1
|
Fayon M, Hill K, Waldron M, Messore B, Riberi L, Svedberg M, Lammertyn E, Fustik S, Gramegna A, Stahl M, Kerpel-Fronius A, Balbi M, Ciet P, Chassagnon G, Ferrero C, Burgel PR, Sutharsan S, Opitz M, Andrinopoulou ER, Dournes G, Maher M, Duckers J, Tiddens H, Sermet I. Guidance for chest-CT in children and adults with cystic fibrosis: A European perspective. Respir Med 2025; 241:108076. [PMID: 40189162 DOI: 10.1016/j.rmed.2025.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
The European Cystic Fibrosis Society-Clinical Trials Network (ECFS-CTN) herein proposes guidance for the use of chest CT-scans for the regular monitoring of lung disease in CF. Statements were completed in a 3-step process: the questions were identified via an anonymous online survey, followed by a comprehensive literature search, and a final Delphi process. The guidance recommends the use of ultra-low dose CT scans (effective radiation dose, 0.08 mSv; equivalent to 2 to 4 chest X-rays), tracking of patients' cumulative radiation and effective communication strategies using "de-medicalized" information for shared decision making. Chest CT scans (with lung volume monitoring) are not recommended systematically in both children and adults. Ultimate responsibility for justifying a chest CT scan lies with the individual professionals directly involved, the final decision being influenced by indications, costs, expertise, available material, resources and/or the patient's values, as well as possible impact on treatment modalities.
Collapse
Affiliation(s)
- Michael Fayon
- CHU Bordeaux, Département de Pédiatrie, CIC-P INSERM 1401 & Université de Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, F-33000, Bordeaux, France.
| | - Kate Hill
- European Cystic Fibrosis Society, Karup, Denmark; Northern Ireland Clinical Research Facility, The Wellcome-Wolfson Institute of Experimental Medicine, Queen's University, Lisburn Road, Belfast, Northern Ireland, UK.
| | - Michael Waldron
- Cork Centre for Cystic Fibrosis, Cork University Hospital, University College Cork, Cork, Ireland; HRB Clinical Research Facility, University College Cork, Cork, Ireland; Department of Radiology, Cork University Hospital, Cork, Ireland
| | - Barbara Messore
- AOU San Luigi Gonzaga, Adult CF Centre-Pulmonology Unit, Orbassano, Torino, Italy
| | - Luca Riberi
- AOU San Luigi Gonzaga, Adult CF Centre-Pulmonology Unit, Orbassano, Torino, Italy
| | - Marcus Svedberg
- Department of Pediatrics, Institute of Clinical Science at The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Pediatrics, Queen Silvia's Children Hospital, Gothenburg, Sweden
| | - Elise Lammertyn
- Cystic Fibrosis Europe, Brussels, Belgium and the Belgian CF Association, Brussels, Belgium
| | - Stojka Fustik
- Center for Cystic Fibrosis, University Children's Clinic, Skopje, North Macedonia
| | - Andrea Gramegna
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Anna Kerpel-Fronius
- Department of Radiology, National Korányi Institute for Pulmonology, Budapest, Hungary
| | - Maurizio Balbi
- Radiology Unit, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Pierluigi Ciet
- Department of Paediatrics, Division of Respiratory Medicine and Allergology, Sophia Children's Hospital, Erasmus MC, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Guillaume Chassagnon
- Department of Radiology, Hôpital Cochin, AP-HP, Université Paris Cité, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Cinzia Ferrero
- AOU Città della Salute e della Scienza di Torino, Regina Margherita Children's Hospital - Pediatric Pulmonology/Pediatric CF Centre, Torino, Italy
| | - Pierre-Régis Burgel
- Department of Respiratory Medicine and National Cystic Fibrosis Reference Centre, Groupe Hospitalier Cochin-Hôtel Dieu, AP-HP, Université Paris Cité and Institut Cochin, Inserm U1016, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Sivagurunathan Sutharsan
- Department of Pulmonary Medicine, University Hospital Essen - Ruhrlandklinik, Adult Cystic Fibrosis Center, University of Duisburg-Essen, Essen, Germany
| | - Marcel Opitz
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Eleni-Rosalina Andrinopoulou
- Department of Biostatistics, Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Gael Dournes
- Univ. Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
| | - Michael Maher
- Cork Centre for Cystic Fibrosis, Cork University Hospital, University College Cork, Cork, Ireland; HRB Clinical Research Facility, University College Cork, Cork, Ireland; Department of Radiology, Cork University Hospital, Cork, Ireland
| | - Jamie Duckers
- All Wales Adult CF Centre, Cardiff and Vale University Health Board, Cardiff, UK
| | | | - Isabelle Sermet
- Service de Pneumologie et Allergologie Pédiatriques, Centre de Référence Maladies Rares, Hôpital Necker Enfants Malades, Paris, 75015, France; INSERM U1151, Institut Necker Enfants Malades, Université Paris Cité, Paris, 75743, France; European Reference Network-Lung, Frankfurt, Germany
| |
Collapse
|
2
|
García-Zapata PGRC, Takahashi MS, da Silva Filho LVRF. The bad bug: early MRSA infections in children with CF are associated with worse respiratory outcomes. Respir Med 2025; 243:108109. [PMID: 40273997 DOI: 10.1016/j.rmed.2025.108109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/11/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) commonly occur in cystic fibrosis (CF) individuals with advanced disease, but their role in younger CF children is unknown. This study aimed to investigate clinical, functional, and radiological outcomes of CF children with early MRSA colonization. METHODS This retrospective cohort study compared CF individuals with MRSA isolation in cultures from respiratory secretions during the first 5 years of life (MRSA group) to age-matched controls. Data from the Brazilian CF Patient Registry and electronic medical records were used. Nutritional outcomes, lung function results between 6 and 7 years, and the first chest CT scan results were comparatively analysed. A linear regression model verified associations between MRSA identification before age 5 and potential confounders with lung function results. RESULTS The MRSA group (n = 32) had greater oral antibiotic exposure but similar hospital admission rates compared to controls (n = 49). The proportion of cultures with methicillin-sensitive S. aureus was greater in the control group (48 % vs 29.4 %, p = 0.009). The MRSA group had lower FEV1 (80.02 % vs 92.51 %, p = 0.023) and higher bronchiectasis scores on chest CT scans (1.9 vs 0.38, p = 0.031). MRSA identification before age 5 was significantly associated with an average 10.1 % (95 %CI -19.518 to -0.586, p = 0.038) decrease of FEV1. CONCLUSIONS Early MRSA identification was associated with increased exposure to antibiotics, higher bronchiectasis scores and lower FEV1 values at age 6. While these findings cannot define a relationship of causality, they provide insight into the associations between early MRSA infection and CF lung disease.
Collapse
|
3
|
Vermaut A, Geudens V, Willems L, Aerts G, Kerckhof P, Hooft C, Beeckmans H, Kaes J, Jin X, De Fays C, Mohamady Y, Van Slambrouck J, Aversa L, Verhaegen J, Cortesi EE, Weynand B, Boone MN, McDonough JE, Van Raemdonck DE, Ceulemans LJ, Wuyts WA, Vos R, Gayan-Ramirez G, Vermeulen F, Proesmans M, Vanaudenaerde BM, Dupont LJ, Boon M. Airway Remodeling in Cystic Fibrosis Is Heterogeneous. Ann Am Thorac Soc 2025; 22:523-532. [PMID: 39700513 DOI: 10.1513/annalsats.202404-446oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/19/2024] [Indexed: 12/21/2024] Open
Abstract
Rationale: Cystic fibrosis (CF) is characterized by bronchiectasis on imaging, while functionally evolving toward obstructive impairment. Despite its assumed importance in CF, small airway remodeling and its relation to bronchiectasis remains poorly understood. Objectives: The aim of our study was to explore both large and small airway disease morphometrically, by using detailed imaging techniques, such as ex vivo high-resolution computed tomography (HRCT) and micro-computed tomography (μCT), and histological analysis in advanced CF. Methods: On HRCT (600 μm; CF, n = 21; control, n = 6) and μCT (150 μm; CF, n = 3; control, n = 1) scans of inflated explanted lungs, the ratio of visible airway volume to total lung volume (AV%) was calculated as a marker of bronchiectasis, while airway segmentation was used for generation analysis. Clinical data were retrospectively collected. On μCT (8.5 μm) images of lung cores (±2.8 cm3), extracted randomly from each lobe (three per lobe), distal airway (DA) diameter, number of airway collapses, and number of open terminal bronchioles per milliliter were analyzed. Morphometric analysis was supplemented with histological analysis of DA collapse. Results: AV% on HRCT was heterogeneous among CF lungs (0.7-4.6%), overlapping with controls (0.4-1.2%). However, the pattern of airway loss on μCT was homogeneous among CF lungs and most pronounced from generations 9-16. AV% did not correlate with the number of open terminal bronchioles per milliliter or percentage predicted forced expiratory volume in 1 second, which correlated with each other. Open DAs in CF lungs were narrowed compared with DA in controls. On the other hand, collapsed DAs in CF lungs showed varying degrees of proximal dilation, with DA diameter correlating with AV%. On histology, collapsed CF DAs showed constrictive bronchiolitis. Conclusions: Airway remodeling in end-stage CF is heterogeneous, ranging from minimal bronchiectasis, overlapping with control lungs, to extensive bronchiectasis with small airway dilation. However, the degree of bronchiectasis is unrelated to functional impairment or the amount of small airway loss, underscoring the importance of small airway disease.
Collapse
Affiliation(s)
- Astrid Vermaut
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
- Department of Development and Regeneration, Woman and Child Unit, and
- Department of Pediatric Pneumology, Cystic Fibrosis Center
| | - Vincent Geudens
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
| | - Lynn Willems
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
| | - Gitte Aerts
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
| | - Pieterjan Kerckhof
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
| | - Charlotte Hooft
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
| | - Hanne Beeckmans
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
- Department of Pneumology and Internal Medicine, and
| | - Janne Kaes
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
| | - Xin Jin
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Charlotte De Fays
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
| | - Yousry Mohamady
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
| | - Jan Van Slambrouck
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Lucia Aversa
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
| | - Janne Verhaegen
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
| | - Emanuela E Cortesi
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
| | - Birgit Weynand
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Matthieu N Boone
- Department of Physics and Astronomy, Ghent University Center for X-Ray Tomography, Radiation Physics, Ghent University, Ghent, Belgium; and
| | - John E McDonough
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dirk E Van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Wim A Wuyts
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
- Department of Pneumology and Internal Medicine, and
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
- Department of Pneumology and Internal Medicine, and
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
| | | | | | - Bart M Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
| | - Lieven J Dupont
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism, and Aging
- Department of Pneumology and Internal Medicine, and
| | - Mieke Boon
- Department of Development and Regeneration, Woman and Child Unit, and
- Department of Pediatric Pneumology, Cystic Fibrosis Center
| |
Collapse
|
4
|
Esteban Baloira L, Zamarrón de Lucas E, Segura CC, Lerín Baratas M, Fernández Velilla M, Torres Sánchez MI, Pinilla Fernández I, Mariscal Aguilar P, Álvarez-Sala Walther R, Prados Sánchez C. Association Between Lung Parenchymal Attenuation in Computed Tomography and Airflow Limitation in Adults with Cystic Fibrosis. Diagnostics (Basel) 2025; 15:107. [PMID: 39795635 PMCID: PMC11720648 DOI: 10.3390/diagnostics15010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/25/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Objectives: To determine the association between airflow limitation and the quantification of lung attenuation in computed tomography (CT) in adult patients with cystic fibrosis (CF). Methods: A cross-sectional study in a single center between January 2013 and December 2018 in adult patients with stable CF. We collected clinical data and the results of spirometry and plethysmography. A chest CT at inspiration and expiration, using a specific software that automatically measured the lung attenuation, was performed. Results: In total, 73 patients (63% males) were included. The mean age was 31.6 ± 12.3 years and the FEV1 was 67.8 ± 25.9% pred. An airflow limitation was found in 63%, the mean residual volume was 159.9% pred, and air trapping was observed in 50 (87.7%) of the patients. The patients with airflow limitations showed a higher bulla index and a percentage of lung voxels in the range of emphysema. The FEV1 and the FEV1/FVC correlated with the percentage of the lungs at a high attenuation value (HAV), the range of emphysema, and the bulla index at inspiration, as well as the mean lung density at expiration and the inspiratory-expiratory variation of the mean lung density (MLDi-e). Finally, in the multivariate model, the MLDi-e and the HAV at inspiration were associated with airflow limitations. Conclusions: The measurements obtained from the automated quantification of lung parenchymal attenuation predicts airflow limitation in CF.
Collapse
Affiliation(s)
- Lucía Esteban Baloira
- Servicio de Neumología, Hospital Universitario La Paz, IdiPAZ, CIBERES, Universidad Autónoma de Madrid, 28046 Madrid, Spain; (E.Z.d.L.); (C.C.S.); (M.L.B.); (P.M.A.); (R.Á.-S.W.); (C.P.S.)
| | - Ester Zamarrón de Lucas
- Servicio de Neumología, Hospital Universitario La Paz, IdiPAZ, CIBERES, Universidad Autónoma de Madrid, 28046 Madrid, Spain; (E.Z.d.L.); (C.C.S.); (M.L.B.); (P.M.A.); (R.Á.-S.W.); (C.P.S.)
| | - Carlos Carpio Segura
- Servicio de Neumología, Hospital Universitario La Paz, IdiPAZ, CIBERES, Universidad Autónoma de Madrid, 28046 Madrid, Spain; (E.Z.d.L.); (C.C.S.); (M.L.B.); (P.M.A.); (R.Á.-S.W.); (C.P.S.)
| | - Macarena Lerín Baratas
- Servicio de Neumología, Hospital Universitario La Paz, IdiPAZ, CIBERES, Universidad Autónoma de Madrid, 28046 Madrid, Spain; (E.Z.d.L.); (C.C.S.); (M.L.B.); (P.M.A.); (R.Á.-S.W.); (C.P.S.)
| | - María Fernández Velilla
- Servicio de Radiodiagnóstico, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, 28046 Madrid, Spain; (M.F.V.); (M.I.T.S.); (I.P.F.)
| | - María Isabel Torres Sánchez
- Servicio de Radiodiagnóstico, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, 28046 Madrid, Spain; (M.F.V.); (M.I.T.S.); (I.P.F.)
| | - Inmaculada Pinilla Fernández
- Servicio de Radiodiagnóstico, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, 28046 Madrid, Spain; (M.F.V.); (M.I.T.S.); (I.P.F.)
| | - Pablo Mariscal Aguilar
- Servicio de Neumología, Hospital Universitario La Paz, IdiPAZ, CIBERES, Universidad Autónoma de Madrid, 28046 Madrid, Spain; (E.Z.d.L.); (C.C.S.); (M.L.B.); (P.M.A.); (R.Á.-S.W.); (C.P.S.)
| | - Rodolfo Álvarez-Sala Walther
- Servicio de Neumología, Hospital Universitario La Paz, IdiPAZ, CIBERES, Universidad Autónoma de Madrid, 28046 Madrid, Spain; (E.Z.d.L.); (C.C.S.); (M.L.B.); (P.M.A.); (R.Á.-S.W.); (C.P.S.)
| | - Concepción Prados Sánchez
- Servicio de Neumología, Hospital Universitario La Paz, IdiPAZ, CIBERES, Universidad Autónoma de Madrid, 28046 Madrid, Spain; (E.Z.d.L.); (C.C.S.); (M.L.B.); (P.M.A.); (R.Á.-S.W.); (C.P.S.)
| |
Collapse
|
5
|
Zwitserloot AM, Aziz SZ, Chen Y, Bannier MAGE, Janssens HM, Merkus PFJM, Nuijsink M, Terheggen‐Lagro SWJ, Tiddens HAWM, Zomer‐ van Ommen DD, Vonk JM, de Winter‐ de Groot KM, Willemse BWM, Koppelman GH. Introduction of Ivacaftor/Lumacaftor in Children With Cystic Fibrosis Homozygous for F508del in the Netherlands: A Nationwide Real-Life Study. Pediatr Pulmonol 2025; 60:e27473. [PMID: 39785291 PMCID: PMC11715133 DOI: 10.1002/ppul.27473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Lumacaftor/ivacaftor (lum/iva) was introduced in the Netherlands in 2017. We investigated 1-year efficacy of lum/iva on lung function and small airway and structural lung disease evaluated by multiple breath nitrogen washout and CT scan. Additionally, we investigated effects of lum/iva on exacerbations, anthropometry, sweat chloride and safety in children with CF in the Netherlands. METHODS Children with CF aged 6-18 years and homozygous for F508del treated in one of the seven Dutch CF centers for at least 12 months were eligible. Data were extracted from the Dutch CF Registry and electronic patient records. Primary outcome was change in percent predicted FEV1 (ppFEV1) after 12 months. RESULTS Nationwide, 247 children with CF were eligible for lum/iva. Eight patients discontinued lum/iva due to side effects. In total, 223/247 children (90.3%) were evaluated. Mean (range) age at baseline was 11.0 (6.0-17.1) years. There was no change in FEV1 after 12 months of lum/iva. In a subgroup, markers of small airway function and structural lung disease, such as LCI (n = 28), mean change (SD) -10.0% (15.8), and bronchus-artery (BA) analysis on CT scan (n = 81), showed significant improvement (p < 0.01). Moreover, BMI (n = 192), exacerbations (n = 219) and sweat chloride measurements (n = 105) improved. CONCLUSION Lum/iva was generally well tolerated in a real-life, nationwide pediatric cohort. The efficacy of lum/iva was comparable to phase 3 studies in children. LCI and BA analysis as markers of small airway and structural lung disease showed significant improvement which indicates the importance of these parameters to evaluate treatment effects of CF modulators in children.
