placed in a low-pressure anoxic chamber simulating a plateau environment to establish the rat HACE model. The effects and mechanisms of LH on HACE rats were further elucidated through determination of brain water content, HE staining, ELISA, immunofluorescence, molecular docking, molecular dynamics simulation, western blot, and other techniques. The results showed, first of all, that LH pretreatment can effectively reduce brain water content; down-regulate the expression of AQP4, HIF-1α, and VEGF proteins; and alleviate damage to brain tissue and nerve cells. Secondly, compared with the HACE group, LH pretreatment can significantly reduce MDA levels and increase GSH and SOD levels. Additionally, LH decreased the levels of inflammatory factors IL-1β, IL-6, and TNF-α; reduced total iron content in brain tissue; increased the expression of ferroptosis-related proteins such as SLC7A11, GPX4, and FTH1; and alleviated ferroptosis occurrence. Molecular docking and molecular dynamics simulations show that LH has a strong binding affinity for NRF2 signaling. Western blot analysis further confirmed that LH promotes the translocation of NRF2 from the cytoplasm to the nucleus and activates the NRF2 signaling pathway to exert an antioxidant effect. The NRF2 inhibitor ML385 can reverse the anti-oxidative stress effect of LH and its protective effect on HACE rat brain tissue. In summary, LH may have a protective effect on HACE rats by activating the NRF2 signaling pathway, inhibiting ferroptosis, and resisting oxidative stress.
Collapse
Affiliation(s)
- Yue Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Wenting Li
- Department of Pharmacy, The Eighth Clinical College, Sun Yat-sen University, No. 3025, Shennan Middle Rd., Futian District, Shenzhen 518033, China;
| | - Huxinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Nan Jia
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (N.J.); (J.L.)
| | - Junling Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (N.J.); (J.L.)
| | - Hongying Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Wenqian Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Meihui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Yang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Chunjie Wu
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yacong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| |
Collapse
|
9
|
Narang BJ, Manferdelli G, Millet GP, Debevec T. Nocturnal pulse oxygen saturation dynamics at simulated high altitude: Predictive value for acute mountain sickness in healthy men born pre-term. Exp Physiol 2025. [PMID: 39817525 DOI: 10.1113/ep092418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025]
Abstract
The physiological sequelae of pre-term birth might influence the responses of this population to hypoxia. Moreover, identifying variables associated with development of acute mountain sickness (AMS) remains a key practically significant area of altitude research. We investigated the effects of pre-term birth on nocturnal oxygen saturation (S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ) dynamics and assessed the predictive potential of nocturnalS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ -related metrics for morning AMS in 12 healthy adults with gestational age < 32 weeks (pre-term) and 12 term-born control participants. Participants spent one night at a simulated altitude of ∼4200 m (normobaric hypoxia; fraction of inspired O2 = 0.141), with nocturnalS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ and heart rate recorded continuously at the fingertip using pulse oximetry and with morning AMS assessed using the Lake Louise scale. Pre-term and term-born participants had similar nocturnal meanS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ (mean ± SD; 77% ± 3% vs. 77% ± 4%; P = 0.661), minimumS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ (median[IQR]; 67[4]% vs. 69[5]%; P = 0.223), relative time spent withS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ < 80% (72% ± 29% vs. 70% ± 27%; P = 0.879) and mean heart rate (79 ± 12 vs. 71 ± 7 beats/min; P = 0.053). However, the increase inS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ between the two halves of the night was blunted with prematurity (-0.12% ± 1.51% vs. 1.11% ± 0.78%; P = 0.021). Moreover, the cumulative relative desaturation-based hypoxic 'load' was higher with prematurity (32[26]%min/h vs. 7[25]%min/h; P = 0.039), underpinned by increased desaturation frequency (69[49] vs. 21[35] counts/h; P = 0.009). MeanS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ , minimumS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ , morningS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ and relative time spent withS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ < 80% predicted AMS incidence better than a random classifier exclusively in the pre-term group, with no other variables predictive of AMS in the two groups separately or combined. Overall, pre-term birth might alter nocturnalS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ dynamics and influence AMS prediction in severe hypoxia.
Collapse
Affiliation(s)
- Benjamin J Narang
- Department for Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Giorgio Manferdelli
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA
| | - Grégoire P Millet
- Institute for Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tadej Debevec
- Department for Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Pernett F, Schagatay E, Holmström P. Sex-based variations in breath-holding: oxygen storage and diving response among non-divers. Front Physiol 2025; 15:1515232. [PMID: 39872417 PMCID: PMC11769997 DOI: 10.3389/fphys.2024.1515232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Breath-hold diving performances are typically better in men than in women. However, it is still being determined if there are differences in the physiological responses to breath-holding between the sexes. We conducted a study comparing the maximum breath-hold duration, heart rate (HR) reduction, peripheral oxygen saturation (SpO2), and spleen volume and contraction in 37 men and 44 women, all of whom had no prior breath-holding experience. They performed two dry apneas separated by 2 min; the first was limited to 60 s, followed by a maximal effort apnea. HR and SpO2 were measured continuously. Spleen diameters were measured via ultrasonography before and immediately following each apnea. The maximal apneic duration was longer in men (78 ± 19 s) compared with women (61 ± 18 s, p < 0.001), while the HR reduction was similar (women: 16% ± 19% versus men: 16% ± 17%, p = 0.973). The absolute splenic contraction was greater in men (59 ± 56 mL) compared with women (35 ± 28 mL, p < 0.001) in the first apnea, while the relative contraction was similar (women: 21% ± 17% versus men: 23% ± 13%, p = 0.528). In addition, the lowest SpO2 during the maximal apnea was similar between sexes (women: 93.3% ± 4.4%; men: 91.9% ± 4.3%, p = 0.161). We conclude that men have larger spleen size and contraction, lung size, and maximal apneic duration than women. The cardiovascular diving response is similar between sexes for those inexperienced with apneic diving. The longer breath-hold duration in men may be partly due to greater oxygen storage capacity, which results from larger vital capacity and greater spleen size and contraction.
Collapse
Affiliation(s)
- Frank Pernett
- Department of Health Sciences, Environmental Physiology Group, Mid Sweden University, Östersund, Sweden
| | - Erika Schagatay
- Department of Health Sciences, Environmental Physiology Group, Mid Sweden University, Östersund, Sweden
- Department of Health Sciences, Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden
| | - Pontus Holmström
- Department of Health Sciences, Environmental Physiology Group, Mid Sweden University, Östersund, Sweden
- Department of Health Sciences, Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden
| |
Collapse
|
11
|
Vecchiato M, Duregon F, Borasio N, Faggian S, Bassanello V, Aghi A, Palermi S, Degano G, Battista F, Ermolao A, Neunhaeuserer D. Cardiopulmonary exercise response at high altitude in patients with congenital heart disease: a systematic review and meta-analysis. Front Cardiovasc Med 2024; 11:1454680. [PMID: 39776864 PMCID: PMC11703806 DOI: 10.3389/fcvm.2024.1454680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background An increasing number of patients with congenital heart disease (CHD) engage in physical activities and may exercise at high altitudes (HA). The physiological adaptations required at HA and their implications on individuals with CHD, especially during exercise, remain underexplored. This systematic review aims to investigate cardiopulmonary exercise responses to short-term HA exposure in individuals with CHD. Methods A literature search was performed across PubMed, Cochrane Library, Scopus, Embase, and SPORTDiscus. The search focused on studies comparing patients with CHD to healthy controls, specifically assessing cardiorespiratory responses during cardiopulmonary exercise testing at HA (≥2,500 m) and low altitude (LA). A meta-analysis of the differences in the main cardiorespiratory adaptations during exercise from LA to HA was performed, comparing patients with CHD and controls. Results Of the initial 4,500 articles, four studies met the inclusion criteria, encompassing 150 participants (74 with CHD and 76 controls). Almost all the patients with CHD had lower cardiorespiratory fitness and efficiency both at LA and HA compared to the controls. Nevertheless, the patients with CHD showed a smaller decrease in peak workload [10.61 W (95% CI: 2.33-18.88)] and peak saturation [1.22% (95% CI: 0.14-2.30)] between LA and HA compared to the controls. No participants presented exercise-induced symptoms. Conclusion Short-term exposure to HA appears to be relatively well-tolerated by individuals with low-risk CHD, without a significantly different impact on cardiorespiratory response compared to healthy controls. Further research should confirm these outcomes and explore the long-term effects of higher altitude exposure as comprehensive recommendations for these patients are lacking.
Collapse
Affiliation(s)
- Marco Vecchiato
- Department of Medicine DIMED, University of Padua, Padua, Italy
- Sports and Exercise Medicine Division, University Hospital of Padova, Padova, Italy
| | - Federica Duregon
- Department of Medicine DIMED, University of Padua, Padua, Italy
- Sports and Exercise Medicine Division, University Hospital of Padova, Padova, Italy
| | - Nicola Borasio
- Department of Medicine DIMED, University of Padua, Padua, Italy
- Sports and Exercise Medicine Division, University Hospital of Padova, Padova, Italy
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Sara Faggian
- Department of Medicine DIMED, University of Padua, Padua, Italy
- Sports and Exercise Medicine Division, University Hospital of Padova, Padova, Italy
| | | | | | - Stefano Palermi
- Public Health Department, University of Naples Federico II, Naples, Italy
| | - Gino Degano
- Department of Medicine DIMED, University of Padua, Padua, Italy
- Sports and Exercise Medicine Division, University Hospital of Padova, Padova, Italy
| | - Francesca Battista
- Department of Medicine DIMED, University of Padua, Padua, Italy
- Sports and Exercise Medicine Division, University Hospital of Padova, Padova, Italy
| | - Andrea Ermolao
- Department of Medicine DIMED, University of Padua, Padua, Italy
- Sports and Exercise Medicine Division, University Hospital of Padova, Padova, Italy
| | - Daniel Neunhaeuserer
- Department of Medicine DIMED, University of Padua, Padua, Italy
- Sports and Exercise Medicine Division, University Hospital of Padova, Padova, Italy
| |
Collapse
|
12
|
Peng W, Ma H, Zhao R, Xu S, Lv M, Jing B, Hu Z. Role of intermittent hypoxic training combined with methazolamide in the prevention of high-altitude cerebral edema in rats. Sci Rep 2024; 14:30252. [PMID: 39632926 PMCID: PMC11618614 DOI: 10.1038/s41598-024-81226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Although intermittent hypoxia training (IHT) and methazolamide (MTZ) alone can prevent high-altitude cerebral edema (HACE) to varying degrees, their efficacy and dispersion remain limited. However, only a handful of trials have explored the effectiveness of the IHT and MTZ combination in preventing HACE. Rats were first exposed to hypobaric hypoxia (5000 m, 54.02 kPa, 10.8% fraction of inspired oxygen (FiO2)) with simultaneous exhaustive exercise (EE) for different durations to determine the ideal condition for establishing a rat model of HACE. Rats receiving various courses of IHT were subjected to this condition, and changes in behaviour, brain water content (BWC), pathology and brain protein expression were evaluated. Meanwhile, rats received different doses of MTZ before and during hypoxia exposure with simultaneous EE. Finally, rats receiving the IHT and MTZ combination were then exposed to hypoxia with simultaneous EE. Systemic inflammation and mild cerebral edema developed in rats after 6 h of hypobaric hypoxia with simultaneous EE. Rats showed severe impairment of spatial and memory functions after 2 days of hypobaric hypoxia with simultaneous EE, and the pathology of their brain showed significant dilated perivascular spaces, cell swelling, vacuolar degeneration and reduced neuron count. BWC, serum inflammatory factors and expression of vascular endothelial growth factor (VEGF) and aquaporin 4 (AQP4) proteins in the hippocampus increased significantly. Both IHT and MTZ differentially counteracted hypobaric hypoxia-induced spatial and memory function impairments and increased BWC, pathological changes and expression of AQP4 and VEGF proteins in the hippocampus. Among these, the long-course IHT (BID, 14 d) combined with MTZ (200 mg/kg/d) showed the most significant improvement, restoring the rats' indices to normal levels. Continuous hypobaric hypoxia with simultaneous EE for 2 days resulted in significant HACE in rats, which may be used to establish a rat model of HACE. Both IHT and MTZ alleviated HACE in rats to varying degrees, among which long-course IHT (BID, 14 d) combined with MTZ (200 mg/kg/d) effectively prevented HACE in rats.
