1
|
Fedosenko S, Venegas Garrido C, Nair P. Recent advances in asthma mucus biology and emerging treatment strategies. Curr Opin Pulm Med 2025; 31:251-261. [PMID: 40047213 DOI: 10.1097/mcp.0000000000001167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
PURPOSE OF REVIEW To describe the recent advances in the pathobiology and treatment of mucus hypersecretion in asthma, a critical factor contributing to airway obstruction, inflammation, and impaired lung function. RECENT FINDINGS Significant progress has been made in understanding how mucin protein regulation, mucus viscosity, and adhesion are affected by cytokine-driven inflammation, especially interleukin-13, and defects in ion transport mechanisms. Advances in imaging techniques, such as multidetector computed tomography (MDCT) and hyperpolarized gas MRI, allow for a more precise assessment of mucus plugging and associated ventilation defects. Emerging therapies, including biologicals targeting type-2 (T2) inflammation, and novel mucolytics aimed at modifying mucus properties and secretion, offer promising effects in reducing mucus in severe asthmatics. SUMMARY The growing understanding of mucus biology and the development of advanced imaging and therapeutic strategies could significantly improve the management of mucus-related complications in asthma. By targeting mucus characteristics, these findings support future approaches to reduce airway obstruction, enhance lung function, and improve clinical outcomes in patients with severe asthma. A deeper understanding of the glycobiology of mucus is critical to develop new therapies.
Collapse
Affiliation(s)
- Sergey Fedosenko
- Division of Respirology, Department of Medicine, St Joseph's Healthcare and McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
2
|
Moran J, Pugh C, Brown N, Thomas A, Zhang S, McCauley E, Cephas A, Shrestha CL, Partida-Sanchez S, Bai S, Bruscia E, Kopp BT. ENaC contributes to macrophage dysfunction in cystic fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622340. [PMID: 39574739 PMCID: PMC11580935 DOI: 10.1101/2024.11.06.622340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Background Cystic fibrosis (CF) is a chronic systemic disease caused by dysfunctional or absent cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is expressed in human immune cells and plays a role in regulating innate immunity both directly and indirectly. Besides CFTR, research indicates that the epithelial sodium channel (ENaC) also contributes to dysfunction in CF airway epithelial cells. However, the impact of non-CFTR ion channel dysfunction on CF immune responses is not yet fully understood. A precise understanding of how CF immune function is regulated by ion channels may allow antibiotic-and mutation-agnostic treatment approaches to chronic bacterial infection and inflammation. Therefore, we hypothesized that ENaC is aberrantly expressed in CF macrophages and directly contributes to impaired phagocytic and inflammatory functions. Methods ENaC expression was characterized in human immune cells isolated from CF and non-CF blood donors. Monocyte-derived macrophage (MDM) function and bacterial killing was tested in the setting of ENaC modulation. Results Baseline expression of ENaC in human CF MDMs, lymphocytes, and granulocytes was increased at both the transcript and protein level relative to non-CF controls and persisted after exposure to bacteria. Inhibition of CFTR in non-CF MDMs resulted in ENaC overexpression.CFTR modulator treatment reduced but did not eliminate ENaC overexpression in CF MDMs. Interestingly, ENaC inhibition with Amiloride increased CFTR expression. Amiloride-treated CF MDMs also showed normalized ROS production, improved autophagy, and decreased pro-inflammatory cytokine production. Finally, results from an ion channel microarray indicated that sodium channel expression in CF MDMs normalized after Amiloride treatment with minimal effect on other ion channels. Discussion ENaC is overexpressed in CF immune cells and is associated with abnormal macrophage function. ENaC modulation in immune cells is a novel potential therapeutic target for infection control in CF, either in combination with CFTR modulators, or as a sole agent for patients not currently eligible for CFTR modulators.
Collapse
|
3
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Lemmens-Gruber R, Tzotzos S. The Epithelial Sodium Channel-An Underestimated Drug Target. Int J Mol Sci 2023; 24:ijms24097775. [PMID: 37175488 PMCID: PMC10178586 DOI: 10.3390/ijms24097775] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Epithelial sodium channels (ENaC) are part of a complex network of interacting biochemical pathways and as such are involved in several disease states. Dependent on site and type of mutation, gain- or loss-of-function generated symptoms occur which span from asymptomatic to life-threatening disorders such as Liddle syndrome, cystic fibrosis or generalized pseudohypoaldosteronism type 1. Variants of ENaC which are implicated in disease assist further understanding of their molecular mechanisms in order to create models for specific pharmacological targeting. Identification and characterization of ENaC modifiers not only furthers our basic understanding of how these regulatory processes interact, but also enables discovery of new therapeutic targets for the disease conditions caused by ENaC dysfunction. Numerous test compounds have revealed encouraging results in vitro and in animal models but less in clinical settings. The EMA- and FDA-designated orphan drug solnatide is currently being tested in phase 2 clinical trials in the setting of acute respiratory distress syndrome, and the NOX1/ NOX4 inhibitor setanaxib is undergoing clinical phase 2 and 3 trials for therapy of primary biliary cholangitis, liver stiffness, and carcinoma. The established ENaC blocker amiloride is mainly used as an add-on drug in the therapy of resistant hypertension and is being studied in ongoing clinical phase 3 and 4 trials for special applications. This review focuses on discussing some recent developments in the search for novel therapeutic agents.
