1
|
Xu G, Wang X, Qin L, Gao J, Song G. SP110 Could be Used as a Potential Predictive and Therapeutic Biomarker for Oral Cancer. Mol Biotechnol 2025; 67:2493-2511. [PMID: 38951481 DOI: 10.1007/s12033-024-01212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
The morbidity of oral squamous cell carcinoma (OSCC) has been rising year after year, making it a major global health issue. But the molecular pathogenesis of OSCC is currently unclear. To study the potential pathogenesis of OSCC, the differentially expressed genes (DEGs) were screened, and multiple databases were used to perform the tumor stage, expression, prognosis, protein-protein interaction (PPI) networks, modules, and the functional enrichment analysis. Moreover, we have identified SP110 as the key candidate gene and conducted various analyses on it using multiple databases. The research indicated that there were 211 common DEGs, and they were enriched in various GO terms and pathways. Meanwhile, one DEG is significantly related to short disease-free survival, four are associated with overall survival, and 12 DEGs have close ties with tumor staging. Additionally, the SP110 is significantly associated with methylation level, HPV status, tumor staging, gender, race, tumor grade, age, and overall/disease-free survival of oral cancer patients, as well as the immune process. The copy number variation of SP110 significantly affected the abundance of immune infiltration. Therefore, we speculate that SP110 could be used as the diagnostic and therapeutic biomarker for OSCC, and can help to further understand oral carcinogenesis.
Collapse
Affiliation(s)
- Guoqiang Xu
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
- Shanxi Medical University School of Basic Medical Science, Taiyuan, 030001, China
| | - Xiaotang Wang
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
- Shanxi Medical University School of Basic Medical Science, Taiyuan, 030001, China
| | - Litao Qin
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
| | - Jiping Gao
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China
| | - Guohua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China.
| |
Collapse
|
2
|
Li Z, Hu Y, Zou F, Gao W, Feng S, Chen G, Yang J, Wang W, Shi C, Cai Y, Deng G, Chen X. Assessing the risk of TB progression: Advances in blood-based biomarker research. Microbiol Res 2025; 292:128038. [PMID: 39752806 DOI: 10.1016/j.micres.2024.128038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
This review addresses the significant advancements in the identification of blood-based prognostic biomarkers for tuberculosis (TB), highlighting the importance of early detection to prevent disease progression. The manuscript discusses various biomarker categories, including transcriptomic, proteomic, metabolomic, immune cell-based, cytokine-based, and antibody response-based markers, emphasizing their potential in predicting TB incidence. Despite promising results, practical application is hindered by high costs, technical complexities, and the need for extensive validation across diverse populations. Transcriptomic biomarkers, such as the Risk16 signature, show high sensitivity and specificity, while proteomic and metabolic markers provide insights into protein-level changes and biochemical alterations linked to TB. Immune cell and cytokine markers offer real-time data on the body's response to infection. The manuscript also explores the role of single-nucleotide polymorphisms in TB susceptibility and the challenges of implementing novel RNA signatures as point-of-care tests in low-resource settings. The review concludes that, while significant progress has been made, further research and development are necessary to refine these biomarkers, improve their practical application, and achieve the World Health Organization's TB elimination goals.
Collapse
Affiliation(s)
- Zhaodong Li
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yunlong Hu
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Fa Zou
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Wei Gao
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - SiWan Feng
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Guanghuan Chen
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Jing Yang
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Wenfei Wang
- National Clinical Research Center for Infectious Disease, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen 518112, China
| | - Chenyan Shi
- Department of Preventive Medicine, School of Public Health, Shenzhen University, Shenzhen 518000, China
| | - Yi Cai
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Guofang Deng
- Guangdong Key Lab for Diagnosis & Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China.
| | - Xinchun Chen
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China.
| |
Collapse
|
3
|
Cable JM, Wongwiwat W, Grabowski JC, White RE, Luftig MA. Sp140L Is a Novel Herpesvirus Restriction Factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628399. [PMID: 39713285 PMCID: PMC11661405 DOI: 10.1101/2024.12.13.628399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Herpesviruses, including the oncogenic Epstein-Barr Virus (EBV), must bypass host DNA sensing mechanisms to establish infection. The first viral latency protein expressed, EBNA-LP, is essential for transformation of naïve B cells, yet its role in evading host defenses remains unclear. Using single-cell RNA sequencing of EBNA-LP-Knockout (LPKO)-infected B cells, we reveal an antiviral response landscape implicating the 'speckled proteins' as key restriction factors countered by EBNA-LP. Specifically, loss of SP100 or the primate-specific SP140L reverses the restriction of LPKO, suppresses a subset of canonically interferon-stimulated genes, and restores viral gene transcription and cellular proliferation. Notably, we also identify Sp140L as a restriction target of the herpesvirus saimiri ORF3 protein, implying a role in immunity to other DNA viruses. This study reveals Sp140L as a restriction factor that we propose links sensing and transcriptional suppression of viral DNA to an IFN-independent innate immune response, likely relevant to all nuclear DNA viruses.
Collapse
Affiliation(s)
- Jana M. Cable
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Duke Center for Virology, Durham, NC, USA
| | - Wiyada Wongwiwat
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Jenna C. Grabowski
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Duke Center for Virology, Durham, NC, USA
| | - Robert E. White
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Micah A. Luftig
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Duke Center for Virology, Durham, NC, USA
| |
Collapse
|
4
|
Auld SC, Barczak AK, Bishai W, Coussens AK, Dewi IMW, Mitini-Nkhoma SC, Muefong C, Naidoo T, Pooran A, Stek C, Steyn AJC, Tezera L, Walker NF. Pathogenesis of Post-Tuberculosis Lung Disease: Defining Knowledge Gaps and Research Priorities at the Second International Post-Tuberculosis Symposium. Am J Respir Crit Care Med 2024; 210:979-993. [PMID: 39141569 PMCID: PMC11531093 DOI: 10.1164/rccm.202402-0374so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024] Open
Abstract
Post-tuberculosis (post-TB) lung disease is increasingly recognized as a major contributor to the global burden of chronic lung disease, with recent estimates indicating that over half of TB survivors have impaired lung function after successful completion of TB treatment. However, the pathologic mechanisms that contribute to post-TB lung disease are not well understood, thus limiting the development of therapeutic interventions to improve long-term outcomes after TB. This report summarizes the work of the Pathogenesis and Risk Factors Committee for the Second International Post-Tuberculosis Symposium, which took place in Stellenbosch, South Africa, in April 2023. The committee first identified six areas with high translational potential: 1) tissue matrix destruction, including the role of matrix metalloproteinase dysregulation and neutrophil activity; 2) fibroblasts and profibrotic activity; 3) granuloma fate and cell death pathways; 4) mycobacterial factors, including pathogen burden; 5) animal models; and 6) the impact of key clinical risk factors, including HIV, diabetes, smoking, malnutrition, and alcohol. We share the key findings from a literature review of those areas, highlighting knowledge gaps and areas where further research is needed.
