1
|
Birnhuber A, Biasin V, Jain PP, Kwiatkowski G, Boiarina E, Wilhelm J, Ahrens K, Nagaraj C, Olschewski A, Witzenrath M, Chlopicki S, Marsh LM, Tabeling C, Kwapiszewska G. Pulmonary vascular remodeling in Fra-2 transgenic mice is driven by type 2 inflammation and accompanied by pulmonary vascular hyperresponsiveness. Am J Physiol Lung Cell Mol Physiol 2025; 328:L413-L429. [PMID: 39903186 DOI: 10.1152/ajplung.00274.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/04/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
Lung vessel remodeling leads to increased pulmonary vascular resistance, causing pulmonary arterial hypertension (PAH), and consequently right ventricular hypertrophy and failure. In patients suffering from systemic sclerosis (SSc), PAH can occur and is a life-threatening complication. Dysregulation of immune processes plays a crucial role in pulmonary vascular remodeling, as has previously been shown in Fos-related antigen-2 (Fra-2) transgenic (TG) mice, a model of SSc-PAH. Here, we investigate whether vascular remodeling in the Fra-2 TG model is driven by type 2 inflammation and is associated with vascular hyperresponsiveness, an important feature of PAH pathobiology. Basal pulmonary arterial pressure and pulmonary vascular responsiveness to hypoxic ventilation and serotonin were increased in isolated, perfused, and ventilated lungs of Fra-2 TG mice compared with wild-type (WT) littermates. Similarly, contractile responses of isolated intrapulmonary arteries were elevated in Fra-2 TG mice. We also observed increased expression of contractile genes in Fra-2 overexpressing human pulmonary arterial smooth muscle cells (PASMCs) with elevated intracellular calcium levels after interleukin (IL)-13 stimulation. These findings were corroborated by transcriptomic data highlighting dysregulation of vascular smooth muscle cell contraction and type 2 inflammation in Fra-2 TG mice. In vivo, type 2-specific anti-inflammatory treatment with IL-13 neutralizing antibodies improved vascular remodeling in Fra-2 TG mice, similar to corticosteroid treatment with budesonide. Our results underscore the importance of type 2 inflammation and its potential therapeutic value in PAH-associated pulmonary vascular remodeling and hyperresponsiveness in SSc-PAH.NEW & NOTEWORTHY In patients suffering from systemic sclerosis (SSc), pulmonary arterial hypertension (PAH) is a life-threatening complication linked to immune dysregulation. Preclinical analyses in Fos-related antigen-2 (Fra-2) transgenic (TG) mice, a model of SSc-PAH, identify type 2 inflammation as a key driver of vascular remodeling. Anti-inflammatory treatment targeting type 2 inflammation via IL-13 neutralizing antibodies improved pulmonary vascular remodeling. Thus, type 2-specific anti-inflammatory treatment may be a promising therapeutic approach in SSc-PAH.
Collapse
MESH Headings
- Animals
- Fos-Related Antigen-2/genetics
- Fos-Related Antigen-2/metabolism
- Mice, Transgenic
- Vascular Remodeling
- Humans
- Pulmonary Artery/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Mice
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Inflammation/pathology
- Inflammation/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/physiopathology
- Lung/pathology
- Lung/metabolism
- Disease Models, Animal
- Interleukin-13/metabolism
- Interleukin-13/genetics
- Scleroderma, Systemic/pathology
- Scleroderma, Systemic/genetics
- Scleroderma, Systemic/complications
- Scleroderma, Systemic/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Male
Collapse
Affiliation(s)
- Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria
- Otto Loewi Research Center, Lung Research Cluster, Medical University of Graz, Graz, Austria
| | - Valentina Biasin
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria
- Otto Loewi Research Center, Lung Research Cluster, Medical University of Graz, Graz, Austria
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Pritesh P Jain
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria
| | - Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Ekaterina Boiarina
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jochen Wilhelm
- Institute for Lung Health, Cardio-Pulmonary Institute, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Katharina Ahrens
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
- Faculty of Medicine, Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria
- Otto Loewi Research Center, Lung Research Cluster, Medical University of Graz, Graz, Austria
| | - Christoph Tabeling
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria
- Otto Loewi Research Center, Lung Research Cluster, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Cardio-Pulmonary Institute, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
2
|
Nyasulu PS, Tamuzi JL, Oliveira RKF, Oliveira SD, Petrosillo N, de Jesus Perez V, Dhillon N, Butrous G. COVID-19 and Parasitic Co-Infection: A Hypothetical Link to Pulmonary Vascular Disease. Infect Dis Rep 2025; 17:19. [PMID: 40126325 PMCID: PMC11932205 DOI: 10.3390/idr17020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/26/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Background/Objectives: Before the Coronavirus disease 2019 (COVID-19) era, the global prevalence of pulmonary arterial hypertension (PAH) was between 0.4 and 1.4 per 100,000 people. The long-term effects of protracted COVID-19 associated with pulmonary vascular disease (PVD) risk factors may increase this prevalence. According to preliminary data, the exact prevalence of early estimates places the prevalence of PVD in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection at 22%, although its predictive value remains unknown. PVD caused by COVID-19 co-infections is understudied and underreported, and its future impact is unclear. However, due to COVID-19/co-infection pathophysiological effects on pulmonary vascularization, PVD mortality and morbidity may impose a genuine concern-both now and in the near future. Based on reported studies, this literature review focused on the potential link between COVID-19, parasitic co-infection, and PVD. This review article also highlights hypothetical pathophysiological mechanisms between COVID-19 and parasitic co-infection that could trigger PVD. Methods: We conducted a systematic literature review (SLR) searching peer-reviewed articles, including link between COVID-19, parasitic co-infection, and PVD. Results: This review hypothesized that multiple pathways associated with pathogens such as underlying schistosomiasis, human immunodeficiency virus (HIV), pulmonary tuberculosis (PTB), pulmonary aspergillosis, Wuchereria bancrofti, Clonorchis sinensis, paracoccidioidomycosis, human herpesvirus 8, and scrub typhus coupled with acute or long COVID-19, may increase the burden of PVD and worsen its mortality in the future. Conclusions: Further experimental studies are also needed to determine pathophysiological pathways between PVD and a history of COVID-19/co-infections.
Collapse
|
3
|
Jiang P, Huang H, Liu Z, Xiang G, Wu X, Hao S, Li S. STAT6 deficiency mitigates the severity of pulmonary arterial hypertension caused by chronic intermittent hypoxia by suppressing Th2-inducing cytokines. Respir Res 2025; 26:13. [PMID: 39806384 PMCID: PMC11731530 DOI: 10.1186/s12931-024-03062-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is frequently associated with increased incidence and mortality of pulmonary hypertension (PH). The immune response contributes to pulmonary artery remodeling and OSA-related diseases. The immunologic factors linked to OSA-induced PH are not well understood. STAT6 is crucial in the signaling pathway that modulates immune response. However, the status of phosphorylated STAT6 (p-STAT6) in an OSA-induced PH mouse model remains largely unexplored. METHODS Chronic intermittent hypoxia (CIH) plays a crucial role in the progression of OSA. This study utilized a in vivo CIH model to examine the role of STAT6 in CIH-induced PH. RESULTS CIH mice exhibited pulmonary artery remodeling and pulmonary hypertension, indicated by increased right ventricular systolic pressure (RVSP), higher right ventricular to left ventricular plus septum (RV/LV + S) ratios, and significant morphological alterations compared to normoxic (Nor) mice. Increased p-STAT6 in the lungs and elevated p-STAT6 + IL-4 + producing T cells in CIH mice. STAT6 deficiency (STAT6-/-) improved PH and PA remodeling in CIH-induced PH mouse models.STAT6 deficiency impaired the T helper 2 (Th2) immune response, affecting IL-4 and IL-13 secretion. IL-4, rather than IL-13, activated STAT6 in human pulmonary artery smooth muscle cells (hPASMCs). STAT6 knockdown decreased the proliferation in IL-4 treated hPASMCs. CONCLUSION These findings exhibit the critical role of STAT6 in the pathogenesis of CIH induced PH by regulating Th2 immune response.STAT6 could be a significant therapeutic target for OSA-related PH.
Collapse
Affiliation(s)
- Pan Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- The Nutrition Department at Zhongshan Hospital, Fudan University, Shanghai, China
- The Nutrition Department, QingPu District Central Hospital, Shanghai, 200032, China
| | - Huai Huang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zilong Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guiling Xiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- The Critical Care Medicine Department at Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaodan Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Clinical Center for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Shengyu Hao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- The Critical Care Medicine Department at Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Shanqun Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Clinical Center for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Afrifa J, Ofori EG, Opoku YK, Asare KK, Sorkpor RD, Naveh-Fio IW, Armah R, Ofori S, Ephraim RKD. Oxidative Stress and Cancer Risk in Schistosomiasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:9701021. [PMID: 39720557 PMCID: PMC11668550 DOI: 10.1155/omcl/9701021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024]
Abstract
Background: Schistosomiasis is considered one of the most devastating parasitic diseases globally, coming second only to malaria in terms of morbidity. The disease-causing parasite can inhabit the body for over a decade, leading to imbalances in the host's metabolic systems. The flukes and their eggs can illicit various immunological and metabolic complications resulting in the generation of reactive oxygen species (ROS). These are known to have several devastating effects on the host through increased oxidative stress, DNA mutation, and gene modifications, which can lead to fibrosis and cancer. Main Body: Here, we discuss oxidative stress and cancer risk in Schistosoma infection. The concept of ROS generation and the complex antioxidant systems that enable the parasite to evade oxidant insults and prolong its life span in the host are explored. Further, the various roles of ROS during the initiation and progression of schistosomiasis and its influence on the host are discussed. Finally, mechanisms linked to the risk of bladder cancer in Schistosoma haematobium (S. haematobium) infections are elucidated. Conclusion: Finally, we provide an opinion on how some of these mechanisms could give directions for future studies as well as provide a springboard for diagnostics and drug targeting in schistosomiasis.
Collapse
Affiliation(s)
- Justice Afrifa
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Eric Gyamerah Ofori
- Department of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana
| | - Yeboah Kwaku Opoku
- Department of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana
| | - Kwame Kumi Asare
- Infectious and Non-Communicable Diseases, Biomedical and Clinical Research Centre, University of Cape Coast, Cape Coast, Ghana
| | - Rosemary Doe Sorkpor
- Inspectorate Directorate, Food and Drugs Authority, Cape Coast P.O. Box CC13733, Ghana
| | - Ibrahim W. Naveh-Fio
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Richard Armah
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sandra Ofori
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Richard K. D. Ephraim
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
5
|
Lewis CV, Garcia AM, Burciaga SD, Posey JN, Jordan M, Nguyen TTN, Stenmark KR, Mickael C, Sul C, Delaney C, Nozik ES. Redistribution of SOD3 expression due to R213G polymorphism affects pulmonary interstitial macrophage reprogramming in response to hypoxia. Physiol Genomics 2024; 56:776-790. [PMID: 39311838 PMCID: PMC11573264 DOI: 10.1152/physiolgenomics.00078.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024] Open
Abstract
The extracellular isoform of superoxide dismutase (SOD3) is decreased in patients and animals with pulmonary hypertension (PH). The human R213G single-nucleotide polymorphism (SNP) in SOD3 causes its release from tissue extracellular matrix (ECM) into extracellular fluids, without modulating enzyme activity, increasing cardiovascular disease risk in humans and exacerbating chronic hypoxic PH in mice. Given the importance of interstitial macrophages (IMs) to PH pathogenesis, this study aimed to determine whether R213G SOD3 increases IM accumulation and alters IM reprogramming in response to hypoxia. R213G mice and wild-type (WT) controls were exposed to hypobaric hypoxia for 4 or 14 days compared with normoxia. Flow cytometry demonstrated a transient increase in IMs at day 4 in both strains. Contrary to our hypothesis, the R213G SNP did not augment IM accumulation. To determine strain differences in the IM reprogramming response to hypoxia, we performed RNAsequencing on IMs isolated at each timepoint. We found that IMs from R213G mice exposed to hypoxia activated ECM-related pathways and a combination of alternative macrophage and proinflammatory signaling. Furthermore, when compared with WT responses, IMs from R213G mice lacked metabolic remodeling and demonstrated a blunted anti-inflammatory response between the early (day 4) and later (day 14) timepoints. We confirmed metabolic responses using Agilent Seahorse assays, whereby WT, but not R213G, IMs upregulated glycolysis at day 4 that returned to baseline at day 14. Finally, we identify differential regulation of several redox-sensitive upstream regulators that could be investigated in future studies.NEW & NOTEWORTHY Redistributed expression of SOD3 out of tissue ECM due to the human R213G SNP exacerbates chronic hypoxic PH. Highlighting the importance of macrophage phenotype, our findings reveal that the R213G SNP does not exacerbate pulmonary macrophage accumulation in response to hypoxia but influences their metabolic and phenotypic reprogramming. We demonstrate a deficiency in the metabolic response to hypoxic stress in R213G macrophages, associated with weakened inflammatory resolution and activation of profibrotic pathways implicated in PH.