Collapse
Affiliation(s)
- Rosa Lemmens-Gruber
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | | |
Collapse
|
5
|
Wu T, Wrennall JA, Dang H, Baines DL, Tarran R. Passaging Primary Human Bronchial Epithelia Reduces CFTR-Mediated Fluid Transport and Alters mRNA Expression. Cells 2023; 12:997. [PMID: 37048070 PMCID: PMC10092965 DOI: 10.3390/cells12070997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Primary human bronchial epithelial cultures (HBECs) are used to study airway physiology, disease, and drug development. HBECs often replicate human airway physiology/pathophysiology. Indeed, in the search for cystic fibrosis (CF) transmembrane conductance regulator (CFTR) therapies, HBECs were seen as the "gold standard" in preclinical studies. However, HBECs are not without their limitations: they are non-immortalized and the requirement for human donors, especially those with rare genetic mutations, can make HBECs expensive and/or difficult to source. For these reasons, researchers may opt to expand HBECs by passaging. This practice is common, but to date, there has not been a robust analysis of the impact of expanding HBECs on their phenotype. Here, we used functional studies of airway surface liquid (ASL) homeostasis, epithelial barrier properties, and RNA-seq and Western blotting to investigate HBEC changes over two passage cycles. We found that passaging impaired CFTR-mediated ASL secretion and led to a reduction in the plasma membrane expression of the epithelial sodium channel (ENaC) and CFTR. Passaging also resulted in an increase in transepithelial resistance and a decrease in epithelial water permeability. We then looked for changes at the mRNA level and found that passaging significantly affected 323 genes, including genes involved in inflammation, cell growth, and extracellular matrix remodeling. Collectively, these data highlight the potential for HBEC expansion to impact research findings.
Collapse
Affiliation(s)
- Tongde Wu
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joe A. Wrennall
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Deborah L. Baines
- Institute for Infection and Immunity, St George’s, University of London, Tooting, London SW17 0RE, UK
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Izadifar Z, Sontheimer-Phelps A, Lubamba BA, Bai H, Fadel C, Stejskalova A, Ozkan A, Dasgupta Q, Bein A, Junaid A, Gulati A, Mahajan G, Kim S, LoGrande NT, Naziripour A, Ingber DE. Modeling mucus physiology and pathophysiology in human organs-on-chips. Adv Drug Deliv Rev 2022; 191:114542. [PMID: 36179916 DOI: 10.1016/j.addr.2022.114542] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023]
Abstract
The surfaces of human internal organs are lined by a mucus layer that ensures symbiotic relationships with commensal microbiome while protecting against potentially injurious environmental chemicals, toxins, and pathogens, and disruption of this layer can contribute to disease development. Studying mucus biology has been challenging due to the lack of physiologically relevant human in vitro models. Here we review recent progress that has been made in the development of human organ-on-a-chip microfluidic culture models that reconstitute epithelial tissue barriers and physiologically relevant mucus layers with a focus on lung, colon, small intestine, cervix and vagina. These organ-on-a-chip models that incorporate dynamic fluid flow, air-liquid interfaces, and physiologically relevant mechanical cues can be used to study mucus composition, mechanics, and structure, as well as investigate its contributions to human health and disease with a level of biomimicry not possible in the past.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | | | - Bob A Lubamba
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Cicely Fadel
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Anna Stejskalova
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Alican Ozkan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Queeny Dasgupta
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Amir Bein
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Abidemi Junaid
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Aakanksha Gulati
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Gautam Mahajan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Seongmin Kim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Arash Naziripour
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States; Vascular Biology Program, Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02115, United States; Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United Kingdom.
| |
Collapse
|
7
|
Blaconà G, Raso R, Castellani S, Pierandrei S, Del Porto P, Ferraguti G, Ascenzioni F, Conese M, Lucarelli M. Downregulation of epithelial sodium channel (ENaC) activity in cystic fibrosis cells by epigenetic targeting. Cell Mol Life Sci 2022; 79:257. [PMID: 35462606 PMCID: PMC9035428 DOI: 10.1007/s00018-022-04190-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/31/2022]
Abstract
The pathogenic mechanism of cystic fibrosis (CF) includes the functional interaction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein with the epithelial sodium channel (ENaC). The reduction of ENaC activity may constitute a therapeutic option for CF. This hypothesis was evaluated using drugs that target the protease-dependent activation of the ENaC channel and the transcriptional activity of its coding genes. To this aim we used: camostat, a protease inhibitor; S-adenosyl methionine (SAM), showed to induce DNA hypermethylation; curcumin, known to produce chromatin condensation. SAM and camostat are drugs already clinically used in other pathologies, while curcumin is a common dietary compound. The experimental systems used were CF and non-CF immortalized human bronchial epithelial cell lines as well as human bronchial primary epithelial cells. ENaC activity and SCNN1A, SCNN1B and SCNN1G gene expression were analyzed, in addition to SCNN1B promoter methylation. In both immortalized and primary cells, the inhibition of extracellular peptidases and the epigenetic manipulations reduced ENaC activity. Notably, the reduction in primary cells was much more effective. The SCNN1B appeared to be the best target to reduce ENaC activity, in respect to SCNN1A and SCNN1G. Indeed, SAM treatment resulted to be effective in inducing hypermethylation of SCNN1B gene promoter and in lowering its expression. Importantly, CFTR expression was unaffected, or even upregulated, after treatments. These results open the possibility of CF patients’ treatment by epigenetic targeting.