Collapse
Affiliation(s)
- Weicheng Peng
- Department of Neurosurgery, Neuromedicine Center, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Haiyang Ma
- Department of Neurosurgery, Neuromedicine Center, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Rui Zhao
- Department of Neurosurgery, Neuromedicine Center, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Sheng Xu
- Department of Neurosurgery, Neuromedicine Center, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Meng Lv
- Department of Neurosurgery, Neuromedicine Center, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Bei Jing
- Department of Neurosurgery, Neuromedicine Center, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Zhiqiang Hu
- Department of Neurosurgery, Neuromedicine Center, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, China.
| |
Collapse
|
13
|
Fabries P, Pontiggia A, Comte U, Beauchamps V, Quiquempoix M, Guillard M, Ayounts H, Van Beers P, Drogou C, Touron J, Erkel MC, Gignoux-Huon F, Nespoulous O, Pinalie T, Charlot K, Malgoyre A, Sauvet F, Koulmann N, Gomez-Merino D, Chennaoui M. Cognitive performance during exposure to moderate normobaric hypoxia after sleep restriction: Relationship to physiological and stress biomarkers. Physiol Behav 2024; 287:114666. [PMID: 39216809 DOI: 10.1016/j.physbeh.2024.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Exposure to moderate levels of simulated hypoxia has subtle cognitive effects relative to ground level, in healthy individuals. However, there are few data on the cognitive consequences of the combination of hypoxia and partial sleep deprivation, which is a classic military or civilian operational context. In this study, we tested the hypothesis that exposure to moderate hypoxia while sleep-restricted impairs several domains of cognition, and we also assessed physiological parameters and salivary concentrations of cortisol and alpha-amylase. METHOD Seventeen healthy males completed two sessions of cognitive tests (sustained attention using the PVT psychomotor vigilance task and executive functions using the Go-NoGo inhibition task and N-Back working memory task) after 30 min (T + 30') and 4 h (T + 240') of exposure in a normobaric hypoxic tent (FIO2 = 13.6 %, ≃ 3,500 m) (HY). This was completed after one night of sleep restriction (3 a.m. to 6 a.m. bedtime, SRHY) and one night of habitual sleep (10 p.m. to 6 a.m. bedtime, HSHY) (with cross-over randomization). The two nights sleep architecture and physiological parameters (oxygen saturation (SpO2) and heart rate (HR) during T + 30' and T + 240'sessions were analyzed. Salivary cortisol and alpha-amylase (sAA) concentrations were analyzed before hypoxia, after the T + 30' and T + 240' cognitive sessions, and after leaving the hypoxic tent. RESULTS Sustained attention (RT and number of lapses in the PVT) and executive functions (Go-NoGo and 1-Back and 2-Back parameters, as inhibition and working memory signatures) were impaired in the SRHY condition compared to HSHY. SpO2 and HR were higher after 4 h compared with 30 min of hypoxia in the HSHY condition, while only HR was statistically higher in the SRHY condition. In SRHY, salivary AA concentration was lower and cortisol was higher than in HSHY. A significant increase in sAA concentration is observed after the cognitive session at 4 h of hypoxia exposure compared to that at 30 min, only in the SRHY condition. There are significant positive correlations between reaction time and the corresponding heart rate (a non-invasive marker of physiological stress) for the executive tasks in the two sleep conditions. This was not observed for salivary levels of sAA and cortisol, respective reliable indicators of the sympathoadrenomedullary system and the hypothalamic-pituitary adrenocortical system. CONCLUSION Exposure to moderate normobaric hypoxia (≃ 3500 m / ≃ 11,500 ft simulated) after a single night of 3-hour sleep impairs cognitive performance after 30 min and 4 h of exposure. The key determinants and/or mechanism(s) responsible for cognitive impairment when exposed to moderate hypoxia with sleep restriction, particularly on the executive function, have yet to be elucidated.
Collapse
Affiliation(s)
- Pierre Fabries
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; École du Val-de-Grâce (EVDG), Place Alphonse Laveran, Paris, France; LBEPS, Université Paris-Saclay, 91025 Evry, France.
| | - Anaïs Pontiggia
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Ulysse Comte
- École du Val-de-Grâce (EVDG), Place Alphonse Laveran, Paris, France; Hôpital d'Instruction des Armées Percy, 2 Rue Lieutenant Raoul Batany, 92140 Clamart, France
| | - Vincent Beauchamps
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; École du Val-de-Grâce (EVDG), Place Alphonse Laveran, Paris, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Michael Quiquempoix
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Mathias Guillard
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Haïk Ayounts
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Pascal Van Beers
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Catherine Drogou
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Julianne Touron
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Marie-Claire Erkel
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Françoise Gignoux-Huon
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France
| | - Olivier Nespoulous
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France
| | - Théo Pinalie
- LBEPS, Université Paris-Saclay, 91025 Evry, France
| | - Keyne Charlot
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; LBEPS, Université Paris-Saclay, 91025 Evry, France
| | - Alexandra Malgoyre
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; École du Val-de-Grâce (EVDG), Place Alphonse Laveran, Paris, France; LBEPS, Université Paris-Saclay, 91025 Evry, France
| | - Fabien Sauvet
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; École du Val-de-Grâce (EVDG), Place Alphonse Laveran, Paris, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | | | - Danielle Gomez-Merino
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Mounir Chennaoui
- Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91223 Brétigny Cedex, France; URP 7330 VIFASOM, Université Paris Cité, Hôpital Hôtel-Dieu, 75004 Paris, France
| |
Collapse
|
14
|
Reiser R, Brill AK, Nakas CT, Hefti U, Berger D, Perret Hoigné E, Kabitz HJ, Merz TM, Pichler Hefti J. Lung function parameters are associated with acute mountain sickness and are improved at high and extreme altitude. Respir Physiol Neurobiol 2024; 330:104318. [PMID: 39182634 DOI: 10.1016/j.resp.2024.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
At altitude, factors such as decreased barometric pressure, low temperatures, and acclimatization might affect lung function. The effects of exposure and acclimatization to high-altitude on lung function were assessed in 39 subjects by repetitive spirometry up to 6022 m during a high-altitude expedition. Subjects were classified depending on the occurrence of acute mountain sickness (AMS) and summit success to evaluate whether lung function relates to successful climb and risk of developing AMS. Peak expiratory flow (PEF), forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1) increased with progressive altitude (max. +20.2 %pred, +9.3 %pred, and +6.7 %pred, all p<0.05). Only PEF improved with acclimatization (BC1 vs. BC2, +7.2 %pred, p=0.044). At altitude FEV1 (p=0.008) and PEF (p<0.001) were lower in the AMS group. The risk of developing AMS was associated with lower baseline PEF (p<0.001) and longitudinal changes in PEF (p=0.008) and FEV1 (p<0.001). Lung function was not related to summit success (7126 m). Improvement in PEF after acclimatization might indicate respiratory muscle adaptation.
Collapse
Affiliation(s)
- Reto Reiser
- Department of Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Anne-Kathrin Brill
- Department of Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Christos T Nakas
- Institute of Clinical Chemistry, Inselspital Bern, University Hospital and University of Bern, Switzerland; Laboratory of Biometry, University of Thessaly, Volos, Greece.
| | - Urs Hefti
- Swiss Sportclinic, Bern, Switzerland.
| | - David Berger
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Eveline Perret Hoigné
- Department of Pediatrics, Division of Child Neurology, University Children's Hospital Bern, University of Bern, Switzerland.
| | | | - Tobias M Merz
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland; Cardiovascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand.
| | - Jacqueline Pichler Hefti
- Department of Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Switzerland; Swiss Sportclinic, Bern, Switzerland.
| |
Collapse
|
15
|
Small E, Goldberg E, Musi M, Strickland B, Paterson R, Phillips C, Keyes LE. Prochlorperazine maleate versus placebo for the prevention of acute mountain sickness: study protocol for a randomized controlled trial. Trials 2024; 25:785. [PMID: 39574186 PMCID: PMC11580417 DOI: 10.1186/s13063-024-08592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/25/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Acute mountain sickness (AMS) is a debilitating condition that individuals may develop on ascent to high altitude. It is characterized by headache, nausea, vomiting, dizziness, and fatigue with the potential to progress to fatal disease. Although the pathophysiology of AMS remains unclear, proposed mechanisms are hypothesized to be similar to migraine. Prochlorperazine, a first-line treatment for acute migraine, has been shown to abort migraine early and thus may be effective in preventing AMS. Its action as a respiratory stimulant additionally makes it a promising novel agent for AMS prevention. METHODS In this randomized double-blinded trial, participants will be randomized to receive oral prochlorperazine maleate or placebo for 24 h of three times daily dosing on a rapid ascent to 4348 m. Participants will be adults, aged 18, and older who are unacclimatized. Participants will remain at this elevation overnight. The Lake Louise Questionnaire will be utilized to define the primary outcome and presence of AMS and will be assessed the evening of and morning after ascent to peak altitude. DISCUSSION Currently, acetazolamide is the preferred option for the chemoprophylaxis of AMS, which has been studied and utilized since the 1970s and involves potential prohibitive side effects. Other more efficacious options with more tolerable side effects are needed. Preventing AMS has the potential to limit both the morbidity and mortality associated with developing AMS and more serious diseases (notably high-altitude cerebral edema). Additionally, there is a substantial economic and environmental impact of AMS that could be prevented. TRIAL REGISTRATION Clinicaltrial.gov, NCT06450899. Registered on June 2024.
Collapse
Affiliation(s)
- Elan Small
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Elizabeth Goldberg
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Martin Musi
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brian Strickland
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ryan Paterson
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Caleb Phillips
- Department of Computer Science, University of Colorado, Boulder, CO, USA
| | - Linda E Keyes
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
16
|
Chen J, Zhang Z, Huang M, Yan J, Gao R, Cui J, Gao Y, Ma Z. Ginsenoside Rg1 Prevents and Treats Acute Pulmonary Injury Induced by High-Altitude Hypoxia. Int J Mol Sci 2024; 25:12051. [PMID: 39596120 PMCID: PMC11593513 DOI: 10.3390/ijms252212051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
This study aimed to investigate the protective effects of ginsenoside Rg1 on high-altitude hypoxia-induced acute lung injury (ALI) and elucidated its molecular targets and related pathways, specifically its association with the fluid shear stress pathway. Using a combination of bioinformatics analysis and both in vivo and in vitro experiments, we assessed the role of ginsenoside Rg1 in mitigating physiological and biochemical disturbances induced by hypoxia. In the in vivo experiments, we measured arterial blood gas parameters, levels of inflammatory cells and cytokines, erythrocyte and platelet parameters, and conducted histological analysis in rats. The in vitro experiments utilized human pulmonary microvascular endothelial cells (HPMECs) and A549 cells to examine cell viability, intracellular reactive oxygen species (ROS) and Ca2⁺ levels, and mitochondrial function. The results of the in vivo experiments demonstrate that ginsenoside Rg1 significantly increased arterial blood oxygen partial pressure and saturation, elevated arterial blood glucose levels, and stabilized respiratory and metabolic functions in rats. It also reduced inflammatory cells and cytokines, such as tumor necrosis factor-α and interleukin-6, and improved erythrocyte and platelet abnormalities, supporting its protective role through the regulation of the fluid shear stress pathway. Histological and ultrastructural analyses revealed that Rg1 significantly protected lung tissue structure and organelles. In vitro experiments further confirmed that Rg1 improved cell viability in HPMEC and A549 cells under hypoxic conditions, decreased intracellular ROS and Ca2⁺ levels, and enhanced mitochondrial function. These findings collectively demonstrate that ginsenoside Rg1 exerts significant protective effects against high-altitude hypoxia-induced ALI by enhancing oxygen delivery and utilization, reducing inflammatory responses, and maintaining cellular metabolism and vascular function. Notably, the protective effects of Rg1 are closely associated with the regulation of the fluid shear stress pathway, suggesting its potential for treating high-altitude hypoxia-related diseases.