Collapse
Affiliation(s)
- Caitlin V Lewis
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Anastacia M Garcia
- Division of Cardiology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Samuel D Burciaga
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Janelle N Posey
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Neonatology, Department of Pediatrics, Division of Cardiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Mariah Jordan
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Neonatology, Department of Pediatrics, Division of Cardiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Thi-Tina N Nguyen
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Claudia Mickael
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Christina Sul
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Cassidy Delaney
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Neonatology, Department of Pediatrics, Division of Cardiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Eva S Nozik
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
6
|
Oliveira SD, Almodóvar S, Butrous G, De Jesus Perez V, Fabro A, Graham BB, Mocumbi A, Nyasulu PS, Tura‐Ceide O, Oliveira RKF, Dhillon NK. Infection and pulmonary vascular diseases consortium: United against a global health challenge. Pulm Circ 2024; 14:e70003. [PMID: 39534510 PMCID: PMC11555293 DOI: 10.1002/pul2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024] Open
Abstract
Leveraging the potential of virtual platforms in the post-COVID-19 era, the Infection and Pulmonary Vascular Diseases Consortium (iPVDc), with the support of the Pulmonary Vascular Research Institute (PVRI), launched a globally accessible educational program to highlight top-notch research on inflammation and infectious diseases affecting the lung vasculature. This innovative virtual series has already successfully brought together distinguished investigators across five continents - Asia, Europe, South and North America, and Africa. Moreover, these open global forums have contributed to a comprehensive understanding of the complex interplay among immunology, inflammation, infection, and cardiopulmonary health, especially concerning pulmonary hypertension and related pulmonary disorders. These enlightening discussions have not only heightened awareness about the impact of various pathogenic microorganisms, including fungi, parasites, and viruses, on the onset and development of pulmonary vascular diseases but have also cast a spotlight on co-infections and neglected illnesses like schistosomiasis - a disease that continues to impose a heavy socioeconomic burden in numerous regions worldwide. Thus, the overall goal of this review article is to present the most recent breakthroughs from infectious PVDs as well as bring to light the scientific and educational insights from the 2023 iPVDc/PVRI virtual symposium series, shaping our understanding of these crucial health issues in this more than ever interconnected world.
Collapse
Affiliation(s)
- S. D. Oliveira
- Vascular Immunobiology Lab, Department of Anesthesiology, Department of Physiology and Biophysics, College of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - S. Almodóvar
- Department of Immunology & Molecular MicrobiologyTexas Tech University Health Sciences Center, School of MedicineLubbockTexasUSA
| | - G. Butrous
- Medway School of PharmacyUniversity of KentMedwayKentUnited Kingdom
| | - V De Jesus Perez
- Division of Pulmonary and Critical CareStanford UniversityPalo AltoCaliforniaUSA
| | - A. Fabro
- Division of Respiratory DiseasesFederal University of São PauloSao PauloBrazil
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical SchoolUniversidade de São PauloRibeirão PretoBrazil
| | - B. B. Graham
- Department of Medicine, Zuckerberg San Francisco General HospitalUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - A. Mocumbi
- Department of MedicineUniversidade Eduardo MondlaneMaputoMozambique
- Division of Determinants of Chronic Diseases, Instituto Nacional de SaúdeVila de MarracueneMozambique
| | - P. S. Nyasulu
- Department of Global Health, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
- School of Public Health, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - O. Tura‐Ceide
- Biomedical Research Institute‐IDIBGIGironaSpain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES)MadridSpain
| | - R. K. F. Oliveira
- Division of Respiratory Diseases, Department of MedicineFederal University of São Paulo (Unifesp)São PauloBrazil
| | - N. K. Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | | |
Collapse
|
7
|
Fonseca Balladares DC, Kassa B, Mickael C, Kumar R, Nolan K, Menezes TCF, Lee MH, Lau-Xiao AM, Molofsky AB, Wells E, Graham BB. Intrapulmonary T Cells Are Sufficient for Schistosoma-Induced Pulmonary Hypertension. Int J Mol Sci 2024; 25:9202. [PMID: 39273153 PMCID: PMC11395458 DOI: 10.3390/ijms25179202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Schistosomiasis is a parasitic infection that can cause pulmonary hypertension (PH). Th2 CD4 T cells are necessary for experimental Schistosoma-PH. However, if T cells migrate to the lung to initiate, the localized inflammation that drives vascular remodeling and PH is unknown. METHODS Mice were sensitized to Schistosoma mansoni eggs intraperitoneally and then challenged using tail vein injection. FTY720 was administered, which blocks lymphocyte egress from lymph nodes. T cells were quantified using flow cytometry, PH severity via heart catheterization, and cytokine concentration through ELISA. RESULTS FTY720 decreased T cells in the peripheral blood, and increased T cells in the mediastinal lymph nodes. However, FTY720 treatment resulted in no change in PH or type 2 inflammation severity in mice sensitized and challenged with S. mansoni eggs, and the number of memory and effector CD4 T cells in the lung parenchyma was also unchanged. Notably, intraperitoneal Schistosoma egg sensitization alone resulted in a significant increase in intravascular lymphocytes and T cells, including memory T cells, although there was no significant change in parenchymal cell density, IL-4 or IL-13 expression, or PH. CONCLUSION Blocking T cell migration did not suppress PH following Schistosoma egg challenge. Memory CD4 T cells, located in the lung intravascular space following egg sensitization, appear sufficient to cause type 2 inflammation and PH.
Collapse
Affiliation(s)
- Dara C. Fonseca Balladares
- Lung Biology Center, Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA; (D.C.F.B.); (B.K.); (R.K.); (K.N.); (M.H.L.); (A.M.L.-X.)
| | - Biruk Kassa
- Lung Biology Center, Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA; (D.C.F.B.); (B.K.); (R.K.); (K.N.); (M.H.L.); (A.M.L.-X.)
| | - Claudia Mickael
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Rahul Kumar
- Lung Biology Center, Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA; (D.C.F.B.); (B.K.); (R.K.); (K.N.); (M.H.L.); (A.M.L.-X.)
| | - Kevin Nolan
- Lung Biology Center, Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA; (D.C.F.B.); (B.K.); (R.K.); (K.N.); (M.H.L.); (A.M.L.-X.)
| | - Thais C. F. Menezes
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo, São Paulo 04021-001, SP, Brazil;
| | - Michael H. Lee
- Lung Biology Center, Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA; (D.C.F.B.); (B.K.); (R.K.); (K.N.); (M.H.L.); (A.M.L.-X.)
| | - Anthony M. Lau-Xiao
- Lung Biology Center, Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA; (D.C.F.B.); (B.K.); (R.K.); (K.N.); (M.H.L.); (A.M.L.-X.)
| | - Ari B. Molofsky
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA; (A.B.M.); (E.W.)
| | - Elina Wells
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA; (A.B.M.); (E.W.)
| | - Brian B. Graham
- Lung Biology Center, Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA; (D.C.F.B.); (B.K.); (R.K.); (K.N.); (M.H.L.); (A.M.L.-X.)
| |
Collapse
|
8
|
Botoni FA, Lambertucci JR, Santos RAS, Müller J, Talvani A, Wallukat G. Functional autoantibodies against G protein-coupled receptors in hepatic and pulmonary hypertensions in human schistosomiasis. Front Immunol 2024; 15:1404384. [PMID: 38953035 PMCID: PMC11216020 DOI: 10.3389/fimmu.2024.1404384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/23/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Schistosomiasis (SM) is a parasitic disease caused by Schistosoma mansoni. SM causes chronic inflammation induced by parasitic eggs, with collagen/fibrosis deposition in the granuloma process in the liver, spleen, central nervous system, kidneys, and lungs. Pulmonary arterial hypertension (PAH) is a clinical manifestation characterized by high pressure in the pulmonary circulation and right ventricular overload. This study investigated the production of functional autoantibodies (fAABs) against the second loop of the G-protein-coupled receptor (GPCR) in the presence of hepatic and PAH forms of human SM. Methods Uninfected and infected individuals presenting acute and chronic manifestations (e.g., hepatointestinal, hepato-splenic without PAH, and hepato-splenic with PAH) of SM were clinically evaluated and their blood was collected to identify fAABs/GPCRs capable of recognizing endothelin 1, angiotensin II, and a-1 adrenergic receptor. Human serum was analyzed in rat cardiomyocytes cultured in the presence of the receptor antagonists urapidil, losartan, and BQ123. Results The fAABs/GPCRs from chronic hepatic and PAH SM individuals, but not from acute SM individuals, recognized the three receptors. In the presence of the antagonists, there was a reduction in beating rate changes in cultured cardiomyocytes. In addition, binding sites on the extracellular domain functionality of fAABs were identified, and IgG1 and/or IgG3 antibodies were found to be related to fAABs. Conclusion Our data suggest that fAABs against GPCR play an essential role in vascular activity in chronic SM (hepatic and PAH) and might be involved in the development of hypertensive forms of SM.
Collapse
Affiliation(s)
- Fernando Antonio Botoni
- Postgraduate Program in Infectiology and Tropical Medicine, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Internal Medicine Department, School of Medicine Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Fundação Hospitalar do Estado de Minas Gerais - FHEMIG, Belo Horizonte, Brazil
| | - José Roberto Lambertucci
- Postgraduate Program in Infectiology and Tropical Medicine, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Internal Medicine Department, School of Medicine Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Postgraduate Program in Health and Nutrition, School of Nutrition, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics of the Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Andre Talvani
- Postgraduate Program in Infectiology and Tropical Medicine, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Postgraduate Program in Health and Nutrition, School of Nutrition, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Department of Biological Sciences, Universidade Federal Ouro Preto, Ouro Preto, Brazil
| | - Gerd Wallukat
- Berlin Cures GmbH, Berlin, Germany
- Max-Delbrück Centrum für Molekulare Medizin, Berlin, Germany
| |
Collapse
|
9
|
Li J, Shi S, Yan W, Shen Y, Liu C, Xu J, Xu G, Lu L, Song H. Preliminary Mechanism of Glial Maturation Factor β on Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Adv Biol (Weinh) 2024; 8:e2300623. [PMID: 38640923 DOI: 10.1002/adbi.202300623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/22/2024] [Indexed: 04/21/2024]
Abstract
Recent evidence suggests that glia maturation factor β (GMFβ) is important in the pathogenesis of pulmonary arterial hpertension (PAH), but the underlying mechanism is unknown. To clarify whether GMFβ can be involved in pulmonary vascular remodeling and to explore the role of the IL-6-STAT3 pathway in this process, the expression of GMFβ in PAH rats is examined and the expression of downstream molecules including periostin (POSTN) and interleukin-6 (IL-6) is measured using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The location and expression of POSTN is also tested in PAH rats using immunofluorescence. It is proved that GMFβ is upregulated in the lungs of PAH rats. Knockout GMFβ alleviated the MCT-PAH by reducing right ventricular systolic pressure (RVSP), mean pulmonary arterial pressure (mPAP), and pulmonary vascular remodeling. Moreover, the inflammation of the pulmonary vasculature is ameliorated in PAH rats with GMFβ absent. In addition, the IL-6-STAT3 signaling pathway is activated in PAH; knockout GMFβ reduced POSTN and IL-6 production by inhibiting the IL-6-STAT3 signaling pathway. Taken together, these findings suggest that knockout GMFβ ameliorates PAH in rats by inhibiting the IL-6-STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jie Li
- Department of Rehabilitation Medicine, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Street, Muping District, Yantai, 264199, China
| | - Si Shi
- Department of Ophthalmology, Shanghai Tongji Hospital affiliated to Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xincun Rd, Putuo District, Shanghai, 200072, China
| | - Wenwen Yan
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University 389 Xincun Rd, Putuo District, Shanghai, 200065, China
| | - Yuqin Shen
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University 389 Xincun Rd, Putuo District, Shanghai, 200065, China
| | - Caiying Liu
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Jinyuan Xu
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Guotong Xu
- Department of Pharmacology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Lixia Lu
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 1239 Siping Rd, Shanghai, 200092, China
| | - Haoming Song
- Department of General Practice, Tongji Hospital, School of Medicine, Tongji University 389 Xincun Rd, Putuo District, Shanghai, 200065, China
| |
Collapse
|
10
|
Kumar R, Kumar S, Mickael C, Fonseca Balladares D, Nolan K, Lee MH, Sanders L, Nilsson J, Molofsky AB, Tuder RM, Stenmark KR, Graham BB. Interstitial macrophage phenotypes in Schistosoma-induced pulmonary hypertension. Front Immunol 2024; 15:1372957. [PMID: 38779688 PMCID: PMC11109442 DOI: 10.3389/fimmu.2024.1372957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Background Schistosomiasis is a common cause of pulmonary hypertension (PH) worldwide. Type 2 inflammation contributes to the development of Schistosoma-induced PH. Specifically, interstitial macrophages (IMs) derived from monocytes play a pivotal role by producing thrombospondin-1 (TSP-1), which in turn activates TGF-β, thereby driving the pathology of PH. Resident and recruited IM subpopulations have recently been identified. We hypothesized that in Schistosoma-PH, one IM subpopulation expresses monocyte recruitment factors, whereas recruited monocytes become a separate IM subpopulation that expresses TSP-1. Methods Mice were intraperitoneally sensitized and then intravenously challenged with S. mansoni eggs. Flow cytometry on lungs and blood was performed on wildtype and reporter mice to identify IM subpopulations and protein expression. Single-cell RNA sequencing (scRNAseq) was performed on flow-sorted IMs from unexposed and at day 1, 3 and 7 following Schistosoma exposure to complement flow cytometry based IM characterization and identify gene expression. Results Flow cytometry and scRNAseq both identified 3 IM subpopulations, characterized by CCR2, MHCII, and FOLR2 expression. Following Schistosoma exposure, the CCR2+ IM subpopulation expanded, suggestive of circulating monocyte recruitment. Schistosoma exposure caused increased monocyte-recruitment ligand CCL2 expression in the resident FOLR2+ IM subpopulation. In contrast, the vascular pathology-driving protein TSP-1 was greatest in the CCR2+ IM subpopulation. Conclusion Schistosoma-induced PH involves crosstalk between IM subpopulations, with increased expression of monocyte recruitment ligands by resident FOLR2+ IMs, and the recruitment of CCR2+ IMs which express TSP-1 that activates TGF-β and causes PH.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Sushil Kumar
- Department of Pediatrics and Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Claudia Mickael
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Dara Fonseca Balladares
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Kevin Nolan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Michael H. Lee
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Linda Sanders
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Julia Nilsson
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Ari B. Molofsky
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Rubin M. Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kurt R. Stenmark
- Department of Pediatrics and Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Brian B. Graham
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| |
Collapse
|
11
|
Lee D, Lee H, Jo HN, Yun E, Kwon BS, Kim J, Lee A. Endothelial periostin regulates vascular remodeling by promoting endothelial dysfunction in pulmonary arterial hypertension. Anim Cells Syst (Seoul) 2024; 28:1-14. [PMID: 38186856 PMCID: PMC10769143 DOI: 10.1080/19768354.2023.2300437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by vascular remodeling associated with extracellular matrix (ECM) deposition, vascular cell hyperproliferation, and neointima formation in the small pulmonary artery. Endothelial dysfunction is considered a key feature in the initiation of vascular remodeling. Although vasodilators have been used for the treatment of PAH, it remains a life-threatening disease. Therefore, it is necessary to identify novel therapeutic targets for PAH treatment. Periostin (POSTN) is a secretory ECM protein involved in physiological and pathological processes, such as tissue remodeling, cell adhesion, migration, and proliferation. Although POSTN has been proposed as a potential target for PAH treatment, its role in endothelial cells has not been fully elucidated. Here, we demonstrated that POSTN upregulation correlates with PAH by analyzing a public microarray conducted on the lung tissues of patients with PAH and biological experimental results from in vivo and in vitro models. Moreover, POSTN overexpression leads to ECM deposition and endothelial abnormalities such as migration. We found that PAH-associated endothelial dysfunction is mediated at least in part by the interaction between POSTN and integrin-linked protein kinase (ILK), followed by activation of nuclear factor-κB signaling. Silencing POSTN or ILK decreases PAH-related stimuli-induced ECM accumulation and attenuates endothelial abnormalities. In conclusion, our study suggests that POSTN serves as a critical regulator of PAH by regulating vascular remodeling, and targeting its role as a potential therapeutic strategy for PAH.