Collapse
Affiliation(s)
- A. M. Zwitserloot
- Beatrix Children's Hospital Department of Pediatric Pulmonology and Pediatric AllergyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| | - S. Z. Aziz
- Beatrix Children's Hospital Department of Pediatric Pulmonology and Pediatric AllergyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| | - Y. Chen
- Department of Pediatrics, div of Respiratory Medicine and AllergologyErasmus University Medical Center, Sophia Children's HospitalRotterdamThe Netherlands
- Department of Radiology and Nuclear MedicineErasmus University Medical Center, Sophia Children's HospitalRotterdamThe Netherlands
| | - M. A. G. E. Bannier
- Department of Pediatric Pulmonology, MosaKids Children's HospitalMaastricht University Medical CenterMaastrichtThe Netherlands
| | - H. M. Janssens
- Department of Pediatrics, div of Respiratory Medicine and AllergologyErasmus University Medical Center, Sophia Children's HospitalRotterdamThe Netherlands
| | - P. F. J. M. Merkus
- Department of Pediatric Pulmonology, Amalia Children's HospitalRadboud University Medical CenterNijmegenThe Netherlands
| | - M. Nuijsink
- Juliana Children's Hospital, Haga Teaching HospitalThe HagueThe Netherlands
| | - S. W. J. Terheggen‐Lagro
- Department of Pediatric Pulmonology, Emma Children's HospitalAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - H. A. W. M. Tiddens
- Department of Pediatrics, div of Respiratory Medicine and AllergologyErasmus University Medical Center, Sophia Children's HospitalRotterdamThe Netherlands
- Department of Radiology and Nuclear MedicineErasmus University Medical Center, Sophia Children's HospitalRotterdamThe Netherlands
- ThironaNijmegenThe Netherlands
| | | | - J. M. Vonk
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- Department of EpidemiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - K. M. de Winter‐ de Groot
- Department of Pediatric Pulmonology, Wilhelmina Children's HospitalUniversity Medical CenterUtrecht UniversityUtrechtThe Netherlands
| | - B. W. M. Willemse
- Beatrix Children's Hospital Department of Pediatric Pulmonology and Pediatric AllergyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| | - G. H. Koppelman
- Beatrix Children's Hospital Department of Pediatric Pulmonology and Pediatric AllergyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| |
Collapse
|
6
|
Pieters AL, Lv Q, Meerburg JJ, van der Veer T, Andrinopoulou ER, Ciet P, Chalmers JD, Loebinger MR, Haworth CS, Elborn JS, Tiddens HA. Automated method of bronchus and artery dimension measurement in an adult bronchiectasis population. ERJ Open Res 2024; 10:00231-2024. [PMID: 39655177 PMCID: PMC11626611 DOI: 10.1183/23120541.00231-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/10/2024] [Indexed: 12/12/2024] Open
Abstract
Aim Bronchiectasis (BE) is a disease defined by irreversible dilatation of the airway. Computed tomography (CT) plays an important role in the detection and quantification of BE. The aim of this study was three-fold: 1) to assess bronchus-artery (BA) dimensions using fully automated software in a cohort of BE disease patients; 2) to compare BA dimensions with semi-quantitative BEST-CT (Bronchiectasis Scoring Technique for CT) scores for BE and bronchial wall thickening; and 3) to explore the structure-function relationship between BA-method lumen dimensions and spirometry outcomes. Methods Baseline CTs of BE patients who participated in a clinical trial were collected retrospectively. CTs were analysed manually with the BEST-CT scoring system and automatically using LungQ (v.2.1.0.1, Thirona, The Netherlands), which measures the following BA dimensions: diameters of bronchial outer wall (Bout), bronchial inner wall (Bin) and artery (A), and bronchial wall thickness (Bwt) and computes BA ratios (Bout/A and Bin/A) to assess bronchial widening. To assess bronchial wall thickness, we used the Bwt/A ratio and the ratio between the bronchus wall area (Bwa) and the area defined by the outer airway (Boa) (Bwa/Boa). Results In total, 65 patients and 16 900 BA pairs were analysed by the automated BA method. The median (range) percentage of BA pairs defined as widened was 69 (55-84)% per CT using a cut-off value of 1.5 for Bout/A, and 53 (42-65)% of bronchial wall were thickened using a cut-off value of 0.14 for Bwt/A. BA dimensions were correlated with comparable outcomes for the BEST-CT scoring method with a correlation coefficient varying between 0.21 to 0.51. The major CT BA determinants of airflow obstruction were bronchial wall thickness (p=0.001) and a narrower bronchial inner diameter (p=0.003). Conclusion The automated BA method, which is an accurate and sensitive tool, demonstrates a stronger correlation between visual and automated assessment and lung function when using a higher cut-off value to define bronchiectasis.
Collapse
Affiliation(s)
- Angelina L.P. Pieters
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Rotterdam, The Netherlands
- Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Department of Pediatrics, division of Respiratory Medicine and Allergology, Rotterdam, The Netherlands
- These authors contributed equally
| | - Qianting Lv
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Rotterdam, The Netherlands
- Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Department of Pediatrics, division of Respiratory Medicine and Allergology, Rotterdam, The Netherlands
- These authors contributed equally
| | - Jennifer J. Meerburg
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Rotterdam, The Netherlands
- Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Department of Pediatrics, division of Respiratory Medicine and Allergology, Rotterdam, The Netherlands
| | - Tjeerd van der Veer
- Erasmus MC, University Medical Center Rotterdam, Department of Respiratory Medicine, Rotterdam, The Netherlands
| | - Eleni-Rosalina Andrinopoulou
- Erasmus MC, University Medical Center Rotterdam, Department of Biostatistics. Department of Epidemiology, Rotterdam, The Netherlands
| | - Pierluigi Ciet
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Rotterdam, The Netherlands
- Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| | - James D. Chalmers
- College of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Michael R. Loebinger
- Host Defence Unit, Royal Brompton Hospital, London, UK
- NHLI, Imperial College London, London, UK
| | - Charles S. Haworth
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
- University of Cambridge, Cambridge, UK
| | - J. Stuart Elborn
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Harm A.W.M. Tiddens
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Rotterdam, The Netherlands
- Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Department of Pediatrics, division of Respiratory Medicine and Allergology, Rotterdam, The Netherlands
- Thirona, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Plasschaert LW, MacDonald KD, Moffit JS. Current landscape of cystic fibrosis gene therapy. Front Pharmacol 2024; 15:1476331. [PMID: 39439894 PMCID: PMC11493704 DOI: 10.3389/fphar.2024.1476331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Cystic fibrosis is a life-threatening disease that is caused by mutations in CFTR, a gene which encodes an ion channel that supports proper function of several epithelial tissues, most critically the lung. Without CFTR, airway barrier mechanisms are impaired, allowing for chronic, recurrent infections that result in airway remodeling and deterioration of lung structure and function. Small molecule modulators can rescue existing, defective CFTR protein; however, they still leave a subset of people with CF with no current disease modifying treatments, aside from lung transplantation. Gene therapy directed to the lung is a promising strategy to modify CF disease in the organ most associated with morbidity and mortality. It is accomplished through delivery of a CFTR transgene with an airway permissive vector. Despite more than three decades of research in this area, a lung directed gene therapy has yet to be realized. There is hope that with improved delivery vectors, sufficient transduction of airway cells can achieve therapeutic levels of functional CFTR. In order to do this, preclinical programs need to meet a certain level of CFTR protein expression in vitro and in vivo through improved transduction, particularly in relevant airway cell types. Furthermore, clinical programs must be designed with sensitive methods to detect CFTR expression and function as well as methods to measure meaningful endpoints for lung structure, function and disease. Here, we discuss the current understanding of how much and where CFTR needs to be expressed, the most advanced vectors for CFTR delivery and clinical considerations for detecting CFTR protein and function in different patient subsets.
Collapse
Affiliation(s)
| | - Kelvin D. MacDonald
- Carbon Biosciences, Waltham, MA, United States
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | | |
Collapse
|
8
|
Ren CL, Nasr SZ, Slaven JE, Joshi A, Mahani MG, Clem C, Cooper M, Farr S, MacAskill CJ, Keshock E, Nicholas JL, Ferrebee M, McBennett K, Flask CA. Lung T1 MRI assessments in children with mild cystic fibrosis lung disease. Pediatr Pulmonol 2024; 59:2464-2471. [PMID: 38695557 DOI: 10.1002/ppul.27039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 03/23/2024] [Accepted: 04/19/2024] [Indexed: 11/18/2024]
Abstract
RATIONALE Lung T1 MRI is a potential method to assess cystic fibrosis (CF) lung disease that is safe, quick, and widely available, but there are no data in children with mild CF lung disease. OBJECTIVE Assess the ability of lung T1 MRI to detect abnormalities in children with mild CF lung disease. METHODS We performed T1 MRI, multiple breath washout (MBW), chest computed tomography (CT), and spirometry in a cohort of 45 children with mild CF lung disease (6-11 years of age). MAIN RESULTS Despite mean normal ppFEV1 values, the majority of children with CF in this study exhibited mild lung disease evident in lung clearance index (LCI) measured by MBW, chest CT Brody scores, and percent normal lung perfusion (%NLP) measured by T1 MRI. The %NLP correlated with chest CT Brody scores, as did LCI, but %NLP and LCI did not correlate with each other. Analysis of the Brody subscores showed that %NLP and LCI largely correlated with different Brody subscores. CONCLUSIONS T1 MRI can detect mild CF lung disease in children and correlates with chest CT findings. The %NLP from T1 MRI and LCI correlate with different chest CT Brody subscores, suggesting they provide complementary information about CF lung disease.
Collapse
Affiliation(s)
- Clement L Ren
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samya Z Nasr
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - James E Slaven
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aparna Joshi
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Maryam Ghadimi Mahani
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Advanced Radiology Services, Lansing, Michigan, USA
| | - Charles Clem
- Division of Pulmonary, Allergy, and Sleep Medicine, Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Matthew Cooper
- Division of Pulmonary, Allergy, and Sleep Medicine, Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Susan Farr
- Imaging Research Core, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Elise Keshock
- Imaging Research Core, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jennifer L Nicholas
- Department of Radiology, Rainbow Babies and Children's Hospital, University Hospitals - Cleveland Medical Center, Cleveland, Ohio, USA
| | - Matthew Ferrebee
- Department of Radiology, Rainbow Babies and Children's Hospital, University Hospitals - Cleveland Medical Center, Cleveland, Ohio, USA
| | - Kimberly McBennett
- Imaging Research Core, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Rainbow Babies and Children's Hospital, University Hospitals - Cleveland Medical Center, Cleveland, Ohio, USA
| | - Chris A Flask
- Imaging Research Core, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Short C, Semple T, Abkir M, Padley S, Rosenthal M, McNally P, Tiddens H, Caudri D, Bush A, Davies JC. Silence of the lungs: comparing measures of slow and noncommunicating lung units from pulmonary function tests with computed tomography. J Appl Physiol (1985) 2024; 137:883-891. [PMID: 39116346 PMCID: PMC11486470 DOI: 10.1152/japplphysiol.00340.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024] Open
Abstract
Multiple breath washout (MBW) has successfully assessed the silent lung zone particularly in cystic fibrosis lung disease, however, it is limited to the communicating lung only. There are a number of different pulmonary function methods that can assess what is commonly referred to as trapped air, with varying approaches and sensitivity. Twenty-five people with cystic fibrosis (pwCF) underwent MBW, spirometry, body plethysmography, and spirometry-controlled computed tomography (spiro-CT) on the same day. PwCF also performed extensions to MBW that evaluate air trapping, including our novel extension (MBWShX), which reveals the extent of underventilated lung units (UVLU). In addition, we used two previously established 5-breath methods that provide a volume of trapped gas (VTG). We used trapped air % from spiro-CT as the gold standard for comparison. UVLU derived from MBWShX showed the best agreement with trapped air %, both in terms of correlation (RS 0.89, P < 0.0001) and sensitivity (79%). Bland-Altman analysis demonstrated a significant underestimation of the VTG by both 5-breath methods (-249 mL [95% CI -10,796; 580 mL] and -203 mL [95% CI -997; 591 mL], respectively). Parameters from both spirometry and body plethysmography were suboptimal at assessing this pathophysiology. The parameters from MBWShX demonstrated the best relationship with spiro-CT and had the best sensitivity compared with the other pulmonary function methods assessed in this study. MBWShX shows promise to assess and monitor this critical pathophysiological feature, which has been shown to be a driver of lung disease progression in pwCF.NEW & NOTEWORTHY We consider the term "trapped air" either in the use of imaging or pulmonary function testing, something of a misnomer that can lead to an inaccurate assessment of an important physiological feature. Instead, we propose the term underventilated lung units (UVLU). Of the many pulmonary function methods we used in this study, we found that the use of multiple breath washout with short extension (MBWShX) to be the best nonimaging method.
Collapse
Affiliation(s)
- Christopher Short
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Hospitals, Guys and St Thomas' Trust, London, United Kingdom
- European Cystic Fibrosis Society, Lung Clearance Index Core Facility, London, United Kingdom
| | - Thomas Semple
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Hospitals, Guys and St Thomas' Trust, London, United Kingdom
- Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Mary Abkir
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Hospitals, Guys and St Thomas' Trust, London, United Kingdom
- European Cystic Fibrosis Society, Lung Clearance Index Core Facility, London, United Kingdom
| | - Simon Padley
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Hospitals, Guys and St Thomas' Trust, London, United Kingdom
| | - Mark Rosenthal
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Hospitals, Guys and St Thomas' Trust, London, United Kingdom
| | - Paul McNally
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Children's Health Ireland, Dublin, Ireland
| | - Harm Tiddens
- Department of Paediatric Pulmonology and Allergology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Thirona, Nijmegen, The Netherlands
| | - Daan Caudri
- Department of Paediatric Pulmonology and Allergology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Hospitals, Guys and St Thomas' Trust, London, United Kingdom
- Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Hospitals, Guys and St Thomas' Trust, London, United Kingdom
- European Cystic Fibrosis Society, Lung Clearance Index Core Facility, London, United Kingdom
| |
Collapse
|
10
|
Chen Y, Charbonnier JP, Andrinopoulou ER, Sly PD, Stick SM, Tiddens HAWM. Azithromycin reduces bronchial wall thickening in infants with cystic fibrosis. J Cyst Fibros 2024; 23:870-873. [PMID: 38584038 DOI: 10.1016/j.jcf.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND COMBAT-CF showed that children aged 0-3 years treated with azithromycin did clinically better than placebo but there was no effect on CT-scores. We reanalysed CTs using an automatic bronchus-artery (BA) analysis. METHOD Inspiratory and expiratory CTs at 12 and 36 months were analysed. BA-analysis measures BA-diameters: bronchial outer wall (Bout), bronchial inner wall (Bin), artery (A), and bronchial wall thickness (Bwt) and computes BA-ratios: Bout/A and Bin/A for bronchial widening, Bwt/A and Bwa/Boa (bronchial wall area/bronchial outer area) for bronchial wall thickening. Low attenuation regions (LAR) were analysed using an automatic method. Mixed-effect model was used to compare BA-outcomes at 36 months between treatment groups. RESULTS 228 CTs (59 placebo; 66 azithromycin) were analysed. The azithromycin group had lower Bwa/Boa (p = 0.0034) and higher Bin/A (p = 0.001) relative to placebo. Bout/A (p = 0.0088) was higher because of a reduction in artery diameters which correlated to a reduction in LAR. CONCLUSION Azithromycin-treated infants with CF show a reduction in bronchial wall thickness and possibly a positive effect on lung perfusion.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Paediatrics, Division of Respiratory Medicine and Allergology, Sophia Children's Hospital, Erasmus MC, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | | | - Eleni-Rosalina Andrinopoulou
- Department of Biostatistics, Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia; Health and Medical Sciences, University of Western Australia, Perth, WA, Australia; Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, WA, Australia
| | - Harm A W M Tiddens
- Department of Paediatrics, Division of Respiratory Medicine and Allergology, Sophia Children's Hospital, Erasmus MC, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands; Thirona, Nijmegen, the Netherlands.
| |
Collapse
|
11
|
Bugenhagen SM, Grant JCE, Rosenbluth DB, Bhalla S. Update on the Role of Chest Imaging in Cystic Fibrosis. Radiographics 2024; 44:e240008. [PMID: 39172707 DOI: 10.1148/rg.240008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Cystic fibrosis is a genetic disease with multisystem involvement and associated morbidity and mortality that are most directly related to progressive lung disease. The hallmark findings of cystic fibrosis in the lungs are chronic inflammation and infection, leading to progressive loss of pulmonary function and often requiring lung transplant. Predominant lung findings include mucous plugging, bronchiectasis, and air trapping, often with associated atelectasis, consolidation, and emphysema; these findings form the basis of several clinical scoring systems that are used for imaging assessment. Recently, there have been major breakthroughs in the pharmacologic management of cystic fibrosis, including highly effective modulator therapies that directly target the underlying cystic fibrosis transmembrane conductance regulator molecular defect, often leading to remarkable improvements in lung function and quality of life with corresponding significant improvements in imaging markers. The authors review current guidelines regarding cystic fibrosis with respect to disease monitoring, identifying complications, and managing advanced lung disease. In addition, they discuss the evolving role of imaging, including current trends, emerging technologies, and proposed updates to imaging guidelines endorsed by international expert committees on cystic fibrosis, which favor increased use of cross-sectional imaging to enable earlier detection of structural changes in early disease and more sensitive detection of acute changes in advanced disease. It is important for radiologists to be familiar with these trends and updates so that they can most effectively assist clinicians in guiding the management of patients with cystic fibrosis in all stages of disease. ©RSNA, 2024.