Collapse
Affiliation(s)
- Giovanna Blaconà
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberto Raso
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefano Castellani
- Department of Biomedical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Silvia Pierandrei
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Del Porto
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy. .,Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
8
|
Wrennall JA, Ahmad S, Worthington EN, Wu T, Goriounova AS, Voeller AS, Stewart IE, Ghosh A, Krajewski K, Tilley SL, Hickey AJ, Sassano MF, Tarran R. A SPLUNC1 Peptidomimetic Inhibits Orai1 and Reduces Inflammation in a Murine Allergic Asthma Model. Am J Respir Cell Mol Biol 2022; 66:271-282. [PMID: 34807800 PMCID: PMC8937239 DOI: 10.1165/rcmb.2020-0452oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Orai1 is a plasma membrane Ca2+ channel that mediates store-operated Ca2+ entry (SOCE) and regulates inflammation. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is an asthma gene modifier that inhibits Orai1 and SOCE via its C-terminal α6 region. SPLUNC1 levels are diminished in asthma patient airways. Thus, we hypothesized that inhaled α6 peptidomimetics could inhibit Orai1 and reduce airway inflammation in a murine asthma model. To evaluate α6-Orai1 interactions, we used fluorescent assays to measure Ca2+ signaling, Förster resonance energy transfer, fluorescent recovery after photobleaching, immunostaining, total internal reflection microscopy, and Western blotting. To test whether α6 peptidomimetics inhibited SOCE and decreased inflammation in vivo, wild-type and SPLUNC1-/- mice were exposed to house dust mite (HDM) extract with or without α6 peptide. We also performed nebulization, jet milling, and scanning electron microscopy to evaluate α6 for inhalation. SPLUNC1-/- mice had an exaggerated response to HDM. In BAL-derived immune cells, Orai1 levels increased after HDM exposure in SPLUNC1-/- but not wild-type mice. Inhaled α6 reduced Orai1 levels in mice regardless of genotype. In HDM-exposed mice, α6 dose-dependently reduced eosinophilia and neutrophilia. In vitro, α6 inhibited SOCE in multiple immune cell types, and α6 could be nebulized or jet milled without loss of function. These data suggest that α6 peptidomimetics may be a novel, effective antiinflammatory therapy for patients with asthma.
Collapse
Affiliation(s)
| | | | | | - Tongde Wu
- Department of Cell Biology and Physiology
| | | | | | - Ian E. Stewart
- Center for Engineered Systems, Research Triangle Institute International, Research Triangle Park, North Carolina
| | | | | | - Steven L. Tilley
- Division of Pulmonology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Anthony J. Hickey
- Center for Engineered Systems, Research Triangle Institute International, Research Triangle Park, North Carolina
| | | | | |
Collapse
|
9
|
Goss CH, Fajac I, Jain R, Seibold W, Gupta A, Hsu MC, Sutharsan S, Davies JC, Mall MA. Efficacy and safety of inhaled ENaC inhibitor BI 1265162 in patients with cystic fibrosis: BALANCE-CF 1, a randomised, phase II study. Eur Respir J 2022; 59:2100746. [PMID: 34385272 PMCID: PMC8850685 DOI: 10.1183/13993003.00746-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/19/2021] [Indexed: 12/05/2022]
Abstract
BACKGROUND Inhibition of the epithelial sodium channel (ENaC) in cystic fibrosis (CF) airways provides a mutation-agnostic approach that could improve mucociliary clearance in all CF patients. BI 1265162 is an ENaC inhibitor with demonstrated pre-clinical efficacy and safety already demonstrated in humans. OBJECTIVE We present results from BALANCE-CFTM 1, a phase II, placebo-controlled, randomised, double-blind study of four dose levels of BI 1265162 versus placebo for 4 weeks on top of standard of care in adults and adolescents with CF. RESULTS Initially, 28 randomised subjects (BI 1265162 200 µg twice daily n=14, placebo twice daily n=14) were assessed at an interim futility analysis. Compared with placebo, numerical changes of -0.8% (95% CI -6.6 to 4.9%) in percentage predicted forced expiratory volume in 1s (ppFEV1) and +2.1 units (95% CI -2.4 to 6.5 units) in lung clearance index (LCI) were observed in the active group, meeting a pre-defined stopping rule; accordingly, the study was terminated. Recruitment had continued during the interim analysis and pending results; 24 patients were added across three dose levels and placebo. The final results including these patients (+1.5% ppFEV1, 200 µg twice-daily dose versus placebo) were not supportive of relevant clinical effect. Furthermore, LCI change was not supportive, although interpretation was limited due to insufficient traces meeting quality criteria. A 9.4-point improvement in the Cystic Fibrosis Questionnaire - Revised Respiratory Domain was observed in the 200 µg twice daily dose group versus placebo. BI 1265162 up to 200 µg twice daily was safe and well-tolerated. Pharmacokinetics were similar to those in healthy volunteers. CONCLUSION BI 1265162 was safe, but did not demonstrate a potential for clinical benefit. Development has been terminated.