Collapse
Affiliation(s)
- Junru Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.C.); (R.G.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Z.); (M.H.); (J.Y.); (J.C.)
| | - Zhuo Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Z.); (M.H.); (J.Y.); (J.C.)
| | - Mingyue Huang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Z.); (M.H.); (J.Y.); (J.C.)
| | - Jiayi Yan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Z.); (M.H.); (J.Y.); (J.C.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rong Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.C.); (R.G.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Z.); (M.H.); (J.Y.); (J.C.)
| | - Jialu Cui
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Z.); (M.H.); (J.Y.); (J.C.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yue Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.C.); (R.G.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Z.); (M.H.); (J.Y.); (J.C.)
| | - Zengchun Ma
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.C.); (R.G.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Z.); (M.H.); (J.Y.); (J.C.)
| |
Collapse
|
17
|
Shen TC, Lin MC, Lin CL, Lin WH, Chuang BK. Acute mountain sickness on Jade Mountain: Results from the real-world practice (2018-2019). J Formos Med Assoc 2024; 123:1161-1166. [PMID: 38331638 DOI: 10.1016/j.jfma.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/24/2023] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
Acute mountain sickness (AMS) is initiated in response to a hypoxic and hypobaric environment at a high altitude. The precise prevalence of AMS in Jade Mountain climbers remained largely unknown, particularly data obtained from real medical consultations. An overnight stay at the Pai-Yun Lodge (3402 m) is usually required before an ascent of the Jade Mountain. Since 2004, a Pai-Yun Clinic has been established in the Pai-Yun Lodge. The Pai-Yun Clinic provided regular and emergency medical service every weekend. We conducted a retrospective study by using medical records from the Pai-Yun Clinic between 2018 and 2019. A total of 1021 patients were enrolled, with 56.2 % males. Different age groups were 3.2 %, 54.5 %, 37.9 %, and 4.4 % in <20, 20-39, 40-59, and ≥60 years, respectively. There were 582 (57.0 %) patients diagnosed to have AMS (230 [39.5 %] were mild type and 352 [60.5 %] were severe type). The factors associated with AMS development included young age, absence of climbing history (>3000 m) within the last 3 months, first climbing (>3000 m) experience, taking preventive medication, low oxygen saturation, and a high Lake Louise AMS score (LLAMSS). The factors associated with AMS severity included absence of taking preventive medication, low oxygen saturation, and a high LLAMSS. Approximately 15 % of Jade Mountain climbers needed medical service, of which 60 % had AMS. 60 % of patients with AMS must require oxygen supply or medication prescription. Oxygen saturation measure and LLAMSS evaluation are reasonable tools to predict the occurrence and severity of AMS on Jade Mountain.
Collapse
Affiliation(s)
- Te-Chun Shen
- Division of Critical Care Medicine, Chu Shang Show Chwan Hospital, Nantou, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Mei-Chen Lin
- Department of Nursing, Chu Shang Show Chwan Hospital, Nantou, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Ho Lin
- Management Office, Jade Mountain National Park, Nantou, Taiwan
| | - Bi-Kun Chuang
- Department of Otorhinolaryngology, Chu Shang Show Chwan Hospital, Nantou, Taiwan.
| |
Collapse
|
18
|
Raberin A, Manferdelli G, Schorderet F, Monnier Y, Perez RT, Bourdillon N, Millet GP. Difference in expiratory flow limitations development in normoxia and hypoxia in healthy individuals. Respir Physiol Neurobiol 2024; 329:104316. [PMID: 39151872 DOI: 10.1016/j.resp.2024.104316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
The present study investigated the maintenance/repeatability of expiratory flow limitation (EFL) between normoxia and hypoxia. Fifty-one healthy active individuals (27 men and 24 women) performed a lung function test and a maximal incremental cycling test in both normoxia and hypoxia (inspired oxygen fraction = 0.14) on two separate visits. During exercise in normoxia, 28 participants exhibited EFL (55 %). In hypoxia, another cohort of 28 participants exhibited EFL. The two groups only partly overlapped. Individuals with EFL only in normoxia reported lower maximal ventilation values in hypoxia than in normoxia (n=5; -13.5 ± 7.8 %) compared to their counterparts with EFL only in hypoxia (n=5; +6.7 ± 6.3 %) or without EFL (n=18; +5.1 ± 10.3 %) (p=0.004 and p<0.001, respectively). EFL development may be induced by different mechanisms in hypoxia vs. normoxia since the individuals who exhibited flow limitation were not the same between the two environmental conditions. This change seems influenced by the magnitude of the maximal ventilation change.
Collapse
Affiliation(s)
- Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | | | - Forrest Schorderet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Yannick Monnier
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Ruben Tato Perez
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Narang BJ, Manferdelli G, Bourdillon N, Millet GP, Debevec T. Ventilatory responses to independent and combined hypoxia, hypercapnia and hypobaria in healthy pre-term-born adults. J Physiol 2024; 602:5943-5958. [PMID: 37796451 DOI: 10.1113/jp285300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Pre-term birth is associated with physiological sequelae that persist into adulthood. In particular, modulated ventilatory responsiveness to hypoxia and hypercapnia has been observed in this population. Whether pre-term birth per se causes these effects remains unclear. Therefore, we aimed to assess pulmonary ventilation and blood gases under various environmental conditions, comparing 17 healthy prematurely born individuals (mean ± SD; gestational age, 28 ± 2 weeks; age, 21 ± 4 years; peak oxygen uptake, 48.1 ± 11.2 ml kg-1 min-1) with 16 well-matched adults born at term (gestational age, 40 ± 1 weeks; age, 22 ± 2 years; peak oxygen uptake, 51.2 ± 7.7 ml kg-1 min-1). Participants were exposed to seven combinations of hypoxia/hypobaria (equivalent to ∼3375 m) and/or hypercapnia (3% CO2), at rest for 6 min. Pulmonary ventilation, pulse oxygen saturation and the arterial partial pressures of O2 and CO2 were similar in pre-term and full-term individuals under all conditions. Higher ventilation in hypoxia compared to normoxia was only observed at terrestrial altitude, despite an equivalent (normobaric) hypoxic stimulus administered at sea level (0.138F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ). Assessment of oscillations in key variables revealed that combined hypoxic hypercapnia induced greater underlying fluctuations in ventilation in pre-term individuals only. In general, higher pulse oxygen saturation fluctuations were observed with hypoxia, and lower fluctuations in end-tidal CO2 with hypercapnia, despite similar ventilatory oscillations observed between conditions. These findings suggest that healthy prematurely born adults display similar overall ventilation to their term-born counterparts under various environmental stressors, but that combined ventilatory stimuli could induce an irregular underlying ventilatory pattern. Moreover, barometric pressure may be an important factor when assessing ventilatory responsiveness to moderate hypoxic stimuli. KEY POINTS: Evidence exists for unique pulmonary and respiratory function under hypoxic conditions in adult survivors of pre-term birth. Whether pre-term birth per se causes these differences requires a comparison of conventionally healthy prematurely born adults with an appropriately matched sample of term-born individuals. According to the present data, there is no difference between healthy pre-term and well-matched term-born individuals in the magnitude of pulmonary ventilation or arterial blood gases during independent and combined hypobaria, hypoxia and hypercapnia. Terrestrial altitude (hypobaria) was necessary to induce differences in ventilation between normoxia and a hypoxic stimulus equivalent to ∼3375 m of altitude. Furthermore, peak power in pulse oxygen saturation was similar between hypobaric normoxia and normobaric hypoxia. The observed similarities between groups suggest that ventilatory regulation under various environmental stimuli is not impaired by pre-term birth per se. Instead, an integrated combination of neonatal treatment strategies and cardiorespiratory fitness/disease status might underlie previously observed chemosensitivity impairments.
Collapse
Affiliation(s)
- Benjamin J Narang
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | | | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tadej Debevec
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
20
|
Citherlet T, Raberin A, Manferdelli G, Pialoux V, Millet GP. Menstrual cycle does not impact the hypoxic ventilatory response and acute mountain sickness prediction. Sci Rep 2024; 14:26087. [PMID: 39477965 PMCID: PMC11525676 DOI: 10.1038/s41598-024-76404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
The relationship between the variations in ovarian hormones (i.e., estrogens and progesterone) and the hypoxic ventilatory response (HVR) remains unclear. HVR is a key adaptive mechanism to high altitude and has been proposed as a predictor for acute mountain sickness (AMS). This study aimed to explore the effects of hormonal changes across the menstrual cycle on HVR. Additionally, it assessed the predictive capacity of HVR for AMS and examined whether a particular menstrual phase could enhance its predictive accuracy. Thirteen eumenorrheic women performed a pure nitrogen breathing test near sea level, measuring HVR and cerebral oxygenation in early follicular, late follicular, and mid-luteal phases. Oxidative stress and ovarian hormone levels were also measured. AMS symptoms were evaluated after spending 14 h, including one overnight, at an altitude of 3,375 m. No differences in HVR, ventilation, peripheral oxygen saturation, or cerebral oxygenation were observed between the three menstrual cycle phases. Moreover, these parameters and the oxidative stress markers did not differ between the women with or without AMS (31% vs 69%), regardless of the menstrual cycle phase. In conclusion, ventilatory responses and cerebral oxygenation in normobaric hypoxia were consistent across the menstrual cycle. Furthermore, these parameters did not differentiate women with or without AMS.
Collapse
Affiliation(s)
- Tom Citherlet
- Institute of Sport Sciences, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, 1015, Lausanne, Switzerland
| | - Giorgio Manferdelli
- Institute of Sport Sciences, University of Lausanne, 1015, Lausanne, Switzerland
| | - Vincent Pialoux
- Laboratoire Interuniversitaire de la Biologie et de la Motricité, Université Claude Bernard Lyon 1, Lyon, France
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
21
|
Hermand E, Lesaint L, Denis L, Richalet JP, Lhuissier FJ. A Step Test to Evaluate the Susceptibility to Severe High-Altitude Illness in Field Conditions. High Alt Med Biol 2024; 25:158-163. [PMID: 38682358 DOI: 10.1089/ham.2023.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Hermand, Eric, Léo Lesaint, Laura Denis, Jean-Paul Richalet, and François J. Lhuissier. A step test to evaluate the susceptibility to severe high-altitude illness in field conditions. High Alt Med Biol. 25:158-163, 2024.-A laboratory-based hypoxic exercise test, performed on a cycle ergometer, can be used to predict susceptibility to severe high-altitude illness (SHAI) through the calculation of a clinicophysiological SHAI score. Our objective was to design a field-condition test and compare its derived SHAI score and various physiological parameters, such as peripheral oxygen saturation (SpO2), and cardiac and ventilatory responses to hypoxia during exercise (HCRe and HVRe, respectively), to the laboratory test. A group of 43 healthy subjects (15 females and 28 males), with no prior experience at high altitude, performed a hypoxic cycle ergometer test (simulated altitude of 4,800 m) and step tests (20 cm high step) at 3,000, 4,000, and 4,800 m simulated altitudes. According to tested altitudes, differences were observed in O2 desaturation, heart rate, and minute ventilation (p < 0.001), whereas the computed HCRe and HVRe were not different (p = 0.075 and p = 0.203, respectively). From the linear relationships between the step test and SHAI scores, we defined a risk zone, allowing us to evaluate the risk of developing SHAI and take adequate preventive measures in field conditions, from the calculated step test score for the given altitude. The predictive value of this new field test remains to be validated in real high-altitude conditions.
Collapse
Affiliation(s)
- Eric Hermand
- Université Littoral Côte d'Opale, Université Artois, Université Lille, CHU Lille, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, Dunkerque, France
| | - Léo Lesaint
- Université Sorbonne Paris Nord, UMR INSERM 1272 Hypoxie et poumon, Bobigny Cedex, France
| | - Laura Denis
- Université Sorbonne Paris Nord, UMR INSERM 1272 Hypoxie et poumon, Bobigny Cedex, France
| | - Jean-Paul Richalet
- Université Sorbonne Paris Nord, UMR INSERM 1272 Hypoxie et poumon, Bobigny Cedex, France
- Institut National du Sport de l'Expertise et de la Performance (INSEP), Paris, France
| | - François J Lhuissier
- Université Sorbonne Paris Nord, UMR INSERM 1272 Hypoxie et poumon, Bobigny Cedex, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Jean Verdier, Médecine de l'exercice et du sport, Bondy, France
| |
Collapse
|
22
|
RABERIN ANTOINE, MANFERDELLI GIORGIO, SCHORDERET FORREST, BOURDILLON NICOLAS, MILLET GRÉGOIREP. Fitness Level- and Sex-Related Differences in Pulmonary Limitations to Maximal Exercise in Normoxia and Hypoxia. Med Sci Sports Exerc 2024; 56:1398-1407. [PMID: 38530208 PMCID: PMC11882191 DOI: 10.1249/mss.0000000000003433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE Both maximal-intensity exercise and altitude exposure challenge the pulmonary system that may reach its maximal capacities. Expiratory flow limitation (EFL) and exercise-induced hypoxemia (EIH) are common in endurance-trained athletes. Furthermore, because of their smaller airways and lung size, women, independently of their fitness level, may be more prone to pulmonary limitations during maximal-intensity exercise, particularly when performed in hypoxic conditions. The objective of this study was to investigate the impact of sex and fitness level on pulmonary limitations during maximal exercise in normoxia and their consequences in acute hypoxia. METHODS Fifty-one participants were distributed across four different groups according to sex and fitness level. Participants visited the laboratory on three occasions to perform maximal incremental cycling tests in normoxia and hypoxia (inspired oxygen fraction = 0.14) and two hypoxic chemosensitivity tests. Pulmonary function and ventilatory capacities were evaluated at each visit. RESULTS EIH was more prevalent (62.5% vs 22.2%, P = 0.004) and EFL less common (37.5% vs 70.4%, P = 0.019) in women than men. EIH prevalence was different ( P = 0.004) between groups of trained men (41.7%), control men (6.7%), trained women (50.0%), and control women (75.0%). All EIH men but only 40% of EIH women exhibited EFL. EFL individuals had higher slope ratio ( P = 0.029), higher ventilation (V̇ E ) ( P < 0.001), larger ΔVO 2max ( P = 0.019), and lower hypoxia-related V̇ E increase ( P < 0.001). CONCLUSIONS Women reported a higher EIH prevalence than men, regardless of their fitness level, despite a lower EFL prevalence. EFL seems mainly due to the imbalance between ventilatory demands and capacities. It restricts ventilation, leading to a larger performance impairment during maximal exercise in hypoxic conditions.