Collapse
Affiliation(s)
- Scott M Bugenhagen
- From the Mallinckrodt Institute of Radiology (S.M.B, J.C.E.G, S.B.) and Department of Medicine (D.B.R.), Washington University, 660 S Euclid Ave, St. Louis, MO 63110
| | - Jacob C E Grant
- From the Mallinckrodt Institute of Radiology (S.M.B, J.C.E.G, S.B.) and Department of Medicine (D.B.R.), Washington University, 660 S Euclid Ave, St. Louis, MO 63110
| | - Daniel B Rosenbluth
- From the Mallinckrodt Institute of Radiology (S.M.B, J.C.E.G, S.B.) and Department of Medicine (D.B.R.), Washington University, 660 S Euclid Ave, St. Louis, MO 63110
| | - Sanjeev Bhalla
- From the Mallinckrodt Institute of Radiology (S.M.B, J.C.E.G, S.B.) and Department of Medicine (D.B.R.), Washington University, 660 S Euclid Ave, St. Louis, MO 63110
| |
Collapse
|
12
|
Pieters ALP, van der Veer T, Meerburg JJ, Andrinopoulou ER, van der Eerden MM, Ciet P, Aliberti S, Burgel PR, Crichton ML, Shoemark A, Goeminne PC, Shteinberg M, Loebinger MR, Haworth CS, Blasi F, Tiddens HAWM, Caudri D, Chalmers JD. Structural Lung Disease and Clinical Phenotype in Bronchiectasis Patients: The EMBARC CT Study. Am J Respir Crit Care Med 2024; 210:87-96. [PMID: 38635862 DOI: 10.1164/rccm.202311-2109oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024] Open
Abstract
Rationale: Chest computed tomography (CT) scans are essential to diagnose and monitor bronchiectasis (BE). To date, few quantitative data are available about the nature and extent of structural lung abnormalities (SLAs) on CT scans of patients with BE. Objectives: To investigate SLAs on CT scans of patients with BE and the relationship of SLAs to clinical features using the EMBARC (European Multicenter Bronchiectasis Audit and Research Collaboration) registry. Methods: CT scans from patients with BE included in the EMBARC registry were analyzed using the validated Bronchiectasis Scoring Technique for CT (BEST-CT). The subscores of this instrument are expressed as percentages of total lung volume. The items scored are atelectasis/consolidation, BE with and without mucus plugging (MP), airway wall thickening, MP, ground-glass opacities, bullae, airways, and parenchyma. Four composite scores were calculated: total BE (i.e., BE with and without MP), total MP (i.e., BE with MP plus MP alone), total inflammatory changes (i.e., atelectasis/consolidation plus total MP plus ground-glass opacities), and total disease (i.e., all items but airways and parenchyma). Measurements and Main Results: CT scans of 524 patients with BE were analyzed. Mean subscores were 4.6 (range, 2.3-7.7) for total BE, 4.2 (1.2-8.1) for total MP, 8.3 (3.5-16.7) for total inflammatory changes, and 14.9 (9.1-25.9) for total disease. BE associated with primary ciliary dyskinesia was associated with more SLAs, whereas chronic obstructive pulmonary disease was associated with fewer SLAs. Lower FEV1, longer disease duration, Pseudomonas aeruginosa and nontuberculous mycobacterial infections, and severe exacerbations were all independently associated with worse SLAs. Conclusions: The type and extent of SLAs in patients with BE are highly heterogeneous. Strong relationships between radiological disease and clinical features suggest that CT analysis may be a useful tool for clinical phenotyping.
Collapse
Affiliation(s)
- Angelina L P Pieters
- Department of Radiology and Nuclear Medicine
- Department of Pediatrics, Division of Respiratory Medicine and Allergy, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Jennifer J Meerburg
- Department of Radiology and Nuclear Medicine
- Department of Pediatrics, Division of Respiratory Medicine and Allergy, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Eleni-Rosalina Andrinopoulou
- Department of Biostatistics, and
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Pierluigi Ciet
- Department of Radiology and Nuclear Medicine
- Department of Pediatrics, Division of Respiratory Medicine and Allergy, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| | - Pierre-Regis Burgel
- Institut Cochin, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, Paris, France
| | - Megan L Crichton
- School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Amelia Shoemark
- School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Pieter C Goeminne
- Department of Respiratory Medicine, AZ Nikolaas, Sint-Niklaas, Belgium
| | | | - Michael R Loebinger
- Host Defence Unit, Royal Brompton Hospital, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Charles S Haworth
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; and
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Cà'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Harm A W M Tiddens
- Department of Radiology and Nuclear Medicine
- Department of Pediatrics, Division of Respiratory Medicine and Allergy, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daan Caudri
- Department of Radiology and Nuclear Medicine
- Department of Pediatrics, Division of Respiratory Medicine and Allergy, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - James D Chalmers
- School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| |
Collapse
|
13
|
Horati H, Margaroli C, Chandler JD, Kilgore MB, Manai B, Andrinopoulou ER, Peng L, Guglani L, Tiddens HAMW, Caudri D, Scholte BJ, Tirouvanziam R, Janssens HM. Key inflammatory markers in bronchoalveolar lavage predict bronchiectasis progression in young children with CF. J Cyst Fibros 2024; 23:450-456. [PMID: 38246828 DOI: 10.1016/j.jcf.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Inflammation appears early in cystic fibrosis (CF) pathogenesis, with specific elevated inflammatory markers in bronchoalveolar lavage fluid (BALF) correlating with structural lung disease. Our aim was to identify markers of airway inflammation able to predict bronchiectasis progression over two years with high sensitivity and specificity. METHODS Children with CF with two chest computed tomography (CT) scans and bronchoscopies at a two-year interval were included (n= 10 at 1 and 3 years and n= 27 at 3 and 5 years). Chest CTs were scored for increase in bronchiectasis (Δ%Bx), using the PRAGMA-CF score. BALF collected with the first CT scan were analyzed for neutrophil% (n= 36), myeloperoxidase (MPO) (n= 25), neutrophil elastase (NE) (n= 26), and with a protein array for inflammatory and fibrotic markers (n= 26). RESULTS MPO, neutrophil%, and inducible T-cell costimulator ligand (ICOSLG), but not clinical characteristics, correlated significantly with Δ%Bx. Evaluation of neutrophil%, NE, MPO, interleukin-8 (IL-8), ICOSLG, and hepatocyte growth factor (HGF), for predicting an increase of > 0.5% of Δ%Bx in two years, showed that IL-8 had the best sensitivity (82%) and specificity (73%). Neutrophil%, ICOSLG and HGF had sensitivities of 85, 82, and 82% and specificities of 59, 67 and 60%, respectively. The odds ratio for risk of >0.5% Δ%Bx was higher for IL-8 (12.4) than for neutrophil%, ICOSLG, and HGF (5.9, 5.3, and 6.7, respectively). Sensitivity and specificity were lower for NE and MPO). CONCLUSIONS High levels of IL-8, neutrophil%, ICOSGL and HGF in BALF may be good predictors for progression of bronchiectasis in young children with CF.
Collapse
Affiliation(s)
- Hamed Horati
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands
| | - Camilla Margaroli
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Joshua D Chandler
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Matthew B Kilgore
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Badies Manai
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands
| | - Eleni-Rosalina Andrinopoulou
- Department of Biostatistics and Bioinformatics, Erasmus MC, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Limin Peng
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA, USA
| | - Lokesh Guglani
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Harm A M W Tiddens
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands; Department of radiology, Erasmus MC, University Hospital Rotterdam, Rotterdam, The Netherlands; Thirona, Nijmegen, The Netherlands
| | - Daan Caudri
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands
| | - Bob J Scholte
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands; Department of Cell Biology, Erasmus MC, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Hettie M Janssens
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands.
| |
Collapse
|
14
|
Dournes G, Benlala I. Hierarchical Computed Tomography Scoring Systems Cannot Discriminate Between Reversible Bronchiectasis and Mucus Plugs. Am J Respir Crit Care Med 2024; 209:1038-1039. [PMID: 38354402 PMCID: PMC11531225 DOI: 10.1164/rccm.202311-2124le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/13/2024] [Indexed: 02/16/2024] Open
Affiliation(s)
- Gaël Dournes
- University Bordeaux and
- Institut National de la Santé Et de la Recherche Médicale, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France; and
- CHU de Bordeaux, Service d’Imagerie Thoracique et Cardiovasculaire, Service d’Exploration Fonctionnelle Respiratoire, Pessac, France
| | - Ilyes Benlala
- University Bordeaux and
- Institut National de la Santé Et de la Recherche Médicale, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France; and
- CHU de Bordeaux, Service d’Imagerie Thoracique et Cardiovasculaire, Service d’Exploration Fonctionnelle Respiratoire, Pessac, France
| |
Collapse
|
15
|
O’Regan PW, Stevens NE, Logan N, Ryan DJ, Maher MM. Paediatric Thoracic Imaging in Cystic Fibrosis in the Era of Cystic Fibrosis Transmembrane Conductance Regulator Modulation. CHILDREN (BASEL, SWITZERLAND) 2024; 11:256. [PMID: 38397368 PMCID: PMC10888261 DOI: 10.3390/children11020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Cystic fibrosis (CF) is one of the most common progressive life-shortening genetic conditions worldwide. Ground-breaking translational research has generated therapies that target the primary cystic fibrosis transmembrane conductance regulator (CFTR) defect, known as CFTR modulators. A crucial aspect of paediatric CF disease is the development and progression of irreversible respiratory disease in the absence of clinical symptoms. Accurate thoracic diagnostics have an important role to play in this regard. Chest radiographs are non-specific and insensitive in the context of subtle changes in early CF disease, with computed tomography (CT) providing increased sensitivity. Recent advancements in imaging hardware and software have allowed thoracic CTs to be acquired in paediatric patients at radiation doses approaching that of a chest radiograph. CFTR modulators slow the progression of CF, reduce the frequency of exacerbations and extend life expectancy. In conjunction with advances in CT imaging techniques, low-dose thorax CT will establish a central position in the routine care of children with CF. International guidelines regarding the choice of modality and timing of thoracic imaging in children with CF are lagging behind these rapid technological advances. The continued progress of personalised medicine in the form of CFTR modulators will promote the emergence of personalised radiological diagnostics.
Collapse
Affiliation(s)
- Patrick W. O’Regan
- Department of Radiology, Cork University Hospital, T12 DC4A Cork, Ireland
- Department of Radiology, School of Medicine, University College Cork, T12 AK54 Cork, Ireland
| | - Niamh E. Stevens
- Department of Surgery, Mercy University Hospital, T12 WE28 Cork, Ireland
| | - Niamh Logan
- Department of Medicine, Mercy University Hospital, T12 WE28 Cork, Ireland
| | - David J. Ryan
- Department of Radiology, Cork University Hospital, T12 DC4A Cork, Ireland
- Department of Radiology, School of Medicine, University College Cork, T12 AK54 Cork, Ireland
| | - Michael M. Maher
- Department of Radiology, Cork University Hospital, T12 DC4A Cork, Ireland
- Department of Radiology, School of Medicine, University College Cork, T12 AK54 Cork, Ireland
| |
Collapse
|
16
|
Ours CA, Buser A, Hodges MB, Chen MY, Sapp JC, Gochuico BR, Biesecker LG. Quantification of Proteus syndrome-associated lung disease. Orphanet J Rare Dis 2024; 19:44. [PMID: 38321508 PMCID: PMC10848554 DOI: 10.1186/s13023-023-03013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Proteus syndrome is an ultra-rare mosaic overgrowth disorder. Individuals with Proteus syndrome can develop emphysematous and cystic changes of the lung that may lead to progressive respiratory symptoms and require surgical intervention. This retrospective study seeks to quantify the radiographic features of Proteus syndrome-associated lung disease using computed tomography (CT) of the chest. The first method derives a Cystic Lung Score (CLS) by using a computer-aided diagnostic tool to quantify the fraction of cystic involvement of the lung. The second method yields a Clinician Visual Score (CVS), an observer reported scale of severity based on multiple radiographic features. The aim of this study was to determine if these measurements are associated with clinical symptoms, pulmonary function test (PFT) measurements, and if they may be used to assess progression of pulmonary disease. RESULTS One hundred and thirteen imaging studies from 44 individuals with Proteus syndrome were included. Dyspnea and oxygen use were each associated with higher CLS (p = 0.001 and < 0.001, respectively) and higher CVS (p < 0.001 and < 0.001). Decreases in percent predicted FVC, FEV1, and DLCO each correlated with increased CLS and CVS. The annual increase of CLS in children, 5.6, was significantly greater than in adults, 1.6. (p = 0.03). The annual increase in CVS in children, 0.4, was similar to adults, 0.2 (p = 0.36). CONCLUSIONS Proteus syndrome-associated lung disease is progressive. The rate of cystic progression is increased in children. Increased scores in CLS and CVS were associated with clinical symptoms and decreased pulmonary function. Both methods were able to detect change over time and were associated with clinically meaningful outcomes which may enable their use in interventional studies.
Collapse
Affiliation(s)
- Christopher A Ours
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Anna Buser
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mia B Hodges
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marcus Y Chen
- Section of Inflammation and Cardiovascular Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julie C Sapp
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Leslie G Biesecker
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
17
|
Bruorton M, Donnelley M, Goddard T, O'Connor A, Parsons D, Phillips J, Carson-Chahhoud K, Tai A. Pilot study of paediatric regional lung function assessment via X-ray velocimetry (XV) imaging in children with normal lungs and in children with cystic fibrosis. BMJ Open 2024; 14:e080034. [PMID: 38316593 PMCID: PMC10860032 DOI: 10.1136/bmjopen-2023-080034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024] Open
Abstract
INTRODUCTION Cystic fibrosis (CF) is a life-limiting autosomal recessive genetic condition. It is caused by mutations in the gene that encodes for a chloride and bicarbonate conducting transmembrane channel. X-ray velocimetry (XV) is a novel form of X-ray imaging that can generate lung ventilation data through the breathing cycle. XV technology has been validated in multiple animal models, including the β-ENaC mouse model of CF lung disease. It has since been assessed in early-phase clinical trials in adult human subjects; however, there is a paucity of data in the paediatric cohort, including in CF. The aim of this pilot study was to investigate the feasibility of performing a single-centre cohort study in paediatric patients with CF and in those with normal lungs to demonstrate the appropriateness of proceeding with further studies of XV in these cohorts. METHODS AND ANALYSIS This is a cross-sectional, single-centre, pilot study. It will recruit children aged 3-18 years to have XV lung imaging performed, as well as paired pulmonary function testing. The study will aim to recruit 20 children without CF with normal lungs and 20 children with CF. The primary outcome will be the feasibility of recruiting children and performing XV testing. Secondary outcomes will include comparisons between XV and current assessments of pulmonary function and structure. ETHICS AND DISSEMINATION This project has ethical approval granted by The Women's and Children's Hospital Human Research Ethics Committee (HREC ID 2021/HRE00396). Findings will be disseminated through peer-reviewed publication and conferences. TRIAL REGISTRATION NUMBER ACTRN12623000109606.