Collapse
Affiliation(s)
- Christopher H Goss
- Dept of Medicine, Dept of Pediatrics, University of Washington, Seattle Children's Hospital and Research Institute, Seattle, WA, USA
| | | | - Raksha Jain
- Dept of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Ming-Chi Hsu
- Boehringer Ingelheim, Shanghai, China
- Shanghai Junshi Biosciences Co. Ltd, Shanghai, China
| | - Sivagurunathan Sutharsan
- Division for Cystic Fibrosis, Dept of Pulmonary Medicine, University Medicine Essen - Ruhrlandklinik, Essen, Germany
| | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, UK
- Paediatric Respiratory Medicine, Royal Brompton and Harefield Hospitals, London, UK
| | - Marcus A Mall
- Dept of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| |
Collapse
|
10
|
Xia S, Bozóky Z, Di Paola M, Laselva O, Ahmadi S, Jiang JX, Pitstick AL, Jiang C, Rotin D, Mayhew CN, Jones NL, Bear CE. High-Throughput Functional Analysis of CFTR and Other Apically Localized Proteins in iPSC-Derived Human Intestinal Organoids. Cells 2021; 10:cells10123419. [PMID: 34943927 PMCID: PMC8699884 DOI: 10.3390/cells10123419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 01/15/2023] Open
Abstract
Induced Pluripotent Stem Cells (iPSCs) can be differentiated into epithelial organoids that recapitulate the relevant context for CFTR and enable testing of therapies targeting Cystic Fibrosis (CF)-causing mutant proteins. However, to date, CF-iPSC-derived organoids have only been used to study pharmacological modulation of mutant CFTR channel activity and not the activity of other disease-relevant membrane protein constituents. In the current work, we describe a high-throughput, fluorescence-based assay of CFTR channel activity in iPSC-derived intestinal organoids and describe how this method can be adapted to study other apical membrane proteins. Specifically, we show how this assay can be employed to study CFTR and ENaC channels and an electrogenic acid transporter in the same iPSC-derived intestinal tissue. This phenotypic platform promises to expand CF therapy discovery to include strategies that target multiple determinants of epithelial fluid transport.
Collapse
Affiliation(s)
- Sunny Xia
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada; (S.X.); (Z.B.); (O.L.); (J.X.J.)
- Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (C.J.); (D.R.); (N.L.J.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Zoltán Bozóky
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada; (S.X.); (Z.B.); (O.L.); (J.X.J.)
| | - Michelle Di Paola
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Onofrio Laselva
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada; (S.X.); (Z.B.); (O.L.); (J.X.J.)
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Saumel Ahmadi
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA;
| | - Jia Xin Jiang
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada; (S.X.); (Z.B.); (O.L.); (J.X.J.)
| | - Amy L. Pitstick
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (A.L.P.); (C.N.M.)
| | - Chong Jiang
- Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (C.J.); (D.R.); (N.L.J.)
| | - Daniela Rotin
- Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (C.J.); (D.R.); (N.L.J.)
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Christopher N. Mayhew
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (A.L.P.); (C.N.M.)