Collapse
|
23
|
Gatterer H, Villafuerte FC, Ulrich S, Bhandari SS, Keyes LE, Burtscher M. Altitude illnesses. Nat Rev Dis Primers 2024; 10:43. [PMID: 38902312 DOI: 10.1038/s41572-024-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
Abstract
Millions of people visit high-altitude regions annually and more than 80 million live permanently above 2,500 m. Acute high-altitude exposure can trigger high-altitude illnesses (HAIs), including acute mountain sickness (AMS), high-altitude cerebral oedema (HACE) and high-altitude pulmonary oedema (HAPE). Chronic mountain sickness (CMS) can affect high-altitude resident populations worldwide. The prevalence of acute HAIs varies according to acclimatization status, rate of ascent and individual susceptibility. AMS, characterized by headache, nausea, dizziness and fatigue, is usually benign and self-limiting, and has been linked to hypoxia-induced cerebral blood volume increases, inflammation and related trigeminovascular system activation. Disruption of the blood-brain barrier leads to HACE, characterized by altered mental status and ataxia, and increased pulmonary capillary pressure, and related stress failure induces HAPE, characterized by dyspnoea, cough and exercise intolerance. Both conditions are progressive and life-threatening, requiring immediate medical intervention. Treatment includes supplemental oxygen and descent with appropriate pharmacological therapy. Preventive measures include slow ascent, pre-acclimatization and, in some instances, medications. CMS is characterized by excessive erythrocytosis and related clinical symptoms. In severe CMS, temporary or permanent relocation to low altitude is recommended. Future research should focus on more objective diagnostic tools to enable prompt treatment, improved identification of individual susceptibilities and effective acclimatization and prevention options.
Collapse
Affiliation(s)
- Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria.
| | - Francisco C Villafuerte
- Laboratorio de Fisiología del Transporte de Oxígeno y Adaptación a la Altura - LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Silvia Ulrich
- Department of Respiratory Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sanjeeb S Bhandari
- Mountain Medicine Society of Nepal, Kathmandu, Nepal
- Emergency Department, UPMC Western Maryland Health, Cumberland, MD, USA
| | - Linda E Keyes
- Department of Emergency Medicine, University of Colorado, Aurora, CO, USA
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
24
|
Zeng Y, Cao W, Huang Y, Zhang H, Li C, He J, Liu Y, Gong H, Su Y. Huangqi Baihe Granules alleviate hypobaric hypoxia-induced acute lung injury in rats by suppressing oxidative stress and the TLR4/NF-κB/NLRP3 inflammatory pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117765. [PMID: 38228230 DOI: 10.1016/j.jep.2024.117765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqi Baihe Granules (HQBHG) are a modified formulation based on the traditional recipe "Huangqi Baihe porridge" and the Dunhuang medical prescription "Cistanche Cistanche Soup." The Herbal medicine moistens the lungs and tones the kidneys in addition to replenishing Qi and feeding Yin, making it an ideal choice for enhancing adaptability to high-altitude hypoxic environments. AIM OF THE STUDY The purpose of this study was to examine a potential molecular mechanism for the treatment and prevention of hypoxic acute lung injury (ALI) in rats using Huangqi Baihe Granules. MATERIALS AND METHODS The HCP-III laboratory animal low-pressure simulation chamber was utilized to simulate high-altitude environmental exposure and establish an ALI model in rats. The severity of lung damage was evaluated using a battery of tests that included spirometry, a wet/dry lung ratio, H&E staining, and transmission electron microscopy. Using immunofluorescence, the amount of reactive oxygen species (ROS) in lung tissue was determined. Superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and myeloperoxidase (MPO) levels in lung tissue were determined using this kit. Serum levels of proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1 beta), and antiinflammatory cytokines like interleukin-10 (IL-10) were measured using an enzyme-linked immunosorbent assay kit. Gene expression changes in lung tissue were identified using transcriptomics, and the relative expression of proteins and mRNA involved in the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB p65)/Nod-like receptor protein 3 (NLRP3) pathway were determined using western blotting and quantitative real-time PCR. RESULTS HQBHG was shown to enhance lung function considerably, decrease the wet/dry ratio of the lungs, attenuate lung tissue damage, suppress ROS and MDA formation, and increase SOD activity and GSH expression. The research also demonstrated that HQBHG inhibited the activation of the TLR4/NF-κB p65/NLPR3 signaling pathway in lung tissue, reducing the release of downstream pro-inflammatory cytokines. CONCLUSIONS HQBHG exhibits potential therapeutic effects against ALI induced by altitude hypoxia through suppressing oxidative stress and inflammatory response. This suggests it may be a novel drug for treating and preventing ALI.
Collapse
Affiliation(s)
- Yuanding Zeng
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Wangjie Cao
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Yong Huang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Han Zhang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Congyi Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Jianzheng He
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Hongxia Gong
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Yun Su
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
25
|
Li Y, Frandsen KM, Guo W, Lu Y, Hvelplund MH, Suolang B, Xi Z, Duan M, Liu L. Impact of altitude on the dosage of indoor particulates entering an individual's small airways. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133856. [PMID: 38394896 DOI: 10.1016/j.jhazmat.2024.133856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The complexity of indoor particulate exposure intensifies at higher altitudes owing to the increased lung capacity that residents develop to meet the higher oxygen demands. Altitude variations impact atmospheric pressure and alter particulate dynamics in ambient air and the human respiratory tract, complicating particulate inhalation. This study assessed the fraction of PM2.5 and PM10 entering small airways. This assessment covered an altitude range from 400 m above sea level to 3650 m, and an in vitro respiratory tract model was used. The experimental results confirmed that with increasing altitude, the penetration fractions of PM2.5 and PM10 significantly increased from 0.133 ± 0.031 and 0.141 ± 0.045 to 0.404 ± 0.159 and 0.353 ± 0.132, respectively. Additionally, the computational fluid dynamics simulation results revealed that among particles with sizes of 0.1 to 10 µm, the 7.5-μm particles exhibited the most substantial reduction in deposition in the upper airway, displaying a decrease of 6.27%. Our findings underscore the health risks faced by low-altitude residents during acclimatization to higher altitudes, as they experience heightened exposure to particulate matter sources.
Collapse
Affiliation(s)
- Yifan Li
- Department of Building Science, Tsinghua University, Beijing 100084, China; Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
| | | | - Weiqi Guo
- Department of Building Science, Tsinghua University, Beijing 100084, China; Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yiran Lu
- Department of Building Science, Tsinghua University, Beijing 100084, China; Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
| | | | - Baimu Suolang
- School of Engineering, Tibet University, Lhasa, Tibet 850000, China
| | - Ziang Xi
- Department of Building Science, Tsinghua University, Beijing 100084, China; Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Mengjie Duan
- Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China; Vanke School of Public Health, Tsinghua University, Beijing 100084, China.
| | - Li Liu
- Department of Building Science, Tsinghua University, Beijing 100084, China; Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Burtscher J, Raberin A, Brocherie F, Malatesta D, Manferdelli G, Citherlet T, Krumm B, Bourdillon N, Antero J, Rasica L, Burtscher M, Millet GP. Recommendations for Women in Mountain Sports and Hypoxia Training/Conditioning. Sports Med 2024; 54:795-811. [PMID: 38082199 PMCID: PMC11052836 DOI: 10.1007/s40279-023-01970-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 04/28/2024]
Abstract
The (patho-)physiological responses to hypoxia are highly heterogeneous between individuals. In this review, we focused on the roles of sex differences, which emerge as important factors in the regulation of the body's reaction to hypoxia. Several aspects should be considered for future research on hypoxia-related sex differences, particularly altitude training and clinical applications of hypoxia, as these will affect the selection of the optimal dose regarding safety and efficiency. There are several implications, but there are no practical recommendations if/how women should behave differently from men to optimise the benefits or minimise the risks of these hypoxia-related practices. Here, we evaluate the scarce scientific evidence of distinct (patho)physiological responses and adaptations to high altitude/hypoxia, biomechanical/anatomical differences in uphill/downhill locomotion, which is highly relevant for exercising in mountainous environments, and potentially differential effects of altitude training in women. Based on these factors, we derive sex-specific recommendations for mountain sports and intermittent hypoxia conditioning: (1) Although higher vulnerabilities of women to acute mountain sickness have not been unambiguously shown, sex-dependent physiological reactions to hypoxia may contribute to an increased acute mountain sickness vulnerability in some women. Adequate acclimatisation, slow ascent speed and/or preventive medication (e.g. acetazolamide) are solutions. (2) Targeted training of the respiratory musculature could be a valuable preparation for altitude training in women. (3) Sex hormones influence hypoxia responses and hormonal-cycle and/or menstrual-cycle phases therefore may be factors in acclimatisation to altitude and efficiency of altitude training. As many of the recommendations or observations of the present work remain partly speculative, we join previous calls for further quality research on female athletes in sports to be extended to the field of altitude and hypoxia.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Antoine Raberin
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Davide Malatesta
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Giorgio Manferdelli
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Juliana Antero
- Institut de Recherche Bio-Médicale Et d'Épidémiologie du Sport (EA 7329), French Institute of Sport, Paris, France
| | - Letizia Rasica
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland.
| |
Collapse
|
27
|
Guo Y, Liu X, Zhang Q, Shi Z, Zhang M, Chen J. Can acute high-altitude sickness be predicted in advance? REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:27-36. [PMID: 36165715 DOI: 10.1515/reveh-2022-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
In high-altitude environments, the oxygen and air density are decreased, and the temperature and humidity are low. When individuals enter high-altitude areas, they are prone to suffering from acute mountain sickness (AMS) because they cannot tolerate hypoxia. Headache, fatigue, dizziness, and gastrointestinal reactions are the main symptoms of AMS. When these symptoms cannot be effectively alleviated, they can progress to life-threatening high-altitude pulmonary edema or high-altitude cerebral edema. If the risk of AMS can be effectively assessed before people enter high-altitude areas, then the high-risk population can be promptly discouraged from entering the area, or drug intervention can be established in advance to prevent AMS occurrence and avoid serious outcomes. This article reviews recent studies related to the early-warning biological indicators of AMS to provide a new perspective on the prevention of AMS.
Collapse
Affiliation(s)
- Yan Guo
- Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Department of Pathology, Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| | - Xiao Liu
- Department of Basic Medical Sciences, The 960th Hospital of PLA, Jinan, Shandong Province, China
| | - Qiang Zhang
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| | - Zhongshan Shi
- Department of Intensive Care Medicine, Ge er mu People's Hospital, Ge er mu, Qinghai Province, China
| | - Menglan Zhang
- Department of Pathology, Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| | - Jie Chen
- Department of Pathology, Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| |
Collapse
|
28
|
Han C, Zheng XX, Zhang WF. High altitude retinopathy: An overview and new insights. Travel Med Infect Dis 2024; 58:102689. [PMID: 38295966 DOI: 10.1016/j.tmaid.2024.102689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
High altitude retinopathy (HAR) is a common ocular disorder that occurs on ascent to high altitude. There are many clinical symptoms, retinal vascular dilatation, retinal edema and hemorrhage are common. These usually do not or slightly affect vision; rarely, severe cases develop serious or permanent vision loss. At present, the research progress of HAR mainly focuses on hemodynamic changes, blood-retinal barrier damage, oxidative stress and inflammatory response. Although the related studies on HAR are limited, it shows that HAR still belongs to hypoxia, and hypobaric hypoxia plays an aggravating role in promoting the development of the disease. Various studies have demonstrated the correlation of HAR with acute mountain sickness (AMS) and high-altitude cerebral edema (HACE), so a deeper understanding of HAR is important. The slow ascent rates and ascent altitude are the key to preventing any altitude sickness. Research on traditional chinese medicine (TCM) and western medicine has been gradually carried out. Further exploration of the pathogenesis and prevention strategies of HAR will provide better guidance for doctors and high-altitude travelers.