Collapse
Affiliation(s)
- Dawn Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Heeyoung Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Ha-neul Jo
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Eunsik Yun
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Byung Su Kwon
- Department of Obstetrics and Gynecology, School of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul, Republic of Korea
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Aram Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Liu H, Wang Y, Zhang Q, Liu C, Ma Y, Huang P, Ge R, Ma L. Macrophage-derived inflammation promotes pulmonary vascular remodeling in hypoxia-induced pulmonary arterial hypertension mice. Immunol Lett 2023; 263:113-122. [PMID: 37875238 DOI: 10.1016/j.imlet.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
The role of inflammation in pulmonary hypertension is gradually gaining increasing research attention. However, no previous study has evaluated the characteristics of inflammation during chronic hypoxia-induced pulmonary hypertension. Therefore, the aim of this study was to investigate the characteristics of the inflammatory process involved in hypoxia-induced pulmonary hypertension in mice. The current study evaluated from day 4 to day 28 of hypoxia, the PAAT and PAAT/PET decreased, accompanied by pulmonary vascular remodeling and right ventricular hypertrophy, as well as increased numbers of CD68 macrophages. The expression of the pro-inflammatory factors IL-1β and IL-33 increased, but decreased on day 28. The expression of IL-12 increased from day 4 to day 28, whereas that of the anti-inflammatory factor IL-10 in lung tissue decreased. Furthermore, the expression of the IL-33/ST2 signaling pathway also increased over time under hypoxic conditions. In conclusion, pulmonary artery remodeling in HPH mice worsens progressively in a time-dependent manner, with inflammatory cell infiltration predominating in the early stage and pulmonary vascular remodeling occurring in the later stage.
Collapse
Affiliation(s)
- Hong Liu
- Research Center for High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of the Ministry of High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai university, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai university, Xining, Qinghai, China
| | - Yuxiang Wang
- Research Center for High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of the Ministry of High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai university, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai university, Xining, Qinghai, China
| | - Qingqing Zhang
- Research Center for High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of the Ministry of High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai university, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai university, Xining, Qinghai, China; Affiliated Hospital of Qinghai University, Xining, QingHai, China
| | - Chuanchuan Liu
- Affiliated Hospital of Qinghai University, Xining, QingHai, China
| | - Yougang Ma
- Research Center for High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of the Ministry of High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai university, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai university, Xining, Qinghai, China
| | - Pan Huang
- Research Center for High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of the Ministry of High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai university, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai university, Xining, Qinghai, China
| | - Rili Ge
- Research Center for High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of the Ministry of High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai university, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai university, Xining, Qinghai, China
| | - Lan Ma
- Research Center for High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of the Ministry of High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai university, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai university, Xining, Qinghai, China.
| |
Collapse
|
13
|
Graham BB, Hilton JF, Lee MH, Kumar R, Balladares DF, Rahaghi FN, Estépar RSJ, Mickael C, Lima RLB, Loureiro CM, Lucena J, Oliveira RK, Corrêa RDA. Is pulmonary arterial hypertension associated with schistosomiasis distinct from pulmonary arterial hypertension associated with portal hypertension? JHLT OPEN 2023; 1:100007. [PMID: 38050478 PMCID: PMC10695267 DOI: 10.1016/j.jhlto.2023.100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Pulmonary arterial hypertension associated with schistosomiasis (SchPAH) and pulmonary arterial hypertension associated with portal hypertension (PoPAH) are lung diseases that develop in the presence of liver diseases. However, mechanistic pathways by which the underlying liver conditions and other drivers contribute to the development and progression of pulmonary arterial hypertension (PAH) are unclear for both etiologies. In turn, these unknowns limit certainty of strategies to prevent, diagnose, and reverse the resultant PAH. Here we consider specific mechanisms that contribute to SchPAH and PoPAH, identifying those that may be shared and those that appear to be unique to each etiology, in the hope that this exploration will both highlight known causal drivers and identify knowledge gaps appropriate for future research. Overall, the key pathophysiologic differences that we identify between SchPAH and PoPAH suggest that they are not variants of a single condition.
Collapse
Affiliation(s)
- Brian B. Graham
- Lung Biology Center, University of California San Francisco, San Francisco, California
- Pulmonary Division, San Francisco General Hospital, San Francisco, California
| | - Joan F. Hilton
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Michael H. Lee
- Lung Biology Center, University of California San Francisco, San Francisco, California
- Pulmonary Division, San Francisco General Hospital, San Francisco, California
| | - Rahul Kumar
- Lung Biology Center, University of California San Francisco, San Francisco, California
- Pulmonary Division, San Francisco General Hospital, San Francisco, California
| | - Dara Fonseca Balladares
- Lung Biology Center, University of California San Francisco, San Francisco, California
- Pulmonary Division, San Francisco General Hospital, San Francisco, California
| | - Farbod N. Rahaghi
- Pulmonary Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Raúl San José Estépar
- Applied Chest Imaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Claudia Mickael
- Pulmonary and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | - Juliana Lucena
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Rudolf K.F. Oliveira
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo de Amorim Corrêa
- Internal Medicine/Pulmonary Division, Medical School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
14
|
Bai Y, Li G, Yung L, Yu PB, Ai X. Intrapulmonary arterial contraction assay reveals region-specific deregulation of vasoreactivity to lung injuries. Am J Physiol Lung Cell Mol Physiol 2023; 325:L114-L124. [PMID: 37278410 PMCID: PMC10393320 DOI: 10.1152/ajplung.00293.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/15/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023] Open
Abstract
Intrapulmonary arteries located in the proximal lung differ from those in the distal lung in size, cellular composition, and the surrounding microenvironment. However, whether these structural variations lead to region-specific regulation of vasoreactivity in homeostasis and following injury is unknown. Herein, we employ a two-step method of precision-cut lung slice (PCLS) preparation, which maintains almost intact intrapulmonary arteries, to assess contractile and relaxation responses of proximal preacinar arteries (PaAs) and distal intraacinar arteries (IaAs) in mice. We found that PaAs exhibited robust vasoconstriction in response to contractile agonists and significant nitric oxide (NO)-induced vasodilation. In comparison, IaAs were less contractile and displayed a greater relaxation response to NO. Furthermore, in a mouse model of pulmonary arterial hypertension (PAH) induced by chronic exposure to ovalbumin (OVA) allergen and hypoxia (OVA-HX), IaAs demonstrated a reduced vasocontraction despite vascular wall thickening with the emergence of new αSMA+ cells coexpressing markers of pericytes. In contrast, PaAs became hypercontractile and less responsive to NO. The reduction in relaxation of PaAs was associated with decreased expression of protein kinase G, a key component of the NO pathway, following chronic OVA-HX exposure. Taken together, the PCLS prepared using the modified preparation method enables functional evaluation of pulmonary arteries in different anatomical locations and reveals region-specific mechanisms underlying the pathophysiology of PAH in a mouse model.NEW & NOTEWORTHY Utilizing mouse precision-cut lung slices with preserved intrapulmonary vessels, we demonstrated a location-dependent structural and contractile regulation of pulmonary arteries in health and on noxious stimulations. For instance, chronic ovalbumin and hypoxic exposure increased pulmonary arterial pressure (PAH) by remodeling intraacinar arterioles to reduce vascular wall compliance while enhancing vasoconstriction in proximal preacinar arteries. These findings suggest region-specific mechanisms and therapeutic targets for pulmonary vascular diseases such as PAH.
Collapse
Affiliation(s)
- Yan Bai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Guang Li
- Department of Critical Care Medicine, Renmin Hospital and Wuhan University, Wuhan, People's Republic of China
| | - Laiming Yung
- Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Paul B Yu
- Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Xingbin Ai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
15
|
Kumar R, Lee M, Kassa B, Fonseca Balladares D, Mickael C, Sanders L, Andruska A, Kumar M, Spiekerkoetter E, Bandeira A, Stenmark K, Tuder R, Graham B. Repetitive schistosoma exposure causes perivascular lung fibrosis and persistent pulmonary hypertension. Clin Sci (Lond) 2023; 137:617-631. [PMID: 37014925 PMCID: PMC10133871 DOI: 10.1042/cs20220642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) can occur as a complication of schistosomiasis. In humans, schistosomiasis-PH persists despite antihelminthic therapy and parasite eradication. We hypothesized that persistent disease arises as a consequence of exposure repetition. METHODS Following intraperitoneal sensitization, mice were experimentally exposed to Schistosoma eggs by intravenous injection, either once or three times repeatedly. The phenotype was characterized by right heart catheterization and tissue analysis. RESULTS Following intraperitoneal sensitization, a single intravenous Schistosoma egg exposure resulted in a PH phenotype that peaked at 7-14 days, followed by spontaneous resolution. Three sequential exposures resulted in a persistent PH phenotype. Inflammatory cytokines were not significantly different between mice exposed to one or three egg doses, but there was an increase in perivascular fibrosis in those who received three egg doses. Significant perivascular fibrosis was also observed in autopsy specimens from patients who died of this condition. CONCLUSIONS Repeatedly exposing mice to schistosomiasis causes a persistent PH phenotype, accompanied by perivascular fibrosis. Perivascular fibrosis may contribute to the persistent schistosomiasis-PH observed in humans with this disease.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, U.S.A
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, U.S.A
| | - Michael H. Lee
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, U.S.A
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, U.S.A
| | - Biruk Kassa
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, U.S.A
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, U.S.A
| | - Dara C. Fonseca Balladares
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, U.S.A
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, U.S.A
| | - Claudia Mickael
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Linda Sanders
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Adam Andruska
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Palo Alto, CA, U.S.A
| | - Maya Kumar
- Department of Pediatrics, Division of Pulmonary Medicine, Stanford University, Palo Alto, CA, U.S.A
| | - Edda Spiekerkoetter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Palo Alto, CA, U.S.A
| | - Angela Bandeira
- PROCAPE, Universidade de Pernambuco, Recife, Pernambuco, Brazil
| | - Kurt R. Stenmark
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Rubin M. Tuder
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Brian B Graham
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, U.S.A
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, U.S.A
| |
Collapse
|
16
|
Kumar R, Aktay-Cetin Ö, Craddock V, Morales-Cano D, Kosanovic D, Cogolludo A, Perez-Vizcaino F, Avdeev S, Kumar A, Ram AK, Agarwal S, Chakraborty A, Savai R, de Jesus Perez V, Graham BB, Butrous G, Dhillon NK. Potential long-term effects of SARS-CoV-2 infection on the pulmonary vasculature: Multilayered cross-talks in the setting of coinfections and comorbidities. PLoS Pathog 2023; 19:e1011063. [PMID: 36634048 PMCID: PMC9836319 DOI: 10.1371/journal.ppat.1011063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and its sublineages pose a new challenge to healthcare systems worldwide due to its ability to efficiently spread in immunized populations and its resistance to currently available therapies. COVID-19, although targeting primarily the respiratory system, is also now well established that later affects every organ in the body. Most importantly, despite the available therapy and vaccine-elicited protection, the long-term consequences of viral infection in breakthrough and asymptomatic individuals are areas of concern. In the past two years, investigators accumulated evidence on how the virus triggers our immune system and the molecular signals involved in the cross-talk between immune cells and structural cells in the pulmonary vasculature to drive pathological lung complications such as endothelial dysfunction and thrombosis. In the review, we emphasize recent updates on the pathophysiological inflammatory and immune responses associated with SARS-CoV-2 infection and their potential long-term consequences that may consequently lead to the development of pulmonary vascular diseases.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States of America
| | - Öznur Aktay-Cetin
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Vaughn Craddock
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Daniel Morales-Cano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Sergey Avdeev
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ashok Kumar
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Anil Kumar Ram
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Stuti Agarwal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University Medical Center, California, United States of America
| | - Ananya Chakraborty
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University Medical Center, California, United States of America
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus Liebig University Giessen, Member of the DZL, Member of CPI, Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| | - Vinicio de Jesus Perez
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University Medical Center, California, United States of America
| | - Brian B. Graham
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States of America
| | - Ghazwan Butrous
- Cardiopulmonary Sciences, University of Kent, Canterbury, United Kingdom
| | - Navneet K. Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
17
|
Mishra A, Ete T, Fanai V, Malviya A. A review on cardiac manifestation of parasitic infection. Trop Parasitol 2023; 13:8-15. [PMID: 37415759 PMCID: PMC10321584 DOI: 10.4103/tp.tp_45_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/29/2021] [Accepted: 05/17/2022] [Indexed: 07/08/2023] Open
Abstract
Parasites are uncommon causes of heart diseases except in endemic areas, and very few data are available which deals with parasites infecting human heart. However, literatures demonstrated that certain parasites such as protozoan and helminths can lead to significant cardiac complications. Although all organs can be affected, the heart and the lungs are the most frequently affected organs either directly or indirectly. It may involve all layers of the heart including pulmonary vasculature, thus producing a wide variety of clinical manifestations, which may present as myocarditis, pericarditis, cardiomyopathy, endomyocardial fibrosis, and pulmonary hypertension.