| | - Nicola L. Jones
- Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (C.J.); (D.R.); (N.L.J.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Department of Paediatrics, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Christine E. Bear
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada; (S.X.); (Z.B.); (O.L.); (J.X.J.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 0A4, Canada
- Correspondence:
| |
Collapse
|
11
|
Laselva O, Guerra L, Castellani S, Favia M, Di Gioia S, Conese M. Small-molecule drugs for cystic fibrosis: Where are we now? Pulm Pharmacol Ther 2021; 72:102098. [PMID: 34793977 DOI: 10.1016/j.pupt.2021.102098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023]
Abstract
The cystic fibrosis (CF) lung disease is due to the lack/dysfunction of the CF Transmembrane Conductance Regulator (CFTR), a chloride channel expressed by epithelial cells as the main regulator of ion and fluid homeostasis. More than 2000 genetic variation in the CFTR gene are known, among which those with identified pathomechanism have been divided into six VI mutation classes. A major advancement in the pharmacotherapy of CF has been the development of small-molecule drugs hitting the root of the disease, i.e. the altered ion and fluid transport through the airway epithelium. These drugs, called CFTR modulators, have been advanced to the clinics to treat nearly 90% of CF patients, including the CFTR potentiator ivacaftor, approved for residual function mutations (Classes III and IV), and combinations of correctors (lumacaftor, tezacaftor, elexacaftor) and ivacaftor for patients bearing at least one the F508del mutation, the most frequent mutation belonging to class II. To cover the 10% of CF patients without etiological therapies, other novel small-molecule CFTR modulators are in evaluation of their effectiveness in all the CFTR mutation classes: read-through agents for Class I, correctors, potentiators and amplifiers from different companies for Class II-V, stabilizers for Class VI. In alternative, other solute carriers, such as SLC26A9 and SLC6A14, are the focus of intensive investigation. Finally, other molecular targets are being evaluated for patients with no approved CFTR modulator therapy or as means of enhancing CFTR modulatory therapy, including small molecules forming ion channels, inhibitors of the ENaC sodium channel and potentiators of the calcium-activated chloride channel TMEM16A. This paper aims to give an up-to-date overview of old and novel CFTR modulators as well as of novel strategies based on small-molecule drugs. Further investigations in in-vivo and cell-based models as well as carrying out large prospective studies will be required to determine if novel CFTR modulators, stabilizers, amplifiers, and the ENaC inhibitors or TMEM16A potentiators will further improve the clinical outcomes in CF management.
Collapse
Affiliation(s)
- Onofrio Laselva
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stefano Castellani
- Department of Medical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
12
|
Giorgetti M, Klymiuk N, Bähr A, Hemmerling M, Jinton L, Tarran R, Malmgren A, Åstrand A, Hansson GC, Ermund A. New generation ENaC inhibitors detach cystic fibrosis airway mucus bundles via sodium/hydrogen exchanger inhibition. Eur J Pharmacol 2021; 904:174123. [PMID: 33974881 PMCID: PMC8477379 DOI: 10.1016/j.ejphar.2021.174123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022]
Abstract
Cystic fibrosis (CF) is a recessive inherited disease caused by mutations affecting anion transport by the epithelial ion channel cystic fibrosis transmembrane conductance regulator (CFTR). The disease is characterized by mucus accumulation in the airways and intestine, but the major cause of mortality in CF is airway mucus accumulation, leading to bacterial colonization, inflammation and respiratory failure. Several drug targets are under evaluation to alleviate airway mucus obstruction in CF and one of these targets is the epithelial sodium channel ENaC. To explore effects of ENaC inhibitors on mucus properties, we used two model systems to investigate mucus characteristics, mucus attachment in mouse ileum and mucus bundle transport in piglet airways. We quantified mucus attachment in explants from CFTR null (CF) mice and tracheobronchial explants from newborn CFTR null (CF) piglets to evaluate effects of ENaC or sodium/hydrogen exchanger (NHE) inhibitors on mucus attachment. ENaC inhibitors detached mucus in the CF mouse ileum, although the ileum lacks ENaC expression. This effect was mimicked by two NHE inhibitors. Airway mucus bundles were immobile in untreated newborn CF piglets but were detached by the therapeutic drug candidate AZD5634 (patent WO, 2015140527). These results suggest that the ENaC inhibitor AZD5634 causes detachment of CF mucus in the ileum and airway via NHE inhibition and that drug design should focus on NHE instead of ENaC inhibition.
Collapse
Affiliation(s)
- Melania Giorgetti
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Sweden.
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Germany.
| | - Andrea Bähr
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Germany.
| | - Martin Hemmerling
- Research and Early Development, Respiratory, Inflammation and Autoimmunity (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Lisa Jinton
- Research and Early Development, Respiratory, Inflammation and Autoimmunity (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Robert Tarran
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, North Carolina, United States.
| | - Anna Malmgren
- Research and Early Development, Respiratory, Inflammation and Autoimmunity (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Annika Åstrand
- Research and Early Development, Respiratory, Inflammation and Autoimmunity (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Sweden.
| | - Anna Ermund
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Sweden.