Collapse
Affiliation(s)
- Cong Han
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| | - Xing-Xing Zheng
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| | - Wen-Fang Zhang
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| |
Collapse
|
29
|
Allado E, Chenuel B, Vauthier JC, Hily O, Richard S, Poussel M. Transient Central Facial Palsy at High Altitude: A Case Report. High Alt Med Biol 2024; 25:100-102. [PMID: 34191597 DOI: 10.1089/ham.2020.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Allado, Edem, Bruno Chenuel, Jean-Charles Vauthier, Oriane Hily, Sébastien Richard, and Mathias Poussel. Transient central facial palsy at high altitude: a case report. High Alt Med Biol. 25:100-102, 2024.-High altitude cerebral edema (HACE) is a severe form of acute mountain sickness (AMS). Besides this life-threatening condition, other neurological disorders may develop at high altitude, even if the precise pathophysiological mechanisms generally remain undetermined and are often debated. We report the case of a 34-year-old woman presenting with moderate AMS during an ascent of Mount Kilimanjaro. While descending from the summit, she suddenly experienced focal neurological symptoms of visual blurring, tinnitus, lightheadedness, and the findings of left-sided central facial palsy (flattened nasolabial fold, fall of labial commissure, dysarthria, difficulty in whistling, and facial dysesthesia). These symptoms and signs were confirmed in the field by a physician. Her symptoms regressed spontaneously and completely while continuing to descend. The etiology of this neurological episode at high altitude is discussed. The most probable diagnosis is a transient ischemic attack based on personal and familial vascular history, confirmed unilateral transient central facial palsy and normal results on standard blood work and cerebral magnetic resonance imaging. In this case, migraine should also be considered based on association of headache and transient focal neurological impairment. Overall, special attention should be given to mountaineers presenting with neurological conditions at altitude. Not only HACE should be considered but also the wide spectrum of other neurological conditions that fall outside the usual definition of altitude sickness.
Collapse
Affiliation(s)
- Edem Allado
- CHRU-Nancy, University Centre of Sports Medicine and Adapted Physical Activity, Nancy, France
- EA 3450 DevAH-Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
| | - Bruno Chenuel
- CHRU-Nancy, University Centre of Sports Medicine and Adapted Physical Activity, Nancy, France
- EA 3450 DevAH-Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
| | - Jean-Charles Vauthier
- Department of General Practice, Maison de Santé des Trois Monts, Dommartin-lès-Remiremont, France
| | - Oriane Hily
- CHRU-Nancy, University Centre of Sports Medicine and Adapted Physical Activity, Nancy, France
| | - Sébastien Richard
- CHRU-Nancy, Department of Neurology, Stroke Unit, CIC-P 1433, INSERM U1116, Nancy, France
| | - Mathias Poussel
- CHRU-Nancy, University Centre of Sports Medicine and Adapted Physical Activity, Nancy, France
- EA 3450 DevAH-Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
| |
Collapse
|
30
|
Mateikaitė-Pipirienė K, Jean D, Paal P, Horakova L, Kriemler S, Rosier AJ, Andjelkovic M, Beidleman BA, Derstine M, Hefti JP, Hillebrandt D, Keyes LE. Menopause and High Altitude: A Scoping Review-UIAA Medical Commission Recommendations. High Alt Med Biol 2024; 25:1-8. [PMID: 37922458 DOI: 10.1089/ham.2023.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023] Open
Abstract
Mateikaitė-Pipirienė, Kastė, Dominique Jean, Peter Paal, Lenka Horakova, Susi Kriemler, Alison J. Rosier, Marija Andjelkovic, Beth A. Beidleman, Mia Derstine, Jacqueline Pichler Hefti, David Hillebrandt, and Linda E. Keyes for the UIAA MedCom writing group on Women's Health in the Mountains. Menopause and high altitude: A scoping review-UIAA Medical Commission Recommendations. High Alt Med Biol. 25:1-8, 2024. Background: Older people are an important fraction of mountain travelers and climbers, many of them postmenopausal women. The aim of this work was to review health issues that older and postmenopausal women may experience at high altitude, including susceptibility to high-altitude illness. Methods: We performed a scoping review for the UIAA Medical Commission series on Women's Health in the mountains. We searched PubMed and Cochrane libraries and performed an additional manual search. The primary search focused on articles assessing lowland women sojourning at high altitude. Results: We screened 7,165 potential articles. The search revealed three relevant articles, and the manual search another seven articles and one abstract. Seven assessed menopausal low-altitude residents during a high-altitude sojourn or performing hypoxic tests. Four assessed high-altitude residents. We summarize the results of these 11 studies. Conclusions: Data are limited on the effects of high altitude on postmenopausal women. The effects of short-term, high-altitude exposure on menopause symptoms are unknown. Menopause has minimal effect on the physiological responses to hypoxia in physically fit women and does not increase the risk of acute mountain sickness. Postmenopausal women have an increased risk of urinary tract infections, which may be exacerbated during mountain travel. More research is needed on the physiology and performance of older women at high altitude.
Collapse
Affiliation(s)
- Kastė Mateikaitė-Pipirienė
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Diaverum Clinics, Elektrėnai Division, Lithuania
| | - Dominique Jean
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Paediatrics, Infectious Diseases and Altitude Medicine, Grenoble, France
| | - Peter Paal
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Department of Anaesthesiology and Intensive Care Medicine, St. John of God Hospital, Paracelesus Medical University, Salzburg, Austria
| | - Lenka Horakova
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Susi Kriemler
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Alison J Rosier
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
| | - Marija Andjelkovic
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Pharmacy, Singidunum University, Belgrade, Serbia
| | - Beth A Beidleman
- US Army Research Institute of Environmental Medicine, Military Performance Division, Natick MA
| | - Mia Derstine
- Department of Emergency Medicine, University of Colorado, Aurora, Colorado, USA
| | | | - David Hillebrandt
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- General Medical Practitioner, Holsworthy, Devon, United Kingdom
| | - Linda E Keyes
- Department of Emergency Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
31
|
Luks AM, Beidleman BA, Freer L, Grissom CK, Keyes LE, McIntosh SE, Rodway GW, Schoene RB, Zafren K, Hackett PH. Wilderness Medical Society Clinical Practice Guidelines for the Prevention, Diagnosis, and Treatment of Acute Altitude Illness: 2024 Update. Wilderness Environ Med 2024; 35:2S-19S. [PMID: 37833187 DOI: 10.1016/j.wem.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 10/15/2023]
Abstract
To provide guidance to clinicians about best practices, the Wilderness Medical Society (WMS) convened an expert panel to develop evidence-based guidelines for prevention, diagnosis, and treatment of acute mountain sickness, high altitude cerebral edema, and high altitude pulmonary edema. Recommendations are graded based on the quality of supporting evidence and the balance between the benefits and risks/burdens according to criteria put forth by the American College of Chest Physicians. The guidelines also provide suggested approaches for managing each form of acute altitude illness that incorporate these recommendations as well as recommendations on how to approach high altitude travel following COVID-19 infection. This is an updated version of the original WMS Consensus Guidelines for the Prevention and Treatment of Acute Altitude Illness published in Wilderness & Environmental Medicine in 2010 and the subsequently updated WMS Practice Guidelines for the Prevention and Treatment of Acute Altitude Illness published in 2014 and 2019.
Collapse
Affiliation(s)
- Andrew M Luks
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA
| | - Beth A Beidleman
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | - Luanne Freer
- Everest ER, Himalayan Rescue Association, Kathmandu, Nepal
| | - Colin K Grissom
- Pulmonary and Critical Care Medicine, Intermountain Healthcare and the University of Utah, Salt Lake City, UT
| | - Linda E Keyes
- Department of Emergency Medicine, Section of Wilderness Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Scott E McIntosh
- Department of Emergency Medicine, University of Utah Health, Salt Lake City, UT
| | - George W Rodway
- Department of Family Medicine-Sports Medicine, University of Nevada, Reno School of Medicine, Reno, NV
| | - Robert B Schoene
- Division of Pulmonary and Critical Care Medicine, Sound Physicians, St. Mary's Medical Center and Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, CA
| | - Ken Zafren
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA
- Himalayan Rescue Association, Kathmandu, Nepal
| | - Peter H Hackett
- Altitude Research Center, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
32
|
Raberin A, Burtscher J, Citherlet T, Manferdelli G, Krumm B, Bourdillon N, Antero J, Rasica L, Malatesta D, Brocherie F, Burtscher M, Millet GP. Women at Altitude: Sex-Related Physiological Responses to Exercise in Hypoxia. Sports Med 2024; 54:271-287. [PMID: 37902936 PMCID: PMC10933174 DOI: 10.1007/s40279-023-01954-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
Sex differences in physiological responses to various stressors, including exercise, have been well documented. However, the specific impact of these differences on exposure to hypoxia, both at rest and during exercise, has remained underexplored. Many studies on the physiological responses to hypoxia have either excluded women or included only a limited number without analyzing sex-related differences. To address this gap, this comprehensive review conducted an extensive literature search to examine changes in physiological functions related to oxygen transport and consumption in hypoxic conditions. The review encompasses various aspects, including ventilatory responses, cardiovascular adjustments, hematological alterations, muscle metabolism shifts, and autonomic function modifications. Furthermore, it delves into the influence of sex hormones, which evolve throughout life, encompassing considerations related to the menstrual cycle and menopause. Among these physiological functions, the ventilatory response to exercise emerges as one of the most sex-sensitive factors that may modify reactions to hypoxia. While no significant sex-based differences were observed in cardiac hemodynamic changes during hypoxia, there is evidence of greater vascular reactivity in women, particularly at rest or when combined with exercise. Consequently, a diffusive mechanism appears to be implicated in sex-related variations in responses to hypoxia. Despite well-established sex disparities in hematological parameters, both acute and chronic hematological responses to hypoxia do not seem to differ significantly between sexes. However, it is important to note that these responses are sensitive to fluctuations in sex hormones, and further investigation is needed to elucidate the impact of the menstrual cycle and menopause on physiological responses to hypoxia.
Collapse
Affiliation(s)
- Antoine Raberin
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Johannes Burtscher
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Giorgio Manferdelli
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Juliana Antero
- Institut de Recherche Bio-Médicale Et d'Épidémiologie du Sport (EA 7329), French Institute of Sport, Paris, France
| | - Letizia Rasica
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Davide Malatesta
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
33
|
Janssen Daalen JM, Koopman WJH, Saris CGJ, Meinders MJ, Thijssen DHJ, Bloem BR. The Hypoxia Response Pathway: A Potential Intervention Target in Parkinson's Disease? Mov Disord 2024; 39:273-293. [PMID: 38140810 DOI: 10.1002/mds.29688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which only symptomatic treatments are available. Both preclinical and clinical studies suggest that moderate hypoxia induces evolutionarily conserved adaptive mechanisms that enhance neuronal viability and survival. Therefore, targeting the hypoxia response pathway might provide neuroprotection by ameliorating the deleterious effects of mitochondrial dysfunction and oxidative stress, which underlie neurodegeneration in PD. Here, we review experimental studies regarding the link between PD pathophysiology and neurophysiological adaptations to hypoxia. We highlight the mechanistic differences between the rescuing effects of chronic hypoxia in neurodegeneration and short-term moderate hypoxia to improve neuronal resilience, termed "hypoxic conditioning". Moreover, we interpret these preclinical observations regarding the pharmacological targeting of the hypoxia response pathway. Finally, we discuss controversies with respect to the differential effects of hypoxia response pathway activation across the PD spectrum, as well as intervention dosing in hypoxic conditioning and potential harmful effects of such interventions. We recommend that initial clinical studies in PD should focus on the safety, physiological responses, and mechanisms of hypoxic conditioning, as well as on repurposing of existing pharmacological compounds. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Christiaan G J Saris
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
34
|
Richalet JP, Hermand E, Lhuissier FJ. Cardiovascular physiology and pathophysiology at high altitude. Nat Rev Cardiol 2024; 21:75-88. [PMID: 37783743 DOI: 10.1038/s41569-023-00924-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 10/04/2023]
Abstract
Oxygen is vital for cellular metabolism; therefore, the hypoxic conditions encountered at high altitude affect all physiological functions. Acute hypoxia activates the adrenergic system and induces tachycardia, whereas hypoxic pulmonary vasoconstriction increases pulmonary artery pressure. After a few days of exposure to low oxygen concentrations, the autonomic nervous system adapts and tachycardia decreases, thereby protecting the myocardium against high energy consumption. Permanent exposure to high altitude induces erythropoiesis, which if excessive can be deleterious and lead to chronic mountain sickness, often associated with pulmonary hypertension and heart failure. Genetic factors might account for the variable prevalence of chronic mountain sickness, depending on the population and geographical region. Cardiovascular adaptations to hypoxia provide a remarkable model of the regulation of oxygen availability at the cellular and systemic levels. Rapid exposure to high altitude can have adverse effects in patients with cardiovascular diseases. However, intermittent, moderate hypoxia might be useful in the management of some cardiovascular disorders, such as coronary heart disease and heart failure. The aim of this Review is to help physicians to understand the cardiovascular responses to hypoxia and to outline some recommendations that they can give to patients with cardiovascular disease who wish to travel to high-altitude destinations.