Collapse
Affiliation(s)
- Animesh Mishra
- Department of Cardiology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya
| | - Tony Ete
- Department of Cardiology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya
| | - Vanlalmalsawmdawngliana Fanai
- Department of Cardiology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya
| | - Amit Malviya
- Department of Cardiology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya
| |
Collapse
|
18
|
Souza MA, Gonçalves-Santos E, Gonçalves RV, Santos EC, Campos CC, Marques MJ, Souza RL, Novaes RD. Doxycycline hyclate stimulates inducible nitric oxide synthase and arginase imbalance, potentiating inflammatory and oxidative lung damage in schistosomiasis. Biomed J 2022; 45:857-869. [PMID: 34971826 PMCID: PMC9795368 DOI: 10.1016/j.bj.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND We investigated the relationship between inducible nitric oxide synthase (iNOS) and arginase pathways, cytokines, macrophages, oxidative damage and lung granulomatous inflammation in S. mansoni-infected and doxycycline-treated mice. METHODS Swiss mice were randomized in four groups: (i) uninfected, (ii) infected with S. mansoni, (iii) infected + 200 mg/kg praziquantel (Pzt), (iv) and (v) infected + 5 and 50 mg/kg doxycycline. Pzt (reference drug) was administered in a single dose and doxycycline for 60 days. RESULTS S. mansoni-infection determined extensive lung inflammation, marked recruitment of M2 macrophages, cytokines (IL-4, IL-5, IFN-γ, TNF-α) upregulation, intense eosinophil peroxidase (EPO) levels, arginase expression and activity, reduced iNOS expression and nitric oxide (NO) production. The higher dose of doxycycline aggravated lung granulomatous inflammation, downregulating IL-4 levels and M2 macrophages recruitment, and upregulating iNOS expression, EPO, NO, IFN-γ, TNF-α, M1 macrophages, protein carbonyl and malondialdehyde tissue levels. The number and size of granulomas in doxycycline-treated animals was higher than untreated and Pzt-treated mice. Exudative/productive granulomas were predominant in untreated and doxycycline-treated animals, while fibrotic/involutive granulomas were more frequent in Pzt-treated mice. The reference treatment with Pzt attenuated all these parameters. CONCLUSION Our findings indicated that doxycycline aggravated lung granulomatous inflammation in a dose-dependent way. Although Th1 effectors are protective against several intracellular pathogens, effective schistosomicidal responses are dependent of the Th2 phenotype. Thus, doxycycline contributes to the worsening of lung granulomatous inflammation by potentiating eosinophils influx and downregulating Th2 effectors, reinforcing lipid and protein oxidative damage in chronic S. mansoni infection.
Collapse
Affiliation(s)
- Matheus Augusto Souza
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Elda Gonçalves-Santos
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Reggiani V. Gonçalves
- Department of Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Eliziária C. Santos
- School of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Camila C. Campos
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Marcos J. Marques
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Raquel L.M. Souza
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Rômulo D. Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil,Corresponding author. Institute of Biomedical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, 37130-000, Minas Gerais, Brazil. Tel.: +55 31 3299 1300.
| |
Collapse
|
19
|
Dibo N, Liu X, Chang Y, Huang S, Wu X. Pattern recognition receptor signaling and innate immune responses to schistosome infection. Front Cell Infect Microbiol 2022; 12:1040270. [PMID: 36339337 PMCID: PMC9633954 DOI: 10.3389/fcimb.2022.1040270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 08/22/2023] Open
Abstract
Schistosomiasis remains to be a significant public health problem in tropical and subtropical regions. Despite remarkable progress that has been made in the control of the disease over the past decades, its elimination remains a daunting challenge in many countries. This disease is an inflammatory response-driven, and the positive outcome after infection depends on the regulation of immune responses that efficiently clear worms and allow protective immunity to develop. The innate immune responses play a critical role in host defense against schistosome infection and pathogenesis. Initial pro-inflammatory responses are essential for clearing invading parasites by promoting appropriate cell-mediated and humoral immunity. However, elevated and prolonged inflammatory responses against the eggs trapped in the host tissues contribute to disease progression. A better understanding of the molecular mechanisms of innate immune responses is important for developing effective therapies and vaccines. Here, we update the recent advances in the definitive host innate immune response to schistosome infection, especially highlighting the critical roles of pattern recognition receptors and cytokines. The considerations for further research are also provided.
Collapse
Affiliation(s)
- Nouhoum Dibo
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Xianshu Liu
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Yunfeng Chang
- Department of Forensic Medicine Science, Xiangya School of Basic Medicine, Central South University, Yueyang, China
| | - Shuaiqin Huang
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
- Hunan Provincial Key Lab of Immunology and Transmission Control on Schistosomiasis, Hunan Provincial Institute of Schistosomiasis Control, Yueyang, China
| | - Xiang Wu
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
- Hunan Provincial Key Lab of Immunology and Transmission Control on Schistosomiasis, Hunan Provincial Institute of Schistosomiasis Control, Yueyang, China
| |
Collapse
|
20
|
Liu SF, Nambiar Veetil N, Li Q, Kucherenko MM, Knosalla C, Kuebler WM. Pulmonary hypertension: Linking inflammation and pulmonary arterial stiffening. Front Immunol 2022; 13:959209. [PMID: 36275740 PMCID: PMC9579293 DOI: 10.3389/fimmu.2022.959209] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive disease that arises from multiple etiologies and ultimately leads to right heart failure as the predominant cause of morbidity and mortality. In patients, distinct inflammatory responses are a prominent feature in different types of PH, and various immunomodulatory interventions have been shown to modulate disease development and progression in animal models. Specifically, PH-associated inflammation comprises infiltration of both innate and adaptive immune cells into the vascular wall of the pulmonary vasculature—specifically in pulmonary vascular lesions—as well as increased levels of cytokines and chemokines in circulating blood and in the perivascular tissue of pulmonary arteries (PAs). Previous studies suggest that altered hemodynamic forces cause lung endothelial dysfunction and, in turn, adherence of immune cells and release of inflammatory mediators, while the resulting perivascular inflammation, in turn, promotes vascular remodeling and the progression of PH. As such, a vicious cycle of endothelial activation, inflammation, and vascular remodeling may develop and drive the disease process. PA stiffening constitutes an emerging research area in PH, with relevance in PH diagnostics, prognostics, and as a therapeutic target. With respect to its prognostic value, PA stiffness rivals the well-established measurement of pulmonary vascular resistance as a predictor of disease outcome. Vascular remodeling of the arterial extracellular matrix (ECM) as well as vascular calcification, smooth muscle cell stiffening, vascular wall thickening, and tissue fibrosis contribute to PA stiffening. While associations between inflammation and vascular stiffening are well-established in systemic vascular diseases such as atherosclerosis or the vascular manifestations of systemic sclerosis, a similar connection between inflammatory processes and PA stiffening has so far not been addressed in the context of PH. In this review, we discuss potential links between inflammation and PA stiffening with a specific focus on vascular calcification and ECM remodeling in PH.
Collapse
Affiliation(s)
- Shao-Fei Liu
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Netra Nambiar Veetil
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center, Berlin, Germany
| | - Qiuhua Li
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Mariya M. Kucherenko
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center, Berlin, Germany
- *Correspondence: Mariya M. Kucherenko,
| | - Christoph Knosalla
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- German Center for Lung Research (DZL), Gießen, Germany
- The Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Lee MH, Sanders L, Kumar R, Hernandez-Saavedra D, Yun X, Ford JA, Perez MJ, Mickael C, Gandjeva A, Koyanagi DE, Harral JW, Irwin DC, Kassa B, Eckel RH, Shimoda LA, Graham BB, Tuder RM. Contribution of fatty acid oxidation to the pathogenesis of pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2022; 323:L355-L371. [PMID: 35763400 PMCID: PMC9448289 DOI: 10.1152/ajplung.00039.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/05/2022] [Accepted: 06/25/2022] [Indexed: 11/22/2022] Open
Abstract
Dysregulated metabolism characterizes both animal and human forms of pulmonary hypertension (PH). Enzymes involved in fatty acid metabolism have previously not been assessed in human pulmonary arteries affected by pulmonary arterial hypertension (PAH), and how inhibition of fatty acid oxidation (FAO) may attenuate PH remains unclear. Fatty acid metabolism gene transcription was quantified in laser-dissected pulmonary arteries from 10 explanted lungs with advanced PAH (5 idiopathic, 5 associated with systemic sclerosis), and 5 donors without lung diseases. Effects of oxfenicine, a FAO inhibitor, on female Sugen 5416-chronic hypoxia (SuHx) rats were studied in vivo using right heart catheterization, and ex vivo using perfused lungs and pulmonary artery ring segments. The impact of pharmacologic (oxfenicine) and genetic (carnitine palmitoyltransferase 1a heterozygosity) FAO suppression was additionally probed in mouse models of Schistosoma and hypoxia-induced PH. Potential mechanisms underlying FAO-induced PH pathogenesis were examined by quantifying ATP and mitochondrial mass in oxfenicine-treated SuHx pulmonary arterial cells, and by assessing pulmonary arterial macrophage infiltration with immunohistochemistry. We found upregulated pulmonary arterial transcription of 26 and 13 FAO genes in idiopathic and systemic sclerosis-associated PAH, respectively. In addition to promoting de-remodeling of pulmonary arteries in SuHx rats, oxfenicine attenuated endothelin-1-induced vasoconstriction. FAO inhibition also conferred modest benefit in the two mouse models of PH. Oxfenicine increased mitochondrial mass in cultured rat pulmonary arterial cells, and decreased the density of perivascular macrophage infiltration in pulmonary arteries of treated SuHx rats. In summary, FAO inhibition attenuated experimental PH, and may be beneficial in human PAH.
Collapse
Affiliation(s)
- Michael H Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, California
| | - Linda Sanders
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Rahul Kumar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, California
| | - Daniel Hernandez-Saavedra
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Xin Yun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Joshay A Ford
- University of Colorado School of Medicine, Aurora, Colorado
| | - Mario J Perez
- Department of Psychiatry, University of Colorado, Aurora, Colorado
| | - Claudia Mickael
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Aneta Gandjeva
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Daniel E Koyanagi
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Julie W Harral
- Cardiovascular Pulmonary Research Laboratory, Department of Pediatrics and Medicine, University of Colorado, Aurora, Colorado
| | - David C Irwin
- Cardiovascular Pulmonary Research Laboratory, Department of Pediatrics and Medicine, University of Colorado, Aurora, Colorado
| | - Biruk Kassa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, California
| | - Robert H Eckel
- Division of Endocrinology, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Brian B Graham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, California
| | - Rubin M Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
22
|
Rodriguez-Irizarry VJ, Schneider AC, Ahle D, Smith JM, Suarez-Martinez EB, Salazar EA, McDaniel Mims B, Rasha F, Moussa H, Moustaïd-Moussa N, Pruitt K, Fonseca M, Henriquez M, Clauss MA, Grisham MB, Almodovar S. Mice with humanized immune system as novel models to study HIV-associated pulmonary hypertension. Front Immunol 2022; 13:936164. [PMID: 35990658 PMCID: PMC9390008 DOI: 10.3389/fimmu.2022.936164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
People living with HIV and who receive antiretroviral therapy have a significantly improved lifespan, compared to the early days without therapy. Unfortunately, persisting viral replication in the lungs sustains chronic inflammation, which may cause pulmonary vascular dysfunction and ultimate life-threatening Pulmonary Hypertension (PH). The mechanisms involved in the progression of HIV and PH remain unclear. The study of HIV-PH is limited due to the lack of tractable animal models that recapitulate infection and pathobiological aspects of PH. On one hand, mice with humanized immune systems (hu-mice) are highly relevant to HIV research but their suitability for HIV-PH research deserves investigation. On another hand, the Hypoxia-Sugen is a well-established model for experimental PH that combines hypoxia with the VEGF antagonist SU5416. To test the suitability of hu-mice, we combined HIV with either SU5416 or hypoxia. Using right heart catheterization, we found that combining HIV+SU5416 exacerbated PH. HIV infection increases human pro-inflammatory cytokines in the lungs, compared to uninfected mice. Histopathological examinations showed pulmonary vascular inflammation with arterial muscularization in HIV-PH. We also found an increase in endothelial-monocyte activating polypeptide II (EMAP II) when combining HIV+SU5416. Therefore, combinations of HIV with SU5416 or hypoxia recapitulate PH in hu-mice, creating well-suited models for infectious mechanistic pulmonary vascular research in small animals.
