1
|
Fang Y, Yang W, Wu L, Yao L, Cao X, Chen H. An aging-related gene signature to predict the prognosis of hepatocellular carcinoma. Medicine (Baltimore) 2023; 102:e36715. [PMID: 38134103 PMCID: PMC10735142 DOI: 10.1097/md.0000000000036715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Aging increases the susceptibility of various diseases, including hepatocellular carcinoma (HCC). This study aimed to establish an aging-related prognostic model for HCC and to investigate the role of aging-related genes in HCC progression. Transcriptome and clinical information of HCC cases were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Aging-related prognostic genes were identified through univariate Cox regression analysis, protein-protein interaction analysis, and least absolute shrinkage and selection operator (LASSO) analysis. An aging-related risk signature was then constructed, including LDHA, MMP12, ATAD3A, CD8A, TPI1, CST3, and TPM1. The risk score was inversely associated with the overall survival of patients with HCC and correlated well with known prognostic factors. The area under the curve of 1-, 3-, and 5-year survival in the training dataset was 0.83, 0.83, and 0.84, respectively. Univariate and multivariate cox regression analysis verified that the aging-related risk signature independently predicted the overall survival in HCC. To increase the clinical utility of the prognostic model, a nomogram was developed by incorporating the risk score with key clinical features. Finally, single-cell transcriptomes of HCC were analyzed to elucidate the expression pattern of the prognostic genes across different tissues, pathologic stages, and cell types. Collectively, the aging-related prognostic model shed light on HCC pathogenesis and held potential for optimizing the management of HCC.
Collapse
Affiliation(s)
- Yanfei Fang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjing Yang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lexi Wu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingya Yao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianghan Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haotian Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Nowak JI, Olszewska AM, Piotrowska A, Myszczyński K, Domżalski P, Żmijewski MA. PDIA3 modulates genomic response to 1,25-dihydroxyvitamin D 3 in squamous cell carcinoma of the skin. Steroids 2023; 199:109288. [PMID: 37549780 DOI: 10.1016/j.steroids.2023.109288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
An active form of vitamin D3 (1,25-dihydroxyvitamin D3) acts through vitamin D receptor (VDR) initiating genomic response, but several studies described also non-genomic actions of 1,25-dihydroxyvitamin D3, implying the role of PDIA3 in the process. PDIA3 is a membrane-associated disulfide isomerase involved in disulfide bond formation, protein folding, and remodeling. Here, we used a transcriptome-based approach to identify changes in expression profiles in PDIA3-deficient squamous cell carcinoma line A431 after 1,25-dihydroxyvitamin D3 treatment. PDIA3 knockout led to changes in the expression of more than 2000 genes and modulated proliferation, cell cycle, and mobility of cells; suggesting an important regulatory role of PDIA3. PDIA3-deficient cells showed increased sensitivity to 1,25-dihydroxyvitamin D3, which led to decrease migration. 1,25-dihydroxyvitamin D3 treatment altered also genes expression profile of A431ΔPDIA3 in comparison to A431WT cells, indicating the existence of PDIA3-dependent genes. Interestingly, classic targets of VDR, including CAMP (Cathelicidin Antimicrobial Peptide), TRPV6 (Transient Receptor Potential Cation Channel Subfamily V Member 6), were regulated differently by 1,25-dihydroxyvitamin D3, in A431ΔPDIA3. Deletion of PDIA3 impaired 1,25-dihydroxyvitamin D3-response of genes, such as PTGS2, MMP12, and FOCAD, which were identified as PDIA3-dependent. Additionally, response to 1,25-dihydroxyvitamin D3 in cancerous A431 cells differed from immortalized HaCaT keratinocytes, used as non-cancerous control. Finally, silencing of PDIA3 and 1,25-dihydroxyvitamin D3, at least partially reverse the expression of cancer-related genes in A431 cells, thus targeting PDIA3 and use of 1,25-dihydroxyvitamin D3 could be considered in a prevention and therapy of the skin cancer. Taken together, PDIA3 has a strong impact on gene expression and physiology, including genomic response to 1,25-dihydroxyvitamin D3.