Collapse
Affiliation(s)
- Sara C. Auld
- Departments of Medicine, Epidemiology, and Global Health, Emory University School of Medicine and Rollins School of Public Health, Atlanta, Georgia
| | - Amy K. Barczak
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - William Bishai
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Anna K. Coussens
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Intan M. W. Dewi
- Microbiology Division, Department of Biomedical Sciences, Faculty of Medicine, and
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Caleb Muefong
- Department of Microbiology, University of Chicago, Chicago, Illinois
| | - Threnesan Naidoo
- Department of Forensic & Legal Medicine and
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Health Sciences, Walter Sisulu University, Eastern Cape, South Africa
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Anil Pooran
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, and
- University of Cape Town Lung Institute and Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Cari Stek
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Liku Tezera
- National Institute for Health and Care Research Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Naomi F. Walker
- Department of Clinical Sciences and Centre for Tuberculosis Research, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; and
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
5
|
Nakamura H, Hikichi H, Seto S, Hijikata M, Keicho N. Transcriptional regulators SP110 and SP140 modulate inflammatory response genes in Mycobacterium tuberculosis-infected human macrophages. Microbiol Spectr 2024; 12:e0010124. [PMID: 39162523 PMCID: PMC11448263 DOI: 10.1128/spectrum.00101-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Understanding the functions of human transcriptional regulatory genes SP110 and SP140 during Mycobacterium tuberculosis infection is crucial; in a mouse model, homologous genes Sp110 and Sp140 have been shown to negatively regulate inflammatory response genes, including the type I interferon (IFN) response. The reduction of these genes in mice is associated with susceptibility to M. tuberculosis infection and the development of necrotizing granulomatous lesions. To investigate the involvement of SP110 and SP140 in human inflammatory response, we analyzed their regulatory manner in THP-1 macrophages infected with M. tuberculosis. Genome-wide transcriptional profiling revealed that the depletion of SP110 and/or SP140 impaired the induction of gene expression associated with inflammatory responses, including IFN response genes, although it had little effect on the intracellular proliferation of M. tuberculosis. By contrast, genes related to phosphorylation were upregulated in infected macrophages with SP110 and/or SP140 knockdown, but downregulated in infected control macrophages without their knockdown. Reverse transcription-quantitative PCR and ELISA further confirmed the impairment of the induction of IFN response genes by the depletion of SP110 and/or SP140 in M. tuberculosis-infected macrophages. These findings suggest that human SP110 and SP140 act as positive regulators for genes associated with inflammatory responses in M. tuberculosis-infected macrophages. IMPORTANCE Tuberculosis (TB) is one of the most serious infectious diseases, with high morbidity and mortality worldwide. C3HeB/FeJ mice are widely utilized for evaluating anti-TB drugs because their drug sensitivity and pathology during M. tuberculosis infection resemble those of human TB, including the development of necrotizing granulomas. Downregulation of the transcriptional regulatory genes Sp110 and Sp140 in C3HeB/FeJ mice has been demonstrated to activate gene expression associated with inflammatory responses during M. tuberculosis infection, resulting in susceptibility to the infection. Here, we examined the regulatory manner of SP110 and SP140 using transcriptomic analysis in M. tuberculosis-infected human macrophages. Depletion of SP110 and/or SP140 in M. tuberculosis-infected THP-1 macrophages impaired the induction of gene expression associated with inflammatory responses, including interferon response genes, compared with that in control macrophages. These results suggest that human SP110 and SP140 act as positive regulators for genes associated with inflammatory responses upon M. tuberculosis infection.
Collapse
Affiliation(s)
- Hajime Nakamura
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Haruka Hikichi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shintaro Seto
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Naoto Keicho
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| |
Collapse
|
6
|
Li Z, Han J, Jing J, Fan A, Zhang Y, Gao Y. Bovine DDX3X Restrains Bovine SP110c-Mediated Activation of Inflammasome in Macrophages. Animals (Basel) 2024; 14:1650. [PMID: 38891697 PMCID: PMC11171048 DOI: 10.3390/ani14111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The inflammasome is a vital part of the host's innate immunity activated by cellular infection or stress. Our previous research identified the bovine SP110c isoform (bSP110c) as a novel activator of the inflammasome that promoted the secretion of proinflammatory cytokines IL-1β and IL-18 in macrophages infected with Listeria monocytogenes or stimulated with lipopolysaccharide (LPS). However, the exact molecular mechanism for inhibiting bSP110c-induced inflammasome activation requires further clarification. Here, the researchers identified bovine DDX3X (bDDX3X) as an NLRP3-associated protein and an inhibitor of the bSP110c-induced inflammasome in the human THP1 macrophage cell line. Immunoprecipitation showed that bDDX3X interacted with the bSP110c CARD domain via its helicase domain. The co-expression of bSP110c and bDDX3X in THP1 macrophages significantly prevented the bSP110c-induced activation of inflammasomes. In addition, both bDDX3X and bSP110c interacted with bovine NLRP3 (bNLRP3), and bDDX3X enhanced the interaction between bSP110c and bNLRP3. The expression of bDDX3X in nigericin-stimulated THP1 macrophages significantly suppressed NLRP3 inflammasome activation, ASC speck formation, and pyroptosis. These findings demonstrate that bDDX3X negatively regulates the bSP110c-mediated inflammatory response by restricting the activation of the NLRP3 inflammasome. This discovery unveils a novel regulatory mechanism involving bDDX3X and bSP110c in coordinating inflammasome activation and subsequent cell-fate decisions in LPS-treated macrophages and, in turn, constitutes a step forward toward the implementation of marker-assisted selection in breeding programs aimed at utilizing cattle's immune defenses.