Collapse
Affiliation(s)
- Valerie J. Rodriguez-Irizarry
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States,Department of Biology, University of Puerto Rico in Ponce, Ponce, PR, United States
| | - Alina C. Schneider
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Daniel Ahle
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Justin M. Smith
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Ethan A. Salazar
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brianyell McDaniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Hanna Moussa
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Naima Moustaïd-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Marcelo Fonseca
- Program of Physiology and Biophysics, University of Chile, Santiago, Chile
| | - Mauricio Henriquez
- Program of Physiology and Biophysics, University of Chile, Santiago, Chile
| | - Matthias A. Clauss
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University, Indianapolis, IN, United States
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Sharilyn Almodovar
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,*Correspondence: Sharilyn Almodovar,
| |
Collapse
|
23
|
Medrano-Garcia S, Morales-Cano D, Barreira B, Vera-Zambrano A, Kumar R, Kosanovic D, Schermuly RT, Graham BB, Perez-Vizcaino F, Mathie A, Savai R, Pullamseti S, Butrous G, Fernández-Malavé E, Cogolludo A. HIV and Schistosoma Co-Exposure Leads to Exacerbated Pulmonary Endothelial Remodeling and Dysfunction Associated with Altered Cytokine Landscape. Cells 2022; 11:cells11152414. [PMID: 35954255 PMCID: PMC9368261 DOI: 10.3390/cells11152414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
HIV and Schistosoma infections have been individually associated with pulmonary vascular disease. Co-infection with these pathogens is very common in tropical areas, with an estimate of six million people co-infected worldwide. However, the effects of HIV and Schistosoma co-exposure on the pulmonary vasculature and its impact on the development of pulmonary vascular disease are largely unknown. Here, we have approached these questions by using a non-infectious animal model based on lung embolization of Schistosoma mansoni eggs in HIV-1 transgenic (HIV) mice. Schistosome-exposed HIV mice but not wild-type (Wt) counterparts showed augmented pulmonary arterial pressure associated with markedly suppressed endothelial-dependent vasodilation, increased endothelial remodeling and vessel obliterations, formation of plexiform-like lesions and a higher degree of perivascular fibrosis. In contrast, medial wall muscularization was similarly increased in both types of mice. Moreover, HIV mice displayed an impaired immune response to parasite eggs in the lung, as suggested by decreased pulmonary leukocyte infiltration, small-sized granulomas, and augmented residual egg burden. Notably, vascular changes in co-exposed mice were associated with increased expression of proinflammatory and profibrotic cytokines, including IFN-γ and IL-17A in CD4+ and γδ T cells and IL-13 in myeloid cells. Collectively, our study shows for the first time that combined pulmonary persistence of HIV proteins and Schistosoma eggs, as it may occur in co-infected people, alters the cytokine landscape and targets the vascular endothelium for aggravated pulmonary vascular pathology. Furthermore, it provides an experimental model for the understanding of pulmonary vascular disease associated with HIV and Schistosoma co-morbidity.
Collapse
Affiliation(s)
- Sandra Medrano-Garcia
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35305 Giessen, Germany
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
| | - Daniel Morales-Cano
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28040 Madrid, Spain
- Correspondence: (D.M.-C.); (A.C.); Tel.: +34-913947120 (A.C.)
| | - Bianca Barreira
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
| | - Alba Vera-Zambrano
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
| | - Rahul Kumar
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ralph Theo Schermuly
- Department of internal Medicine, Justus-Liebig University, Member of the German Center for Lung Research (DZL), 35305 Giessen, Germany
| | - Brian B. Graham
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham ME4 4BF, UK
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35305 Giessen, Germany
- Department of internal Medicine, Justus-Liebig University, Member of the German Center for Lung Research (DZL), 35305 Giessen, Germany
| | - Soni Pullamseti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35305 Giessen, Germany
- Department of internal Medicine, Justus-Liebig University, Member of the German Center for Lung Research (DZL), 35305 Giessen, Germany
| | - Ghazwan Butrous
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham ME4 4BF, UK
| | - Edgar Fernández-Malavé
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
- Correspondence: (D.M.-C.); (A.C.); Tel.: +34-913947120 (A.C.)
| |
Collapse
|
24
|
Tabeling C, González Calera CR, Lienau J, Höppner J, Tschernig T, Kershaw O, Gutbier B, Naujoks J, Herbert J, Opitz B, Gruber AD, Hocher B, Suttorp N, Heidecke H, Burmester GR, Riemekasten G, Siegert E, Kuebler WM, Witzenrath M. Endothelin B Receptor Immunodynamics in Pulmonary Arterial Hypertension. Front Immunol 2022; 13:895501. [PMID: 35757687 PMCID: PMC9221837 DOI: 10.3389/fimmu.2022.895501] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction Inflammation is a major pathological feature of pulmonary arterial hypertension (PAH), particularly in the context of inflammatory conditions such as systemic sclerosis (SSc). The endothelin system and anti-endothelin A receptor (ETA) autoantibodies have been implicated in the pathogenesis of PAH, and endothelin receptor antagonists are routinely used treatments for PAH. However, immunological functions of the endothelin B receptor (ETB) remain obscure. Methods Serum levels of anti-ETB receptor autoantibodies were quantified in healthy donors and SSc patients with or without PAH. Age-dependent effects of overexpression of prepro-endothelin-1 or ETB deficiency on pulmonary inflammation and the cardiovascular system were studied in mice. Rescued ETB-deficient mice (ETB-/-) were used to prevent congenital Hirschsprung disease. The effects of pulmonary T-helper type 2 (Th2) inflammation on PAH-associated pathologies were analyzed in ETB-/- mice. Pulmonary vascular hemodynamics were investigated in isolated perfused mouse lungs. Hearts were assessed for right ventricular hypertrophy. Pulmonary inflammation and collagen deposition were assessed via lung microscopy and bronchoalveolar lavage fluid analyses. Results Anti-ETB autoantibody levels were elevated in patients with PAH secondary to SSc. Both overexpression of prepro-endothelin-1 and rescued ETB deficiency led to pulmonary hypertension, pulmonary vascular hyperresponsiveness, and right ventricular hypertrophy with accompanying lymphocytic alveolitis. Marked perivascular lymphocytic infiltrates were exclusively found in ETB-/- mice. Following induction of pulmonary Th2 inflammation, PAH-associated pathologies and perivascular collagen deposition were aggravated in ETB-/- mice. Conclusion This study provides evidence for an anti-inflammatory role of ETB. ETB seems to have protective effects on Th2-evoked pathologies of the cardiovascular system. Anti-ETB autoantibodies may modulate ETB-mediated immune homeostasis.
Collapse
Affiliation(s)
- Christoph Tabeling
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carla R González Calera
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jasmin Lienau
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jakob Höppner
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, University of Saarland, Homburg, Germany
| | - Olivia Kershaw
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Birgitt Gutbier
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Naujoks
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Herbert
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bastian Opitz
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University of Heidelberg, University Medical Centre Mannheim, Heidelberg, Germany.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Center for Lung Research (DZL), Partner Site Charité, Berlin, Germany
| | | | - Gerd-R Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Elise Siegert
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- German Center for Lung Research (DZL), Partner Site Charité, Berlin, Germany.,Institute of Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany.,St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, ON, Canada.,Departments of Physiology and Surgery, University of Toronto, Toronto, ON, Canada
| | - Martin Witzenrath
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Center for Lung Research (DZL), Partner Site Charité, Berlin, Germany
| |
Collapse
|
25
|
The prophylactic and anti-fibrotic activity of phthalimido-thiazole derivatives in schistosomiasis mansoni. Parasitol Res 2022; 121:2111-2120. [DOI: 10.1007/s00436-022-07533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/26/2022] [Indexed: 11/26/2022]
|
26
|
Gredic M, Wu CY, Hadzic S, Pak O, Savai R, Kojonazarov B, Doswada S, Weiss A, Weigert A, Guenther A, Brandes RP, Schermuly RT, Grimminger F, Seeger W, Sommer N, Kraut S, Weissmann N. Myeloid-cell-specific deletion of inducible nitric oxide synthase protects against smoke-induced pulmonary hypertension in mice. Eur Respir J 2022; 59:2101153. [PMID: 34475225 PMCID: PMC8989054 DOI: 10.1183/13993003.01153-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a common complication of COPD, associated with increased mortality and morbidity. Intriguingly, pulmonary vascular alterations have been suggested to drive emphysema development. Previously, we identified inducible nitric oxide synthase (iNOS) as an essential enzyme for development and reversal of smoke-induced PH and emphysema, and showed that iNOS expression in bone-marrow-derived cells drives pulmonary vascular remodelling, but not parenchymal destruction. In this study, we aimed to identify the iNOS-expressing cell type driving smoke-induced PH and to decipher pro-proliferative pathways involved. METHODS To address this question we used 1) myeloid-cell-specific iNOS knockout mice in chronic smoke exposure and 2) co-cultures of macrophages and pulmonary artery smooth muscle cells (PASMCs) to decipher underlying signalling pathways. RESULTS Myeloid-cell-specific iNOS knockout prevented smoke-induced PH but not emphysema in mice. Moreover, iNOS deletion in myeloid cells ameliorated the increase in expression of CD206, a marker of M2 polarisation, on interstitial macrophages. Importantly, the observed effects on lung macrophages were hypoxia-independent, as these mice developed hypoxia-induced PH. In vitro, smoke-induced PASMC proliferation in co-cultures with M2-polarised macrophages could be abolished by iNOS deletion in phagocytic cells, as well as by extracellular signal-regulated kinase inhibition in PASMCs. Crucially, CD206-positive and iNOS-positive macrophages accumulated in proximity of remodelled vessels in the lungs of COPD patients, as shown by immunohistochemistry. CONCLUSION In summary, our results demonstrate that iNOS deletion in myeloid cells confers protection against PH in smoke-exposed mice and provide evidence for an iNOS-dependent communication between M2-like macrophages and PASMCs in underlying pulmonary vascular remodelling.
Collapse
Affiliation(s)
- Marija Gredic
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Cheng-Yu Wu
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Stefan Hadzic
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Oleg Pak
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Rajkumar Savai
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Baktybek Kojonazarov
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig-University, Giessen, Germany
| | - Siddartha Doswada
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Astrid Weiss
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Andreas Guenther
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- European IPF Registry & Biobank (eurIPFreg), Giessen, Germany
- Agaplesion Evangelisches Krankenhaus Mittelhessen, Giessen, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
- DZHK - German Center for Cardiovascular Research, Partner site Rhine-Main, Germany
| | - Ralph T Schermuly
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Friedrich Grimminger
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Werner Seeger
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Natascha Sommer
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Simone Kraut
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
27
|
Wu XH, Ma JL, Ding D, Ma YJ, Wei YP, Jing ZC. Experimental animal models of pulmonary hypertension: Development and challenges. Animal Model Exp Med 2022; 5:207-216. [PMID: 35333455 PMCID: PMC9240731 DOI: 10.1002/ame2.12220] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 12/16/2022] Open
Abstract
Pulmonary hypertension (PH) is clinically divided into 5 major types, characterized by elevation in pulmonary arterial pressure (PAP) and pulmonary vascular resistance (PVR), finally leading to right heart failure and death. The pathogenesis of this arteriopathy remains unclear, leaving it impossible to target pulmonary vascular remodeling and reverse the deterioration of right ventricular (RV) function. Different animal models have been designed to reflect the complex mechanistic origins and pathology of PH, roughly divided into 4 categories according to the modeling methods: non‐invasive models in vivo, invasive models in vivo, gene editing models, and multi‐means joint modeling. Though each model shares some molecular and pathological changes with different classes of human PH, in most cases the molecular etiology of human PH is poorly known. The appropriate use of classic and novel PH animal models is essential for the hunt of molecular targets to reverse severe phenotypes.
Collapse
Affiliation(s)
- Xiao-Han Wu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie-Ling Ma
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Ding
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue-Jiao Ma
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun-Peng Wei
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Cheng Jing
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
28
|
Kelly NJ, Chan SY. Pulmonary Arterial Hypertension: Emerging Principles of Precision Medicine across Basic Science to Clinical Practice. Rev Cardiovasc Med 2022; 23:378. [PMID: 36875282 PMCID: PMC9980296 DOI: 10.31083/j.rcm2311378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an enigmatic and deadly vascular disease with no known cure. Recent years have seen rapid advances in our understanding of the molecular underpinnings of PAH, with an expanding knowledge of the molecular, cellular, and systems-level drivers of disease that are being translated into novel therapeutic modalities. Simultaneous advances in clinical technology have led to a growing list of tools with potential application to diagnosis and phenotyping. Guided by fundamental biology, these developments hold the potential to usher in a new era of personalized medicine in PAH with broad implications for patient management and great promise for improved outcomes.
Collapse
Affiliation(s)
- Neil J Kelly
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
29
|
Ferrari TCA, Albricker ACL, Gonçalves IM, Freire CMV. Schistosome-Associated Pulmonary Arterial Hypertension: A Review Emphasizing Pathogenesis. Front Cardiovasc Med 2021; 8:724254. [PMID: 34676250 PMCID: PMC8523797 DOI: 10.3389/fcvm.2021.724254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Schistosomiasis, especially due to Schistosoma mansoni, is a well-recognized cause of pulmonary arterial hypertension (PAH). The high prevalence of this helminthiasis makes schistosome-related PAH (Sch-PAH) one of the most common causes of this disorder worldwide. The pathogenic mechanisms underlying Sch-PAH remain largely unknown. Available evidence suggests that schistosome eggs reach the lung via portocaval shunts formed as a consequence of portal hypertension due to hepatosplenic schistosomiasis. Once deposited into the lungs, the eggs elicit an immune response resulting in periovular granuloma formation. Immune mediators drive transforming growth factor-β (TGF-β) release, which gives rise to pulmonary vascular inflammation with subsequent remodeling and development of angiomatoid and plexiform lesions. These mechanisms elicited by the eggs seem to become autonomous and the vascular lesions progress independently of the antigen. Portopulmonary hypertension, which pathogenesis is still uncertain, may also play a role in the genesis of Sch-PAH. Recently, there have been substantial advances in the diagnosis and treatment of PAH, but it remains a difficult condition to recognize and manage, and patients still die prematurely from right-heart failure. Echocardiography is used for screening, and the formal diagnosis requires right-heart catheterization. The experience in treating Sch-PAH is largely limited to the phosphodiesterase type 5 inhibitors, with evidence suggesting that these vasodilators improve symptoms and may also improve survival. Considering the great deal of uncertainty about Sch-PAH pathogenesis, course, and treatment, the aim of this review is to summarize current knowledge on this condition emphasizing its pathogenesis.