Collapse
Affiliation(s)
- Jean-Paul Richalet
- Hypoxie et Poumon, Université Sorbonne Paris Nord, INSERM U1272, Paris, France.
| | - Eric Hermand
- Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR 7369-URePSSS, Université Littoral Côte d'Opale, Université Artois, Université Lille, CHU Lille, Dunkirk, France
| | | |
Collapse
|
35
|
Louis A, Pröpper C, Savina Y, Tanne C, Duperrex G, Robach P, Zellner P, Doutreleau S, Boulet JM, Frey A, Pillard F, Pistea C, Poussel M, Thuet T, Richalet JP, Lecoq-Jammes F. The Impact of COVID-19 on the Response to Hypoxia. High Alt Med Biol 2023; 24:321-328. [PMID: 37843910 DOI: 10.1089/ham.2022.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Louis, Alexandre, Charlotte Pröpper, Yann Savina, Corentin Tanne, Guy Duperrex, Paul Robach, Pascal Zellner, Stéphane Doutreleau, Jean-Michel Boulet, Alain Frey, Fabien Pillard, Cristina Pistea, Mathias Poussel, Thomas Thuet, Jean-Paul Richalet, and François Lecoq-Jammes. The impact of COVID-19 on the response to hypoxia. High Alt Med Biol. 24:321-328, 2023. Background: Severe high-altitude illness (SHAI) and coronavirus disease 2019 (COVID-19), while differing in most aspects of pathophysiology, both involve respiratory capacity. We examined the long-term impact of COVID-19 on response to hypoxia in individuals free of symptoms but having tested positive during the pandemic. The need for recommendations for such individuals planning a stay at high altitude are discussed. Methods: This multicenter study recruited participants from the multiSHAI cohort, all of whom had previously undergone a hypoxic exercise test. These participants were classified into two groups depending on whether they had since suffered mild-to-moderate COVID-19 (COVID+) or not (Control) and then asked to retake the test. Primary outcomes were: desaturation induced by hypoxia at exercise (ΔSpE), hypoxic cardiac response at exercise, hypoxic ventilatory response at exercise, and SHAI risk score. Results: A total of 68 participants retook the test, 36 classified in the COVID+ group. Analyses of primary outcomes showed no significant differences between groups. However, the COVID+ group showed significantly increased ventilation (VE) parameters during both hypoxic (p = 0.003) and normoxic exercise (p = 0.007). However, only the VE/oxygen consumption relationship during hypoxic exercise was significantly different. Conclusion: This study demonstrates no negative impact of COVID-19 on response to hypoxia as evaluated by the Richalet test. Clinical Trial Registration: NTC number: NCT05167357.
Collapse
Affiliation(s)
- Alexandre Louis
- IFREMMONT (Training and Research Institute of Mountain Medicine), Chamonix-Mont-Blanc, France
| | | | - Yann Savina
- IFREMMONT (Training and Research Institute of Mountain Medicine), Chamonix-Mont-Blanc, France
- UPR-4278 Laboratoire de Physiologie Expérimentale Cardiovasculaire (LaPEC)-Avignon Université, Avignon, France
| | - Corentin Tanne
- IFREMMONT (Training and Research Institute of Mountain Medicine), Chamonix-Mont-Blanc, France
- Pediatric Service, Metropole Savoie Hospital Center, Chambéry, France
| | - Guy Duperrex
- IFREMMONT (Training and Research Institute of Mountain Medicine), Chamonix-Mont-Blanc, France
| | - Paul Robach
- National School for Mountain Sports, Site of the National School for Skiing and Mountaineering (ENSA), Chamonix, France
| | - Pascal Zellner
- IFREMMONT (Training and Research Institute of Mountain Medicine), Chamonix-Mont-Blanc, France
| | | | | | - Alain Frey
- Sports Medicine Department, CHI Poissy/St Germain, Poissy, France
| | - Fabien Pillard
- Sports Medicine Department, University Sports Clinic, Pierre Paul Riquet University Hospital, Toulouse, France
| | - Cristina Pistea
- Mitochondria, Oxidative Stress, and Muscle Protection, University of Strasbourg, Strasbourg, France
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, CHU, Strasbourg, France
| | - Mathias Poussel
- Department of Pulmonary Function Testing and Exercise Physiology, Nancy University Hospital, Nancy, France
| | - Thomas Thuet
- Sports Medicine Department, CHI Poissy/St Germain, Poissy, France
| | - Jean-Paul Richalet
- INSERM U1272, University Sorbonne Paris Nord, Bobigny, France
- Medical Pole, INSEP, Paris, France
| | - François Lecoq-Jammes
- IFREMMONT (Training and Research Institute of Mountain Medicine), Chamonix-Mont-Blanc, France
| |
Collapse
|
36
|
Derstine M, Jean D, Beidleman BA, Pichler Hefti J, Hillebrandt D, Horakova L, Kriemler S, Mateikaitė-Pipirienė K, Paal P, Rosier AJ, Andjelkovic M, Keyes LE. Acute Mountain Sickness and High Altitude Cerebral Edema in Women: A Scoping Review-UIAA Medical Commission Recommendations. High Alt Med Biol 2023; 24:259-267. [PMID: 37870579 DOI: 10.1089/ham.2023.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Derstine, Mia, Dominique Jean, Beth A. Beidleman, Jacqueline Pichler Hefti, David Hillebrandt, Lenka Horakova, Susi Kriemler, Kasté Mateikaité-Pipiriené, Peter Paal, Alison Rosier, Marija Andjelkovic, and Linda E. Keyes. Acute mountain sickness and high altitude cerebral edema in women: A scoping review-UIAA Medical Commission recommendations. High Alt Med Biol. 24:259-267, 2023. Background: Acute mountain sickness (AMS) and high-altitude cerebral edema (HACE) are illnesses associated with rapid ascent to altitudes over 2,500 m in unacclimatized lowlanders. The aim of this scoping review is to summarize the current knowledge on sex differences in the epidemiology, pathophysiology, symptomatology, and treatment of AMS and HACE, especially in women. Methods and Results: The UIAA Medical Commission convened an international author team to review women's health issues at high altitude and to publish updated recommendations. Pertinent literature from PubMed and Cochrane was identified by keyword search combinations (including AMS, HACE, and high altitude), with additional publications found by hand search. The primary search focus was for articles assessing lowland women sojourning at high altitude. Results: The literature search yielded 7,165 articles, 37 of which were ultimately included. The majority of publications included did not find women at increased risk for AMS or HACE. There was extremely limited sex-specific data on risk factors or treatment. Conclusions: There is a limited amount of data on female-specific findings regarding AMS and HACE, with most publications addressing only prevalence or incidence with regard to sex. As such, general prevention and treatment strategies for AMS and HACE should be used regardless of sex.
Collapse
Affiliation(s)
- Mia Derstine
- Department of Emergency Medicine, University of Colorado, Aurora, Colorado, USA
| | - Dominique Jean
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Paediatrics, Infectious Diseases and Altitude Medicine, Grenoble, France
| | - Beth A Beidleman
- US Army Research Institute of Environmental Medicine, Military Performance Division, Natick, Massachusetts, USA
| | | | - David Hillebrandt
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- General Medical Practitioner, Holsworthy, United Kingdom
| | - Lenka Horakova
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Susi Kriemler
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Kastė Mateikaitė-Pipirienė
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Diaverum Clinics, Elektrėnai Division, Lithuania
| | - Peter Paal
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Department of Anaesthesiology and Intensive Care Medicine, St. John of God Hospital, Paracelesus Medical University, Salzburg, Austria
| | - Alison J Rosier
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
| | - Marija Andjelkovic
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Pharmacy, Singidunum University, Belgrade, Serbia
| | - Linda E Keyes
- Department of Emergency Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
37
|
Liao Y, Chen Z, Yang Y, Shen D, Chai S, Ma Y, Ge R, Wang X, Wang S, Liu S. Antibiotic intervention exacerbated oxidative stress and inflammatory responses in SD rats under hypobaric hypoxia exposure. Free Radic Biol Med 2023; 209:70-83. [PMID: 37806597 DOI: 10.1016/j.freeradbiomed.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The gut microbiota plays a crucial role in maintaining host nutrition, metabolism, and immune homeostasis, particularly in extreme environmental conditions. However, the regulatory mechanisms of the gut microbiota in animal organisms hypobaric hypoxia exposure require further study. We conducted a research by comparing SD rats treated with an antibiotic (ABX) cocktail and untreated SD rats that were housed in a low-pressure oxygen chamber (simulating low pressure and hypoxic environment at 6000 m altitude) for 30 days. After the experiment, blood, feces, and lung tissues from SD rats were collected for analysis of blood, 16S rRNA amplicon sequencing, and non-targeted metabolomics. The results demonstrated that the antibiotic cocktail-treated SD rats exhibited elevated counts of neutrophil (Neu) and monocyte (Mon) cells, an enrichment of sulfate-reducing bacteria (SBC), reduced levels of glutathione, and accumulated phospholipid compounds. Notably, the accumulation of phospholipid compounds, particularly lysophosphatidic acid (LPA), lipopolysaccharide (LPS), and lysophosphatidylcholine (LPC), along with the aforementioned changes, contributed to heightened oxidative stress and inflammation in the organism. In addition, we explored the resistance mechanisms of SD rats in low-oxygen and low-pressure environments and found that increasing the quantity of the Prevotellaceae and related beneficial bacteria (especially Lactobacillus) could reduce oxidative stress and inflammation. These findings offer valuable insights into enhancing the adaptability of low-altitude animals under hypobaric hypoxia exposure.
Collapse
Affiliation(s)
- Yang Liao
- College of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, 810016, China
| | - Zheng Chen
- College of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, 810016, China
| | - Yingkui Yang
- College of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, 810016, China
| | - Di Shen
- College of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, 810016, China
| | - Shatuo Chai
- College of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, 810016, China
| | - Yan Ma
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, 810001, China
| | - Rili Ge
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, 810001, China
| | - Xun Wang
- College of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, 810016, China
| | - Shuxiang Wang
- College of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, 810016, China.
| | - Shujie Liu
- College of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, 810016, China.
| |
Collapse
|
38
|
Berger MM, Hüsing A, Niessen N, Schiefer LM, Schneider M, Bärtsch P, Jöckel KH. Prevalence and knowledge about acute mountain sickness in the Western Alps. PLoS One 2023; 18:e0291060. [PMID: 37708123 PMCID: PMC10501682 DOI: 10.1371/journal.pone.0291060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
OBJECTIVE To assess the prevalence of acute mountain sickness (AMS) in 1370 mountaineers at four different altitudes in the Western Alps. We also examined the influence of potential risk factors and the knowledge about AMS on its prevalence. METHODS In this observational cross-sectional study AMS was assessed on the day of ascent by the Lake Louise score (LLS, cut-off ≥3, version 2018) and the AMS-Cerebral (AMS-C) score of the environmental symptom questionnaire (cut-off ≥0,70). The latter was also obtained in the next morning. Knowledge regarding AMS and high-altitude cerebral edema (HACE) and the potential risk factors for AMS were evaluated by questionnaires. RESULTS On the day of ascent, the prevalence of AMS assessed by the LLS and AMS-C score was 5.8 and 3.9% at 2850 m, 2.1 and 3.1% at 3050 m, 14.8 and 10.1% at 3650 m, and 21.9 and 15% at 4559 m, respectively. The AMS prevalence increased overnight from 10.1 to 14.5% and from 15 to 25.2% at 3650 m and 4559 m, respectively, and was unchanged at 2850 m and 3050 m. A history of AMS, higher altitude, lower degree of pre-acclimatization, and younger age were identified as risk factors for developing AMS. Slow ascent was weakly associated with AMS prevalence, and sex and knowledge about AMS and HACE were indistinct. CONCLUSION AMS is common at altitudes ≥ 3650 m and better knowledge about AMS and HACE was not associated with less AMS in mountaineers with on average little knowledge.