Collapse
|
7
|
Zhang Z, Wang Y, Zhang Y, Geng S, Wu H, Shao Y, Kang G. Construction of Immune-Related Diagnostic Model for Latent Tuberculosis Infection and Active Tuberculosis. J Inflamm Res 2024; 17:2499-2511. [PMID: 38699596 PMCID: PMC11063471 DOI: 10.2147/jir.s451338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Background Tuberculosis (TB) is one of the most infectious diseases caused by Mycobacterium tuberculosis (M. tb), and the diagnosis of active tuberculosis (TB) and latent TB infection (LTBI) remains challenging. Methods Gene expression files were downloaded from the GEO database to identify the differentially expressed genes (DEGs). The ssGSEA algorithm was applied to assess the immunological characteristics of patients with LTBI and TB. Weighted gene co-expression network analysis, protein-protein interaction network, and the cytoHubba plug-in of Cytoscape were used to identify the real hub genes. Finally, a diagnostic model was constructed using real hub genes and validated using a validation set. Results Macrophages and natural killer cells were identified as important immune cells strongly associated with TB. In total, 726 mRNAs were identified as DEGs. MX1, STAT1, IFIH1, DDX58, and IRF7 were identified as real hub immune-related genes. The diagnostic model generated by the five real hub genes could distinguish active TB from healthy controls or patients with LTBI. Conclusion Our study may provide implications for the diagnosis and drug development of M. tb infections.
Collapse
Affiliation(s)
- Zhihua Zhang
- Department of Science & Education, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Shijiazhuang, People’s Republic of China
| | - Yuhong Wang
- Department of Tuberculosis, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Shijiazhuang, People’s Republic of China
| | - Yankun Zhang
- Department of Ophthalmology, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Shijiazhuang, People’s Republic of China
| | - Shujun Geng
- Department of Tuberculosis, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Shijiazhuang, People’s Republic of China
| | - Haifeng Wu
- Clinical Laboratory, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Shijiazhuang, People’s Republic of China
| | - Yanxin Shao
- Office of Clinical Pharmacological Center, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Shijiazhuang, People’s Republic of China
| | - Guannan Kang
- Department of Tuberculosis, Hebei Chest Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
8
|
Zhao L, Fan K, Sun X, Li W, Qin F, Shi L, Gao F, Zheng C. Host-directed therapy against mycobacterium tuberculosis infections with diabetes mellitus. Front Immunol 2024; 14:1305325. [PMID: 38259491 PMCID: PMC10800548 DOI: 10.3389/fimmu.2023.1305325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Tuberculosis (TB) is caused by the bacterial pathogen Mycobacterium tuberculosis (MTB) and is one of the principal reasons for mortality and morbidity worldwide. Currently, recommended anti-tuberculosis drugs include isoniazid, rifampicin, ethambutol, and pyrazinamide. TB treatment is lengthy and inflicted with severe side-effects, including reduced patient compliance with treatment and promotion of drug-resistant strains. TB is also prone to other concomitant diseases such as diabetes and HIV. These drug-resistant and complex co-morbid characteristics increase the complexity of treating MTB. Host-directed therapy (HDT), which effectively eliminates MTB and minimizes inflammatory tissue damage, primarily by targeting the immune system, is currently an attractive complementary approach. The drugs used for HDT are repositioned drugs in actual clinical practice with relative safety and efficacy assurance. HDT is a potentially effective therapeutic intervention for the treatment of MTB and diabetic MTB, and can compensate for the shortcomings of current TB therapies, including the reduction of drug resistance and modulation of immune response. Here, we summarize the state-of-the-art roles and mechanisms of HDT in immune modulation and treatment of MTB, with a special focus on the role of HDT in diabetic MTB, to emphasize the potential of HDT in controlling MTB infection.
Collapse
Affiliation(s)
- Li Zhao
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Ke Fan
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Xuezhi Sun
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Wei Li
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Fenfen Qin
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Liwen Shi
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlan Zheng
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| |
Collapse
|
9
|
Lim C, Lee S, Shin Y, Cho S, Park C, Shin Y, Song EC, Kim WK, Ham C, Kim SB, Kwon YS, Oh KT. Development and application of novel peptide-formulated nanoparticles for treatment of atopic dermatitis. J Mater Chem B 2023; 11:10131-10146. [PMID: 37830254 DOI: 10.1039/d3tb01202f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Atopic dermatitis is a chronic inflammatory skin condition that is characterized by skin inflammation, itching, and redness. Although various treatments can alleviate symptoms, they often come with side effects, highlighting the need for new treatments. Here, we discovered a new peptide-based therapy using the intra-dermal delivery technology (IDDT) platform developed by Remedi Co., Ltd (REMEDI). The platform screens and identifies peptides derived from proteins in the human body that possess cell-penetrating peptide (CPP) properties. We screened over 1000-peptides and identified several derived from the Speckled protein (SP) family that have excellent CPP properties and have anti-inflammatory effects. We assessed these peptides for their potential as a treatment for atopic dermatitis. Among them, the RMSP1 peptide showed the most potent anti-inflammatory effects by inhibiting the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription 3 (STAT3) signaling pathways while possessing CPP properties. To further improve efficacy and stability, we developed a palmitoylated version called Pal-RMSP1. Formulation studies using liposomes (Pal-RMSP1 LP) and micelles (Pal-RMSP1 DP) demonstrated improved anti-inflammatory effects in vitro and enhanced therapeutic effects in vivo. Our study indicates that nano-formulated Pal-RMSP1 could have the potential to become a new treatment option for atopic dermatitis.