Collapse
Affiliation(s)
- Joanna I Nowak
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Anna M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Anna Piotrowska
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Kamil Myszczyński
- Centre of Biostatistics and Bioinformatics Analysis Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland.
| | - Paweł Domżalski
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| |
Collapse
|
3
|
Eudy BJ, McDermott CE, Liu X, da Silva RP. Targeted and untargeted metabolomics provide insight into the consequences of glycine-N-methyltransferase deficiency including the novel finding of defective immune function. Physiol Rep 2021; 8:e14576. [PMID: 32951289 PMCID: PMC7507444 DOI: 10.14814/phy2.14576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 01/27/2023] Open
Abstract
Fatty liver disease is increasing along with the prevalence of obesity and type‐2 diabetes. Hepatic fibrosis is a major health complication for which there are no efficacious treatment options available. A better understanding of the fundamental mechanisms that contribute to the accumulation of fibrosis is needed. Glycine‐N‐methyltransferase (GNMT) is a critical enzyme in one‐carbon metabolism that serves to regulate methylation and remethylation reactions. GNMT knockout (GNMT‐/‐) mice display spontaneous hepatic fibrosis and later develop hepatocellular carcinoma. Previous literature supports the idea that hypermethylation as a consequence of GNMT deletion contributes to the hepatic phenotype observed. However, limited metabolomic information is available and the underlying mechanisms that contribute to hepatic fibrogenesis in GNMT‐/‐ mice are still incomplete. Therefore, our goals were to use dietary intervention to determine whether increased lipid load exacerbates steatosis and hepatic fibrosis in this model and to employ both targeted and untargeted metabolomics to further understand the metabolic consequences of GNMT deletion. We find that GNMT mice fed high‐fat diet do not accumulate more lipid or fibrosis in the liver and are in fact resistant to weight gain. Metabolomics analysis confirmed that pan‐hypermethylation occurs in GNMT mice resulting in a depletion of nicotinamide intermediate metabolites. Further, there is a disruption in tryptophan catabolism that prevents adequate immune cell activation in the liver. The chronic cellular damage cannot be appropriately cleared due to a lack of immune checkpoint activation. This mouse model is an excellent example of how a disruption in small molecule metabolism can significantly impact immune function.
Collapse
Affiliation(s)
- Brandon J Eudy
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Caitlin E McDermott
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Xiuli Liu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Robin P da Silva
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Pan LS, Ackbarkha Z, Zeng J, Huang ML, Yang Z, Liang H. Immune marker signature helps to predict survival in uveal melanoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:4055-4070. [PMID: 34198425 DOI: 10.3934/mbe.2021203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The detailed molecular function of tumor microenvironment (TEM) in uveal melanoma (UVM) remains unclear. This study generated the immune index and the stromal index scores by ESTIMATE algorithm based on RNA-sequencing data with 80 UVM patients. There was no correlation between the immune stromal index and clinical parameters. The differentially expressed genes related to the immune stromal index were calculated and were described by functional annotations and protein-protein interaction network diagrams. After univariate and multivariate Cox regression analyses, there were four genes (HLA-J, MMP12, HES6, and ADAMDEC1) with significant prognostic significance. The prognostic model was constructed using these four characteristic genes, and the KM curve and tROC curve were described to show that the model had a better ability to predict survival outcomes and prognosis. The verification results in GSE62075 showed that HLA-J and HES6 were expressed differently in the cancer group than in the non-cancer group. This study indicates that the risk signature based on the immune index can be used as an indicator to evaluate the prognosis of patients with UVM.
Collapse
Affiliation(s)
- Li-Sha Pan
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zacharia Ackbarkha
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jing Zeng
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Min-Li Huang
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhen Yang
- Department of Geriatrics, NO.923 Hospital of Chinese People's Liberation Army, Nanning 530021, China
| | - Hao Liang
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
5
|
Kalinina A, Golubeva I, Kudryavtsev I, Khromova N, Antoshina E, Trukhanova L, Gorkova T, Kazansky D, Khromykh L. Cyclophilin A is a factor of antitumor defense in the early stages of tumor development. Int Immunopharmacol 2021; 94:107470. [PMID: 33640856 DOI: 10.1016/j.intimp.2021.107470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/14/2021] [Accepted: 02/02/2021] [Indexed: 01/12/2023]
Abstract
Cyclophilin A (CypA) is a pro-inflammatory factor with multiple immunomodulating effects. Here, we investigated the effects of recombinant human CypA (rhCypA) as a factor of antitumor host defense. Our results demonstrated that rhCypA dramatically inhibited the growth of murine transplantable tumors (mammary adenocarcinoma Ca755, melanoma B16, Lewis lung carcinoma (LLC), and cervical cancer CC-5). In the B16 model, rhCypA effects were observed only when tumor cells were transplanted at the significantly reduced injection dose, indicating that antitumor properties of rhCypA are more effective at the initial stages of cancer development. Antitumor effect of rhCypA in the CC-5 model was comparable to the action of 5-fluorouracil (5FU), and rhCypA administration prevented 5FU - induced leukopenia in the blood of tumor-bearing mice. In the LLC model, rhCypA injection before but not after tumor resection significantly suppressed the formation of post-surgical metastases. RhCypA exhibited no direct cytotoxic effects in vitro on human leukemia cells (K-562, HL-60, KG-1), indicating that rhCypA antitumor action could be mediated by its immunomodulating activity. In the B16 model, rhCypA had no impact on tumor angiogenesis and gene expression of several MMPs, endogenous CypA, and CD147, which play a crucial role in cancer progression. However, in this model, rhCypA stimulated gene expression of MMPs 8, 9, and 12 that could contribute to malignancy growth inhibition. Here, our findings pointed out CypA as one of the factors of antitumor host defense that can effectively control the initial stages of tumor and metastases formation by regulating the action of MMPs and changing the tumor microenvironment.