Collapse
Affiliation(s)
- Marc Moritz Berger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anika Hüsing
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | - Nicolai Niessen
- Department of Internal Medicine, Klinikum Garmisch-Partenkirchen, Garmisch-Partenkirchen, Germany
| | | | - Michael Schneider
- Institute for Health Services Research and Clinical Epidemiology, Philipps-Universitaet Marburg, Marburg, Germany
| | - Peter Bärtsch
- Department of Internal Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| |
Collapse
|
39
|
Small E, Phillips C, Bunzel W, Cleaver L, Joshi N, Gardner L, Maharjan R, Marvel J. Prior Ambulatory Mild Coronavirus Disease 2019 Does Not Increase Risk of Acute Mountain Sickness. High Alt Med Biol 2023; 24:201-208. [PMID: 37306966 DOI: 10.1089/ham.2022.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Small, Elan, Caleb Phillips, William Bunzel, Lakota Cleaver, Nishant Joshi, Laurel Gardner, Rony Maharjan, and James Marvel. Prior ambulatory mild coronavirus disease 2019 does not increase risk of acute mountain sickness. High Alt Med Biol. 24:201-208, 2023. Background: Given its long-term morbidity, understanding how prior coronavirus disease 2019 (COVID-19) may affect acute mountain sickness (AMS) susceptibility is important for preascent risk stratification. The objective of this study was to examine if prior COVID-19 impacts risk of AMS. Materials and Methods: This was a prospective observational study conducted in Lobuje (4,940 m) and Manang (3,519 m), Nepal, from April to May 2022. AMS was defined by the 2018 Lake Louise Questionnaire criteria. COVID-19 severity was defined using the World Health Organization-developed criteria. Results: In the Lobuje cohort of 2,027, 46.2% of surveyed individuals reported history of COVID-19, with 25.7% AMS point-prevalence. There was no significant relationship between prior ambulatory mild COVID-19 and AMS (p = 0.6) or moderate AMS (p = 1.0). In the Manang cohort of 908, 42.8% reported history of COVID-19, with 14.7% AMS point-prevalence. There was no significant relationship between prior ambulatory mild COVID-19 and AMS (p = 0.3) or moderate AMS (p = 0.4). Average months since COVID-19 was 7.4 (interquartile range [IQR] 3-10) for Lobuje, 6.2 (IQR 3-6) for Manang. Both cohorts rarely exhibited moderate COVID-19 history. Conclusions: Prior ambulatory mild COVID-19 was not associated with increased risk of AMS and should not preclude high-altitude travel.
Collapse
Affiliation(s)
- Elan Small
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Caleb Phillips
- Department of Computational Science, University of Colorado, Boulder, Colorado, USA
| | - William Bunzel
- Department of Emergency Medicine, University of California San Francisco Fresno, Fresno, California, USA
| | - Lakota Cleaver
- Department of Emergency Medicine, Yale New Haven Health, New Haven, Connecticut, USA
| | - Nishant Joshi
- Department of General Practice and Emergency Medicine, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - Laurel Gardner
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Rony Maharjan
- Department of General Practice and Emergency Medicine, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - James Marvel
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
40
|
Ye X, Sun M, Yu S, Yang J, Liu Z, Lv H, Wu B, He J, Wang X, Huang L. Smartwatch-Based Maximum Oxygen Consumption Measurement for Predicting Acute Mountain Sickness: Diagnostic Accuracy Evaluation Study. JMIR Mhealth Uhealth 2023; 11:e43340. [PMID: 37410528 PMCID: PMC10360014 DOI: 10.2196/43340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/11/2022] [Accepted: 06/09/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Cardiorespiratory fitness plays an important role in coping with hypoxic stress at high altitudes. However, the association of cardiorespiratory fitness with the development of acute mountain sickness (AMS) has not yet been evaluated. Wearable technology devices provide a feasible assessment of cardiorespiratory fitness, which is quantifiable as maximum oxygen consumption (VO2max) and may contribute to AMS prediction. OBJECTIVE We aimed to determine the validity of VO2max estimated by the smartwatch test (SWT), which can be self-administered, in order to overcome the limitations of clinical VO2max measurements. We also aimed to evaluate the performance of a VO2max-SWT-based model in predicting susceptibility to AMS. METHODS Both SWT and cardiopulmonary exercise test (CPET) were performed for VO2max measurements in 46 healthy participants at low altitude (300 m) and in 41 of them at high altitude (3900 m). The characteristics of the red blood cells and hemoglobin levels in all the participants were analyzed by routine blood examination before the exercise tests. The Bland-Altman method was used for bias and precision assessment. Multivariate logistic regression was performed to analyze the correlation between AMS and the candidate variables. A receiver operating characteristic curve was used to evaluate the efficacy of VO2max in predicting AMS. RESULTS VO2max decreased after acute high altitude exposure, as measured by CPET (25.20 [SD 6.46] vs 30.17 [SD 5.01] at low altitude; P<.001) and SWT (26.17 [SD 6.71] vs 31.28 [SD 5.17] at low altitude; P<.001). Both at low and high altitudes, VO2max was slightly overestimated by SWT but had considerable accuracy as the mean absolute percentage error (<7%) and mean absolute error (<2 mL·kg-1·min-1), with a relatively small bias compared with VO2max-CPET. Twenty of the 46 participants developed AMS at 3900 m, and their VO2max was significantly lower than that of those without AMS (CPET: 27.80 [SD 4.55] vs 32.00 [SD 4.64], respectively; P=.004; SWT: 28.00 [IQR 25.25-32.00] vs 32.00 [IQR 30.00-37.00], respectively; P=.001). VO2max-CPET, VO2max-SWT, and red blood cell distribution width-coefficient of variation (RDW-CV) were found to be independent predictors of AMS. To increase the prediction accuracy, we used combination models. The combination of VO2max-SWT and RDW-CV showed the largest area under the curve for all parameters and models, which increased the area under the curve from 0.785 for VO2max-SWT alone to 0.839. CONCLUSIONS Our study demonstrates that the smartwatch device can be a feasible approach for estimating VO2max. In both low and high altitudes, VO2max-SWT showed a systematic bias toward a calibration point, slightly overestimating the proper VO2max when investigated in healthy participants. The SWT-based VO2max at low altitude is an effective indicator of AMS and helps to better identify susceptible individuals following acute high-altitude exposure, particularly by combining the RDW-CV at low altitude. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2200059900; https://www.chictr.org.cn/showproj.html?proj=170253.
Collapse
Affiliation(s)
- Xiaowei Ye
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengjia Sun
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiyong Yu
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jie Yang
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhen Liu
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hailin Lv
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Boji Wu
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingyu He
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xuhong Wang
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Huang
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
41
|
Sidhar K, Elliott K, Ibrahem M. Heat, Cold, and Environmental Emergencies in Athletes. Clin Sports Med 2023; 42:441-461. [PMID: 37208058 DOI: 10.1016/j.csm.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
With the increase in outdoor events, there is an inevitable rise in climate-related environmental emergencies. Heat exposure can place athletes at risk for life-threatening heatstroke which requires emergent diagnosis and rapid in-field management. Cold exposure can lead to hypothermia, frostbite, and other nonfreezing injuries that require prompt evaluation and management to minimize morbidity and mortality. Altitude exposure can lead to acute mountain sickness or other serious neurologic or pulmonary emergencies. Finally, harsh climate exposure can be life-threatening and require appropriate prevention and event planning.
Collapse
Affiliation(s)
- Kartik Sidhar
- Department of Family Medicine, University of Michigan Medical School, 300 North Ingalls Street, NI4C06, Ann Arbor, MI 48109-5435, USA.
| | - Katlyn Elliott
- University of Pittsburgh Medical Center, McKeesport Family Medicine Residency, 2347 5th Avenue, McKeesport, PA 15132, USA
| | - Michael Ibrahem
- University of Pittsburgh Medical Center, Shadyside Family Medicine Residency, 5215 Center Avenue, Pittsburgh, PA 15232, USA
| |
Collapse
|
42
|
Burtscher J, Swenson ER, Hackett PH, Millet GP, Burtscher M. Flying to high-altitude destinations: Is the risk of acute mountain sickness greater? J Travel Med 2023; 30:taad011. [PMID: 36694981 PMCID: PMC10289512 DOI: 10.1093/jtm/taad011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/31/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Altitude sojourns increasingly attract individuals of all ages and different health statuses due to the appeal of high-altitude destinations worldwide and easy access to air travel. The risk of acute mountain sickness (AMS) when flying to high-altitude destinations remains underemphasized. Thus, this review aims to evaluate the altitude-dependent AMS incidence depending on the mode of ascending, e.g. by air vs terrestrial travel. METHODS A literature search was performed to identify the observational studies assessing AMS incidence after acute ascent of primarily healthy adults to real high altitude. In addition, placebo arms of interventional trials evaluating the prophylactic efficacy of various drugs have been separately analysed to confirm or refute the findings from the observational studies. Linear regression analyses were used to evaluate the altitude-dependent AMS incidence. RESULTS Findings of 12 observational studies, in which the AMS incidence in 11 021 individuals ascending to 19 different altitudes (2200-4559 m) was evaluated, revealed an impressive 4.5-fold steeper increase in the AMS incidence for air travel as compared with slower ascent modes, i.e. hiking or combined car and/or air travel and hiking. The higher AMS incidence following transportation by flight vs slower means was also confirmed in placebo-treated participants in 10 studies of drug prophylaxis against AMS. CONCLUSIONS Due to the short time span in going from low to high altitude, reduced acclimatization likely is the main reason for a higher AMS risk when travelling to high-altitude destinations by flight. To avoid frustrating travel experiences and health risks, appropriate and timely medical advice on how to prepare for air travel to high altitude is of vital importance. Effective preparation options include the use of modern pre-acclimatization strategies and pharmacological prophylaxis by acetazolamide or dexamethasone, or even considering alternate itineraries with more gradual ascent.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne 1015, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Erik R Swenson
- VA Puget Health Care System, University of Washington, Seattle, WA, USA
| | - Peter H Hackett
- Altitude Research Center, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne 1015, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck A-6020, Austria
- Austrian Society for Alpine and High-Altitude Medicine, Innsbruck A-6020, Austria
| |
Collapse
|
43
|
Miserocchi G. The impact of heterogeneity of the air-blood barrier on control of lung extravascular water and alveolar gas exchange. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1142245. [PMID: 37251706 PMCID: PMC10213913 DOI: 10.3389/fnetp.2023.1142245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
The architecture of the air-blood barrier is effective in optimizing the gas exchange as long as it retains its specific feature of extreme thinness reflecting, in turn, a strict control on the extravascular water to be kept at minimum. Edemagenic conditions may perturb this equilibrium by increasing microvascular filtration; this characteristically occurs when cardiac output increases to balance the oxygen uptake with the oxygen requirement such as in exercise and hypoxia (either due to low ambient pressure or reflecting a pathological condition). In general, the lung is well equipped to counteract an increase in microvascular filtration rate. The loss of control on fluid balance is the consequence of disruption of the integrity of the macromolecular structure of lung tissue. This review, merging data from experimental approaches and evidence in humans, will explore how the heterogeneity in morphology, mechanical features and perfusion of the terminal respiratory units might impact on lung fluid balance and its control. Evidence is also provided that heterogeneities may be inborn and they could actually get worse as a consequence of a developing pathological process. Further, data are presented how in humans inter-individual heterogeneities in morphology of the terminal respiratory hinder the control of fluid balance and, in turn, hamper the efficiency of the oxygen diffusion-transport function.
Collapse
|
44
|
Gruet M, Behrens M, Peyré-Tartaruga LA. Editorial: Improving exercise testing methods and interpretation in human health and diseases. Front Physiol 2023; 14:1188429. [PMID: 37082247 PMCID: PMC10111030 DOI: 10.3389/fphys.2023.1188429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Affiliation(s)
- Mathieu Gruet
- IAPS Laboratory, University of Toulon, Toulon, France
- *Correspondence: Mathieu Gruet,
| | - Martin Behrens
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Leonardo A Peyré-Tartaruga
- Programa de Pós-Graduação Em Ciências Pneumológicas, Hospital de Clínicas de Porto, Alegre/Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- LaBiodin Biodynamics Laboratory, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
45
|
Nourkami-Tutdibi N, Küllmer J, Dietrich S, Monz D, Zemlin M, Tutdibi E. Serum vascular endothelial growth factor is a potential biomarker for acute mountain sickness. Front Physiol 2023; 14:1083808. [PMID: 37064896 PMCID: PMC10098311 DOI: 10.3389/fphys.2023.1083808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Background: Acute mountain sickness (AMS) is the most common disease caused by hypobaric hypoxia (HH) in high-altitude (HA) associated with high mortality when progressing to high-altitude pulmonary edema (HAPE) and/or high-altitude cerebral edema (HACE). There is evidence for a role of pro- and anti-inflammatory cytokines in development of AMS, but biological pathways and molecular mechanisms underlying AMS remain elusive. We aimed to measure changes in blood cytokine levels and their possible association with the development of AMS.Method: 15 healthy mountaineers were included into this prospective clinical trial. All participants underwent baseline normoxic testing with venous EDTA blood sampling at the Bangor University in United Kingdom (69 m). The participants started from Beni at an altitude of 869 m and trekked same routes in four groups the Dhaulagiri circuit in the Nepali Himalaya. Trekking a 14-day route, the mountaineers reached the final HA of 5,050 m at the Hidden Valley Base Camp (HVBC). Venous EDTA blood sampling was performed after active ascent to HA the following morning after arrival at 5,050 m (HVBC). A panel of 21 cytokines, chemokines and growth factors were assessed using Luminex system (IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p40, IL-1ra, sIL-2Rα, IFN-γ, TNF-α, MCP-1, MIP-1α, MIP-1β, IP-10, G-CSF, GM-CSF, EGF, FGF-2, VEGF, and TGF-β1).Results: There was a significant main effect for the gradual ascent from sea-level (SL) to HA on nearly all cytokines. Serum levels for TNF-α, sIL-2Rα, G-CSF, VEGF, EGF, TGF-β1, IL-8, MCP-1, MIP-1β, and IP-10 were significantly increased at HA compared to SL, whereas levels for IFN-γ and MIP-1α were significantly decreased. Serum VEGF was higher in AMS susceptible versus AMS resistant subjects (p < 0.027, main effect of AMS) and increased after ascent to HA in both AMS groups (p < 0.011, main effect of HA). Serum VEGF increased more from SL values in the AMS susceptible group than in the AMS resistant group (p < 0.049, interaction effect).Conclusion: Cytokine concentrations are significantly altered in HA. Within short interval after ascent, cytokine concentrations in HH normalize to values at SL. VEGF is significantly increased in mountaineers suffering from AMS, indicating its potential role as a biomarker for AMS.