Collapse
Affiliation(s)
- Teresa Cristina Abreu Ferrari
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Cristina Lopes Albricker
- Programa de Pós-Graduação em Ciências Aplicadas à Saúde do Adulto, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ina Morais Gonçalves
- Graduação em Medicina, Centro Universitário de Belo Horizonte, Belo Horizonte, Brazil
| | | |
Collapse
|
30
|
Bai Y, Lockett AD, Gomes MT, Stearman RS, Machado RF. Sphingosine Kinase 1 Regulates the Pulmonary Vascular Immune Response. Cell Biochem Biophys 2021; 79:517-529. [PMID: 34133010 PMCID: PMC8206894 DOI: 10.1007/s12013-021-01006-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
The aberrant proliferation of pulmonary artery smooth muscle (PASMCs) cells is a defining characteristic of pulmonary arterial hypertension (PAH) and leads to increased vascular resistance, elevated pulmonary pressure, and right heart failure. The sphingosine kinase 1 (SPHK1)/sphingosine-1 phosphate/sphingosine-1 phosphate receptor 2 pathway promotes vascular remodeling and induces PAH. The aim of this study was to identify genes and cellular processes that are modulated by over-expression of SPHK1 in human PASMCs (hPASMCs). RNA was purified and submitted for RNA sequencing to identify differentially expressed genes. Using a corrected p-value threshold of <0.05, there were 294 genes significantly up-regulated while 179 were significantly down-regulated. Predicted effects of these differentially expressed genes were evaluated using the freeware tool Enrichr to assess general gene set over-representation (enrichment) and ingenuity pathway analysis (IPA™) for upstream regulator predictions. We found a strong change in genes that regulated the cellular immune response. IL6, STAT1, and PARP9 were elevated in response to SPHK1 over-expression in hPASMCs. The gene set enrichment mapped to a few immune-modulatory signaling networks, including IFNG. Furthermore, PARP9 and STAT1 protein were elevated in primary hPASMCs isolated from PAH patients. In conclusion, these data suggest a role of Sphk1 regulates pulmonary vascular immune response in PAH.
Collapse
Affiliation(s)
- Yang Bai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Angelia D Lockett
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marta T Gomes
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert S Stearman
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
31
|
Masamba P, Kappo AP. Immunological and Biochemical Interplay between Cytokines, Oxidative Stress and Schistosomiasis. Int J Mol Sci 2021; 22:ijms22137216. [PMID: 34281269 PMCID: PMC8268096 DOI: 10.3390/ijms22137216] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 12/17/2022] Open
Abstract
The host–parasite schistosome relationship relies heavily on the interplay between the strategies imposed by the schistosome worm and the defense mechanisms the host uses to counter the line of attack of the parasite. The ultimate goal of the schistosome parasite entails five important steps: evade elimination tactics, survive within the human host, develop into adult forms, propagate in large numbers, and transmit from one host to the next. The aim of the parasitized host on the other hand is either to cure or limit infection. Therefore, it is a battle between two conflicting aspirations. From the host’s standpoint, infection accompanies a plethora of immunological consequences; some are set in place to defend the host, while most end up promoting chronic disease, which ultimately crosses paths with oxidative stress and cancer. Understanding these networks provides attractive opportunities for anti-schistosome therapeutic development. Hence, this review discusses the mechanisms by which schistosomes modulate the human immune response with ultimate links to oxidative stress and genetic instability.
Collapse
|
32
|
Hao S, Jiang P, Xie L, Xiang G, Liu Z, Hu W, Wu Q, Jiang L, Xiao Y, Li S. Essential Genes and MiRNA-mRNA Network Contributing to the Pathogenesis of Idiopathic Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021; 8:627873. [PMID: 34026864 PMCID: PMC8133434 DOI: 10.3389/fcvm.2021.627873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Idiopathic pulmonary arterial hypertension (IPAH) is a life-threatening disease. Owing to its high fatality rate and narrow therapeutic options, identification of the pathogenic mechanisms of IPAH is becoming increasingly important. Methods: In our research, we utilized the robust rank aggregation (RRA) method to integrate four eligible pulmonary arterial hypertension (PAH) microarray datasets and identified the significant differentially expressed genes (DEGs) between IPAH and normal samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed to analyze their functions. The interaction network of protein-protein interaction (PPI) was constructed to explore the correlation between these DEGs. The functional modules and hub genes were further identified by the weighted gene coexpression network analysis (WGCNA). Moreover, a miRNA microarray dataset was involved and analyzed to filter differentially expressed miRNAs (DE-miRNAs). Potential target genes of screened DE-miRNAs were predicted and merged with DEGs to explore a miRNA-mRNA network in IPAH. Some hub genes were selected and validated by RT-PCR in lung tissues from the PAH animal model. Results: A total of 260 DEGs, consisting of 183 upregulated and 77 downregulated significant DEGs, were identified, and some of those genes were novel. Their molecular roles in the etiology of IPAH remained vague. The most crucial functional module involved in IPAH is mainly enriched in biological processes, including leukocyte migration, cell chemotaxis, and myeloid leukocyte migration. Construction and analysis of the PPI network showed that CXCL10, CXCL9, CCR1, CX3CR1, CX3CL1, CXCR2, CXCR1, PF4, CCL4L1, and ADORA3 were recognized as top 10 hub genes with high connectivity degrees. WGCNA further identified five main functional modules involved in the pathogenesis of IPAH. Twelve upregulated DE-miRNAs and nine downregulated DE-miRNAs were identified. Among them, four downregulated DEGs and eight upregulated DEGs were supposed to be negatively regulated by three upregulated DE-miRNAs and three downregulated DE-miRNAs, respectively. Conclusions: This study identifies some key and functional coexpression modules involved in IPAH, as well as a potential IPAH-related miRNA-mRNA regulated network. It provides deepening insights into the molecular mechanisms and provides vital clues in seeking novel therapeutic targets for IPAH.
Collapse
Affiliation(s)
- Shengyu Hao
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Pan Jiang
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Liang Xie
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Guiling Xiang
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zilong Liu
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Weiping Hu
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Qinhan Wu
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Liyan Jiang
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yi Xiao
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shanqun Li
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
33
|
Gorelova A, Berman M, Al Ghouleh I. Endothelial-to-Mesenchymal Transition in Pulmonary Arterial Hypertension. Antioxid Redox Signal 2021; 34:891-914. [PMID: 32746619 PMCID: PMC8035923 DOI: 10.1089/ars.2020.8169] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a process that encompasses extensive transcriptional reprogramming of activated endothelial cells leading to a shift toward mesenchymal cellular phenotypes and functional responses. Initially observed in the context of embryonic development, in the last few decades EndMT is increasingly recognized as a process that contributes to a variety of pathologies in the adult organism. Within the settings of cardiovascular biology, EndMT plays a role in various diseases, including atherosclerosis, heart valvular disease, cardiac fibrosis, and myocardial infarction. EndMT is also being progressively implicated in development and progression of pulmonary hypertension (PH) and pulmonary arterial hypertension (PAH). This review covers the current knowledge about EndMT in PH and PAH, and provides comprehensive overview of seminal discoveries. Topics covered include evidence linking EndMT to factors associated with PAH development, including hypoxia responses, inflammation, dysregulation of bone-morphogenetic protein receptor 2 (BMPR2), and redox signaling. This review amalgamates these discoveries into potential insights for the identification of underlying mechanisms driving EndMT in PH and PAH, and discusses future directions for EndMT-based therapeutic strategies in disease management.
Collapse
Affiliation(s)
- Anastasia Gorelova
- Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mariah Berman
- Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Imad Al Ghouleh
- Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
34
|
Dignam JP, Scott TE, Kemp-Harper BK, Hobbs AJ. Animal models of pulmonary hypertension: Getting to the heart of the problem. Br J Pharmacol 2021; 179:811-837. [PMID: 33724447 DOI: 10.1111/bph.15444] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Despite recent therapeutic advances, pulmonary hypertension (PH) remains a fatal disease due to the development of right ventricular (RV) failure. At present, no treatments targeted at the right ventricle are available, and RV function is not widely considered in the preclinical assessment of new therapeutics. Several small animal models are used in the study of PH, including the classic models of exposure to either hypoxia or monocrotaline, newer combinational and genetic models, and pulmonary artery banding, a surgical model of pure RV pressure overload. These models reproduce selected features of the structural remodelling and functional decline seen in patients and have provided valuable insight into the pathophysiology of RV failure. However, significant reversal of remodelling and improvement in RV function remains a therapeutic obstacle. Emerging animal models will provide a deeper understanding of the mechanisms governing the transition from adaptive remodelling to a failing right ventricle, aiding the hunt for druggable molecular targets.
Collapse
Affiliation(s)
- Joshua P Dignam
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tara E Scott
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University Clayton Campus, Clayton, Victoria, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria, Australia
| | - Barbara K Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University Clayton Campus, Clayton, Victoria, Australia
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
35
|
Liang S, Desai AA, Black SM, Tang H. Cytokines, Chemokines, and Inflammation in Pulmonary Arterial Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:275-303. [PMID: 33788198 DOI: 10.1007/978-3-030-63046-1_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
According to the World Symposium Pulmonary Hypertension (WSPH) classification, pulmonary hypertension (PH) is classified into five categories based on etiology. Among them, Group 1 pulmonary arterial hypertension (PAH) disorders are rare but progressive and often, fatal despite multiple approved treatments. Elevated pulmonary arterial pressure in patients with WSPH Group 1 PAH is mainly caused by increased pulmonary vascular resistance (PVR), due primarily to sustained pulmonary vasoconstriction and excessive obliterative pulmonary vascular remodeling. Growing evidence indicates that inflammation plays a critical role in the development of pulmonary vascular remodeling associated with PAH. While the role of auto-immunity is unclear, infiltration of inflammatory cells in and around vascular lesions, including T- and B-cells, dendritic cells, macrophages, and mast cells have been observed in PAH patients. Serum and plasma levels of chemokines, cytokines, and autoantibodies are also increased in PAH patients; some of these circulating molecules are correlated with disease severity and survival. Preclinical experiments have reported a key role of the inflammation in PAH pathophysiology in vivo. Importantly, anti-inflammatory and immunosuppressive agents have further exhibited therapeutic effects. The present chapter reviews published experimental and clinical evidence highlighting the canonical role of inflammation in the pathogenesis of PAH and as a major target for the development of anti-inflammatory therapies in patients with PAH.
Collapse
Affiliation(s)
- Shuxin Liang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China. .,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
36
|
Bryant AJ, Pham A, Gogoi H, Mitchell CR, Pais F, Jin L. The Third Man: DNA sensing as espionage in pulmonary vascular health and disease. Pulm Circ 2021; 11:2045894021996574. [PMID: 33738095 PMCID: PMC7934053 DOI: 10.1177/2045894021996574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
For as long as nucleic acids have been utilized to vertically and horizontally transfer genetic material, living organisms have had to develop methods of recognizing cytosolic DNA as either pathogenic (microbial invasion) or physiologic (mitosis and cellular proliferation). Derangement in key signaling molecules involved in these pathways of DNA sensing result in a family of diseases labeled interferonopathies. An interferonopathy, characterized by constitutive expression of type I interferons, ultimately manifests as severe autoimmune disease at a young age. Afflicted patients present with a constellation of immune-mediated conditions, including primary lung manifestations such as pulmonary fibrosis and pulmonary hypertension. The latter condition is especially interesting in light of the known role that DNA damage plays in a variety of types of inherited and induced pulmonary hypertension, with free DNA detection elevated in the circulation of affected individuals. While little is known regarding the role of cytosolic DNA sensing in development of pulmonary vascular disease, exciting new research in the related fields of immunology and oncology potentially sheds light on future areas of fruitful exploration. As such, the goal of this review is to summarize the state of the field of nucleic acid sensing, extrapolating common shared pathways that parallel our knowledge of pulmonary hypertension, in a molecular and cell-specific manner. Principles of DNA sensing related to known pulmonary injury inducing stimuli are also evaluated, in addition to potential therapeutic targets. Finally, future directions in pulmonary hypertension research and treatments will be briefly discussed.
Collapse
Affiliation(s)
- Andrew J. Bryant
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Ann Pham
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Himanshu Gogoi
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Carly R. Mitchell
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Faye Pais
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Lei Jin
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| |
Collapse
|
37
|
Sibomana JP, Campeche A, Carvalho-Filho RJ, Correa RA, Duani H, Pacheco Guimaraes V, Hilton JF, Kassa B, Kumar R, Lee MH, Loureiro CMC, Mazimba S, Mickael C, Oliveira RKF, Ota-Arakaki JS, Rezende CF, Silva LCS, Sinkala E, Ahmed HY, Graham BB. Schistosomiasis Pulmonary Arterial Hypertension. Front Immunol 2020; 11:608883. [PMID: 33362796 PMCID: PMC7758287 DOI: 10.3389/fimmu.2020.608883] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease of the lung blood vessels that results in right heart failure. PAH is thought to occur in about 5% to 10% of patients with hepatosplenic schistosomiasis, particularly due to S. mansoni. The lung blood vessel injury may result from a combination of embolization of eggs through portocaval shunts into the lungs causing localized Type 2 inflammatory response and vessel remodeling, triggering of autonomous pathology that becomes independent of the antigen, and high cardiac output as seen in portopulmonary hypertension. The condition is likely underdiagnosed as there is little systematic screening, and risk factors for developing PAH are not known. Screening is done by echocardiography, and formal diagnosis requires invasive right heart catheterization. Patients with Schistosoma-associated PAH show reduced functional capacity and can be treated with pulmonary vasodilators, which improves symptoms and may improve survival. There are animal models of this disease that might help in understanding disease pathogenesis and identify novel targets to screen and treatment. Pathogenic mechanisms include Type 2 immunity and activation and signaling in the TGF-β pathway. There are still major uncertainties regarding Schistosoma-associated PAH development, course and treatment.