Collapse
Affiliation(s)
- Matthew Bruorton
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Respiratory and Sleep Department, Women's and Children's Health Network, North Adelaide, South Australia, Australia
| | - Martin Donnelley
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Thomas Goddard
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Respiratory and Sleep Department, Women's and Children's Health Network, North Adelaide, South Australia, Australia
| | - Antonia O'Connor
- Sleep Department, Sydney Children's Hospitals Network, Westmead, New South Wales, Australia
- University of New South Wales, Sydney, Sydney, Australia
| | - David Parsons
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Respiratory and Sleep Department, Women's and Children's Health Network, North Adelaide, South Australia, Australia
| | - Jessica Phillips
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Respiratory and Sleep Department, Women's and Children's Health Network, North Adelaide, South Australia, Australia
| | - Kristin Carson-Chahhoud
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Respiratory and Sleep Department, Women's and Children's Health Network, North Adelaide, South Australia, Australia
| | - Andrew Tai
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Respiratory and Sleep Department, Women's and Children's Health Network, North Adelaide, South Australia, Australia
| |
Collapse
|
18
|
van den Bosch WB, Lv Q, Andrinopoulou ER, Pijnenburg MW, Ciet P, Janssens HM, Tiddens HA. Children with severe asthma have substantial structural airway changes on computed tomography. ERJ Open Res 2024; 10:00121-2023. [PMID: 38226065 PMCID: PMC10789264 DOI: 10.1183/23120541.00121-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/17/2023] [Indexed: 01/17/2024] Open
Abstract
Background In adults with severe asthma (SA) bronchial wall thickening, bronchiectasis and low attenuation regions (LAR) have been described on chest computed tomography (CT) scans. The extent to which these structural abnormalities are present in children with SA is largely unknown. Our aim was to study the presence and extent of airway abnormalities on chest CT of children with SA. Methods 161 inspiratory and expiratory CT scans, either spirometer-controlled or technician-controlled, obtained in 131 children with SA (mean±SD age 11.0±3.8 years) were collected retrospectively. Inspiratory scans were analysed manually using a semi-quantitative score and automatically using LungQ (v2.1.0.1; Thirona B.V., Nijmegen, the Netherlands). LungQ segments the bronchial tree, identifies the generation for each bronchus-artery (BA) pair and measures the following BA dimensions: outer bronchial wall diameter (Bout), adjacent artery diameter (A) and bronchial wall thickness (Bwt). Bronchiectasis was defined as Bout/A ≥1.1, bronchial wall thickening as Bwt/A ≥0.14. LAR, reflecting small airways disease (SAD), was measured automatically on inspiratory and expiratory scans and manually on expiratory scans. Functional SAD was defined as FEF25-75 and/or FEF75 z-scores <-1.645. Results are shown as median and interquartile range. Results Bronchiectasis was present on 95.8% and bronchial wall thickening on all CTs using the automated method. Bronchiectasis was present on 28% and bronchial wall thickening on 88.8% of the CTs using the manual semi-quantitative analysis. The percentage of BA pairs defined as bronchiectasis was 24.62% (12.7-39.3%) and bronchial wall thickening was 41.7% (24.0-79.8%) per CT using the automated method. LAR was observed on all CTs using the automatic analysis and on 82.9% using the manual semi-quantitative analysis. Patients with LAR or functional SAD had more thickened bronchi than patients without. Conclusion Despite a large discrepancy between the automated and the manual semi-quantitative analysis, bronchiectasis and bronchial wall thickening are present on most CT scans of children with SA. SAD is related to bronchial wall thickening.
Collapse
Affiliation(s)
- Wytse B. van den Bosch
- Erasmus MC – Sophia Children's Hospital, University Medical Center Rotterdam, Department of Paediatrics, division of Respiratory Medicine and Allergology, Rotterdam, the Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Rotterdam, the Netherlands
| | - Qianting Lv
- Erasmus MC – Sophia Children's Hospital, University Medical Center Rotterdam, Department of Paediatrics, division of Respiratory Medicine and Allergology, Rotterdam, the Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Rotterdam, the Netherlands
| | - Eleni-Rosalina Andrinopoulou
- Erasmus MC, University Medical Center Rotterdam, Department of Biostatistics, Rotterdam, the Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Epidemiology, Rotterdam, the Netherlands
| | - Mariëlle W.H. Pijnenburg
- Erasmus MC – Sophia Children's Hospital, University Medical Center Rotterdam, Department of Paediatrics, division of Respiratory Medicine and Allergology, Rotterdam, the Netherlands
| | - Pierluigi Ciet
- Erasmus MC – Sophia Children's Hospital, University Medical Center Rotterdam, Department of Paediatrics, division of Respiratory Medicine and Allergology, Rotterdam, the Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Rotterdam, the Netherlands
- Department of Radiology, Policlinico Universitario, University of Cagliari, Cagliari, Italy
| | - Hettie M. Janssens
- Erasmus MC – Sophia Children's Hospital, University Medical Center Rotterdam, Department of Paediatrics, division of Respiratory Medicine and Allergology, Rotterdam, the Netherlands
| | - Harm A.W.M. Tiddens
- Erasmus MC – Sophia Children's Hospital, University Medical Center Rotterdam, Department of Paediatrics, division of Respiratory Medicine and Allergology, Rotterdam, the Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Rotterdam, the Netherlands
- Thirona BV, Nijmegen, the Netherlands
| |
Collapse
|
19
|
Lv Q, Gallardo-Estrella L, Andrinopoulou ER, Chen Y, Charbonnier JP, Sandvik RM, Caudri D, Nielsen KG, de Bruijne M, Ciet P, Tiddens H. Automatic analysis of bronchus-artery dimensions to diagnose and monitor airways disease in cystic fibrosis. Thorax 2023; 79:13-22. [PMID: 37734952 PMCID: PMC10803964 DOI: 10.1136/thorax-2023-220021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) lung disease is characterised by progressive airway wall thickening and widening. We aimed to validate an artificial intelligence-based algorithm to assess dimensions of all visible bronchus-artery (BA) pairs on chest CT scans from patients with CF. METHODS The algorithm fully automatically segments the bronchial tree; identifies bronchial generations; matches bronchi with the adjacent arteries; measures for each BA-pair bronchial outer diameter (Bout), bronchial lumen diameter (Bin), bronchial wall thickness (Bwt) and adjacent artery diameter (A); and computes Bout/A, Bin/A and Bwt/A for each BA pair from the segmental bronchi to the last visible generation. Three datasets were used to validate the automatic BA analysis. First BA analysis was executed on 23 manually annotated CT scans (11 CF, 12 control subjects) to compare automatic with manual BA-analysis outcomes. Furthermore, the BA analysis was executed on two longitudinal datasets (Copenhagen 111 CTs, ataluren 347 CTs) to assess longitudinal BA changes and compare them with manual scoring results. RESULTS The automatic and manual BA analysis showed no significant differences in quantifying bronchi. For the longitudinal datasets the automatic BA analysis detected 247 and 347 BA pairs/CT in the Copenhagen and ataluren dataset, respectively. A significant increase of 0.02 of Bout/A and Bin/A was detected for Copenhagen dataset over an interval of 2 years, and 0.03 of Bout/A and 0.02 of Bin/A for ataluren dataset over an interval of 48 weeks (all p<0.001). The progression of 0.01 of Bwt/A was detected only in the ataluren dataset (p<0.001). BA-analysis outcomes showed weak to strong correlations (correlation coefficient from 0.29 to 0.84) with manual scoring results for airway disease. CONCLUSION The BA analysis can fully automatically analyse a large number of BA pairs on chest CTs to detect and monitor progression of bronchial wall thickening and bronchial widening in patients with CF.
Collapse
Affiliation(s)
- Qianting Lv
- Department of Paediatric Pulmonology and Allergology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Yuxin Chen
- Department of Paediatric Pulmonology and Allergology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Rikke Mulvad Sandvik
- CF Center Copenhagen, Paediatric Pulmonary Service, Department of Paediatric and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- University of Copenhagen, Graduate School of Health and Medical Sciences, Copenhagen, Denmark
| | - Daan Caudri
- Department of Paediatric Pulmonology and Allergology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Kim Gjerum Nielsen
- CF Center Copenhagen, Paediatric Pulmonary Service, Department of Paediatric and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Kobenhavn, Denmark
| | - Marleen de Bruijne
- Biomedical Imaging Group Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Pierluigi Ciet
- Department of Paediatric Pulmonology and Allergology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Pediatric Pulmonology, Erasmus Medical Center- Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Harm Tiddens
- Department of Paediatric Pulmonology and Allergology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Thirona, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Fontijn S, Balink SJA, Bonte M, Andrinopoulou ER, Duijts L, Kroon AA, Ciet P, Pijnenburg MW. Chest computed tomography in severe bronchopulmonary dysplasia: Comparing quantitative scoring methods. Eur J Radiol 2023; 169:111168. [PMID: 37897957 DOI: 10.1016/j.ejrad.2023.111168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
PURPOSE Bronchopulmonary dysplasia (BPD) is the most common complication of extreme preterm birth and structural lung abnormalities are frequently found in children with BPD. To quantify lung damage in BPD, three new Hounsfield units (HU) based chest-CT scoring methods were evaluated in terms of 1) intra- and inter-observer variability, 2) correlation with the validated Perth-Rotterdam-Annotated-Grid-Morphometric-Analysis (PRAGMA)-BPD score, and 3) correlation with clinical data. METHODS Chest CT scans of children with severe BPD were performed at a median of 7 months corrected age. Hyper- and hypo-attenuated regions were quantified using PRAGMA-BPD and three new HU based scoring methods (automated, semi-automated, and manual). Intra- and inter-observer variability was measured using intraclass correlation coefficients (ICC) and Bland-Altman plots. The correlation between the 4 scoring methods and clinical data was assessed using Spearman rank correlation. RESULTS Thirty-five patients (median gestational age 26.1 weeks) were included. Intra- and inter-observer variability was excellent for hyper- and hypo-attenuation regions for the manual HU method and PRAGMA-BPD (ICCs range 0.80-0.97). ICC values for the semi-automated HU method were poorer, in particular for the inter-observer variability of hypo- (0.22-0.71) and hyper-attenuation (-0.06-0.89). The manual HU method was highly correlated with PRAGMA-BPD score for both hyper- (ρs0.92, p < 0.001) and hypo-attenuation (ρs0.79, p < 0.001), while automated and semi-automated HU methods showed poor correlation for hypo- (ρs < 0.22) and good correlation for hyper-attenuation (ρs0.72-0.74, p < 0.001). Several scores of hyperattenuation correlated with the use of inhaled bronchodilators in the first year of life; two hypoattenuation scores correlated with birth weight. CONCLUSIONS PRAGMA-BPD and the manual HU method have the best reproducibility for quantification of CT abnormalities in BPD.
Collapse
Affiliation(s)
- S Fontijn
- Post-graduate School of Paediatrics, University of Modena and Reggio Emilia, Modena, Italy
| | - S J A Balink
- Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Department of Paediatrics, Division of Respiratory Medicine and Allergology, Rotterdam, the Netherlands
| | - M Bonte
- Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Department of Paediatrics, Division of Respiratory Medicine and Allergology, Rotterdam, the Netherlands
| | - E R Andrinopoulou
- Erasmus MC, University Medical Centre Rotterdam, Department of Biostatistics, Rotterdam, the Netherlands; Erasmus MC, University Medical Centre Rotterdam, Department of Epidemiology, Rotterdam, the Netherlands
| | - L Duijts
- Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Department of Paediatrics, Division of Respiratory Medicine and Allergology, Rotterdam, the Netherlands; Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Department of Paediatrics, Division of Neonatology, Rotterdam, the Netherlands
| | - A A Kroon
- Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Department of Paediatrics, Division of Neonatology, Rotterdam, the Netherlands
| | - P Ciet
- Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Department of Paediatrics, Division of Respiratory Medicine and Allergology, Rotterdam, the Netherlands; Erasmus MC, University Medical Centre Rotterdam, Department of Radiology and Nuclear Medicine, Rotterdam, the Netherlands; Policlinico Universitario, University of Cagliari, Cagliari, Italy
| | - M W Pijnenburg
- Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Department of Paediatrics, Division of Respiratory Medicine and Allergology, Rotterdam, the Netherlands.
| |
Collapse
|
21
|
McNally P, Lester K, Stone G, Elnazir B, Williamson M, Cox D, Linnane B, Kirwan L, Rea D, O'Regan P, Semple T, Saunders C, Tiddens HAWM, McKone E, Davies JC. Improvement in Lung Clearance Index and Chest Computed Tomography Scores with Elexacaftor/Tezacaftor/Ivacaftor Treatment in People with Cystic Fibrosis Aged 12 Years and Older - The RECOVER Trial. Am J Respir Crit Care Med 2023; 208:917-929. [PMID: 37703083 DOI: 10.1164/rccm.202308-1317oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023] Open
Abstract
Rationale: Clinical trials have shown that use of elexacaftor/tezacaftor/ivacaftor (ETI) is associated with improvements in sweat chloride, pulmonary function, nutrition, and quality of life in people with cystic fibrosis (CF). Little is known about the impact of ETI on ventilation inhomogeneity and lung structure. Objectives: RECOVER is a real-world study designed to measure the impact of ETI in people with CF. The primary endpoints were lung clearance (lung clearance index; LCI2.5) and FEV1. Secondary endpoints included spirometry-controlled chest computed tomography (CT) scores. Methods: The study was conducted in seven sites in Ireland and the United Kingdom. Participants ages 12 years and older who were homozygous for the F508del mutation (F508del/F508del) or heterozygous for F508del and a minimum-function mutation (F508del/MF) were recruited before starting ETI and were followed up over 12 months. LCI2.5 was measured using nitrogen multiple breath washout (MBW) at baseline and at 6 and 12 months. Spirometry was performed as per the criteria of the American Thoracic Society and the European Respiratory Society. Spirometry-controlled chest CT scans were performed at baseline and at 12 months. CT scans were scored using the Perth Rotterdam Annotated Grid Morphometric Analysis (PRAGMA) system. Other outcome measures include weight, height, Cystic Fibrosis Quality of Life Questionnaire-Revised (CFQ-R), and sweat chloride. Measurements and Main Results: One hundred seventeen people with CF ages 12 and older were recruited to the study. Significant improvements were seen in LCI scores (-2.5; 95% confidence interval [CI], -3.0, -2.0) and in the percents predicted for FEV1 (8.9; 95% CI, 7.0, 10.9), FVC (6.6; 95% CI, 4.9, 8.3), and forced expiratory flow between 25% and 75% of expired volume (12.4; 95% CI, 7.8, 17.0). Overall PRAGMA-CF scores reflecting airway disease improved significantly (-3.46; 95% CI, -5.23, -1.69). Scores for trapped air, mucus plugging, and bronchial wall thickening improved significantly, but bronchiectasis scores did not. Sweat chloride levels decreased in both F508del/F508del (-43.1; 95% CI, -47.4, -38.9) and F508del/MF (-42.8; 95% CI, -48.5, -37.2) groups. Scores on the Respiratory Domain of the CFQ-R improved by 14.2 points (95% CI, 11.3, 17.2). At 1 year, sweat chloride levels were significantly lower for the F508del/F508del group compared with scores for the F508del/MF group (33.93 vs. 53.36, P < 0.001). Conclusions: ETI is associated with substantial improvements in LCI2.5, spirometry, and PRAGMA-CF CT scores in people with CF ages 12 years and older. ETI led to improved nutrition and quality of life. People in the F508del/F508del group had significantly lower sweat chloride on ETI treatment compared with the F508del/MF group. Clinical trial registered with www.clinicaltrials.gov (NCT04602468).
Collapse
Affiliation(s)
- Paul McNally
- Department of Pediatrics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Children's Health Ireland, Dublin, Ireland
| | - Karen Lester
- Department of Pediatrics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Children's Health Ireland, Dublin, Ireland
| | - Gavin Stone
- Department of Pediatrics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Children's Health Ireland, Dublin, Ireland
| | | | | | - Des Cox
- Children's Health Ireland, Dublin, Ireland
| | - Barry Linnane
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Laura Kirwan
- Cystic Fibrosis Registry of Ireland, Dublin, Ireland
| | - David Rea
- Children's Health Ireland, Dublin, Ireland
| | - Paul O'Regan
- Cystic Fibrosis Registry of Ireland, Dublin, Ireland
| | - Tom Semple
- Royal Brompton Hospital, London, United Kingdom
| | | | | | - Edward McKone
- St. Vincent's University Hospital, Dublin, Ireland; and
| | - Jane C Davies
- Royal Brompton Hospital, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Blaskovic S, Anagnostopoulou P, Borisova E, Schittny D, Donati Y, Haberthür D, Zhou-Suckow Z, Mall MA, Schlepütz CM, Stampanoni M, Barazzone-Argiroffo C, Schittny JC. Airspace Diameter Map-A Quantitative Measurement of All Pulmonary Airspaces to Characterize Structural Lung Diseases. Cells 2023; 12:2375. [PMID: 37830589 PMCID: PMC10571657 DOI: 10.3390/cells12192375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
(1) Background: Stereological estimations significantly contributed to our understanding of lung anatomy and physiology. Taking stereology fully 3-dimensional facilitates the estimation of novel parameters. (2) Methods: We developed a protocol for the analysis of all airspaces of an entire lung. It includes (i) high-resolution synchrotron radiation-based X-ray tomographic microscopy, (ii) image segmentation using the free machine-learning tool Ilastik and ImageJ, and (iii) calculation of the airspace diameter distribution using a diameter map function. To evaluate the new pipeline, lungs from adult mice with cystic fibrosis (CF)-like lung disease (βENaC-transgenic mice) or mice with elastase-induced emphysema were compared to healthy controls. (3) Results: We were able to show the distribution of airspace diameters throughout the entire lung, as well as separately for the conducting airways and the gas exchange area. In the pathobiological context, we observed an irregular widening of parenchymal airspaces in mice with CF-like lung disease and elastase-induced emphysema. Comparable results were obtained when analyzing lungs imaged with μCT, sugges-ting that our pipeline is applicable to different kinds of imaging modalities. (4) Conclusions: We conclude that the airspace diameter map is well suited for a detailed analysis of unevenly distri-buted structural alterations in chronic muco-obstructive lung diseases such as cystic fibrosis and COPD.