Collapse
|
46
|
Doherty CJ, Chang JC, Thompson BP, Swenson ER, Foster GE, Dominelli PB. The Impact of Acetazolamide and Methazolamide on Exercise Performance in Normoxia and Hypoxia. High Alt Med Biol 2023; 24:7-18. [PMID: 36802203 DOI: 10.1089/ham.2022.0134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Doherty, Connor J., Jou-Chung Chang, Benjamin P. Thompson, Erik R. Swenson, Glen E. Foster, and Paolo B. Dominelli. The impact of acetazolamide and methazolamide on exercise performance in normoxia and hypoxia. High Alt Med Biol. 24:7-18, 2023.-Carbonic anhydrase (CA) inhibitors are commonly prescribed for acute mountain sickness (AMS). In this review, we sought to examine how two CA inhibitors, acetazolamide (AZ) and methazolamide (MZ), affect exercise performance in normoxia and hypoxia. First, we briefly describe the role of CA inhibition in facilitating the increase in ventilation and arterial oxygenation in preventing and treating AMS. Next, we detail how AZ affects exercise performance in normoxia and hypoxia and this is followed by a discussion on MZ. We emphasize that the overarching focus of the review is how the two drugs potentially affect exercise performance, rather than their ability to prevent/treat AMS per se, their interrelationship will be discussed. Overall, we suggest that AZ hinders exercise performance in normoxia, but may be beneficial in hypoxia. Based upon head-to-head studies of AZ and MZ in humans on diaphragmatic and locomotor strength in normoxia, MZ may be a better CA inhibitor when exercise performance is crucial at high altitude.
Collapse
Affiliation(s)
- Connor J Doherty
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Jou-Chung Chang
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Benjamin P Thompson
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Erik R Swenson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Washington, USA
- Medical Service, VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Glen E Foster
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Paolo B Dominelli
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
47
|
Alcantara-Zapata DE, Lucero N, De Gregorio N, Astudillo Cornejo P, Ibarra Villanueva C, Baltodano-Calle MJ, Gonzales GF, Behn C. Women's mood at high altitude. sexual dimorphism in hypoxic stress modulation by the tryptophan-melatonin axis. Front Physiol 2023; 13:1099276. [PMID: 36733695 PMCID: PMC9887123 DOI: 10.3389/fphys.2022.1099276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Sexual (and gender)-dimorphism in tolerance to hypobaric hypoxia increasingly matters for a differential surveillance of human activities at high altitude (HA). At low altitudes, the prevalence of anxiety and depression in women has already been found to double when compared with men; it could be expected to even increase on exposure to HA. In purposefully caring for the health of women at HA, the present work explores the potential involvement of the tryptophan (Trp)-melatonin axis in mood changes on exposure to hypobaric hypoxia. The present work highlights some already known anxiogenic effects of HA exposure. Hypoxia and insomnia reduce serotonin (5-HT) availability; the latter defect being expressed as failure of brown adipose tissue (BAT) activation and mood disorders. Rapid eye movement (REM) sleep organization and synapsis restoration that are additionally affected by hypoxia impair memory consolidation. Affective complaints may thus surge, evolving into anxiety and depression. Sex-related differences in neural network organization and hormonal changes during the menstrual cycle, and certainly also during the life cycle, underscore the possibility of 5-HT-related mood alterations, particularly in women on HA exposure. The mean brain rate of 5-HT synthesis at sea level is already 1.5-fold higher in males than in females. sexual dimorphism also evidences the overexpression effects of SERT, a 5-HT transporter protein. Gonadal and thyroid hormones, as influenced by HA exposure, further modulate 5-HT availability and its effects in women. Besides caring for adequate oxygenation and maintenance of one's body core temperature, special precautions concerning women sojourning at HA should include close observations of hormonal cycles and, perhaps, also trials with targeted antidepressants.
Collapse
Affiliation(s)
- D. E. Alcantara-Zapata
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - N. Lucero
- Occupational Health Program, School of Public Health, University of Chile, Santiago, Chile
| | - N. De Gregorio
- Laboratory of Extreme Environments, Department of Physiology and Biophysics, Biomedical Science Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - P. Astudillo Cornejo
- Occupational Ergonomics Program, Department of Kinesiology, University of Atacama, Copiapó, Chile
| | - C. Ibarra Villanueva
- Occupational Ergonomics Program, Department of Kinesiology, University of Atacama, Copiapó, Chile
| | - M. J. Baltodano-Calle
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - G. F. Gonzales
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
- High Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - C. Behn
- Laboratory of Extreme Environments, Department of Physiology and Biophysics, Biomedical Science Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Faculty of Medicine, University of Atacama, Copiapó, Chile
| |
Collapse
|
48
|
Mallet RT, Burtscher J, Pialoux V, Pasha Q, Ahmad Y, Millet GP, Burtscher M. Molecular Mechanisms of High-Altitude Acclimatization. Int J Mol Sci 2023; 24:ijms24021698. [PMID: 36675214 PMCID: PMC9866500 DOI: 10.3390/ijms24021698] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
High-altitude illnesses (HAIs) result from acute exposure to high altitude/hypoxia. Numerous molecular mechanisms affect appropriate acclimatization to hypobaric and/or normobaric hypoxia and curtail the development of HAIs. The understanding of these mechanisms is essential to optimize hypoxic acclimatization for efficient prophylaxis and treatment of HAIs. This review aims to link outcomes of molecular mechanisms to either adverse effects of acute high-altitude/hypoxia exposure or the developing tolerance with acclimatization. After summarizing systemic physiological responses to acute high-altitude exposure, the associated acclimatization, and the epidemiology and pathophysiology of various HAIs, the article focuses on molecular adjustments and maladjustments during acute exposure and acclimatization to high altitude/hypoxia. Pivotal modifying mechanisms include molecular responses orchestrated by transcription factors, most notably hypoxia inducible factors, and reciprocal effects on mitochondrial functions and REDOX homeostasis. In addition, discussed are genetic factors and the resultant proteomic profiles determining these hypoxia-modifying mechanisms culminating in successful high-altitude acclimatization. Lastly, the article discusses practical considerations related to the molecular aspects of acclimatization and altitude training strategies.
Collapse
Affiliation(s)
- Robert T. Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Vincent Pialoux
- Inter-University Laboratory of Human Movement Biology EA7424, University Claude Bernard Lyon 1, University of Lyon, FR-69008 Lyon, France
| | - Qadar Pasha
- Institute of Hypoxia Research, New Delhi 110067, India
| | - Yasmin Ahmad
- Defense Institute of Physiology & Allied Sciences (DIPAS), Defense Research & Development Organization(DRDO), New Delhi 110054, India
| | - Grégoire P. Millet
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, A-6020 Innsbruck, Austria
- Austrian Society for Alpine and High-Altitude Medicine, A-6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
49
|
Miserocchi G, Beretta E. A century of exercise physiology: lung fluid balance during and following exercise. Eur J Appl Physiol 2023; 123:1-24. [PMID: 36264327 DOI: 10.1007/s00421-022-05066-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/04/2022] [Indexed: 01/17/2023]
Abstract
PURPOSE This review recalls the principles developed over a century to describe trans-capillary fluid exchanges concerning in particular the lung during exercise, a specific condition where dyspnea is a leading symptom, the question being whether this symptom simply relates to fatigue or also implies some degree of lung edema. METHOD Data from experimental models of lung edema are recalled aiming to: (1) describe how extravascular lung water is strictly controlled by "safety factors" in physiological conditions, (2) consider how waning of "safety factors" inevitably leads to development of lung edema, (3) correlate data from experimental models with data from exercising humans. RESULTS Exercise is a strong edemagenic condition as the increase in cardiac output leads to lung capillary recruitment, increase in capillary surface for fluid exchange and potential increase in capillary pressure. The physiological low microvascular permeability may be impaired by conditions causing damage to the interstitial matrix macromolecular assembly leading to alveolar edema and haemorrhage. These conditions include hypoxia, cyclic alveolar unfolding/folding during hyperventilation putting a tensile stress on septa, intensity and duration of exercise as well as inter-individual proneness to develop lung edema. CONCLUSION Data from exercising humans showed inter-individual differences in the dispersion of the lung ventilation/perfusion ratio and increase in oxygen alveolar-capillary gradient. More recent data in humans support the hypothesis that greater vasoconstriction, pulmonary hypertension and slower kinetics of alveolar-capillary O2 equilibration relate with greater proneness to develop lung edema due higher inborn microvascular permeability possibly reflecting the morpho-functional features of the air-blood barrier.
Collapse
Affiliation(s)
- Giuseppe Miserocchi
- Dipartimento di Medicina e Chirurgia, Università Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Egidio Beretta
- Dipartimento di Medicina e Chirurgia, Università Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy.
| |
Collapse
|
50
|
Fabries P, Gomez-Merino D, Sauvet F, Malgoyre A, Koulmann N, Chennaoui M. Sleep loss effects on physiological and cognitive responses to systemic environmental hypoxia. Front Physiol 2022; 13:1046166. [PMID: 36579023 PMCID: PMC9792101 DOI: 10.3389/fphys.2022.1046166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
In the course of their missions or training, alpinists, but also mountain combat forces and mountain security services, professional miners, aircrew, aircraft and glider pilots and helicopter crews are regularly exposed to altitude without oxygen supplementation. At altitude, humans are exposed to systemic environmental hypoxia induced by the decrease in barometric pressure (<1,013 hPa) which decreases the inspired partial pressure of oxygen (PIO2), while the oxygen fraction is constant (equal to approximately 20.9%). Effects of altitude on humans occur gradually and depend on the duration of exposure and the altitude level. From 1,500 m altitude (response threshold), several adaptive responses offset the effects of hypoxia, involving the respiratory and the cardiovascular systems, and the oxygen transport capacity of the blood. Fatigue and cognitive and sensory disorders are usually observed from 2,500 m (threshold of prolonged hypoxia). Above 3,500 m (the threshold for disorders), the effects are not completely compensated and maladaptive responses occur and individuals develop altitude headache or acute altitude illness [Acute Mountain Sickness (AMS)]. The magnitude of effects varies considerably between different physiological systems and exhibits significant inter-individual variability. In addition to comorbidities, the factors of vulnerability are still little known. They can be constitutive (genetic) or circumstantial (sleep deprivation, fatigue, speed of ascent.). In particular, sleep loss, a condition that is often encountered in real-life settings, could have an impact on the physiological and cognitive responses to hypoxia. In this review, we report the current state of knowledge on the impact of sleep loss on responses to environmental hypoxia in humans, with the aim of identifying possible consequences for AMS risk and cognition, as well as the value of behavioral and non-pharmacological countermeasures.
Collapse
Affiliation(s)
- Pierre Fabries
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France,French Military Health Academy—Ecole du Val-de-Grâce, Place Alphonse Laveran, Paris, France,*Correspondence: Pierre Fabries,
| | - Danielle Gomez-Merino
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Vigilance Fatigue Sommeil et Santé Publique (VIFASOM) URP 7330, Université de Paris Cité, Paris, France
| | - Fabien Sauvet
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,French Military Health Academy—Ecole du Val-de-Grâce, Place Alphonse Laveran, Paris, France,Vigilance Fatigue Sommeil et Santé Publique (VIFASOM) URP 7330, Université de Paris Cité, Paris, France
| | - Alexandra Malgoyre
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France
| | - Nathalie Koulmann
- Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France,French Military Health Academy—Ecole du Val-de-Grâce, Place Alphonse Laveran, Paris, France
| | - Mounir Chennaoui
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Vigilance Fatigue Sommeil et Santé Publique (VIFASOM) URP 7330, Université de Paris Cité, Paris, France
| |
Collapse
|