| |
Collapse
|
13
|
Pinto MC, Silva IAL, Figueira MF, Amaral MD, Lopes-Pacheco M. Pharmacological Modulation of Ion Channels for the Treatment of Cystic Fibrosis. J Exp Pharmacol 2021; 13:693-723. [PMID: 34326672 PMCID: PMC8316759 DOI: 10.2147/jep.s255377] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel that transports chloride and bicarbonate across epithelia. Despite clinical progress in delaying disease progression with symptomatic therapies, these individuals still develop various chronic complications in lungs and other organs, which significantly restricts their life expectancy and quality of life. The development of high-throughput assays to screen drug-like compound libraries have enabled the discovery of highly effective CFTR modulator therapies. These novel therapies target the primary defect underlying CF and are now approved for clinical use for individuals with specific CF genotypes. However, the clinically approved modulators only partially reverse CFTR dysfunction and there is still a considerable number of individuals with CF carrying rare CFTR mutations who remain without any effective CFTR modulator therapy. Accordingly, additional efforts have been pursued to identify novel and more potent CFTR modulators that may benefit a larger CF population. The use of ex vivo individual-derived specimens has also become a powerful tool to evaluate novel drugs and predict their effectiveness in a personalized medicine approach. In addition to CFTR modulators, pro-drugs aiming at modulating alternative ion channels/transporters are under development to compensate for the lack of CFTR function. These therapies may restore normal mucociliary clearance through a mutation-agnostic approach (ie, independent of CFTR mutation) and include inhibitors of the epithelial sodium channel (ENaC), modulators of the calcium-activated channel transmembrane 16A (TMEM16, or anoctamin 1) or of the solute carrier family 26A member 9 (SLC26A9), and anionophores. The present review focuses on recent progress and challenges for the development of ion channel/transporter-modulating drugs for the treatment of CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Iris A L Silva
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miriam F Figueira
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
14
|
Pierandrei S, Truglio G, Ceci F, Del Porto P, Bruno SM, Castellani S, Conese M, Ascenzioni F, Lucarelli M. DNA Methylation Patterns Correlate with the Expression of SCNN1A, SCNN1B, and SCNN1G (Epithelial Sodium Channel, ENaC) Genes. Int J Mol Sci 2021; 22:ijms22073754. [PMID: 33916525 PMCID: PMC8038451 DOI: 10.3390/ijms22073754] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype-phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of CFTR and ENaC subunits α, β and γ (respectively SCNN1A, SCNN1B, and SCNN1G genes) was studied by real time PCR. DNA methylation of 5'-flanking region of SCNN1A, SCNN1B, and SCNN1G genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The SCNN1A gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, SCNN1B and SCNN1G genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF.
Collapse
Affiliation(s)
- Silvia Pierandrei
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
| | - Gessica Truglio
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
| | - Fabrizio Ceci
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
| | - Paola Del Porto
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Via dei Sardi 70, 00185 Roma, Italy;
| | - Sabina Maria Bruno
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
| | - Stefano Castellani
- Department of Biomedical Sciences and Human Oncology, University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli 121, 71122 Foggia, Italy;
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Via dei Sardi 70, 00185 Roma, Italy;
- Correspondence: (F.A.); (M.L.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Viale Regina Elena 291, 00161 Roma, Italy
- Correspondence: (F.A.); (M.L.)
| |
Collapse
|
15
|
Liu Q, Wang Z, Zhang W. The Multifunctional Roles of Short Palate, Lung, and Nasal Epithelium Clone 1 in Regulating Airway Surface Liquid and Participating in Airway Host Defense. J Interferon Cytokine Res 2021; 41:139-148. [PMID: 33885339 DOI: 10.1089/jir.2020.0141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) is a kind of secretory protein, and gets expressed abundantly in normal respiratory epithelium of humans. As a natural immune molecule, SPLUNC1 is proved to be involved in inflammatory response and airway host defense. This review focuses on summarizing and discussing the role of SPLUNC1 in regulating airway surface liquid (ASL) and participating in airway host defense. PubMed and MEDLINE were used for searching and identifying the data in this review. The domain of bactericidal/permeability-increasing protein in SPLUNC1 and the α-helix, α4, are essential for SPLUNC1 to exert biological activities. As a natural innate immune molecule, SPLUNC1 plays a significant role in inflammatory response and airway host defense. Its special expression patterns are not only observed in physiological conditions, but also in some respiratory diseases. The mechanisms of SPLUNC1 in airway host defense include modulating ASL volume, acting as a surfactant protein, inhibiting biofilm formation, as well as regulating ASL compositions, such as LL-37, mucins, Neutrophil elastase, and inflammatory cytokines. Besides, potential correlations are found among these different mechanisms, especially among different ASL compositions, which should be further explored in more systematical frameworks. In this review, we summarize the structural characteristics and expression patterns of SPLUNC1 briefly, and mainly discuss the mechanisms of SPLUNC1 exerted in host defense, aiming to provide a theoretical basis and a novel target for future studies and clinical treatments.
Collapse
Affiliation(s)
- Qingluan Liu
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhicheng Wang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Reihill JA, Douglas LEJ, Martin SL. Modulation of Ion Transport to Restore Airway Hydration in Cystic Fibrosis. Genes (Basel) 2021; 12:genes12030453. [PMID: 33810137 PMCID: PMC8004921 DOI: 10.3390/genes12030453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is a life-limiting genetic disorder caused by loss-of-function mutations in the gene which codes for the CF transmembrane conductance regulator (CFTR) Cl- channel. Loss of Cl- secretion across the apical membrane of airway lining epithelial cells results in dehydration of the airway surface liquid (ASL) layer which impairs mucociliary clearance (MCC), and as a consequence promotes bacterial infection and inflammation of the airways. Interventions that restore airway hydration are known to improve MCC. Here we review the ion channels present at the luminal surface of airway epithelial cells that may be targeted to improve airway hydration and MCC in CF airways.