Collapse
Affiliation(s)
- Sanja Blaskovic
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (S.B.); (E.B.); (D.S.); (D.H.)
| | | | - Elena Borisova
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (S.B.); (E.B.); (D.S.); (D.H.)
| | - Dominik Schittny
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (S.B.); (E.B.); (D.S.); (D.H.)
| | - Yves Donati
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211 Genève, Switzerland; (Y.D.); (C.B.-A.)
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - David Haberthür
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (S.B.); (E.B.); (D.S.); (D.H.)
| | - Zhe Zhou-Suckow
- Department of Translational Pulmonology, University Hospital Heidelberg, Translational Lung Research Center (TLRC), A Member of German Center for Lung Research (DZL), 69120 Heidelberg, Germany;
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany;
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, 10115 Berlin, Germany
| | - Christian M. Schlepütz
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland; (C.M.S.); (M.S.)
| | - Marco Stampanoni
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland; (C.M.S.); (M.S.)
- Institute for Biomedical Engineering, University and ETH Zürich, 8093 Zurich, Switzerland
| | - Constance Barazzone-Argiroffo
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211 Genève, Switzerland; (Y.D.); (C.B.-A.)
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Johannes C. Schittny
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (S.B.); (E.B.); (D.S.); (D.H.)
| |
Collapse
|
23
|
Chen Y, Lv Q, Andrinopoulou ER, Gallardo-Estrella L, Charbonnier JP, Caudri D, Davis SD, Rosenfeld M, Ratjen F, Kronmal RA, Stukovsky KDH, Stick S, Tiddens HAWM. Automatic bronchus and artery analysis on chest computed tomography to evaluate the effect of inhaled hypertonic saline in children aged 3-6 years with cystic fibrosis in a randomized clinical trial. J Cyst Fibros 2023; 22:916-925. [PMID: 37246053 DOI: 10.1016/j.jcf.2023.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND SHIP-CT showed that 48-week treatment with inhaled 7% hypertonic saline (HS) reduced airway abnormalities on chest CT using the manual PRAGMA-CF method relative to isotonic saline (IS) in children aged 3-6 years with cystic fibrosis (CF). An algorithm was developed and validated to automatically measure bronchus and artery (BA) dimensions of BA-pairs on chest CT. Aim of the study was to assess the effect of HS on bronchial wall thickening and bronchial widening using the BA-analysis. METHODS The BA-analysis (LungQ, version 2.1.0.1, Thirona, Netherlands) automatically segments the bronchial tree and identifies the segmental bronchi (G0) and distal generations (G1-G10). Dimensions of each BA-pair are measured: diameters of bronchial outer wall (Bout), bronchial inner wall (Bin), bronchial wall thickness (Bwt), and artery (A). BA-ratios are computed: Bout/A and Bin/A to detect bronchial widening and Bwt/A and Bwa/Boa (=bronchial wall area/bronchial outer area) to detect bronchial wall thickening. RESULTS 113 baseline and 102 48-week scans of 115 SHIP-CT participants were analysed. LungQ measured at baseline and 48-weeks respectively 6,073 and 7,407 BA-pairs in the IS-group and 6,363 and 6,840 BA-pairs in the HS-group. At 48 weeks, Bwt/A (mean difference 0.011; 95%CI, 0.0017 to 0.020) and Bwa/Boa (mean difference 0.030; 95% 0.009 to 0.052) was significantly higher (worse) in the IS-group compared to the HS-group representing more severe bronchial wall thickening in the IS-group (p=0.025 and p=0.019 respectively). Bwt/A and Bwa/Boa decreased and Bin/A remained stable from baseline to 48 weeks in the HS while it declined in the IS-group (all p<0.001). There was no difference in progression of Bout/A between two treatment groups. CONCLUSION The automatic BA-analysis showed a positive impact of inhaled HS on bronchial lumen and wall thickness, but no treatment effect on progression of bronchial widening over 48 weeks.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Paediatrics, Division of Respiratory Medicine and Allergology, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Qianting Lv
- Department of Paediatrics, Division of Respiratory Medicine and Allergology, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Eleni-Rosalina Andrinopoulou
- Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Daan Caudri
- Department of Paediatrics, Division of Respiratory Medicine and Allergology, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands; Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Australia
| | - Stephanie D Davis
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | | | - Felix Ratjen
- Division of Respiratory Medicine, Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Richard A Kronmal
- Collaborative Health Studies Coordinating Center, Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Karen D Hinckley Stukovsky
- Collaborative Health Studies Coordinating Center, Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Stephen Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Australia
| | - Harm A W M Tiddens
- Department of Paediatrics, Division of Respiratory Medicine and Allergology, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands; Thirona, Nijmegen, The Netherlands.
| |
Collapse
|
24
|
McNally P, Linnane B, Williamson M, Elnazir B, Short C, Saunders C, Kirwan L, David R, Kemner-Van de Corput MPC, Tiddens HAWM, Davies JC, Cox DW. The clinical impact of Lumacaftor-Ivacaftor on structural lung disease and lung function in children aged 6-11 with cystic fibrosis in a real-world setting. Respir Res 2023; 24:199. [PMID: 37568199 PMCID: PMC10416528 DOI: 10.1186/s12931-023-02497-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Data from clinical trials of lumacaftor-ivacaftor (LUM-IVA) demonstrate improvements in lung clearance index (LCI) but not in FEV1 in children with Cystic Fibrosis (CF) aged 6-11 years and homozygous for the Phe508del mutation. It is not known whether LUM/IVA use in children can impact the progression of structural lung disease. We sought to determine the real-world impact of LUM/IVA on lung structure and function in children aged 6-11 years. METHODS This real-world observational cohort study was conducted across four paediatric sites in Ireland over 24-months using spirometry-controlled CT scores and LCI as primary outcome measures. Children commencing LUM-/IVA as part of routine care were included. CT scans were manually scored with the PRAGMA CF scoring system and analysed using the automated bronchus-artery (BA) method. Secondary outcome measures included rate of change of ppFEV1, nutritional indices and exacerbations requiring hospitalisation. RESULTS Seventy-one participants were recruited to the study, 31 of whom had spirometry-controlled CT performed at baseline, and after one year and two years of LUM/IVA treatment. At two years there was a reduction from baseline in trapped air scores (0.13 to 0.07, p = 0.016), but an increase from baseline in the % bronchiectasis score (0.84 to 1.23, p = 0.007). There was no change in overall % disease score (2.78 to 2.25, p = 0.138). Airway lumen to pulmonary artery ratios (AlumenA ratio) were abnormal at baseline and worsened over the course of the study. In 28 participants, the mean annual change from baseline LCI2.5 (-0.055 (-0.61 to 0.50), p = 0.85) measurements over two years were not significant. Improvements from baseline in weight (0.10 (0.06 to 0.15, p < 0.0001), height (0.05 (0.02 to 0.09), p = 0.002) and BMI (0.09 (0.03 to 0.15) p = 0.005) z-scores were seen with LUM/IVA treatment. The mean annual change from baseline ppFEV1 (-2.45 (-4.44 to 2.54), p = 0.66) measurements over two years were not significant. CONCLUSION In a real-world setting, the use of LUM/IVA over two years in children with CF aged 6-11 resulted in improvements in air trapping on CT but worsening in bronchiectasis scores. Our results suggest that LUM/IVA use in this age group improves air trapping but does not prevent progression of bronchiectasis over two years of treatment.
Collapse
Affiliation(s)
- Paul McNally
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin, Ireland
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Barry Linnane
- University of Limerick School of Medicine, Limerick, Ireland
| | - Michael Williamson
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin, Ireland
| | - Basil Elnazir
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin, Ireland
- Trinity College, Dublin, Ireland
| | - Christopher Short
- NHLI, Imperial College, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' Trust, London, UK
| | - Clare Saunders
- NHLI, Imperial College, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' Trust, London, UK
| | - Laura Kirwan
- Cystic Fibrosis Registry of Ireland, Dublin, Ireland
| | - Rea David
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin, Ireland
| | - Mariette P C Kemner-Van de Corput
- Department of Paediatric Pulmonology and Allergology, Department of Radiology and Nuclear Medicine, Erasmus Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Harm A W M Tiddens
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin, Ireland
| | - Jane C Davies
- NHLI, Imperial College, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' Trust, London, UK
| | - Des W Cox
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin, Ireland.
- University College Dublin, Dublin, Ireland.
| |
Collapse
|
25
|
Elders BBLJ, Kersten CM, Hermelijn SM, Wielopolski PA, Tiddens HAWM, Schnater JM, Ciet P. Congenital lung abnormalities on magnetic resonance imaging: the CLAM study. Eur Radiol 2023; 33:4767-4779. [PMID: 36826502 PMCID: PMC10290040 DOI: 10.1007/s00330-023-09458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/25/2023]
Abstract
OBJECTIVES Follow-up of congenital lung abnormalities (CLA) is currently done with chest computer tomography (CT). Major disadvantages of CT are exposure to ionizing radiation and need for contrast enhancement to visualise vascularisation. Chest magnetic resonance imaging (MRI) could be a safe alternative to image CLA without using contrast agents. The objective of this cohort study was to develop a non-contrast MRI protocol for the follow-up of paediatric CLA patients, and to compare findings on MRI to postnatal CT in school age CLA patients. METHODS Twenty-one CLA patients, 4 after surgical resection and 17 unoperated (mean age 12.8 (range 9.4-15.9) years), underwent spirometry and chest MRI. MRI was compared to postnatal CT on appearance and size of the lesion, and lesion associated abnormalities, such as hyperinflation and atelectasis. RESULTS By comparing school-age chest MRI to postnatal CT, radiological appearance and diagnostic interpretation of the type of lesion changed in 7 (41%) of the 17 unoperated patients. In unoperated patients, the relative size of the lesion in relation to the total lung volume remained stable (0.9% (range - 6.2 to + 6.7%), p = 0.3) and the relative size of lesion-associated parenchymal abnormalities decreased (- 2.2% (range - 0.8 to + 2.8%), p = 0.005). CONCLUSION Non-contrast-enhanced chest MRI was able to identify all CLA-related lung abnormalities. Changes in radiological appearance between MRI and CT were related to CLA changes, patients' growth, and differences between imaging modalities. Further validation is needed for MRI to be introduced as a safe imaging method for the follow-up of paediatric CLA patients. KEY POINTS • Non-contrast-enhanced chest MRI is able to identify anatomical lung changes related to congenital lung abnormalities, including vascularisation. • At long-term follow-up, the average size of congenital lung abnormalities in relation to normal lung volume remains stable. • At long-term follow-up, the average size of congenital lung abnormalities associated parenchymal abnormalities such as atelectasis in relation to normal lung volume decreases.
Collapse
Affiliation(s)
- Bernadette B L J Elders
- Department of Paediatric Pulmonology and Allergology, Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Casper M Kersten
- Department of Paediatric Surgery, Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Sergei M Hermelijn
- Department of Paediatric Surgery, Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Piotr A Wielopolski
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Harm A W M Tiddens
- Department of Paediatric Pulmonology and Allergology, Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - J Marco Schnater
- Department of Paediatric Surgery, Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Pierluigi Ciet
- Department of Paediatric Pulmonology and Allergology, Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands.
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.
- Radiology Department, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
26
|
Slimmen LJM, Giacalone VD, Schofield C, Horati H, Manaï BHAN, Estevão SC, Garratt LW, Peng L, Tirouvanziam R, Janssens HM, Unger WWJ. Airway macrophages display decreased expression of receptors mediating and regulating scavenging in early cystic fibrosis lung disease. Front Immunol 2023; 14:1202009. [PMID: 37457715 PMCID: PMC10338875 DOI: 10.3389/fimmu.2023.1202009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Background Cystic fibrosis (CF) airway disease is characterized by chronic inflammation, featuring neutrophil influx to the lumen. Airway macrophages (AMs) can promote both inflammation and resolution, and are thus critical to maintaining and restoring homeostasis. CF AM functions, specifically scavenging activity and resolution of inflammation, have been shown to be impaired, yet underlying processes remain unknown. We hypothesized that impaired CF AM function results from an altered expression of receptors that mediate or regulate scavenging, and set out to investigate changes in expression of these markers during the early stages of CF lung disease. Methods Bronchoalveolar lavage fluid (BALF) was collected from 50 children with CF aged 1, 3 or 5 years. BALF cells were analyzed using flow cytometry. Expression levels of surface markers on AMs were expressed as median fluorescence intensities (MFI) or percentage of AMs positive for these markers. The effect of age and neutrophilic inflammation, among other variables, on marker expression was assessed with a multivariate linear regression model. Results AM expression of scavenger receptor CD163 decreased with age (p = 0.016) and was negatively correlated with BALF %neutrophils (r = -0.34, p = 0.016). AM expression of immune checkpoint molecule SIRPα also decreased with age (p = 0.0006), but did not correlate with BALF %neutrophils. Percentage of AMs expressing lipid scavenger CD36 was low overall (mean 20.1% ± 16.5) and did not correlate with other factors. Conversely, expression of immune checkpoint PD-1 was observed on the majority of AMs (mean PD-1pos 72.9% ± 11.8), but it, too, was not affected by age or BALF %neutrophils. Compared to matched blood monocytes, AMs had a higher expression of CD16, CD91, and PD-1, and a lower expression of CD163, SIRPα and CD36. Conclusion In BALF of preschool children with CF, higher age and/or increased neutrophilic inflammation coincided with decreased expression of scavenger receptors on AMs. Expression of scavenging receptors and regulators showed a distinctly different pattern in AMs compared to blood monocytes. These findings suggest AM capacity to counter inflammation and promote homeostasis reduces during initiation of CF airway disease and highlight new avenues of investigation into impaired CF AM function.
Collapse
Affiliation(s)
- Lisa J. M. Slimmen
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
- Laboratory of Pediatrics, Infection and Immunity Group, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Vincent D. Giacalone
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Craig Schofield
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Hamed Horati
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Badies H. A. N. Manaï
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Silvia C. Estevão
- Laboratory of Pediatrics, Infection and Immunity Group, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Luke W. Garratt
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Limin Peng
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Hettie M. Janssens
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Wendy W. J. Unger
- Laboratory of Pediatrics, Infection and Immunity Group, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
27
|
Caparrós-Martín JA, Saladie M, Agudelo-Romero SP, Reen FJ, Ware RS, Sly PD, Stick SM, O'Gara F. Detection of bile acids in bronchoalveolar lavage fluid defines the inflammatory and microbial landscape of the lower airways in infants with cystic fibrosis. MICROBIOME 2023; 11:132. [PMID: 37312128 DOI: 10.1186/s40168-023-01543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/05/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cystic Fibrosis (CF) is a genetic condition characterized by neutrophilic inflammation and recurrent infection of the airways. How these processes are initiated and perpetuated in CF remains largely unknown. We have demonstrated a link between the intestinal microbiota-related metabolites bile acids (BA) and inflammation in the bronchoalveolar lavage fluid (BALF) from children with stable CF lung disease. To establish if BA indicate early pathological processes in CF lung disease, we combined targeted mass spectrometry and amplicon sequencing-based microbial characterization of 121 BALF specimens collected from 12-month old infants with CF enrolled in the COMBAT-CF study, a multicentre randomized placebo-controlled clinical trial comparing azithromycin versus placebo. We evaluated whether detection of BA in BALF is associated with the establishment of the inflammatory and microbial landscape of early CF lung disease, and whether azithromycin, a motilin agonist that has been demonstrated to reduce aspiration of gastric contents, alters the odds of detecting BA in BALF. We also explored how different prophylactic antibiotics regimens impact the early life BALF microbiota. RESULTS Detection of BA in BALF was strongly associated with biomarkers of airway inflammation, more exacerbation episodes during the first year of life, increased use of oral antibiotics with prolonged treatment periods, a higher degree of structural lung damage, and distinct microbial profiles. Treatment with azithromycin, a motilin agonist, which has been reported to reduce aspiration of gastric contents, did not reduce the odds of detecting BA in BALF. Culture and molecular methods showed that azithromycin does not alter bacterial load or diversity in BALF. Conversely, penicillin-type prophylaxis reduced the odds of detecting BAs in BALF, which was associated with elevated levels of circulating biomarkers of cholestasis. We also observed that environmental factors such as penicillin-type prophylaxis or BAs detection were linked to distinct early microbial communities of the CF airways, which were associated with different inflammatory landscapes but not with structural lung damage. CONCLUSIONS Detection of BA in BALF portend early pathological events in CF lung disease. Benefits early in life associated with azithromycin are not linked to its antimicrobial properties. Video Abstract.