Collapse
Affiliation(s)
- Chaemin Lim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 13488 Gyeonggi-do, Republic of Korea
| | - Subin Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yuseon Shin
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seongmin Cho
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Chanho Park
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Yungyeong Shin
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Ee Chan Song
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Wan Ki Kim
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Cheolmin Ham
- Rare Isotope Science Project, Institute for Basic Science, Daejeon 34000, Republic of Korea
| | - Sang Bum Kim
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Yong-Su Kwon
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
10
|
Krug S, Prasad P, Xiao S, Lun S, Ruiz-Bedoya CA, Klunk M, Ordonez AA, Jain SK, Srikrishna G, Kramnik I, Bishai WR. Adjunctive Integrated Stress Response Inhibition Accelerates Tuberculosis Clearance in Mice. mBio 2023; 14:e0349622. [PMID: 36853048 PMCID: PMC10128048 DOI: 10.1128/mbio.03496-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 03/01/2023] Open
Abstract
Despite numerous advances in tuberculosis (TB) drug development, long treatment durations have led to the emergence of multidrug resistance, which poses a major hurdle to global TB control. Shortening treatment time therefore remains a top priority. Host-directed therapies that promote bacterial clearance and/or lung health may improve the efficacy and treatment duration of tuberculosis antibiotics. We recently discovered that inhibition of the integrated stress response, which is abnormally activated in tuberculosis and associated with necrotic granuloma formation, reduced bacterial numbers and lung inflammation in mice. Here, we evaluated the impact of the integrated stress response (ISR) inhibitor ISRIB, administered as an adjunct to standard tuberculosis antibiotics, on bacterial clearance, relapse, and lung pathology in a mouse model of tuberculosis. Throughout the course of treatment, ISRIB robustly lowered bacterial burdens compared to the burdens with standard TB therapy alone and accelerated the time to sterility in mice, as demonstrated by significantly reduced relapse rates after 4 months of treatment. In addition, mice receiving adjunctive ISRIB tended to have reduced lung necrosis and inflammation. Together, our findings identify the ISR pathway as a promising therapeutic target with the potential to shorten TB treatment durations and improve lung health. IMPORTANCE Necrosis of lung lesions is a hallmark of tuberculosis (TB) that promotes bacterial growth, dissemination, and transmission. This process is driven by the persistent hyperactivation of the integrated stress response (ISR) pathway. Here, we show that adjunctive ISR inhibition during standard antibiotic therapy accelerates bacterial clearance and reduces immunopathology in a clinically relevant mouse model of TB, suggesting that host-directed therapies that de-escalate these pathological stress responses may shorten TB treatment durations. Our findings present an important conceptual advance toward overcoming the challenge of improving TB therapy and lowering the global burden of disease.
Collapse
Affiliation(s)
- Stefanie Krug
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pankaj Prasad
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shiqi Xiao
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shichun Lun
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Camilo A. Ruiz-Bedoya
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mariah Klunk
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alvaro A. Ordonez
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjay K. Jain
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Geetha Srikrishna
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Igor Kramnik
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - William R. Bishai
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
The Genetics of Eczema Herpeticum. Clin Rev Allergy Immunol 2022; 63:390-397. [DOI: 10.1007/s12016-022-08953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
|
12
|
Kim H, Shin SJ. Pathological and protective roles of dendritic cells in Mycobacterium tuberculosis infection: Interaction between host immune responses and pathogen evasion. Front Cell Infect Microbiol 2022; 12:891878. [PMID: 35967869 PMCID: PMC9366614 DOI: 10.3389/fcimb.2022.891878] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are principal defense components that play multifactorial roles in translating innate immune responses to adaptive immunity in Mycobacterium tuberculosis (Mtb) infections. The heterogeneous nature of DC subsets follows their altered functions by interacting with other immune cells, Mtb, and its products, enhancing host defense mechanisms or facilitating pathogen evasion. Thus, a better understanding of the immune responses initiated, promoted, and amplified or inhibited by DCs in Mtb infection is an essential step in developing anti-tuberculosis (TB) control measures, such as host-directed adjunctive therapy and anti-TB vaccines. This review summarizes the recent advances in salient DC subsets, including their phenotypic classification, cytokine profiles, functional alterations according to disease stages and environments, and consequent TB outcomes. A comprehensive overview of the role of DCs from various perspectives enables a deeper understanding of TB pathogenesis and could be useful in developing DC-based vaccines and immunotherapies.
Collapse
|
13
|
Ferreira CM, Micheli C, Barreira-Silva P, Barbosa AM, Resende M, Vilanova M, Silvestre R, Cunha C, Carvalho A, Rodrigues F, Correia-Neves M, Castro AG, Torrado E. IL-10 Overexpression After BCG Vaccination Does Not Impair Control of Mycobacterium tuberculosis Infection. Front Immunol 2022; 13:946181. [PMID: 35935958 PMCID: PMC9353026 DOI: 10.3389/fimmu.2022.946181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Control of tuberculosis depends on the rapid expression of protective CD4+ T-cell responses in the Mycobacterium tuberculosis (Mtb)-infected lungs. We have recently shown that the immunomodulatory cytokine IL-10 acts intrinsically in CD4+ T cells and impairs their parenchymal migratory capacity, thereby preventing control of Mtb infection. Herein, we show that IL-10 overexpression does not impact the protection conferred by the established memory CD4+ T-cell response, as BCG-vaccinated mice overexpressing IL-10 only during Mtb infection display an accelerated, BCG-induced, Ag85b-specific CD4+ T-cell response and control Mtb infection. However, IL-10 inhibits the migration of recently activated ESAT-6-specific CD4+ T cells into the lung parenchyma and impairs the development of ectopic lymphoid structures associated with reduced expression of the chemokine receptors CXCR5 and CCR7. Together, our data support a role for BCG vaccination in preventing the immunosuppressive effects of IL-10 in the fast progression of Mtb infection and may provide valuable insights on the mechanisms contributing to the variable efficacy of BCG vaccination.
Collapse
Affiliation(s)
- Catarina M. Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Consuelo Micheli
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Palmira Barreira-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Margarida Barbosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mariana Resende
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Manuel Vilanova
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - António Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- *Correspondence: Egídio Torrado,
| |
Collapse
|
14
|
Rodriguez RM, Hernández-Fuentes MP, Corte-Iglesias V, Saiz ML, Lozano JJ, Cortazar AR, Mendizabal I, Suarez-Fernandez ML, Coto E, López-Vázquez A, Díaz-Corte C, Aransay AM, López-Larrea C, Suarez-Álvarez B. Defining a Methylation Signature Associated With Operational Tolerance in Kidney Transplant Recipients. Front Immunol 2021; 12:709164. [PMID: 34489960 PMCID: PMC8417883 DOI: 10.3389/fimmu.2021.709164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
Operational tolerance after kidney transplantation is defined as stable graft acceptance without the need for immunosuppression therapy. However, it is not clear which cellular and molecular pathways are driving tolerance in these patients. We performed genome-wide analysis of DNA methylation in peripheral blood mononuclear cells from kidney transplant recipients with chronic rejection and operational tolerance from the Genetic Analysis of Molecular Biomarkers of Immunological Tolerance (GAMBIT) study. Our results showed that both clinical stages diverge in 2737 genes, indicating that each one has a specific methylation signature associated with transplant outcome. We also observed that tolerance is associated with demethylation in genes involved in immune function, including B and T cell activation and Th17 differentiation, while in chronic rejection it is associated with intracellular signaling and ubiquitination pathways. Using co-expression network analysis, we selected 12 genomic regions that are specifically hypomethylated or hypermethylated in tolerant patients. Analysis of these genes in transplanted patients with low dose of steroids showed that these have a similar methylation signature to that of tolerant recipients. Overall, these results demonstrate that methylation analysis can mirror the immune status associated with transplant outcome and provides a starting point for understanding the epigenetic mechanisms associated with tolerance.