Collapse
|
17
|
Nickolaus P, Jung B, Sabater J, Constant S, Gupta A. Preclinical evaluation of the epithelial sodium channel inhibitor BI 1265162 for treatment of cystic fibrosis. ERJ Open Res 2020; 6:00429-2020. [PMID: 33313305 PMCID: PMC7720687 DOI: 10.1183/23120541.00429-2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/04/2020] [Indexed: 01/17/2023] Open
Abstract
Background Epithelial sodium channel (ENaC) is an important regulator of airway surface liquid volume; ENaC is hyperactivated in cystic fibrosis (CF). ENaC inhibition is a potential therapeutic target for CF. Here, we report in vitro and in vivo results for BI 1265162, an inhaled ENaC inhibitor currently in Phase II clinical development, administered via the Respimat® Soft Mist™ inhaler. Methods In vitro inhibition of sodium ion (Na+) transport by BI 1265162 was tested in mouse renal collecting duct cells (M1) and human bronchial epithelial cells (NCI-H441); inhibition of water transport was measured using M1 cells. In vivo inhibition of liquid absorption from rat airway epithelium and acceleration of mucociliary clearance (MCC) in sheep lungs were assessed. Fully differentiated normal and CF human epithelium was used to measure the effect of BI 1265162 with or without ivacaftor and lumacaftor on water transport and MCC. Results BI 1265162 dose-dependently inhibited Na+ transport and decreased water resorption in cell line models. BI 1265162 reduced liquid absorption in rat lungs and increased MCC in sheep. No effects on renal function were seen in the animal models. BI 1265162 alone and in combination with CF transmembrane conductance regulator (CFTR) modulators decreased water transport and increased MCC in both normal and CF airway human epithelial models and also increased the effects of CFTR modulators in CF epithelium to reach the effect size seen in healthy epithelium with ivacaftor/lumacaftor alone. Conclusion These results demonstrate the potential of BI 1265162 as a mutation agnostic, ENaC-inhibitor-based therapy for CF. ENaC inhibition is a potential strategy for a mutation-agnostic therapy in CF. In preclinical studies, BI 1265162 is a potent ENaC inhibitor, alone and in synergy with CFTR modulators, supporting Phase I clinical development.https://bit.ly/3mCeWE9
Collapse
Affiliation(s)
| | | | - Juan Sabater
- Mount Sinai Medical Center, Miami Beach, FL, USA
| | | | | |
Collapse
|
18
|
Goss CH, Jain R, Seibold W, Picard AC, Hsu MC, Gupta A, Fajac I. An innovative phase II trial to establish proof of efficacy and optimal dose of a new inhaled epithelial sodium channel inhibitor BI 1265162 in adults and adolescents with cystic fibrosis: BALANCE-CF TM 1. ERJ Open Res 2020; 6:00395-2020. [PMID: 33313307 PMCID: PMC7720689 DOI: 10.1183/23120541.00395-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Inhibition of the epithelial sodium channel (ENaC) represents an important, mutation-agnostic therapeutic approach to restore airway surface liquid in patients with cystic fibrosis (CF). A phase II trial of the ENaC inhibitor BI 1265162, inhaled via the Respimat® Soft Mist™ inhaler, in patients aged ≥12 years with CF is being conducted to assess the efficacy and safety of BI 1265162, on top of standard CF treatment (www.clinicaltrials.gov identifier NCT04059094). BALANCE-CF™ 1 is a multinational, randomised, double-blind, placebo-controlled, parallel-group, dose-ranging trial consisting of 2 weeks' screening, 4 weeks' randomised treatment and 1 week follow-up. 98 patients, including ≥21 adolescents, will be randomised. First, 28 patients will be allocated to the highest dose of BI 1265162 (200 µg twice daily) or placebo in a 1:1 ratio. The remaining 70 patients will be allocated to one of five treatment arms (200 µg, 100 µg, 50 µg, 20 µg or placebo twice daily), with a final distribution ratio of 2:1:1:1:2. Recruitment and randomisation will begin with adult patients. An independent data monitoring committee will review safety data to advise on inclusion of adolescents and study continuation. A futility analysis will be conducted after 28 patients to prevent exposure of further patients in case of insufficient evidence of clinical efficacy. The design ensures that potential for effect is assessed ahead of wider enrolment, allowing investigation of a dose-response effect with minimal patient numbers. The results will increase understanding of efficacy, safety and optimal dosing of the inhaled ENaC inhibitor BI 1265162 in adults and adolescents with CF.