Collapse
Affiliation(s)
- Jose A Caparrós-Martín
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, Australia
| | - Montserrat Saladie
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, Australia
- Present Address: Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira I Virgili-EURECAT, Reus, Spain
| | - S Patricia Agudelo-Romero
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
- The University of Western Australia, Perth, WA, Australia
| | - F Jerry Reen
- School of Microbiology, University College Cork, Cork, Ireland
- Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - Robert S Ware
- Menzies Health Institute Queensland, Griffith University, Brisbane, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Stephen M Stick
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
- The University of Western Australia, Perth, WA, Australia
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, WA, Australia
| | - Fergal O'Gara
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia.
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, Australia.
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, T12 K8AF, Ireland.
| |
Collapse
|
28
|
Farkas D, Thomas ML, Hassan A, Bonasera S, Hindle M, Longest W. Near Elimination of In Vitro Predicted Extrathoracic Aerosol Deposition in Children Using a Spray-Dried Antibiotic Formulation and Pediatric Air-Jet DPI. Pharm Res 2023; 40:1193-1207. [PMID: 35761163 PMCID: PMC10616820 DOI: 10.1007/s11095-022-03316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE This study evaluated the in vitro aerosol performance of a dry powder antibiotic product that combined a highly dispersible tobramycin powder with a previously optimized pediatric air-jet dry powder inhaler (DPI) across a subject age range of 2-10 years. METHODS An excipient enhanced growth (EEG) formulation of the antibiotic tobramycin (Tobi) was prepared using a small particle spray drying technique that included mannitol as the hygroscopic excipient and trileucine as the dispersion enhancer. The Tobi-EEG formulation was aerosolized using a positive-pressure pediatric air-jet DPI that included a 3D rod array. Realistic in vitro experiments were conducted in representative airway models consistent with children in the age ranges of 2-3, 5-6 and 9-10 years using oral or nose-to-lung administration, non-humidified or humidified airway conditions, and constant or age-specific air volumes. RESULTS Across all conditions tested, mouth-throat depositional loss was < 1% and nose-throat depositional loss was < 3% of loaded dose. Lung delivery efficiency was in the range of 77.3-85.1% of loaded dose with minor variations based on subject age (~ 8% absolute difference), oral or nasal administration (< 2%), and delivered air volume (< 2%). Humidified airway conditions had an insignificant impact on extrathoracic depositional loss and significantly increased aerosol size at the exit of a representative lung chamber. CONCLUSIONS In conclusion, the inhaled antibiotic product nearly eliminated extrathoracic depositional loss, demonstrated high efficiency nose-to-lung antibiotic aerosol delivery in pediatric airway models for the first time, and provided ~ 80% lung delivery efficiency with little variability across subject age and administered air volume.
Collapse
Affiliation(s)
- Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, Virginia, 23284-3015 , USA
| | - Morgan L Thomas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, Virginia, 23284-3015 , USA
| | - Amr Hassan
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Serena Bonasera
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, Virginia, 23284-3015 , USA.
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
29
|
Kinghorn B, Rosenfeld M, Sullivan E, Onchiri F, Ferkol TW, Sagel SD, Dell SD, Milla C, Shapiro AJ, Sullivan KM, Zariwala MA, Pittman JE, Mollica F, Tiddens HAWM, Kemner-van de Corput M, Knowles MR, Davis SD, Leigh MW. Airway Disease in Children with Primary Ciliary Dyskinesia: Impact of Ciliary Ultrastructure Defect and Genotype. Ann Am Thorac Soc 2023; 20:539-547. [PMID: 36442147 PMCID: PMC10112400 DOI: 10.1513/annalsats.202206-524oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/28/2022] [Indexed: 11/29/2022] Open
Abstract
Rationale: Primary ciliary dyskinesia (PCD) is characterized by impaired mucociliary clearance, recurrent respiratory infections, progressive airway damage, and obstructive lung disease. Although the association of ciliary ultrastructure defect/genotype with the severity of airflow obstruction has been well characterized, their association with airway abnormalities on chest computed tomography (CT) has been minimally evaluated. Objectives: We sought to delineate the association of ciliary defect class/genotype with chest CT scores in children with PCD. Methods: Cross-sectional analysis of children with PCD (N = 146) enrolled in a prospective multicenter observational study, stratified by defect type: outer dynein arm (ODA), ODA/inner dynein arm (IDA), IDA/microtubular disorganization (MTD), and normal/near normal ultrastructure with associated genotypes. CTs were scored using the MERAGMA-PCD (Melbourne-Rotterdam Annotated Grid Morphometric Analysis for PCD), evaluating airway abnormalities in a hierarchical order: atelectasis, bronchiectasis, bronchial wall thickening, and mucus plugging/tree-in-bud opacities. The volume fraction of each component was expressed as the percentage of total lung volume. The percentage of disease was computed as the sum of all components. Regression analyses were used to describe the association between clinical predictors and CT scores. Results: Acceptable chest CTs were obtained in 141 children (71 male): 57 ODA, 20 ODA/IDA, 40 IDA/MTD, and 24 normal/near normal. The mean (standard deviation) age was 8.5 (4.6) years, forced expiratory volume in 1 second (FEV1) percent predicted was 82.4 (19.5), and %Disease was 4.6 (3.5). Children with IDA/MTD defects had a higher %Disease compared with children with ODA defects (2.71% higher [95% confidence interval (CI), 1.37-4.06; P < 0.001]), driven by higher %Mucus plugging (2.35% higher [1.43-3.26; P < 0.001]). Increasing age, lower body mass index, and lower FEV1 were associated with a higher %Disease (0.23%; 95% CI, 0.11-0.35; P < 0.001 and 0.03%; 95% CI, 0.01-0.04; P = 0.008 and 0.05%; 95% CI, 0.01-0.08; P = 0.011, respectively). Conclusions: Children with IDA/MTD defects had significantly greater airway disease on CT, primarily mucus plugging, compared with children with ODA defects.
Collapse
Affiliation(s)
- BreAnna Kinghorn
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
- Department of Pediatrics, Seattle Children’s Research Institute, Seattle, Washington
| | - Margaret Rosenfeld
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
- Department of Pediatrics, Seattle Children’s Research Institute, Seattle, Washington
| | - Erin Sullivan
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
- Department of Pediatrics, Seattle Children’s Research Institute, Seattle, Washington
| | - Frankline Onchiri
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
- Department of Pediatrics, Seattle Children’s Research Institute, Seattle, Washington
| | - Thomas W. Ferkol
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Scott D. Sagel
- Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Sharon D. Dell
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carlos Milla
- Department of Pediatrics, Stanford University, Palo Alto, California
| | - Adam J. Shapiro
- Department of Pediatrics, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | | | | | - Jessica E. Pittman
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; and
| | - Federico Mollica
- Department of Pediatric Pulmonology and Allergology, Sophia Children’s Hospital, and
- Department of Pediatric Pulmonology and Allergology, Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Harm A. W. M. Tiddens
- Department of Pediatric Pulmonology and Allergology, Sophia Children’s Hospital, and
- Department of Pediatric Pulmonology and Allergology, Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mariette Kemner-van de Corput
- Department of Pediatric Pulmonology and Allergology, Sophia Children’s Hospital, and
- Department of Pediatric Pulmonology and Allergology, Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Stephanie D. Davis
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Margaret W. Leigh
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
30
|
Savant AP, McColley SA. Cystic fibrosis year in review 2019: Section 2 pulmonary disease and infections. Pediatr Pulmonol 2023; 58:672-682. [PMID: 32970381 DOI: 10.1002/ppul.25091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 11/07/2022]
Abstract
During the year 2019, research and case reports or series in the field of cystic fibrosis (CF) were in abundance. To adequately address the large body of CF research published during 2019, the CF year in review will be divided into three sections. This report is the second section, focusing specifically on new research related to pulmonary disease and infections. Additional sections will concentrate on CF transmembrane conductance regulator modulators and the multisystem effects of CF. It is an exciting time to be providing care for patients and their families with CF with all the exciting new discoveries that will be shared in these reviews.
Collapse
Affiliation(s)
- Adrienne P Savant
- Department of Pediatrics, Children's Hospital of New Orleans, New Orleans, Louisiana, USA.,Department of Pediatrics, Tulane University, New Orleans, Louisiana, USA
| | - Susanna A McColley
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Clinical and Translational Research, Stanley Manne Children's Research Institute, Chicago, Illinois, USA.,Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| |
Collapse
|
31
|
Landini N, Ciet P, Janssens HM, Bertolo S, Ros M, Mattone M, Catalano C, Majo F, Costa S, Gramegna A, Lucca F, Parisi GF, Saba L, Tiddens HAWM, Morana G. Management of respiratory tract exacerbations in people with cystic fibrosis: Focus on imaging. Front Pediatr 2023; 10:1084313. [PMID: 36814432 PMCID: PMC9940849 DOI: 10.3389/fped.2022.1084313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/28/2022] [Indexed: 02/09/2023] Open
Abstract
Respiratory tract exacerbations play a crucial role in progressive lung damage of people with cystic fibrosis, representing a major determinant in the loss of functional lung tissue, quality of life and patient survival. Detection and monitoring of respiratory tract exacerbations are challenging for clinicians, since under- and over-treatment convey several risks for the patient. Although various diagnostic and monitoring tools are available, their implementation is hampered by the current definition of respiratory tract exacerbation, which lacks objective "cut-offs" for clinical and lung function parameters. In particular, the latter shows a large variability, making the current 10% change in spirometry outcomes an unreliable threshold to detect exacerbation. Moreover, spirometry cannot be reliably performed in preschool children and new emerging tools, such as the forced oscillation technique, are still complementary and need more validation. Therefore, lung imaging is a key in providing respiratory tract exacerbation-related structural and functional information. However, imaging encompasses several diagnostic options, each with different advantages and limitations; for instance, conventional chest radiography, the most used radiological technique, may lack sensitivity and specificity in respiratory tract exacerbations diagnosis. Other methods, including computed tomography, positron emission tomography and magnetic resonance imaging, are limited by either radiation safety issues or the need for anesthesia in uncooperative patients. Finally, lung ultrasound has been proposed as a safe bedside option but it is highly operator-dependent and there is no strong evidence of its possible use during respiratory tract exacerbation. This review summarizes the clinical challenges of respiratory tract exacerbations in patients with cystic fibrosis with a special focus on imaging. Firstly, the definition of respiratory tract exacerbation is examined, while diagnostic and monitoring tools are briefly described to set the scene. This is followed by advantages and disadvantages of each imaging technique, concluding with a diagnostic imaging algorithm for disease monitoring during respiratory tract exacerbation in the cystic fibrosis patient.
Collapse
Affiliation(s)
- Nicholas Landini
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I Hospital, “Sapienza” Rome University, Rome, Italy
| | - Pierluigi Ciet
- Department of Radiology and Nuclear Medicine, Erasmus MC – Sophia, Rotterdam, Netherlands
- Department of Radiology, University Cagliari, Cagliari, Italy
- Department of Pediatrics, division of Respiratory Medicine and Allergology, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Hettie M. Janssens
- Department of Pediatrics, division of Respiratory Medicine and Allergology, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Silvia Bertolo
- Department of Radiology, S. Maria Ca’Foncello Regional Hospital, Treviso, Italy
| | - Mirco Ros
- Department of Pediatrics, Ca’Foncello S. Maria Hospital, Treviso, Italy
| | - Monica Mattone
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I Hospital, “Sapienza” Rome University, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I Hospital, “Sapienza” Rome University, Rome, Italy
| | - Fabio Majo
- Pediatric Pulmonology & Cystic Fibrosis Unit Bambino Gesú Children's Hospital, IRCCS Rome, Rome, Italy
| | - Stefano Costa
- Department of Pediatrics, Gaetano Martino Hospital, Messina, Italy
| | - Andrea Gramegna
- Department of Pathophisiology and Transplantation, University of Milan, Milan, Italy
- Respiratory Disease and Adult Cystic Fibrosis Centre, Internal Medicine Department, IRCCS Ca’ Granda, Milan, Italy
| | - Francesca Lucca
- Regional Reference Cystic Fibrosis Center, University Hospital of Verona, Verona, Italy
| | - Giuseppe Fabio Parisi
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Luca Saba
- Department of Radiology, University Cagliari, Cagliari, Italy
| | - Harm A. W. M. Tiddens
- Department of Radiology and Nuclear Medicine, Erasmus MC – Sophia, Rotterdam, Netherlands
- Department of Pediatrics, division of Respiratory Medicine and Allergology, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Giovanni Morana
- Department of Radiology, S. Maria Ca’Foncello Regional Hospital, Treviso, Italy
| |
Collapse
|
32
|
Svedberg M, Imberg H, Gustafsson PM, Tiddens H, Davies G, Lindblad A. Longitudinal lung clearance index and association with structural lung damage in children with cystic fibrosis. Thorax 2023; 78:176-182. [PMID: 35277449 PMCID: PMC9872247 DOI: 10.1136/thoraxjnl-2021-218178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/11/2022] [Indexed: 01/27/2023]
Affiliation(s)
- Marcus Svedberg
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Henrik Imberg
- Departmemt of Mathematical Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Per Magnus Gustafsson
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Pediatrics, Central Hospital, Skoevde, Sweden
| | - Harm Tiddens
- Department of Pediatric Pulmonology and Allergology, ErasmusMC-Sophia Children's hospital, Rotterdam, Netherlands
| | - Gwyneth Davies
- UCL Great Ormond Street Institute of Child Health, UCL, London, UK.,Department of Respiratory Medicine, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Anders Lindblad
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
33
|
Steinke E, Sommerburg O, Graeber SY, Joachim C, Labitzke C, Nissen G, Ricklefs I, Rudolf I, Kopp MV, Dittrich AM, Mall MA, Stahl M. TRACK-CF prospective cohort study: Understanding early cystic fibrosis lung disease. Front Med (Lausanne) 2023; 9:1034290. [PMID: 36687447 PMCID: PMC9853074 DOI: 10.3389/fmed.2022.1034290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Abstract
Background Lung disease as major cause for morbidity in patients with cystic fibrosis (CF) starts early in life. Its large phenotypic heterogeneity is partially explained by the genotype but other contributing factors are not well delineated. The close relationship between mucus, inflammation and infection, drives morpho-functional alterations already early in pediatric CF disease, The TRACK-CF cohort has been established to gain insight to disease onset and progression, assessed by lung function testing and imaging to capture morpho-functional changes and to associate these with risk and protective factors, which contribute to the variation of the CF lung disease progression. Methods and design TRACK-CF is a prospective, longitudinal, observational cohort study following patients with CF from newborn screening or clinical diagnosis throughout childhood. The study protocol includes monthly telephone interviews, quarterly visits with microbiological sampling and multiple-breath washout and as well as a yearly chest magnetic resonance imaging. A parallel biobank has been set up to enable the translation from the deeply phenotyped cohort to the validation of relevant biomarkers. The main goal is to determine influencing factors by the combined analysis of clinical information and biomaterials. Primary endpoints are the lung clearance index by multiple breath washout and semi-quantitative magnetic resonance imaging scores. The frequency of pulmonary exacerbations, infection with pro-inflammatory pathogens and anthropometric data are defined as secondary endpoints. Discussion This extensive cohort includes children after diagnosis with comprehensive monitoring throughout childhood. The unique composition and the use of validated, sensitive methods with the attached biobank bears the potential to decisively advance the understanding of early CF lung disease. Ethics and trial registration The study protocol was approved by the Ethics Committees of the University of Heidelberg (approval S-211/2011) and each participating site and is registered at clinicaltrials.gov (NCT02270476).
Collapse
Affiliation(s)
- Eva Steinke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany,German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany,Berlin Institute of Health (BIH) at Charité, Berlin, Germany,*Correspondence: Eva Steinke ✉
| | - Olaf Sommerburg
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Simon Y. Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany,German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany,Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| | - Cornelia Joachim
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christiane Labitzke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Gyde Nissen
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| | - Isabell Ricklefs
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| | - Isa Rudolf
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Matthias V. Kopp
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany,Division of Respiratory Medicine, Department of Pediatrics, University Children's Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany,German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany,Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany,German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany,Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| |
Collapse
|
34
|
Sagel SD, Kupfer O, Wagner BD, Davis SD, Dell SD, Ferkol TW, Hoppe JE, Rosenfeld M, Sullivan KM, Tiddens HAWM, Knowles MR, Leigh MW. Airway Inflammation in Children with Primary Ciliary Dyskinesia. Ann Am Thorac Soc 2023; 20:67-74. [PMID: 35984413 PMCID: PMC9819265 DOI: 10.1513/annalsats.202204-314oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/19/2022] [Indexed: 02/05/2023] Open
Abstract
Rationale: The role of airway inflammation in disease pathogenesis in children with primary ciliary dyskinesia (PCD) is poorly understood. Objectives: We investigated relationships between sputum inflammation measurements, age, lung function, bronchiectasis, airway infection, and ultrastructural defects in children with PCD. Methods: Spontaneously expectorated sputum was collected from clinically stable children and adolescents with PCD ages 6 years and older participating in a multicenter, observational study. Sputum protease and inflammatory cytokine concentrations were correlated with age, lung function, and chest computed tomography measures of structural lung disease, whereas differences in concentrations were compared between ultrastructural defect categories and between those with and without detectable bacterial infection. Results: Sputum from 77 children with PCD (39 females [51%]; mean [standard deviation] age, 13.9 [4.9] yr; mean [standard deviation] forced expiratory volume in 1 second [FEV1]% predicted, 80.8 [20.5]) was analyzed. Sputum inflammatory marker measurements, including neutrophil elastase activity, IL-1β (interleukin-1β), IL-8, and TNF-α (tumor necrosis factor α) concentrations, correlated positively with age, percentage of bronchiectasis, and percentage of total structural lung disease on computed tomography, and negatively with lung function. Correlations between neutrophil elastase concentrations and FEV1% predicted and percentage of bronchiectasis were -0.32 (95% confidence interval, -0.51 to -0.10) and 0.46 (0.14 to 0.69), respectively. Sputum neutrophil elastase, IL-1β, and TNF-α concentrations were higher in those with detectable bacterial pathogens. Participants with absent inner dynein arm and microtubular disorganization had similar inflammatory profiles compared with participants with outer dynein arm defects. Conclusions: In this multicenter pediatric PCD cohort, elevated concentrations of sputum proteases and cytokines were associated with impaired lung function and structural damage as determined by chest computed tomography, suggesting that sputum inflammatory measurements could serve as biomarkers in PCD.