Collapse
Affiliation(s)
- Ramon M Rodriguez
- Translation Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias-ISPA, Oviedo, Spain.,Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Spain
| | - María P Hernández-Fuentes
- MRC Centre for Transplantation, King's Health Partners, Guy's Hospital, King's College London, London, United Kingdom
| | - Viviana Corte-Iglesias
- Translation Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias-ISPA, Oviedo, Spain
| | - María Laura Saiz
- Translation Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias-ISPA, Oviedo, Spain
| | - Juan José Lozano
- Bioinformatics Platform, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Ana R Cortazar
- Genome Analysis Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain
| | - Isabel Mendizabal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | | | - Eliecer Coto
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Antonio López-Vázquez
- Translation Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias-ISPA, Oviedo, Spain.,Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carmen Díaz-Corte
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Nephrology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ana M Aransay
- Genome Analysis Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carlos López-Larrea
- Translation Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias-ISPA, Oviedo, Spain.,Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Beatriz Suarez-Álvarez
- Translation Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias-ISPA, Oviedo, Spain.,Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
15
|
Kim JK, Silwal P, Jo EK. Host-Pathogen Dialogues in Autophagy, Apoptosis, and Necrosis during Mycobacterial Infection. Immune Netw 2020; 20:e37. [PMID: 33163245 PMCID: PMC7609165 DOI: 10.4110/in.2020.20.e37] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an etiologic pathogen of human tuberculosis (TB), a serious infectious disease with high morbidity and mortality. In addition, the threat of drug resistance in anti-TB therapy is of global concern. Despite this, it remains urgent to research for understanding the molecular nature of dynamic interactions between host and pathogens during TB infection. While Mtb evasion from phagolysosomal acidification is a well-known virulence mechanism, the molecular events to promote intracellular parasitism remains elusive. To combat intracellular Mtb infection, several defensive processes, including autophagy and apoptosis, are activated. In addition, Mtb-ingested phagocytes trigger inflammation, and undergo necrotic cell death, potentially harmful responses in case of uncontrolled pathological condition. In this review, we focus on Mtb evasion from phagosomal acidification, and Mtb interaction with host autophagy, apoptosis, and necrosis. Elucidation of the molecular dialogue will shed light on Mtb pathogenesis, host defense, and development of new paradigms of therapeutics.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
16
|
Bouwman W, Verhaegh W, Holtzer L, van de Stolpe A. Measurement of Cellular Immune Response to Viral Infection and Vaccination. Front Immunol 2020; 11:575074. [PMID: 33193365 PMCID: PMC7604353 DOI: 10.3389/fimmu.2020.575074] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Combined cellular and humoral host immune response determine the clinical course of a viral infection and effectiveness of vaccination, but currently the cellular immune response cannot be measured on simple blood samples. As functional activity of immune cells is determined by coordinated activity of signaling pathways, we developed mRNA-based JAK-STAT signaling pathway activity assays to quantitatively measure the cellular immune response on Affymetrix expression microarray data of various types of blood samples from virally infected patients (influenza, RSV, dengue, yellow fever, rotavirus) or vaccinated individuals, and to determine vaccine immunogenicity. JAK-STAT1/2 pathway activity was increased in blood samples of patients with viral, but not bacterial, infection and was higher in influenza compared to RSV-infected patients, reflecting known differences in immunogenicity. High JAK-STAT3 pathway activity was associated with more severe RSV infection. In contrast to inactivated influenza virus vaccine, live yellow fever vaccine did induce JAK-STAT1/2 pathway activity in blood samples, indicating superior immunogenicity. Normal (healthy) JAK-STAT1/2 pathway activity was established, enabling assay interpretation without the need for a reference sample. The JAK-STAT pathway assays enable measurement of cellular immune response for prognosis, therapy stratification, vaccine development, and clinical testing.
Collapse
|
17
|
Fraschilla I, Jeffrey KL. The Speckled Protein (SP) Family: Immunity's Chromatin Readers. Trends Immunol 2020; 41:572-585. [PMID: 32386862 PMCID: PMC8327362 DOI: 10.1016/j.it.2020.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 01/25/2023]
Abstract
Chromatin 'readers' are central interpreters of the epigenome that facilitate cell-specific transcriptional programs and are therapeutic targets in cancer and inflammation. The Speckled Protein (SP) family of chromatin 'readers' in humans consists of SP100, SP110, SP140, and SP140L. SPs possess functional domains (SAND, PHD, bromodomain) that dock to DNA or post-translationally modified histones and a caspase activation and recruitment domain (CARD) to promote multimerization. Mutations within immune expressed SPs associate with numerous immunological diseases including Crohn's disease, multiple sclerosis, chronic lymphocytic leukemia, veno-occlusive disease with immunodeficiency, as well as Mycobacterium tuberculosis infection, underscoring their importance in immune regulation. In this review, we posit that SPs are central chromatin regulators of gene silencing that establish immune cell identity and function.
Collapse
Affiliation(s)
- Isabella Fraschilla
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Immunology, Harvard Medical School, Boston, MA 02114, USA
| | - Kate L Jeffrey
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Immunology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
18
|
Ipr1 Regulation by Cyclic GMP-AMP Synthase/Interferon Regulatory Factor 3 and Modulation of Irgm1 Expression via p53. Mol Cell Biol 2020; 40:MCB.00471-19. [PMID: 31988106 DOI: 10.1128/mcb.00471-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/21/2020] [Indexed: 12/28/2022] Open
Abstract
Intracellular pathogen resistance 1 (Ipr1) has been found to be a mediator to integrate cyclic GMP-AMP synthase (cGAS)-interferon regulatory factor 3 (IRF3), activated by intracellular pathogens, with the p53 pathway. Previous studies have shown the process of Ipr1 induction by various immune reactions, including intracellular bacterial and viral infections. The present study demonstrated that Ipr1 is regulated by the cGAS-IRF3 pathway during pathogenic infection. IRF3 was found to regulate Ipr1 expression by directly binding the interferon-stimulated response element motif of the Ipr1 promoter. Knockdown of Ipr1 decreased the expression of immunity-related GTPase family M member 1 (Irgm1), which plays critical roles in autophagy initiation. Irgm1 promoter characterization revealed a p53 motif in front of the transcription start site. P53 was found to participate in regulation of Irgm1 expression and IPR1-related effects on P53 stability by affecting interactions between ribosomal protein L11 (RPL11) and transformed mouse 3T3 cell double minute 2 (MDM2). Our results indicate that Ipr1 integrates cGAS-IRF3 with p53-modulated Irgm1 expression.