Collapse
Affiliation(s)
- Jean Pierre Sibomana
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Tikur Anbessa Specialized Hospital, College of Health Sciences, University of Addis Ababa, Addis Ababa, Ethiopia
- Department of Medicine, Butare University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Aloma Campeche
- Division of Gastroenterology, Department of Medicine, Santa Casa Hospital, Salvador, Bahia, Brazil
| | - Roberto J. Carvalho-Filho
- Division of Gastroenterology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Amorim Correa
- Internal Medicine/Pulmonary Division, Medical School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Helena Duani
- Internal Medicine/Infectious Diseases Division, Medical School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Virginia Pacheco Guimaraes
- Pulmonary Department, Hospital Júlia Kubistchek, Fundação Hospitalar of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Joan F. Hilton
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Biruk Kassa
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Rahul Kumar
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Michael H. Lee
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | | | - Sula Mazimba
- Division of Cardiology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Claudia Mickael
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rudolf K. F. Oliveira
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Jaquelina S. Ota-Arakaki
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Camila Farnese Rezende
- Pulmonary Medicine, Hospital das Clinicas, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana C. S. Silva
- Internal Medicine Department, Medical School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Edford Sinkala
- Hepatology Clinic, Department of Medicine, University of Zambia Teaching Hospital, Lusaka, Zambia
| | - Hanan Yusuf Ahmed
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Tikur Anbessa Specialized Hospital, College of Health Sciences, University of Addis Ababa, Addis Ababa, Ethiopia
| | - Brian B. Graham
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| |
Collapse
|
38
|
Steffes LC, Froistad AA, Andruska A, Boehm M, McGlynn M, Zhang F, Zhang W, Hou D, Tian X, Miquerol L, Nadeau K, Metzger RJ, Spiekerkoetter E, Kumar ME. A Notch3-Marked Subpopulation of Vascular Smooth Muscle Cells Is the Cell of Origin for Occlusive Pulmonary Vascular Lesions. Circulation 2020; 142:1545-1561. [PMID: 32794408 PMCID: PMC7578108 DOI: 10.1161/circulationaha.120.045750] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a fatal disease characterized by profound vascular remodeling in which pulmonary arteries narrow because of medial thickening and occlusion by neointimal lesions, resulting in elevated pulmonary vascular resistance and right heart failure. Therapies targeting the neointima would represent a significant advance in PAH treatment; however, our understanding of the cellular events driving neointima formation, and the molecular pathways that control them, remains limited. METHODS We comprehensively map the stepwise remodeling of pulmonary arteries in a robust, chronic inflammatory mouse model of pulmonary hypertension. This model demonstrates pathological features of the human disease, including increased right ventricular pressures, medial thickening, neointimal lesion formation, elastin breakdown, increased anastomosis within the bronchial circulation, and perivascular inflammation. Using genetic lineage tracing, clonal analysis, multiplexed in situ hybridization, immunostaining, deep confocal imaging, and staged pharmacological inhibition, we define the cell behaviors underlying each stage of vascular remodeling and identify a pathway required for neointima formation. RESULTS Neointima arises from smooth muscle cells (SMCs) and not endothelium. Medial SMCs proliferate broadly to thicken the media, after which a small number of SMCs are selected to establish the neointima. These neointimal founder cells subsequently undergoing massive clonal expansion to form occlusive neointimal lesions. The normal pulmonary artery SMC population is heterogeneous, and we identify a Notch3-marked minority subset of SMCs as the major neointimal cell of origin. Notch signaling is specifically required for the selection of neointimal founder cells, and Notch inhibition significantly improves pulmonary artery pressure in animals with pulmonary hypertension. CONCLUSIONS This work describes the first nongenetically driven murine model of pulmonary hypertension (PH) that generates robust and diffuse occlusive neointimal lesions across the pulmonary vascular bed and does so in a stereotyped timeframe. We uncover distinct cellular and molecular mechanisms underlying medial thickening and neointima formation and highlight novel transcriptional, behavioral, and pathogenic heterogeneity within pulmonary artery SMCs. In this model, inflammation is sufficient to generate characteristic vascular pathologies and physiological measures of human PAH. We hope that identifying the molecular cues regulating each stage of vascular remodeling will open new avenues for therapeutic advancements in the treatment of PAH.
Collapse
Affiliation(s)
- Lea C Steffes
- Division of Pulmonary Medicine, Department of Pediatrics (L.C.S., R.J.M., M.E.K.), Stanford University School of Medicine, CA
- Vera Moulton Wall Center for Pulmonary Vascular Research (L.C.S., F.Z., R.J.M., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Alexis A Froistad
- Sean N. Parker Center for Asthma and Allergy Research (A.A.F., M.M., W.Z., D.H., K.N., M.E.K.), Stanford University School of Medicine, CA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Adam Andruska
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Mario Boehm
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
- Universities of Giessen and Marburg Lung Center, Justus-Liebig University Giessen, German Center for Lung Research (M.B.)
| | - Madeleine McGlynn
- Sean N. Parker Center for Asthma and Allergy Research (A.A.F., M.M., W.Z., D.H., K.N., M.E.K.), Stanford University School of Medicine, CA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Fan Zhang
- Vera Moulton Wall Center for Pulmonary Vascular Research (L.C.S., F.Z., R.J.M., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Wenming Zhang
- Sean N. Parker Center for Asthma and Allergy Research (A.A.F., M.M., W.Z., D.H., K.N., M.E.K.), Stanford University School of Medicine, CA
| | - David Hou
- Sean N. Parker Center for Asthma and Allergy Research (A.A.F., M.M., W.Z., D.H., K.N., M.E.K.), Stanford University School of Medicine, CA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Xuefei Tian
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Lucile Miquerol
- Aix-Marseille University, Centre Nationale de la Recherche Scientifique (CNRS), Institut de Biologie du Developpement de Marseille, Marseille, France (L.M.)
| | - Kari Nadeau
- Sean N. Parker Center for Asthma and Allergy Research (A.A.F., M.M., W.Z., D.H., K.N., M.E.K.), Stanford University School of Medicine, CA
| | - Ross J Metzger
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Edda Spiekerkoetter
- Vera Moulton Wall Center for Pulmonary Vascular Research (L.C.S., F.Z., R.J.M., E.S., M.E.K.), Stanford University School of Medicine, CA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Maya E Kumar
- Division of Pulmonary Medicine, Department of Pediatrics (L.C.S., R.J.M., M.E.K.), Stanford University School of Medicine, CA
- Vera Moulton Wall Center for Pulmonary Vascular Research (L.C.S., F.Z., R.J.M., E.S., M.E.K.), Stanford University School of Medicine, CA
- Sean N. Parker Center for Asthma and Allergy Research (A.A.F., M.M., W.Z., D.H., K.N., M.E.K.), Stanford University School of Medicine, CA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| |
Collapse
|
39
|
Huertas A, Tu L, Humbert M, Guignabert C. Chronic inflammation within the vascular wall in pulmonary arterial hypertension: more than a spectator. Cardiovasc Res 2020; 116:885-893. [PMID: 31813986 DOI: 10.1093/cvr/cvz308] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/08/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
This review seeks to provide an update of preclinical findings and available clinical data on the chronic persistent inflammation and its direct role on the pulmonary arterial hypertension (PAH) progression. We reviewed the different mechanisms by which the inflammatory and immune pathways contribute to the structural and functional changes occurring in the three vascular compartments: the tunica intima, tunica media, and tunica adventitia. We also discussed how these inflammatory mediator changes may serve as a biomarker of the PAH progression and summarize unanswered questions and opportunities for future studies in this area.
Collapse
Affiliation(s)
- Alice Huertas
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance; 92350 Le Plessis-Robinson, France.,Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.,Service de Pneumologie, AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance; 92350 Le Plessis-Robinson, France.,Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance; 92350 Le Plessis-Robinson, France.,Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.,Service de Pneumologie, AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance; 92350 Le Plessis-Robinson, France.,Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
40
|
Kumar R, Lee MH, Mickael C, Kassa B, Pasha Q, Tuder R, Graham B. Pathophysiology and potential future therapeutic targets using preclinical models of COVID-19. ERJ Open Res 2020; 6:00405-2020. [PMID: 33313306 PMCID: PMC7720688 DOI: 10.1183/23120541.00405-2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/27/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) gains entry into the lung epithelial cells by binding to the surface protein angiotensin-converting enzyme 2. Severe SARS-CoV-2 infection, also known as coronavirus disease 2019 (COVID-19), can lead to death due to acute respiratory distress syndrome mediated by inflammatory immune cells and cytokines. In this review, we discuss the molecular and biochemical bases of the interaction between SARS-CoV-2 and human cells, and in doing so we highlight knowledge gaps currently precluding development of new effective therapies. In particular, discovery of novel treatment targets in COVID-19 will start from understanding pathologic changes based on a large number of autopsy lung tissue samples. Pathogenetic roles of potential molecular targets identified in human lung tissues must be validated in established animal models. Overall, this stepwise approach will enable appropriate selection of candidate therapeutic modalities targeting SARS-CoV2 and the host inflammatory response.
Collapse
Affiliation(s)
- Rahul Kumar
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Michael H. Lee
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Claudia Mickael
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Biruk Kassa
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Qadar Pasha
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Rubin Tuder
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian Graham
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
41
|
Kumar R, Mickael C, Kassa B, Sanders L, Hernandez-Saavedra D, Koyanagi DE, Kumar S, Pugliese SC, Thomas S, McClendon J, Maloney JP, Janssen WJ, Stenmark KR, Tuder RM, Graham BB. Interstitial macrophage-derived thrombospondin-1 contributes to hypoxia-induced pulmonary hypertension. Cardiovasc Res 2020; 116:2021-2030. [PMID: 31710666 PMCID: PMC7519884 DOI: 10.1093/cvr/cvz304] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/06/2019] [Accepted: 11/08/2019] [Indexed: 01/05/2023] Open
Abstract
AIMS Transforming growth factor-β (TGF-β) signalling is required for chronic hypoxia-induced pulmonary hypertension (PH). The activation of TGF-β by thrombospondin-1 (TSP-1) contributes to the pathogenesis of hypoxia-induced PH. However, neither the cellular source of pathologic TSP-1 nor the downstream signalling pathway that link activated TGF-β to PH have been determined. In this study, we hypothesized that circulating monocytes, which are recruited to become interstitial macrophages (IMs), are the major source of TSP-1 in hypoxia-exposed mice, and TSP-1 activates TGF-β with increased Rho-kinase signalling, causing vasoconstriction. METHODS AND RESULTS Flow cytometry revealed that a specific subset of IMs is the major source of pathologic TSP-1 in hypoxia. Intravenous depletion and parabiosis experiments demonstrated that these cells are circulating prior to recruitment into the interstitium. Rho-kinase-mediated vasoconstriction was a major downstream target of active TGF-β. Thbs1 deficient bone marrow (BM) protected against hypoxic-PH by blocking TGF-β activation and Rho-kinase-mediated vasoconstriction. CONCLUSION In hypoxia-challenged mice, BM derived and circulating monocytes are recruited to become IMs which express TSP-1, resulting in TGF-β activation and Rho-kinase-mediated vasoconstriction.
Collapse
Affiliation(s)
- Rahul Kumar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California, San Francisco, Building 100, 3rd floor, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - Claudia Mickael
- Department of Medicine, Program in Translational Lung Research, Anschutz Medical Campus, Building RC2, 9th floor, 12700 E 19th Ave, Aurora, CO 80045, USA
| | - Biruk Kassa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California, San Francisco, Building 100, 3rd floor, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - Linda Sanders
- Department of Medicine, Program in Translational Lung Research, Anschutz Medical Campus, Building RC2, 9th floor, 12700 E 19th Ave, Aurora, CO 80045, USA
| | - Daniel Hernandez-Saavedra
- Department of Medicine, Program in Translational Lung Research, Anschutz Medical Campus, Building RC2, 9th floor, 12700 E 19th Ave, Aurora, CO 80045, USA
| | - Daniel E Koyanagi
- Department of Medicine, Program in Translational Lung Research, Anschutz Medical Campus, Building RC2, 9th floor, 12700 E 19th Ave, Aurora, CO 80045, USA
| | - Sushil Kumar
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratory, Anschutz Medical Campus, Building RC2, 8th floor, 12700 E 19th Ave, Aurora, CO 80045, USA
| | - Steve C Pugliese
- Department of Medicine, University of Pennsylvania, 831 Gates building, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Stacey Thomas
- Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Jazalle McClendon
- Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - James P Maloney
- Department of Medicine, Anschutz Medical Campus, Building RC2, 9th floor, 12700 E 19th Ave, Aurora, CO 80045, USA
| | - William J Janssen
- Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Kurt R Stenmark
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratory, Anschutz Medical Campus, Building RC2, 8th floor, 12700 E 19th Ave, Aurora, CO 80045, USA
| | - Rubin M Tuder
- Department of Medicine, Program in Translational Lung Research, Anschutz Medical Campus, Building RC2, 9th floor, 12700 E 19th Ave, Aurora, CO 80045, USA
| | - Brian B Graham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California, San Francisco, Building 100, 3rd floor, 1001 Potrero Ave, San Francisco, CA 94110, USA
| |
Collapse
|
42
|
Kopf KW, Harral JW, Staker EA, Summers ME, Petrache I, Kheyfets V, Irwin DC, Majka SM. Optimization of combined measures of airway physiology and cardiovascular hemodynamics in mice. Pulm Circ 2020; 10:2045894020912937. [PMID: 32206308 PMCID: PMC7074541 DOI: 10.1177/2045894020912937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary hypertension may arise as a complication of chronic lung disease typically associated with tissue hypoxia, as well as infectious agents or injury eliciting a type 2 immune response. The onset of pulmonary hypertension in this setting (classified as Group 3) often complicates treatment and worsens prognosis of chronic lung disease. Chronic lung diseases such as chronic obstructive lung disease (COPD), emphysema, and interstitial lung fibrosis impair airflow and alter lung elastance in addition to affecting pulmonary vascular hemodynamics that may culminate in right ventricle dysfunction. To date, functional endpoints in murine models of chronic lung disease have typically been limited to separately measuring airway and lung parenchyma physiology. These approaches may be lengthy and require a large number of animals per experiment. Here, we provide a detailed protocol for combined assessment of airway physiology with cardiovascular hemodynamics in mice. Ultimately, a comprehensive overview of pulmonary function in murine models of injury and disease will facilitate the integration of studies of the airway and vascular biology necessary to understand underlying pathophysiology of Group 3 pulmonary hypertension.