Collapse
Affiliation(s)
- Anastasiia Kalinina
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Irina Golubeva
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Igor Kudryavtsev
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Natalia Khromova
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Elena Antoshina
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Lubov Trukhanova
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Tatyana Gorkova
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Dmitry Kazansky
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Ludmila Khromykh
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation.
| |
Collapse
|
6
|
Zipfel P, Rochais C, Baranger K, Rivera S, Dallemagne P. Matrix Metalloproteinases as New Targets in Alzheimer's Disease: Opportunities and Challenges. J Med Chem 2020; 63:10705-10725. [PMID: 32459966 DOI: 10.1021/acs.jmedchem.0c00352] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although matrix metalloproteinases (MMPs) are implicated in the regulation of numerous physiological processes, evidence of their pathological roles have also been obtained in the last decades, making MMPs attractive therapeutic targets for several diseases. Recent discoveries of their involvement in central nervous system (CNS) disorders, and in particular in Alzheimer's disease (AD), have paved the way to consider MMP modulators as promising therapeutic strategies. Over the past few decades, diverse approaches have been undertaken in the design of therapeutic agents targeting MMPs for various purposes, leading, more recently, to encouraging developments. In this article, we will present recent examples of inhibitors ranging from small molecules and peptidomimetics to biologics. We will also discuss the scientific knowledge that has led to the development of emerging tools and techniques to overcome the challenges of selective MMP inhibition.
Collapse
Affiliation(s)
- Pauline Zipfel
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Christophe Rochais
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Patrick Dallemagne
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| |
Collapse
|
7
|
Piekarz KM, Bhaskaran S, Sataranatarajan K, Street K, Premkumar P, Saunders D, Zalles M, Gulej R, Khademi S, Laurin J, Peelor R, Miller BF, Towner R, Van Remmen H. Molecular changes associated with spinal cord aging. GeroScience 2020; 42:765-784. [PMID: 32144690 DOI: 10.1007/s11357-020-00172-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/21/2020] [Indexed: 12/25/2022] Open
Abstract
Age-related muscle weakness and loss of muscle mass (sarcopenia) is a universal problem in the elderly. Our previous studies indicate that alpha motor neurons (α-MNs) play a critical role in this process. The goal of the current study is to uncover changes in the aging spinal cord that contribute to loss of innervation and the downstream degenerative processes that occur in skeletal muscle. The number of α-MNs is decreased in the spinal cord of wildtype mice during aging, beginning in middle age and reaching a 41% loss by 27 months of age. There is evidence for age-related loss of myelin and mild inflammation, including astrocyte and microglia activation and an increase in levels of sICAM-1. We identified changes in metabolites consistent with compromised neuronal viability, such as reduced levels of N-acetyl-aspartate. Cleaved caspase-3 is more abundant in spinal cord from old mice, suggesting that apoptosis contributes to neuronal loss. RNA-seq analysis revealed changes in the expression of a number of genes in spinal cord from old mice, in particular genes encoding extracellular matrix components (ECM) and a 172-fold increase in MMP-12 expression. Furthermore, blood-spinal cord barrier (BSCB) permeability is increased in old mice, which may contribute to alterations in spinal cord homeostasis and exacerbate neuronal distress. Together, these data show for the first time that the spinal cord undergoes significant changes during aging, including progressive α-MNs loss that is associated with low-grade inflammation, apoptosis, changes in ECM, myelination, and vascular permeability.