Collapse
|
19
|
Ji DX, Yamashiro LH, Chen KJ, Mukaida N, Kramnik I, Darwin KH, Vance RE. Type I interferon-driven susceptibility to Mycobacterium tuberculosis is mediated by IL-1Ra. Nat Microbiol 2019; 4:2128-2135. [PMID: 31611644 PMCID: PMC6879852 DOI: 10.1038/s41564-019-0578-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
The bacterium Mycobacterium tuberculosis (Mtb) causes tuberculosis and is responsible for more human mortality than any other single pathogen1. Progression to active disease occurs in only a fraction of infected individuals and is predicted by an elevated type I interferon (IFN) response2-7. Whether or how IFNs mediate susceptibility to Mtb has been difficult to study due to a lack of suitable mouse models6-11. Here, we examined B6.Sst1S congenic mice that carry the 'susceptible' allele of the Sst1 locus that results in exacerbated Mtb disease12-14. We found that enhanced production of type I IFNs was responsible for the susceptibility of B6.Sst1S mice to Mtb. Type I IFNs affect the expression of hundreds of genes, several of which have previously been implicated in susceptibility to bacterial infections6,7,15-18. Nevertheless, we found that heterozygous deficiency in just a single IFN target gene, Il1rn, which encodes interleukin-1 receptor antagonist (IL-1Ra), is sufficient to reverse IFN-driven susceptibility to Mtb in B6.Sst1S mice. In addition, antibody-mediated neutralization of IL-1Ra provided therapeutic benefit to Mtb-infected B6.Sst1S mice. Our results illustrate the value of the B6.Sst1S mouse to model IFN-driven susceptibility to Mtb, and demonstrate that IL-1Ra is an important mediator of type I IFN-driven susceptibility to Mtb infections in vivo.
Collapse
Affiliation(s)
- Daisy X Ji
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Livia H Yamashiro
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Katherine J Chen
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Igor Kramnik
- The National Emerging Infectious Diseases Laboratory, Department of Medicine (Pulmonary Center), and Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Russell E Vance
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Cancer Research Laboratory, University of California, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
20
|
Liang S, Wang F, Bao C, Han J, Guo Y, Liu F, Zhang Y. BAG2 ameliorates endoplasmic reticulum stress-induced cell apoptosis in Mycobacterium tuberculosis-infected macrophages through selective autophagy. Autophagy 2019; 16:1453-1467. [PMID: 31711362 DOI: 10.1080/15548627.2019.1687214] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BAG2 (BCL2 associated athanogene 2) is associated with cell fate determination in response to various pathological conditions. However, the effects of BAG2 on M. tuberculosis-induced endoplasmic reticulum (ER) stress remain elusive. Herein, we report that M. tuberculosis infection of macrophages triggered ER stress and downregulated BAG2 expression. Overexpression of BAG2 enhanced autophagic flux and activated macroautophagy/autophagy targeted to the ER (reticulophagy). In addition, through increasingly localizing SQSTM1 to the ER in BAG2-overexpressing macrophages, we found that the autophagy receptor protein SQSTM1/p62 (sequestosome 1) is associated with the BAG2-induced reticulophagy. Our data also confirmed that BAG2 could render cells resistant to M. tuberculosis-induced cellular damage, and the anti-apoptotic effects of BAG2 in M. tuberculosis-treated macrophages were partially abolished by the autophagic flux inhibitor bafilomycin A1. Furthermore, the dissociation of BECN1 and BCL2 mediated by activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) was responsible for BAG2-activated autophagy. In addition, XBP1 downstream of the ERN1/IRE1 signaling pathway was bound to the Bag2 promoter region and transcriptionally inhibited BAG2 expression. Collectively, these results indicated that BAG2 has anti-apoptotic effects on M. tuberculosis-induced ER stress, which is dependent on the promotion of autophagic flux and the induction of selective autophagy. We revealed a potential host defense mechanism that links BAG2 to ER stress and autophagy during M. tuberculosis infection. ABBREVIATIONS ATF6: activating transcription factor 6; BECN1: beclin 1; Baf A1: bafilomycin A1; CASP3: caspase 3; DDIT3/CHOP/GADD153: DNA damage inducible transcript 3; DAPI: 4',6-diamidino-2-phenylindole; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; HSPA5/GRP78/BiP: heat shock protein 5; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAPK/ERK: mitogen-activated protein kinase; SQSTM1/p62: sequestosome 1; UPR: unfolded protein response; XBP1: x-box binding protein 1.
Collapse
Affiliation(s)
- Shuxin Liang
- College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, China
| | - Fengyu Wang
- College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, China
| | - Changlei Bao
- College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, China
| | - Jing Han
- College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, China
| | - Ying Guo
- College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, China
| | - Fayang Liu
- College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, China
| |
Collapse
|
21
|
Abubakar I, Gupta RK, Rangaka MX, Lipman M. Update in Tuberculosis and Nontuberculous Mycobacteria 2017. Am J Respir Crit Care Med 2019. [PMID: 29537298 DOI: 10.1164/rccm.201801-0106up] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | | | - Marc Lipman
- 2 UCL-TB and UCL Respiratory, University College London, London, United Kingdom; and.,3 Royal Free London NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
22
|
Cai L, Li Z, Guan X, Cai K, Wang L, Liu J, Tong Y. The Research Progress of Host Genes and Tuberculosis Susceptibility. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9273056. [PMID: 31485302 PMCID: PMC6710736 DOI: 10.1155/2019/9273056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/05/2019] [Accepted: 05/29/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIMS Nucleotide diversity may affect the immune regulation of tuberculosis (TB) patients, leading to the individual susceptibility to TB. In recent years, there are a lot of researches on the association of host genetic factors and TB susceptibility which has attracted increasing attention, and the in-depth study of its mechanism is gradually clear. MATERIALS We made a minireview on the association of many candidate genes with TB based on recent research studies systematically, such as the human leukocyte antigen (HLA) gene, the solute carrier family 11 member 1 (SLC11A1) gene system, the vitamin D receptor (VDR) gene, the mannan-binding lectin (MBL) gene, the nitric oxide synthase 2A (NOS2A) gene, the speckled 110 (SP110) gene, and the P2X7 receptor (P2X7) gene. The discovery of these candidate genes could reveal the pathogenesis of TB comprehensively and is crucial to provide scientific evidence for formulating the related measures of prevention and cure. DISCUSSION The host genes play important roles in the development of TB, and the host genes may become new targets for the prevention and treatment of TB. Effective regulation of host genes may help prevent or even treat TB. CONCLUSION This minireview focuses on the association of host genes with the development of TB, which may supply some clues for future therapies and novel drug targets for TB.