Collapse
Affiliation(s)
- Katrina W Kopf
- Biological Resource Center, National Jewish Health, Denver, USA
| | - Julie W Harral
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, USA
| | - Emily A Staker
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, USA
| | - Megan E Summers
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, USA
| | - Irina Petrache
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, USA
| | - Vitaly Kheyfets
- Department of Bioengineering, Anschutz Medical Campus University of Colorado, Aurora, USA
| | - David C Irwin
- Department of Medicine, Division of Cardiology, Anschutz Medical Campus University of Colorado, Aurora, USA
| | - Susan M Majka
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, USA.,Department of Biomedical Research, National Jewish Health, Denver, USA.,Gates Center for Regenerative Medicine and Stem Cell Biology and Cardiology University of Colorado Medical Center, Aurora, USA
| |
Collapse
|
43
|
Knafl D, Gerges C, King CH, Humbert M, Bustinduy AL. Schistosomiasis-associated pulmonary arterial hypertension: a systematic review. Eur Respir Rev 2020; 29:29/155/190089. [DOI: 10.1183/16000617.0089-2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
Schistosomiasis-associated pulmonary arterial hypertension (Sch-PAH) is a life-threatening complication of chronic hepatosplenic schistosomiasis. It is suggested to be the leading cause of pulmonary arterial hypertension (PAH) worldwide. However, pathophysiological data on Sch-PAH are scarce. We examined the hypothesis that there are pronounced similarities in pathophysiology, haemodynamics, and survival of Sch-PAH and idiopathic PAH (iPAH).This systematic review and meta-analysis was registered in the PROSPERO database (identifier CRD42018104066). A systematic search and review of the literature was performed according to PRISMA guidelines for studies published between 01 January 1990 and 29 June 2018.For Sch-PAH, 18 studies evaluating pathophysiological mechanisms, eight studies on haemodynamics (n=277), and three studies on survival (n=191) were identified. 16 clinical registries reporting data on haemodynamics and survival including a total of 5792 patients with iPAH were included for comparison. Proinflammatory molecular pathways are involved in both Sch-PAH and iPAH. The transforming growth factor (TGF)-β signalling pathway is upregulated in Sch-PAH and iPAH. While there was no difference in mean pulmonary artery pressure (54±17 mmHg versus 55±15 mmHg, p=0.29), cardiac output (4.4±1.3 L·min−1versus 4.1±1.4 L·min−1, p=0.046), and cardiac index (2.6±0.7 L·min−1·m−2versus 2.3±0.8 L·min−1·m−2, p<0.001) were significantly higher in Sch-PAH compared to iPAH, resulting in a lower pulmonary vascular resistance in Sch-PAH (10±6 Woods units versus 13±7 Woods units, p<0.001). 1- and 3-year survival were significantly better in the Sch-PAH group (p<0.001).Sch-PAH and iPAH share common pathophysiological mechanisms related to inflammation and the TGF-β signalling pathway. Patients with Sch-PAH show a significantly better haemodynamic profile and survival than patients with iPAH.
Collapse
|
44
|
Madonna R, Bonitatibus G, Vitulli P, Pierdomenico SD, Galiè N, De Caterina R. Association of the European Society of Cardiology echocardiographic probability grading for pulmonary hypertension with short and mid-term clinical outcomes after heart valve surgery. Vascul Pharmacol 2020; 125-126:106648. [PMID: 31904543 DOI: 10.1016/j.vph.2020.106648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIMS Pulmonary hypertension (PH) is associated with higher mortality and morbidity after valvular heart surgery, mainly through its adverse effect on right ventricular hemodynamic. Recently, the European Society of Cardiology (ESC) PH guidelines introduced a PH probability grading that lists additional parameters related to right ventricular dimensions. We evaluated the impact of such score on short- and mid-term outcomes in patients undergoing left heart valvular surgery. METHODS AND RESULTS We included 60 consecutive patients (mean age 70 ± 9 years) undergoing left heart valvular surgery with or without coronary artery bypass. Patients were divided into 3 groups according to the PH probability: "low" (n = 18), "intermediate" (n = 18), or "high" (n = 24). The high PH probability group had higher rate of World Health Organization-Functional Class (WHO-FC) III and IV, hemodynamic complications, deaths, major bleeding events and infections after heart surgery than the other groups. A "high" PH probability was associated with reduced right ventricular systolic function, as measured by the fractional area change (FAC), but not with the tricuspid annular plane systolic excursion (TAPSE). CONCLUSION The high PH probability as evaluated by the ESC PH echocardiographic probability model, is associated with increased short- and mid-term mortality and morbidity and reduced right ventricular systolic function after cardiac surgery, Thus, additional echocardiographic parameters assessing PH probability are valuable tools to stratify risk in patients undergoing cardiac surgery.
Collapse
Affiliation(s)
| | | | | | | | - Nazzareno Galiè
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Bologna University Hospital, Bologna, Italy
| | | |
Collapse
|
45
|
Kumar R, Mickael C, Kassa B, Sanders L, Koyanagi D, Hernandez‐Saavedra D, Freeman S, Morales‐Cano D, Cogolludo A, McKee AS, Fontenot AP, Butrous G, Tuder RM, Graham BB. Th2 CD4 + T Cells Are Necessary and Sufficient for Schistosoma-Pulmonary Hypertension. J Am Heart Assoc 2019; 8:e013111. [PMID: 31339057 PMCID: PMC6761627 DOI: 10.1161/jaha.119.013111] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
Background Inflammation underlies many forms of pulmonary hypertension (PH), including that resulting from Schistosoma infection, a major cause of PH worldwide. Schistosomiasis-associated PH is proximately triggered by embolization of parasite eggs into the lungs, resulting in localized type 2 inflammation. However, the role of CD4+ T cells in this disease is not well defined. Methods and Results We used a mouse model of schistosomiasis-associated PH, induced by intraperitoneal egg sensitization followed by intravenous egg challenge, with outcomes including right ventricle systolic pressure measured by cardiac catheterization, and cell density and phenotype assessed by flow cytometry. We identified that embolization of Schistosoma eggs into lungs of egg-sensitized mice increased the perivascular density of T-helper 2 (Th2) CD4+ T cells by recruitment of cells from the circulation and triggered type 2 inflammation. Parabiosis confirmed that egg embolization is required for localized type 2 immunity. We found Th2 CD4+ T cells were necessary for Schistosoma-induced PH, given that deletion of CD4+ T cells or inhibiting their Th2 function protected against type 2 inflammation and PH following Schistosoma exposure. We also observed that adoptive transfer of Schistosoma-sensitized CD4+ Th2 cells was sufficient to drive type 2 inflammation and PH. Conclusions Th2 CD4+ T cells are a necessary and sufficient component for the type 2 inflammation-induced PH following Schistosoma exposure.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Claudia Mickael
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Biruk Kassa
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Linda Sanders
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Dan Koyanagi
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | | | - Scott Freeman
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Daniel Morales‐Cano
- Department of Pharmacology and ToxicologySchool of MedicineUniversity Complutense of MadridInstituto de Investigación Sanitaria Gregorio Marañón (IiSGM)MadridSpain
- Ciber Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Angel Cogolludo
- Department of Pharmacology and ToxicologySchool of MedicineUniversity Complutense of MadridInstituto de Investigación Sanitaria Gregorio Marañón (IiSGM)MadridSpain
- Ciber Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Amy S. McKee
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
- Department of Microbiology and ImmunologyUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Andrew P. Fontenot
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
- Department of Microbiology and ImmunologyUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Ghazwan Butrous
- Pharmaceutical SciencesUniversity of KentCanterburyUnited Kingdom
| | - Rubin M. Tuder
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Brian B. Graham
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| |
Collapse
|
46
|
Mickael C, Kumar R, Hernandez-Saavedra D, Kassa B, Sanders L, Koyanagi D, Gu S, Lee MH, Tuder RM, Graham BB. IL-6Ra in Smooth Muscle Cells Protects against Schistosoma- and Hypoxia-induced Pulmonary Hypertension. Am J Respir Cell Mol Biol 2019; 61:123-126. [PMID: 31259624 PMCID: PMC6604223 DOI: 10.1165/rcmb.2018-0277le] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Claudia Mickael
- University of Colorado Anschutz Medical CampusAurora, Colorado
| | - Rahul Kumar
- University of Colorado Anschutz Medical CampusAurora, Colorado
| | | | - Biruk Kassa
- University of Colorado Anschutz Medical CampusAurora, Colorado
| | - Linda Sanders
- University of Colorado Anschutz Medical CampusAurora, Colorado
| | - Dan Koyanagi
- University of Colorado Anschutz Medical CampusAurora, Colorado
| | - Sue Gu
- University of Colorado Anschutz Medical CampusAurora, Colorado
| | - Michael H. Lee
- University of Colorado Anschutz Medical CampusAurora, Colorado
| | - Rubin M. Tuder
- University of Colorado Anschutz Medical CampusAurora, Colorado
| | - Brian B. Graham
- University of Colorado Anschutz Medical CampusAurora, Colorado
| |
Collapse
|
47
|
Shen Q, Chen W, Liu J, Liang Q. Galectin-3 aggravates pulmonary arterial hypertension via immunomodulation in congenital heart disease. Life Sci 2019; 232:116546. [PMID: 31176777 DOI: 10.1016/j.lfs.2019.116546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/24/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is reported to contribute to right ventricular failure and death. PAH of variable degrees is often related to congenital heart disease (CHD). Galectin-3 (Gal-3) has been proven to be of great importance in PAH and CHD. Therefore, we investigated the specific mechanism of Gal-3 in CHD-PAH. Patients with CHD-PAH were enrolled to detect the changes of T-cell subsets, cytokine levels, and other related inflammatory cells in the plasma and to assess the Gal-3 levels in the serum. Next, CHD-PAH mouse models were established and treated with restored or depleted Gal-3 to evaluate the systolic pulmonary artery pressure (sPAP) and right ventricular hypertrophy index (RVHI), to determine levels of IL-4, IL-5, IL-13, AKT and p-AKT along with proliferation of pulmonary artery smooth muscle cells (PASMCs). Finally, we explored the effects of adoptive transfer of CD4+T cells on CHD-PAH in mice with Gal-3 knockdown to further investigate the role of Gal-3 in vivo. Initially, Gal-3 was up-regulated in patients with CHD-PAH. Subsequently, it was demonstrated that restored Gal-3 increased sPAP and RVHI, and promoted proliferation of PASMCs by activating the immune response with elevated levels of IL-4, IL-5, IL-13 and p-AKT. Finally, adoptive transfer of CD4+T cells promoted CD4+T cell perivascular infiltration and the progression of CHD-PAH in mice with Gal-3 knockdown. Collectively, the current study suggests a facilitating role of Gal-3 in pulmonary artery remodeling and progression of CHD-PAH via activation of Th2.
Collapse
Affiliation(s)
- Qiang Shen
- Department of Cardiology, University of South China Affiliated Huaihua Hospital, Huaihua 418000, PR China
| | - Wei Chen
- Department of Geriatrics Medicine, University of South China Affiliated Changsha Central Hospital, Changsha 410004, PR China.
| | - Jun Liu
- Department of Cardiology, University of South China Affiliated Huaihua Hospital, Huaihua 418000, PR China
| | - Qingsong Liang
- Department of Neurosurgery, the Fourth People's Hospital of Huaihua, Huaihua 418000, PR China
| |
Collapse
|
48
|
Butrous G. Schistosome infection and its effect on pulmonary circulation. Glob Cardiol Sci Pract 2019; 2019:5. [PMID: 31024947 PMCID: PMC6472693 DOI: 10.21542/gcsp.2019.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
Schistosomiasis is the most common parasitic disease associated with pulmonary hypertension. It induces remodelling via complex inflammatory processes, which eventually produce the clinical manifestation of pulmonary hypertension. The pulmonary hypertension shows clinical signs and symptoms that are not distinguishable from other forms of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Ghazwan Butrous
- Professor of Cardiopulmonary Sciences, Medway School of Pharmacy, University of Kent, UK and University of Greenwich, Central Ave, Gillingham, Chatham ME4 4BF, Kent, UK
| |
Collapse
|
49
|
Abstract
Abstract
Background
Interleukin (IL)-13 is a regulatory factor of tissue remodeling and is involved in the pathogenesis of pulmonary artery hypertension (PAH). However, the implications of IL-13 in PAH remains uncertain. This article aims to describe the current knowledge on production and function of IL-13 and its receptors in the mechanisms of PAH.
Content
The study materials of this article were based on comprehensive literature retrieval of publications of IL-13 in PAH. These study materials were carefully reviewed, analyzed and discussed.
Summary
IL-13 levels in blood and lung tissue were elevated in both animal models of PAH and patients with PAH in comparison to non-PAH controls. Types I and II IL-13 receptors participate in pulmonary artery remodeling through signal transducer and activator of transcription (STAT)6 or through phosphatidylinositol 3-kinase (PI3K), STAT3 and mitogen activated protein kinase (MAPK) pathways. Oxidant, arginase 2 (Arg2) and hypoxia-inducible factor 1α are involved in the proliferation of pulmonary artery smooth muscle cells.
Outlook
Types I and II IL-13 receptors play an important role in the IL-13 signaling by STAT6 via Janus kinase kinases, and by PI3K, STAT3 and MAPK pathways, respectively. Alternative pathways, including oxidant, Arg2 and hypoxia-inducible factor 1α might be also involved in the pathological process of PAH development. Investigational therapies by inflammatory suppression or thrombolytic and anticoagulant agents could inhibit intimal hyperplasia of the pulmonary arteries and suppress pulmonary vasculature remodeling. Drug research and development oriented by this hypothesis would confer benefits to the treatment of PAH.
Collapse
|
50
|
Figliuolo da Paz VR, Figueiredo-Vanzan D, dos Santos Pyrrho A. Interaction and involvement of cellular adhesion molecules in the pathogenesis of Schistosomiasis mansoni. Immunol Lett 2019; 206:11-18. [DOI: 10.1016/j.imlet.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022]
|