Collapse
Affiliation(s)
- Katarzyna M Piekarz
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.,Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Shylesh Bhaskaran
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | | | - Kaitlyn Street
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Pavithra Premkumar
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Michelle Zalles
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.,Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rafal Gulej
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Shadi Khademi
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Jaime Laurin
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rick Peelor
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Benjamin F Miller
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rheal Towner
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.,Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Holly Van Remmen
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA. .,Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA. .,Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
8
|
Secor PR, Burgener EB, Kinnersley M, Jennings LK, Roman-Cruz V, Popescu M, Van Belleghem JD, Haddock N, Copeland C, Michaels LA, de Vries CR, Chen Q, Pourtois J, Wheeler TJ, Milla CE, Bollyky PL. Pf Bacteriophage and Their Impact on Pseudomonas Virulence, Mammalian Immunity, and Chronic Infections. Front Immunol 2020; 11:244. [PMID: 32153575 PMCID: PMC7047154 DOI: 10.3389/fimmu.2020.00244] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Pf bacteriophage are temperate phages that infect the bacterium Pseudomonas aeruginosa, a major cause of chronic lung infections in cystic fibrosis (CF) and other settings. Pf and other temperate phages have evolved complex, mutualistic relationships with their bacterial hosts that impact both bacterial phenotypes and chronic infection. We and others have reported that Pf phages are a virulence factor that promote the pathogenesis of P. aeruginosa infections in animal models and are associated with worse skin and lung infections in humans. Here we review the biology of Pf phage and what is known about its contributions to pathogenesis and clinical disease. First, we review the structure, genetics, and epidemiology of Pf phage. Next, we address the diverse and surprising ways that Pf phages contribute to P. aeruginosa phenotypes including effects on biofilm formation, antibiotic resistance, and motility. Then, we cover data indicating that Pf phages suppress mammalian immunity at sites of bacterial infection. Finally, we discuss recent literature implicating Pf in chronic P. aeruginosa infections in CF and other settings. Together, these reports suggest that Pf bacteriophage have direct effects on P. aeruginosa infections and that temperate phages are an exciting frontier in microbiology, immunology, and human health.
Collapse
Affiliation(s)
- Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
| | - Elizabeth B. Burgener
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - M. Kinnersley
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Laura K. Jennings
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
| | - Valery Roman-Cruz
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
| | - Medeea Popescu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Jonas D. Van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Naomi Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Conner Copeland
- Department of Computer Science, University of Montana, Missoula, MT, United States
| | - Lia A. Michaels
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Christiaan R. de Vries
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Julie Pourtois
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Travis J. Wheeler
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
- Department of Computer Science, University of Montana, Missoula, MT, United States
| | - Carlos E. Milla
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA, United States
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
9
|
Fujimura T, Okabe T, Tanita K, Sato Y, Lyu C, Kambayashi Y, Maruyama S, Aiba S. A novel technique to diagnose non‐melanoma skin cancer by thermal conductivity measurements: Correlations with cancer stromal factors. Exp Dermatol 2019; 28:1029-1035. [DOI: 10.1111/exd.13997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/04/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Taku Fujimura
- Graduate School of Medicine Tohoku University Sendai Japan
| | - Takahiro Okabe
- Graduate School of Science and Technology Hirosaki University Hirosaki Japan
| | - Kayo Tanita
- Graduate School of Medicine Tohoku University Sendai Japan
| | - Yota Sato
- Graduate School of Medicine Tohoku University Sendai Japan
| | - Chunbing Lyu
- Graduate School of Medicine Tohoku University Sendai Japan
| | | | | | - Setsuya Aiba
- Graduate School of Medicine Tohoku University Sendai Japan
| |
Collapse
|
10
|
de Looff M, de Jong S, Kruyt FAE. Multiple Interactions Between Cancer Cells and the Tumor Microenvironment Modulate TRAIL Signaling: Implications for TRAIL Receptor Targeted Therapy. Front Immunol 2019; 10:1530. [PMID: 31333662 PMCID: PMC6617985 DOI: 10.3389/fimmu.2019.01530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/19/2019] [Indexed: 01/09/2023] Open
Abstract
Tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL) signaling is far more complex than initially anticipated and can lead to either anti- or protumorigenic effects, hampering the successful clinical use of therapeutic TRAIL receptor agonists. Cell autonomous resistance mechanisms have been identified in addition to paracrine factors that can modulate apoptosis sensitivity. The tumor microenvironment (TME), consisting of cellular and non-cellular components, is a source for multiple signals that are able to modulate TRAIL signaling in tumor and stromal cells. Particularly immune effector cells, also part of the TME, employ the TRAIL/TRAIL-R system whereby cell surface expressed TRAIL can activate apoptosis via TRAIL receptors on tumor cells, which is part of tumor immune surveillance. In this review we aim to dissect the impact of the TME on signaling induced by endogenous and exogenous/therapeutic TRAIL, thereby distinguishing different components of the TME such as immune effector cells, neutrophils, macrophages, and non-hematopoietic stromal cells. In addition, also non-cellular biochemical and biophysical properties of the TME are considered including mechanical stress, acidity, hypoxia, and glucose deprivation. Available literature thus far indicates that tumor-TME interactions are complex and often bidirectional leading to tumor-enhancing or tumor-reducing effects in a tumor model- and tumor type-dependent fashion. Multiple signals originating from different components of the TME simultaneously affect TRAIL receptor signaling. We conclude that in order to unleash the full clinical potential of TRAIL receptor agonists it will be necessary to increase our understanding of the contribution of different TME components on outcome of therapeutic TRAIL receptor activation in order to identify the most critical mechanism responsible for resistance, allowing the design of effective combination treatments.