Collapse
Affiliation(s)
- Scott D. Sagel
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Oren Kupfer
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Brandie D. Wagner
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | | | - Sharon D. Dell
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas W. Ferkol
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Jordana E. Hoppe
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Margaret Rosenfeld
- Department of Pediatrics, Children’s Hospital and Regional Medical Center, Seattle, Washington; and
| | - Kelli M. Sullivan
- Department of Medicine, Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Harm A. W. M. Tiddens
- Department of Pediatric Pulmonology and Allergology, Erasmus MC‐Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Michael R. Knowles
- Department of Medicine, Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | | |
Collapse
|
35
|
Mok LC, Garcia-Uceda A, Cooper MN, Kemner-Van De Corput M, De Bruijne M, Feyaerts N, Rosenow T, De Boeck K, Stick S, Tiddens HAWM. The effect of CFTR modulators on structural lung disease in cystic fibrosis. Front Pharmacol 2023; 14:1147348. [PMID: 37113757 PMCID: PMC10127680 DOI: 10.3389/fphar.2023.1147348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Background: Newly developed quantitative chest computed tomography (CT) outcomes designed specifically to assess structural abnormalities related to cystic fibrosis (CF) lung disease are now available. CFTR modulators potentially can reduce some structural lung abnormalities. We aimed to investigate the effect of CFTR modulators on structural lung disease progression using different quantitative CT analysis methods specific for people with CF (PwCF). Methods: PwCF with a gating mutation (Ivacaftor) or two Phe508del alleles (lumacaftor-ivacaftor) provided clinical data and underwent chest CT scans. Chest CTs were performed before and after initiation of CFTR modulator treatment. Structural lung abnormalities on CT were assessed using the Perth Rotterdam Annotated Grid Morphometric Analysis for CF (PRAGMA-CF), airway-artery dimensions (AA), and CF-CT methods. Lung disease progression (0-3 years) in exposed and matched unexposed subjects was compared using analysis of covariance. To investigate the effect of treatment in early lung disease, subgroup analyses were performed on data of children and adolescents aged <18 years. Results: We included 16 modulator exposed PwCF and 25 unexposed PwCF. Median (range) age at the baseline visit was 12.55 (4.25-36.49) years and 8.34 (3.47-38.29) years, respectively. The change in PRAGMA-CF %Airway disease (-2.88 (-4.46, -1.30), p = 0.001) and %Bronchiectasis extent (-2.07 (-3.13, -1.02), p < 0.001) improved in exposed PwCF compared to unexposed. Subgroup analysis of paediatric data showed that only PRAGMA-CF %Bronchiectasis (-0.88 (-1.70, -0.07), p = 0.035) improved in exposed PwCF compared to unexposed. Conclusion: In this preliminary real-life retrospective study CFTR modulators improve several quantitative CT outcomes. A follow-up study with a large cohort and standardization of CT scanning is needed to confirm our findings.
Collapse
Affiliation(s)
- L. Clara Mok
- Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Antonio Garcia-Uceda
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Pediatric Pulmonology and Allergology, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Matthew N. Cooper
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | | | - Marleen De Bruijne
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Nathalie Feyaerts
- Department of Pediatric Pulmonology, University of Leuven, Leuven, Belgium
| | - Tim Rosenow
- Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Kris De Boeck
- Department of Pediatric Pulmonology, University of Leuven, Leuven, Belgium
| | - Stephen Stick
- Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory Medicine, Perth Children’s Hospital, Perth, WA, Australia
| | - Harm A. W. M. Tiddens
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Pediatric Pulmonology and Allergology, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, Netherlands
- *Correspondence: Harm A. W. M. Tiddens,
| |
Collapse
|
36
|
Weinheimer O, Konietzke P, Wagner WL, Weber D, Newman B, Galbán CJ, Kauczor HU, Mall MA, Robinson TE, Wielpütz MO. MDCT-based longitudinal automated airway and air trapping analysis in school-age children with mild cystic fibrosis lung disease. Front Pediatr 2023; 11:1068103. [PMID: 36816383 PMCID: PMC9932328 DOI: 10.3389/fped.2023.1068103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Quantitative computed tomography (QCT) offers some promising markers to quantify cystic fibrosis (CF)-lung disease. Air trapping may precede irreversible bronchiectasis; therefore, the temporal interdependencies of functional and structural lung disease need to be further investigated. We aim to quantify airway dimensions and air trapping on chest CT of school-age children with mild CF-lung disease over two years. METHODS Fully-automatic software analyzed 144 serial spirometer-controlled chest CT scans of 36 children (median 12.1 (10.2-13.8) years) with mild CF-lung disease (median ppFEV1 98.5 (90.8-103.3) %) at baseline, 3, 12 and 24 months. The airway wall percentage (WP5-10), bronchiectasis index (BEI), as well as severe air trapping (A3) were calculated for the total lung and separately for all lobes. Mixed linear models were calculated, considering the lobar distribution of WP5-10, BEI and A3 cross-sectionally and longitudinally. RESULTS WP5-10 remained stable (P = 0.248), and BEI changed from 0.41 (0.28-0.7) to 0.54 (0.36-0.88) (P = 0.156) and A3 from 2.26% to 4.35% (P = 0.086) showing variability over two years. ppFEV1 was also stable (P = 0.276). A robust mixed linear model showed a cross-sectional, regional association between WP5-10 and A3 at each timepoint (P < 0.001). Further, BEI showed no cross-sectional, but another mixed model showed short-term longitudinal interdependencies with air trapping (P = 0.003). CONCLUSIONS Robust linear/beta mixed models can still reveal interdependencies in medical data with high variability that remain hidden with simpler statistical methods. We could demonstrate cross-sectional, regional interdependencies between wall thickening and air trapping. Further, we show short-term regional interdependencies between air trapping and an increase in bronchiectasis. The data indicate that regional air trapping may precede the development of bronchiectasis. Quantitative CT may capture subtle disease progression and identify regional and temporal interdependencies of distinct manifestations of CF-lung disease.
Collapse
Affiliation(s)
- Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Lung Research Center (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Philip Konietzke
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Lung Research Center (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Willi L Wagner
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Lung Research Center (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Dorothea Weber
- Translational Lung Research Center (TLRC), German Lung Research Center (DZL), University of Heidelberg, Heidelberg, Germany.,Institute of Medical Biometry and Informatics (IMBI), University of Heidelberg, Heidelberg, Germany
| | - Beverly Newman
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Craig J Galbán
- Department of Radiology, University of Michigan, Ann Arbor, United States
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Lung Research Center (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health @ Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Terry E Robinson
- Department of Pediatrics, Center of Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Lung Research Center (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
37
|
Britto CJ, Ratjen F, Clancy JP. Emerging Approaches to Monitor and Modify Care in the Era of Cystic Fibrosis Transmembrane Conductance Regulators. Clin Chest Med 2022; 43:631-646. [PMID: 36344071 DOI: 10.1016/j.ccm.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As we characterize the clinical benefits of highly effective modulator therapy (HEMT) in the cystic fibrosis (CF) population, our paradigm for treating and monitoring disease continues to evolve. More sensitive approaches are necessary to detect early disease and clinical progression. This article reviews evolving strategies to assess disease control and progression in the HEMT era. This article also explores developments in pulmonary function monitoring, advanced respiratory imaging, tools for the collection of patient-reported outcomes, and their application to profile individual responses, guide therapeutic decisions, and improve the quality of life of people with CF.
Collapse
Affiliation(s)
- Clemente J Britto
- Yale Adult Cystic Fibrosis Program, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine.
| | - Felix Ratjen
- Division of Respiratory Medicine, Translational Medicine, University of Toronto Hospital for Sick Children, 555 University Avenue, Toronto Ontario M5G 1X8, Canada
| | | |
Collapse
|
38
|
Elders BBLJ, Tiddens HAWM, Pijnenburg MWH, Reiss IKM, Wielopolski PA, Ciet P. Lung structure and function on MRI in preterm born school children with and without BPD: A feasibility study. Pediatr Pulmonol 2022; 57:2981-2991. [PMID: 35982507 PMCID: PMC9826116 DOI: 10.1002/ppul.26119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND OBJECTIVE The most common respiratory complication of prematurity is bronchopulmonary dysplasia (BPD), leading to structural lung changes and impaired respiratory outcomes. However, also preterm children without BPD may show similar adverse respiratory outcomes. There is a need for a safe imaging modality for preterm children with and without BPD for disease severity assessment and risk stratification. Our objective was to develop a magnetic resonance imaging (MRI) protocol in preterm children with and without BPD at school age. METHODS Nine healthy volunteers (median age 11.6 [range: 8.8-12.8] years), 11 preterm children with BPD (11.0 [7.2-15.6] years), and 9 without BPD (11.1 [10.7-12.6] years) underwent MRI. Images were scored on hypo- and hyperintense abnormalities, bronchopathy, and architectural distortion. MRI data were correlated to spirometry. Ventilation and perfusion defects were analyzed using Fourier Decomposition (FD) MRI. RESULTS On MRI, children with BPD had higher %diseased lung (9.1 (interquartile range [IQR] 5.9-11.6)%) compared to preterm children without BPD (3.4 (IQR 2.5-5.4)%, p < 0.001) and healthy volunteers (0.4 (IQR 0.1-0.8)%, p < 0.001). %Diseased lung correlated negatively with %predicted FEV1 (r = -0.40, p = 0.04), FEV1 /FVC (r = -0.49, p = 0.009) and FEF75 (r = -0.63, p < 0.001). Ventilation and perfusion defects on FD sequence corresponded to hypointense regions on expiratory MRI. CONCLUSION Chest MRI can identify structural and functional lung damage at school age in preterm children with and without BPD, showing a good correlation with spirometry. We propose MRI as a sensitive and safe imaging method (without ionizing radiation, contrast agents, or the use of anesthesia) for the long-term follow-up of preterm children.
Collapse
Affiliation(s)
- Bernadette B L J Elders
- Department of Paediatric Pulmonology and Allergology, Erasmus MC-Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC-Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Harm A W M Tiddens
- Department of Paediatric Pulmonology and Allergology, Erasmus MC-Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC-Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Mariëlle W H Pijnenburg
- Department of Paediatric Pulmonology and Allergology, Erasmus MC-Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Irwin K M Reiss
- Department of Neonatology, Erasmus MC-Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Piotr A Wielopolski
- Department of Radiology and Nuclear Medicine, Erasmus MC-Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Pierluigi Ciet
- Department of Paediatric Pulmonology and Allergology, Erasmus MC-Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC-Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
39
|
Sanders DB, Deschamp AR, Hatch JE, Slaven JE, Gebregziabher N, Corput MKVD, Tiddens HAWM, Rosenow T, Storch GA, Hall GL, Stick SM, Ranganathan S, Ferkol TW, Davis SD. Association between early respiratory viral infections and structural lung disease in infants with cystic fibrosis. J Cyst Fibros 2022; 21:1020-1026. [PMID: 35523715 PMCID: PMC10564322 DOI: 10.1016/j.jcf.2022.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Infants with cystic fibrosis (CF) develop structural lung disease early in life, and viral infections are associated with progressive lung disease. We hypothesized that the presence of respiratory viruses would be associated with structural lung disease on computed tomography (CT) of the chest in infants with CF. METHODS Infants with CF were enrolled before 4 months of age. Multiplex PCR assays were performed on nasal swabs to detect respiratory viruses during routine visits and when symptomatic. Participants underwent CT imaging at approximately 12 months of age. Associations between Perth-Rotterdam Annotated Grid Morphometric Analysis for CF (PRAGMA-CF) CT scores and respiratory viruses and symptoms were assessed with Spearman correlation coefficients. RESULTS Sixty infants were included for analysis. Human rhinovirus was the most common virus detected, on 28% of tested nasal swabs and in 85% of participants. The median (IQR) extent of lung fields that was healthy based on PRAGMA-CF was 98.7 (0.8)%. There were no associations between PRAGMA-CF and age at first virus, or detection of any virus, including rhinovirus, respiratory syncytial virus, or parainfluenza. The extent of airway wall thickening was associated with ever having wheezed (ρ = 0.31, p = 0.02) and number of encounters with cough (ρ = 0.25, p = 0.0495). CONCLUSIONS Infants with CF had minimal structural lung disease. We did not find an association between respiratory viruses and CT abnormalities. Wheezing and frequency of cough were associated with early structural changes.
Collapse
Affiliation(s)
- Don B Sanders
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Ashley R Deschamp
- Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital and Medical Center, Omaha, NE, USA
| | - Joseph E Hatch
- Department of Pediatrics, UNC Children's, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - James E Slaven
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Netsanet Gebregziabher
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mariette Kemner-van de Corput
- Department of Paediatrics, Erasmus MC - Sophia Children's Hospital, University Medial Center Rotterdam, Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC - Sophia Children's Hospital, University Medial Center Rotterdam, Netherlands
| | - Harm A W M Tiddens
- Department of Paediatrics, Erasmus MC - Sophia Children's Hospital, University Medial Center Rotterdam, Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC - Sophia Children's Hospital, University Medial Center Rotterdam, Netherlands
| | - Tim Rosenow
- The Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Nedlands, Western Australia; Children's Lung Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute and School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia
| | - Gregory A Storch
- Department of Pediatrics, Washington University, St. Louis Children's Hospital, St. Louis, MO, USA
| | - Graham L Hall
- Children's Lung Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute and School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia
| | - Stephen M Stick
- Department of Pediatrics, University of Western Australia, Telethon Kids Institute, Perth, Australia
| | - Sarath Ranganathan
- Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia; Infection and Immunity, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Thomas W Ferkol
- Department of Pediatrics, Washington University, St. Louis Children's Hospital, St. Louis, MO, USA
| | - Stephanie D Davis
- Department of Pediatrics, UNC Children's, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
40
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
41
|
Roehmel JF, Doerfler FJ, Koerner-Rettberg C, Brinkmann F, Schlegtendal A, Wetzke M, Rudolf I, Helms S, Große-Onnebrink J, Yu Y, Nuesslein T, Wojsyk-Banaszak I, Becker S, Eickmeier O, Sommerburg O, Omran H, Stahl M, Mall MA. Comparison of the Lung Clearance Index in Preschool Children With Primary Ciliary Dyskinesia and Cystic Fibrosis. Chest 2022; 162:534-542. [DOI: 10.1016/j.chest.2022.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022] Open
|
42
|
Giacalone VD, Moncada-Giraldo D, Margaroli C, Brown MR, Silva GL, Chandler JD, Peng L, Tirouvanziam R, Guglani L. Pilot study of inflammatory biomarkers in matched induced sputum and bronchoalveolar lavage of 2-year-olds with cystic fibrosis. Pediatr Pulmonol 2022; 57:2189-2198. [PMID: 35637404 DOI: 10.1002/ppul.26023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/08/2022] [Accepted: 05/29/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND In this pilot study, we investigated whether induced sputum (IS) could serve as a viable alternative to bronchoalveolar lavage (BAL) and yield robust inflammatory biomarkers in toddlers with cystic fibrosis (CF) featuring minimal structural lung disease. METHODS We collected IS, BAL (right middle lobe and lingula), and blood, and performed chest computed tomography (CT) scans from 2-year-olds with CF (N = 11), all within a single visit. Inflammatory biomarkers included 20 soluble immune mediators and neutrophil elastase (NE), as well as frequency and phenotype of T cells, monocytes/macrophages, and neutrophils. RESULTS At the molecular level, nine mediators showed similar levels in IS and BAL (CXCL1, CXCL8, IL-1α, IL-1RA, IL-6, CCL2, CXCL10, M-CSF, VEGF-A), four were higher in IS than in BAL (CXCL5, IL-1β, CXCL11, TNFSF10), and two were present in IS, but undetectable in BAL (IL-10, IFN-γ). Meanwhile, soluble NE had lower activity in IS than in BAL. At the cellular level, T-cell frequency was lower in IS than in BAL. Monocytes/macrophages were dominant in IS and BAL with similar frequencies, but differing expression of CD16 (lower in IS), CD115, and surface-associated NE (higher in IS). Neutrophil frequency and phenotype did not differ between IS and BAL. Finally, neutrophil frequency in IS correlated positively with air trapping. CONCLUSIONS IS collected from 2-year-olds with CF yields biomarkers of early airway inflammation with good agreement with BAL, notably with regard to molecular and cellular outcomes related to neutrophils and monocytes/macrophages.