Collapse
Affiliation(s)
- Li Cai
- Wuhan Center for Disease Control and Prevention, Wuhan 430015, China
- School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Zhan Li
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuhua Guan
- Hubei Center for Disease Control and Prevention, 430079, China
| | - Kun Cai
- Hubei Center for Disease Control and Prevention, 430079, China
| | - Lei Wang
- Hubei Center for Disease Control and Prevention, 430079, China
| | - Jiafa Liu
- School of Health Sciences, Wuhan University, Wuhan 430071, China
- Hubei Center for Disease Control and Prevention, 430079, China
| | - Yeqing Tong
- Hubei Center for Disease Control and Prevention, 430079, China
| |
Collapse
|
23
|
SP110 Polymorphisms Are Genetic Markers for Vulnerability to Latent and Active Tuberculosis Infection in Taiwan. DISEASE MARKERS 2018; 2018:4687380. [PMID: 30627224 PMCID: PMC6304864 DOI: 10.1155/2018/4687380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/15/2018] [Indexed: 12/25/2022]
Abstract
One-fourth of the human population is estimated to have been exposed to Mycobacterium tuberculosis (Mtb) and carries the infection in its latent form. This latent infection presents a lifelong risk of developing active tuberculosis (TB) disease, and persons with latent TB infection (LTBI) are significant contributors to the pool of active TB cases. Genetic polymorphisms among hosts have been shown to contribute to the outcome of Mtb infection. The SP110 gene, which encodes an interferon-induced nuclear protein, has been shown to control host innate immunity to Mtb infection. In this study, we provide experimental data demonstrating the ability of the gene to control genetic susceptibility to latent and active TB infection. Genetic variants of the SP110 gene were investigated in the Taiwanese population (including 301 pulmonary TB patients, 68 LTBI individuals, and 278 healthy household contacts of the TB patients), and their association with susceptibility to latent and active TB infection was examined by performing an association analysis in a case-control study. We identified several SNPs (rs7580900, rs7580912, rs9061, rs11556887, and rs2241525) in the SP110 gene that are associated with susceptibility to LTBI and/or TB disease. Our studies further showed that the same SNPs may have opposite effects on the control of susceptibility to LTBI versus TB. In addition, our analyses demonstrated that the SP110 rs9061 SNP was associated with tumor necrosis factor-α (TNFα) levels in plasma in LTBI subjects. The results suggest that the polymorphisms within SP110 have a role in controlling genetic susceptibility to latent and active TB infection in humans. To the best of our knowledge, this is the first report showing that the SP110 variants are associated with susceptibility to LTBI. Our study also demonstrated that the identified SP110 SNPs displayed the potential to predict the risk of LTBI and subsequent TB progression in Taiwan.
Collapse
|
24
|
Yan C, Deng C, Liu X, Chen Y, Ye J, Cai R, Shen Y, Tang H. TNF-α induction of IL-6 in alveolar type II epithelial cells: Contributions of JNK/c-Jun/AP-1 element, C/EBPδ/C/EBP binding site and IKK/NF-κB p65/κB site. Mol Immunol 2018; 101:585-596. [PMID: 29887504 DOI: 10.1016/j.molimm.2018.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 10/14/2022]
Abstract
Although participation of IL-6 in lung inflammation has been widely elucidated, the transcriptional regulation of its generation in alveolar type II cells stimulated by TNF-α remain unclear. Here, we find that TNF-α significantly induces IL-6 production, and TNF-α induction of IL-6 is mainly regulated at transcriptional level. Upon stimulated by TNF-α, Activator Protein-1 (AP-1)-mediated transcriptional activity is apparently increased in alveolar type II epithelial cells, which might be derived from elevated phosphorylation of JNK and subsequent activation of c-Jun. Either down-regulation of c-Jun or the AP-1 site mutation leads to significant reduction of IL-6 expression. In contrast, ectopic expression of c-Jun notably increases IL-6 generation. So, c-Jun, one of the AP-1 family members, plays a pivotal role in TNF-α-induced IL-6 generation. CCAAT/enhancer binding protein δ (C/EBPδ) expression is significantly amplified by TNF-α, which may contribute to the rise of C/EBP activity in alveolar type II cells. C/EBPδ shRNA treatment results in attenuation of IL-6 expression in the cells, which is consistent with data by introduction of mutations into the C/EBP site in the promoter. However, overexpression of C/EBPδ greatly increases the IL-6 promoter activity. In addition, data regarding another transactivator in the family-C/EBPβ show that it does not affect IL-6 production. We also find that the IKK/NF-κB p65 pathway is activated in TNF-α-treated alveolar type II epithelial cells, and plays an essential role in positive regulation of IL-6 expression in TNF-α-treated alveolar type II epithelial cells via knockdown or forced expression of NF-κB p65, or elimination of κB sites in the IL-6 promoter. Notably, IL-6 promoter-driven luciferase production in primary alveolar type II epithelial cells can also be increased by the ectopic expression of c-Jun, C/EBPδ, and NF-κB p65, respectively. Collectively, our data provide insights into molecular mechanism involved in IL-6 expression in alveolar type II epithelial cells on TNF-α treatment, which provides a theoretical basis for specific inhibition of IL-6 production at the transcriptional level.