Collapse
Affiliation(s)
- Margot de Looff
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Frank A E Kruyt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Mouton AJ, Rivera Gonzalez OJ, Kaminski AR, Moore ET, Lindsey ML. Matrix metalloproteinase-12 as an endogenous resolution promoting factor following myocardial infarction. Pharmacol Res 2018; 137:252-258. [PMID: 30394317 DOI: 10.1016/j.phrs.2018.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023]
Abstract
Following myocardial infarction (MI), timely resolution of inflammation promotes wound healing and scar formation while limiting excessive tissue damage. Resolution promoting factors (RPFs) are agents that blunt leukocyte trafficking and inflammation, promote necrotic and apoptotic cell clearance, and stimulate scar formation. Previously identified RPFs include mediators derived from lipids (resolvins, lipoxins, protectins, and maresins), proteins (glucocorticoids, annexin A1, galectin 1, and melanocortins), or gases (CO, H2S, and NO). Matrix metalloproteinase-12 (MMP-12; macrophage elastase) has shown promising RPF qualities in a variety of disease states. We review here the evidence that MMP-12 may serve as a novel RPF with potential therapeutic efficacy in the setting of MI.
Collapse
Affiliation(s)
- Alan J Mouton
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States
| | - Osvaldo J Rivera Gonzalez
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States
| | - Amanda R Kaminski
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States
| | - Edwin T Moore
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, 1500 E Woodrow Wilson Ave, Jackson, MS, 39216, United States.
| |
Collapse
|
12
|
Popadić D, Heßelbach K, Richter-Brockmann S, Kim GJ, Flemming S, Schmidt-Heck W, Häupl T, Bonin M, Dornhof R, Achten C, Günther S, Humar M, Merfort I. Gene expression profiling of human bronchial epithelial cells exposed to fine particulate matter (PM 2.5) from biomass combustion. Toxicol Appl Pharmacol 2018; 347:10-22. [PMID: 29596927 DOI: 10.1016/j.taap.2018.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
Affiliation(s)
- Désirée Popadić
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Katharina Heßelbach
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Sigrid Richter-Brockmann
- Institute of Geology and Palaeontology - Applied Geology, University of Muenster, Muenster, Germany
| | - Gwang-Jin Kim
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Stephan Flemming
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Wolfgang Schmidt-Heck
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité University Hospital Berlin, Berlin, Germany
| | - Marc Bonin
- Department of Rheumatology and Clinical Immunology, Charité University Hospital Berlin, Berlin, Germany
| | - Regina Dornhof
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Christine Achten
- Institute of Geology and Palaeontology - Applied Geology, University of Muenster, Muenster, Germany
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Matjaz Humar
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.
| | - Irmgard Merfort
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs University Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Diggs LP, Ripley RT. The good, the bad, and the uncertain: Can matrix metalloproteinase 12 simultaneously be protumorigenic and antitumorigenic? J Thorac Cardiovasc Surg 2018; 155:2162-2163. [PMID: 29397150 DOI: 10.1016/j.jtcvs.2018.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 01/06/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Laurence P Diggs
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - R Taylor Ripley
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
14
|
Affiliation(s)
- Jesse Roman
- 1 Department of Medicine and Robley Rex VA Medical Center University of Louisville Louisville, Kentucky
| |
Collapse
|