Collapse
Affiliation(s)
- Vincent D Giacalone
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Diego Moncada-Giraldo
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Camilla Margaroli
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Milton R Brown
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - George L Silva
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Joshua D Chandler
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Limin Peng
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, Georgia, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Lokesh Guglani
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | | |
Collapse
|
43
|
Cramer N, Nawrot ML, Wege L, Dorda M, Sommer C, Danov O, Wronski S, Braun A, Jonigk D, Fischer S, Munder A, Tümmler B. Competitive fitness of Pseudomonas aeruginosa isolates in human and murine precision-cut lung slices. Front Cell Infect Microbiol 2022; 12:992214. [PMID: 36081773 PMCID: PMC9446154 DOI: 10.3389/fcimb.2022.992214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic respiratory infections with the gram-negative bacterium Pseudomonas aeruginosa are an important co-morbidity for the quality of life and prognosis of people with cystic fibrosis (CF). Such long-term colonization, sometimes lasting up to several decades, represents a unique opportunity to investigate pathogen adaptation processes to the host. Our studies aimed to resolve if and to what extent the bacterial adaptation to the CF airways influences the fitness of the pathogen to grow and to persist in the lungs. Marker-free competitive fitness experiments of serial P. aeruginosa isolates differentiated by strain-specific SNPs, were performed with murine and human precision cut lung slices (PCLS). Serial P. aeruginosa isolates were selected from six mild and six severe CF patient courses, respectively. MPCLS or hPCLS were inoculated with a mixture of equal numbers of the serial isolates of one course. The temporal change of the composition of the bacterial community during competitive growth was quantified by multi-marker amplicon sequencing. Both ex vivo models displayed a strong separation of fitness traits between mild and severe courses. Whereas the earlier isolates dominated the competition in the severe courses, intermediate and late isolates commonly won the competition in the mild courses. The status of the CF lung disease rather than the bacterial genotype drives the adaptation of P. aeruginosa during chronic CF lung infection. This implies that the disease status of the lung habitat governed the adaptation of P. aeruginosa more strongly than the underlying bacterial clone-type and its genetic repertoire.
Collapse
Affiliation(s)
- Nina Cramer
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- *Correspondence: Nina Cramer,
| | - Marie Luise Nawrot
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Lion Wege
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover Medical School, Hannover, Germany
| | - Marie Dorda
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Charline Sommer
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Olga Danov
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Sabine Wronski
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Armin Braun
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Sebastian Fischer
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Antje Munder
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
44
|
Stick SM, Foti A, Ware RS, Tiddens HAWM, Clements BS, Armstrong DS, Selvadurai H, Tai A, Cooper PJ, Byrnes CA, Belessis Y, Wainwright C, Jaffe A, Robinson P, Saiman L, Sly PD. The effect of azithromycin on structural lung disease in infants with cystic fibrosis (COMBAT CF): a phase 3, randomised, double-blind, placebo-controlled clinical trial. THE LANCET RESPIRATORY MEDICINE 2022; 10:776-784. [DOI: 10.1016/s2213-2600(22)00165-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/28/2022]
|
45
|
Going the Extra Mile: Why Clinical Research in Cystic Fibrosis Must Include Children. CHILDREN 2022; 9:children9071080. [PMID: 35884064 PMCID: PMC9323167 DOI: 10.3390/children9071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
This is an exciting time for research and novel drug development in cystic fibrosis. However, rarely has the adage, “Children are not just little adults” been more relevant. This article is divided into two main sections. In the first, we explore why it is important to involve children in research. We discuss the potential benefits of understanding a disease and its treatment in children, and we highlight that children have the same legal and ethical right to evidence-based therapy as adults. Additionally, we discuss why extrapolation from adults may be inappropriate, for example, medication pharmacokinetics may be different in children, and there may be unpredictable adverse effects. In the second part, we discuss how to involve children and their families in research. We outline the importance and the complexities of selecting appropriate outcome measures, and we discuss the role co-design may have in improving the involvement of children. We highlight the importance of appropriate staffing and resourcing, and we outline some of the common challenges and possible solutions, including practical tips on obtaining consent/assent in children and adolescents. We conclude that it is unethical to simply rely on extrapolation from adult studies because research in young children is challenging and that research should be seen as a normal part of the paediatric therapeutic journey.
Collapse
|
46
|
Tiddens HAWM, Chen Y, Andrinopoulou ER, Davis SD, Rosenfeld M, Ratjen F, Kronmal RA, Hinckley Stukovsky KD, Dasiewicz A, Stick SM. The effect of inhaled hypertonic saline on lung structure in children aged 3-6 years with cystic fibrosis (SHIP-CT): a multicentre, randomised, double-blind, controlled trial. THE LANCET. RESPIRATORY MEDICINE 2022; 10:669-678. [PMID: 35286860 DOI: 10.1016/s2213-2600(21)00546-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND In the Saline Hypertonic in Preschoolers (SHIP) study, inhaled 7% hypertonic saline improved the lung clearance index in children aged 3-6 years with cystic fibrosis, but it remained unclear whether improvement is also seen in structural lung disease. We aimed to assess the effect of inhaled hypertonic saline on chest CT imaging in children aged 3-6 years with cystic fibrosis. METHODS Children with cystic fibrosis were enrolled in this multicentre, randomised, double-blind, controlled study at 23 cystic fibrosis centres in Spain, Denmark, the Netherlands, Italy, France, Belgium, the USA, Canada, and Australia. Eligible participants were children aged 3-6 years who were able to cooperate with chest CT imaging and comply with daily nebuliser treatment. Participants were randomly assigned 1:1 to receive inhaled 2 puffs of 100 μg salbutamol followed by 4mL of either 7% hypertonic saline or 0·9% isotonic saline twice per day for 48 weeks. Randomisation was stratified by age in North America and Australia, and by age and country in Europe. Chest CTs were obtained at baseline and 48 weeks and scored using the Perth-Rotterdam Annotated Grid Morphometric Analysis for Cystic Fibrosis (PRAGMA-CF) method. The primary outcome was the difference between groups in the percentage of total lung volume occupied by abnormal airways (PRAGMA-CF %Disease) measured by chest CT at 48 weeks. Analysis was by intention-to-treat. This study is registered with Clinicaltrials.gov, NCT02950883. FINDINGS Between May 24, 2016, and Dec 18, 2019, 134 children were assessed for inclusion. 18 patients were excluded (nine had incomplete or unsuccessful chest CT at enrolment visit, two could not comply with CT training, two had acute respiratory infection, two withdrew consent, two for reasons unknown, and one was already on hypertonic saline). 116 participants were enrolled and randomly assigned to hypertonic saline (n=56) or isotonic saline (n=60). 12 patients dropped out of the study (seven in the hypertonic saline group and five in the isotonic saline group). Mean PRAGMA-CF %Disease at 48 weeks was 0·88% (95% CI 0·60-1·16) in the hypertonic saline group and 1·55% (1·25-1·84) in the isotonic saline group (mean difference 0·67%, 95% CI 0·26-1·08; p=0·0092) based on a linear regression model adjusted for baseline %Disease values and baseline age. Most adverse events in both groups were rated as mild, and the most common adverse event in both groups was cough. INTERPRETATION Inhaled hypertonic saline for 48 weeks had a positive effect on structural lung changes in children aged 3-6 years with cystic fibrosis relative to isotonic saline. This is the first demonstration of an intervention that alters structural lung disease in children aged 3-6 years with cystic fibrosis. FUNDING Cystic Fibrosis Foundation.
Collapse
Affiliation(s)
- Harm A W M Tiddens
- Department of Paediatrics, Division of Respiratory Medicine and Allergology, Sophia Children's Hospital, Erasmus MC, Rotterdam, Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands.
| | - Yuxin Chen
- Department of Paediatrics, Division of Respiratory Medicine and Allergology, Sophia Children's Hospital, Erasmus MC, Rotterdam, Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | | | - Stephanie D Davis
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Felix Ratjen
- Division of Respiratory Medicine, Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Richard A Kronmal
- Collaborative Health Studies Coordinating Center, University of Washington, Seattle, WA USA
| | | | - Alison Dasiewicz
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
47
|
Margaroli C, Horati H, Garratt LW, Giacalone VD, Schofield C, Dittrich AS, Rosenow T, Dobosh BS, Lim HS, Frey DL, Veltman M, Silva GL, Brown MR, Schultz C, Tiddens HAWM, Ranganathan S, Chandler JD, Qiu P, Peng L, Scholte BJ, Mall MA, Kicic A, Guglani L, Stick SM, Janssens HM, Tirouvanziam R. Macrophage PD-1 associates with neutrophilia and reduced bacterial killing in early cystic fibrosis airway disease. J Cyst Fibros 2022; 21:967-976. [PMID: 35732550 DOI: 10.1016/j.jcf.2022.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/17/2022] [Accepted: 06/02/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Macrophages are the major resident immune cells in human airways coordinating responses to infection and injury. In cystic fibrosis (CF), neutrophils are recruited to the airways shortly after birth, and actively exocytose damaging enzymes prior to chronic infection, suggesting a potential defect in macrophage immunomodulatory function. Signaling through the exhaustion marker programmed death protein 1 (PD-1) controls macrophage function in cancer, sepsis, and airway infection. Therefore, we sought to identify potential associations between macrophage PD-1 and markers of airway disease in children with CF. METHODS Blood and bronchoalveolar lavage fluid (BALF) were collected from 45 children with CF aged 3 to 62 months and structural lung damage was quantified by computed tomography. The phenotype of airway leukocytes was assessed by flow cytometry, while the release of enzymes and immunomodulatory mediators by molecular assays. RESULTS Airway macrophage PD-1 expression correlated positively with structural lung damage, neutrophilic inflammation, and infection. Interestingly, even in the absence of detectable infection, macrophage PD-1 expression was elevated and correlated with neutrophilic inflammation. In an in vitro model mimicking leukocyte recruitment into CF airways, soluble mediators derived from recruited neutrophils directly induced PD-1 expression on recruited monocytes/macrophages, suggesting a causal link between neutrophilic inflammation and macrophage PD-1 expression in CF. Finally, blockade of PD-1 in a short-term culture of CF BALF leukocytes resulted in improved pathogen clearance. CONCLUSION Taken together, these findings suggest that in early CF lung disease, PD-1 upregulation associates with airway macrophage exhaustion, neutrophil takeover, infection, and structural damage.
Collapse
Affiliation(s)
- Camilla Margaroli
- Department of Pediatrics, Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, IMPEDE-CF Program, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Hamed Horati
- Department of Pediatrics, Div. of Respiratory Medicine and Allergology, I-BALL program, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Luke W Garratt
- AREST-CF Program, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Vincent D Giacalone
- Department of Pediatrics, Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, IMPEDE-CF Program, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Craig Schofield
- AREST-CF Program, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - A Susanne Dittrich
- Department of Translational Pulmonology, Translational Lung Research Center (TLRC), German Center for Lung Research (DZL) and Department of Pulmonology, and Critical Care Medicine, Thoraxklinik at the University of Heidelberg, Heidelberg, Germany
| | - Tim Rosenow
- AREST-CF Program, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Brian S Dobosh
- Department of Pediatrics, Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, IMPEDE-CF Program, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Hong S Lim
- Department of Biomedical engineering, The Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Dario L Frey
- Department of Translational Pulmonology, Translational Lung Research Center (TLRC), German Center for Lung Research (DZL) and Department of Pulmonology, and Critical Care Medicine, Thoraxklinik at the University of Heidelberg, Heidelberg, Germany
| | - Mieke Veltman
- Department of Pediatrics, Div. of Respiratory Medicine and Allergology, I-BALL program, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - George L Silva
- Department of Pediatrics, Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, IMPEDE-CF Program, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Milton R Brown
- Department of Pediatrics, Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, IMPEDE-CF Program, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Carsten Schultz
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, United States of America
| | - Harm A W M Tiddens
- Department of Pediatrics, Div. of Respiratory Medicine and Allergology, I-BALL program, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Sarath Ranganathan
- Department of Pediatrics, University of Melbourne, Melbourne, Australia; Murdoch Children's Research Institute, and Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia
| | - Joshua D Chandler
- Department of Pediatrics, Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, IMPEDE-CF Program, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Peng Qiu
- Department of Biomedical engineering, The Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Limin Peng
- Department of Pediatrics, Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, IMPEDE-CF Program, Emory University School of Medicine, Atlanta, GA, United States of America; Department of Biostatistics, Emory University School of Public Health, Atlanta, GA, United States of America
| | - Bob J Scholte
- Department of Pediatrics, Div. of Respiratory Medicine and Allergology, I-BALL program, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center (TLRC), German Center for Lung Research (DZL) and Department of Pulmonology, and Critical Care Medicine, Thoraxklinik at the University of Heidelberg, Heidelberg, Germany; Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Anthony Kicic
- AREST-CF Program, Telethon Kids Institute, University of Western Australia, Perth, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital and Faculty of Medicine, University of Western Australia, Perth, Western Australia, Australia; School of Public Heath, Curtin University, Perth, Western Australia, Australia
| | - Lokesh Guglani
- Department of Pediatrics, Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, IMPEDE-CF Program, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Stephen M Stick
- AREST-CF Program, Telethon Kids Institute, University of Western Australia, Perth, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital and Faculty of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Hettie M Janssens
- Department of Pediatrics, Div. of Respiratory Medicine and Allergology, I-BALL program, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, IMPEDE-CF Program, Emory University School of Medicine, Atlanta, GA, United States of America.
| |
Collapse
|
48
|
Svedberg M, Imberg H, Gustafsson P, Brink M, Caisander H, Lindblad A. Chest X-rays are less sensitive than multiple breath washout examinations when it comes to detecting early cystic fibrosis lung disease. Acta Paediatr 2022; 111:1253-1260. [PMID: 35181935 PMCID: PMC9306859 DOI: 10.1111/apa.16302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
Abstract
AIM Annual chest X-ray is recommended as routine surveillance to track cystic fibrosis (CF) lung disease. The aim of this study was to investigate the clinical utility of chest X-rays to track CF lung disease. METHODS Children at Gothenburg's CF centre who underwent chest X-rays, multiple breath washouts and chest computed tomography examinations between 1996 and 2016 were included in the study. Chest X-rays were interpreted with Northern Score (NS). We compared NS to lung clearance index (LCI) and structural lung damage measured by computed tomography using a logistic regression model. RESULTS A total of 75 children were included over a median period of 13 years (range: 3.0-18.0 years). The proportion of children with abnormal NS was significantly lower than the proportion of abnormal LCI up to the age of 4 years (p < 0.05). A normal NS and a normal LCI at age 6 years were associated with a median (10-90th percentile) total airway disease of 1.8% (0.4-4.7%) and bronchiectasis of 0.2% (0.0-1.5%). CONCLUSION Chest X-rays were less sensitive than multiple breath washout examinations to detect early CF lung disease. The combined results from both methods can be used as an indicator to perform chest computed tomography less frequently.
Collapse
Affiliation(s)
- Marcus Svedberg
- Department of Pediatrics Institute of Clinical Science at The Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Pediatrics Queen Silvia's Children Hospital Gothenburg Sweden
| | - Henrik Imberg
- Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Gothenburg Sweden
- Statistiska Konsultgruppen Gothenburg Sweden
| | - Per Gustafsson
- Department of Pediatrics Institute of Clinical Science at The Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Pediatrics Central Hospital Skoevde Sweden
| | - Mela Brink
- Department of Pediatric Radiology Queen Silvia's Children Hospital Gothenburg Sweden
| | - Håkan Caisander
- Department of Pediatric Radiology Queen Silvia's Children Hospital Gothenburg Sweden
| | - Anders Lindblad
- Department of Pediatrics Institute of Clinical Science at The Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Pediatrics Queen Silvia's Children Hospital Gothenburg Sweden
| |
Collapse
|
49
|
Aurora P, Duncan JA, Lum S, Davies G, Wade A, Stocks J, Viviani L, Raywood E, Pao C, Ruiz G, Bush A. Early Pseudomonas aeruginosa predicts poorer pulmonary function in preschool children with cystic fibrosis. J Cyst Fibros 2022; 21:988-995. [DOI: 10.1016/j.jcf.2022.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022]
|
50
|
Markovetz MR, Garbarine IC, Morrison CB, Kissner WJ, Seim I, Forest MG, Papanikolas MJ, Freeman R, Ceppe A, Ghio A, Alexis NE, Stick SM, Ehre C, Boucher RC, Esther CR, Muhlebach MS, Hill DB. Mucus and mucus flake composition and abundance reflect inflammatory and infection status in cystic fibrosis. J Cyst Fibros 2022; 21:959-966. [DOI: 10.1016/j.jcf.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/11/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
|