Collapse
Affiliation(s)
- Chunguang Yan
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China.
| | - Chunmin Deng
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China.
| | - Xiufang Liu
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China
| | - Yutong Chen
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China
| | - Jiawei Ye
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, 210009, China
| | - Rentian Cai
- Department of Infectious Diseases, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yanfei Shen
- Department of Bioengineering, Medical School of Southeast University, Nanjing, 210009, China
| | - Huifang Tang
- Zhejiang Respiratory Drugs Research Laboratory of the State Food and Drug Administration of China, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
25
|
Leu JS, Chang SY, Mu CY, Chen ML, Yan BS. Functional domains of SP110 that modulate its transcriptional regulatory function and cellular translocation. J Biomed Sci 2018; 25:34. [PMID: 29642903 PMCID: PMC5894228 DOI: 10.1186/s12929-018-0434-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Background SP110, an interferon-induced nuclear protein, belongs to the SP100/SP140 protein family. Very recently, we showed that SP110b, an SP110 isoform, controls host innate immunity to Mycobacterium tuberculosis infection by regulating nuclear factor-κB (NF-κB) activity. However, it remains unclear how the structure of SP110 relates to its cellular functions. In this study, we provide experimental data illustrating the protein domains that are responsible for its functions. Methods We examined the effects of SP110 isoforms and a series of deletion mutants of SP110 on transcriptional regulation by luciferase reporter assays. We also employed confocal microscopy to determine the cellular distributions of enhanced green fluorescent protein-tagged SP110 isoforms and SP110 mutants. In addition, we performed immunoprecipitation and Western blotting analyses to identify the regions of SP110 that are responsible for protein interactions. Results Using reporter assays, we first demonstrated that SP110 isoforms have different regulatory effects on NF-κB-mediated transcription, supporting the notion that SP110 isoforms may have distinct cellular functions. Analysis of deletion mutants of SP110 showed that the interaction of the N-terminal fragment (amino acids 1–276) of SP110 with p50, a subunit of NF-κB, in the cytoplasm plays a crucial role in the down-regulation of the p50-driven tumor necrosis factor-α (TNFα) promoter activity in the nucleus, while the middle and C-terminal regions of SP110 localize it to various cellular compartments. Surprisingly, a nucleolar localization signal (NoLS) that contains one monopartite nuclear localization signal (NLS) and one bipartite NLS was identified in the middle region of SP110. The identification of a cryptic NoLS in the SP110 suggests that although this protein forms nuclear speckles in the nucleoplasm, it may be directed into the nucleolus to carry out distinct functions under certain cellular conditions. Conclusions The findings from this study elucidating the multidomain structure of the SP110 not only identify functional domains of SP110 that are required for transcriptional regulation, cellular translocation, and protein interactions but also implicate that SP110 has additional functions through its unexpected activity in the nucleolus. Electronic supplementary material The online version of this article (10.1186/s12929-018-0434-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia-Shiun Leu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - So-Yi Chang
- Institute of Biochemistry and Molecular Biology, National Taiwan University Medical College, Taipei, Taiwan
| | - Chia-Yu Mu
- Institute of Biochemistry and Molecular Biology, National Taiwan University Medical College, Taipei, Taiwan
| | - Mei-Ling Chen
- Graduate Institute of Oncology, National Taiwan University Medical College, Taipei, Taiwan.
| | - Bo-Shiun Yan
- Institute of Biochemistry and Molecular Biology, National Taiwan University Medical College, Taipei, Taiwan.
| |
Collapse
|
26
|
Abstract
Proper regulation of the immune system is required for protection against pathogens and preventing autoimmune disorders. Inborn errors of the immune system due to inherited or de novo germline mutations can lead to the loss of protective immunity, aberrant immune homeostasis, and the development of autoimmune disease, or combinations of these. Forward genetic screens involving clinical material from patients with primary immunodeficiencies (PIDs) can vary in severity from life-threatening disease affecting multiple cell types and organs to relatively mild disease with susceptibility to a limited range of pathogens or mild autoimmune conditions. As central mediators of innate and adaptive immune responses, T cells are critical orchestrators and effectors of the immune response. As such, several PIDs result from loss of or altered T cell function. PID-associated functional defects range from complete absence of T cell development to uncontrolled effector cell activation. Furthermore, the gene products of known PID causal genes are involved in diverse molecular pathways ranging from T cell receptor signaling to regulators of protein glycosylation. Identification of the molecular and biochemical cause of PIDs can not only guide the course of treatment for patients, but also inform our understanding of the basic biology behind T cell function. In this chapter, we review PIDs with known genetic causes that intrinsically affect T cell function with particular focus on perturbations of biochemical pathways.
Collapse
Affiliation(s)
- William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States.
| |
Collapse
|
27
|
Polymorphisms in the SP110 and TNF-α Gene and Susceptibility to Pulmonary and Spinal Tuberculosis among Southern Chinese Population. DISEASE MARKERS 2017; 2017:4590235. [PMID: 29430075 PMCID: PMC5752994 DOI: 10.1155/2017/4590235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/10/2017] [Indexed: 01/15/2023]
Abstract
Objective To investigate the association of single-nucleotide polymorphisms (SNPs) in SP110 gene and TNF-α gene among pulmonary TB (PTB) and spinal TB (STB) patients. Methods In a total of 190 PTB patients, 183 STB patients were enrolled as the case group and 362 healthy individuals at the same geographical region as the control group. The SP110 SNPs (rs722555 and rs1135791) and the promoter -308G>A (rs1800629) and -238G>A (rs361525) polymorphisms in TNF-α were genotyped. Results. TNF-α -238G>A polymorphism was involved in susceptibility to STB, but not to PTB. The TNF-α -238 A allele was a protective factor against STB (A versus G: OR [95% CI] = 0.331 [0.113–0.972], P = 0.044). Furthermore, the presence of the -238 A allele was considered a trend to decrease the risk of STB (AG versus GG: P = 0.062, OR [95% CI] = 0.352 [0.118–1.053]; AA + AG versus GG: P = 0.050, OR [95CI%] = 0.335 [0.113–0.999]). However, SP110 SNPs (rs722555 and rs1135791) and TNF-α -308G>A (rs1800629) showed no association with PTB and STB in all genetic models. Conclusion The TNF-α -238 A allele appeared a protective effect against STB, whereas the SP110 SNPs (rs722555 and rs1135791) and TNF-α -308G>A (rs1800629) showed no association with susceptibility to PTB and STB patients in southern China.
Collapse
|
28
|
Nuermberger EL. Preclinical Efficacy Testing of New Drug Candidates. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0034-2017. [PMID: 28643624 PMCID: PMC11687513 DOI: 10.1128/microbiolspec.tbtb2-0034-2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 01/17/2023] Open
Abstract
This is a review of the preclinical efficacy testing of new antituberculosis drug candidates. It describes existing dynamic in vitro and in vivo models of antituberculosis chemotherapy and their utility in preclinical evaluations of promising new drugs and combination regimens, with an effort to highlight recent developments. Emphasis is given to the integration of quantitative pharmacokinetic/pharmacodynamic analyses and the impact of lesion pathology on drug efficacy. Discussion also includes in vivo models of chemotherapy of latent tuberculosis infection.
Collapse
Affiliation(s)
- Eric L Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, and Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21231-1002
| |
Collapse
|