Collapse
Affiliation(s)
- Christopher H. Goss
- Dept of Medicine, Dept of Pediatrics, University of Washington, Seattle Children's Hospital & Research Institute, Seattle, WA, USA
| | - Raksha Jain
- Dept of Internal Medicine, University of Texas Southwestern Med Center, Dallas, TX, USA
| | | | | | - Ming-Chi Hsu
- Boehringer Ingelheim (China) Investment Co. Ltd, Shanghai, China
| | - Abhya Gupta
- Boehringer Ingelheim, Biberach an der Riss, Germany
| | | |
Collapse
|
19
|
Brao KJ, Wille BP, Lieberman J, Ernst RK, Shirtliff ME, Harro JM. Scnn1b-Transgenic BALB/c Mice as a Model of Pseudomonas aeruginosa Infections of the Cystic Fibrosis Lung. Infect Immun 2020; 88:e00237-20. [PMID: 32631918 PMCID: PMC7440770 DOI: 10.1128/iai.00237-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is responsible for much of the morbidity and mortality associated with cystic fibrosis (CF), a condition that predisposes patients to chronic lung infections. P. aeruginosa lung infections are difficult to treat because P. aeruginosa adapts to the CF lung, can develop multidrug resistance, and can form biofilms. Despite the clinical significance of P. aeruginosa, modeling P. aeruginosa infections in CF has been challenging. Here, we characterize Scnn1b-transgenic (Tg) BALB/c mice as P. aeruginosa lung infection models. Scnn1b-Tg mice overexpress the epithelial Na+ channel (ENaC) in their lungs, driving increased sodium absorption that causes lung pathology similar to CF. We intranasally infected Scnn1b-Tg mice and wild-type littermates with the laboratory P. aeruginosa strain PAO1 and CF clinical isolates and then assessed differences in bacterial clearance, cytokine responses, and histological features up to 12 days postinfection. Scnn1b-Tg mice carried higher bacterial burdens when infected with biofilm-grown rather than planktonic PAO1; Scnn1b-Tg mice also cleared infections more slowly than their wild-type littermates. Infection with PAO1 elicited significant increases in proinflammatory and Th17-linked cytokines on day 3. Scnn1b-Tg mice infected with nonmucoid early CF isolates maintained bacterial burdens and mounted immune responses similar to those of PAO1-infected Scnn1b-Tg mice. In contrast, Scnn1b-Tg mice infected with a mucoid CF isolate carried high bacterial burdens, produced significantly more interleukin 1β (IL-1β), IL-13, IL-17, IL-22, and KC, and showed severe immune cell infiltration into the bronchioles. Taken together, these results show the promise of Scnn1b-Tg mice as models of early P. aeruginosa colonization in the CF lung.
Collapse
Affiliation(s)
- Kristen J Brao
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Brendan P Wille
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Joshua Lieberman
- Division of Microbiology, Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mark E Shirtliff
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Janette M Harro
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Mall MA, Mayer-Hamblett N, Rowe SM. Cystic Fibrosis: Emergence of Highly Effective Targeted Therapeutics and Potential Clinical Implications. Am J Respir Crit Care Med 2020; 201:1193-1208. [PMID: 31860331 DOI: 10.1164/rccm.201910-1943so] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) remains the most common life-shortening hereditary disease in white populations, with high morbidity and mortality related to chronic airway mucus obstruction, inflammation, infection, and progressive lung damage. In 1989, the discovery that CF is caused by mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) gene that encodes a cAMP-dependent anion channel vital for proper Cl- and HCO3- transport across epithelial surfaces provided a solid foundation for unraveling underlying disease mechanisms and the development of therapeutics targeting the basic defect in people with CF. In this review, we focus on recent advances in our understanding of the molecular defects caused by different classes of CFTR mutations, implications for pharmacological rescue of mutant CFTR, and insights into how CFTR dysfunction impairs key host defense mechanisms, such as mucociliary clearance and bacterial killing in CF airways. Furthermore, we review the path that led to the recent breakthrough in the development of highly effective CFTR-directed therapeutics, now applicable for up to 90% of people with CF who carry responsive CFTR mutations, including those with just a single copy of the most common F508del mutation. Finally, we discuss the remaining challenges and strategies to develop highly effective targeted therapies for all patients and the unprecedented potential of these novel therapies to transform CF from a fatal to a treatable chronic condition.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Pediatric Pulmonology, Immunology, and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Center for Lung Research (DZL), Berlin, Germany
| | - Nicole Mayer-Hamblett
- Department of Pediatrics and.,Department of Biostatistics, University of Washington, Seattle, Washington.,Seattle Children's Hospital, Seattle, Washington
| | - Steven M Rowe
- Department of Medicine.,Department of Pediatrics, and.,Department of Cell, Developmental and Integrative Biology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
21
|
Danahay HL, Lilley S, Fox R, Charlton H, Sabater J, Button B, McCarthy C, Collingwood SP, Gosling M. TMEM16A Potentiation: A Novel Therapeutic Approach for the Treatment of Cystic Fibrosis. Am J Respir Crit Care Med 2020; 201:946-954. [PMID: 31898911 PMCID: PMC7159426 DOI: 10.1164/rccm.201908-1641oc] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Rationale: Enhancing non–CFTR (cystic fibrosis transmembrane conductance regulator)-mediated anion secretion is an attractive therapeutic approach for the treatment of cystic fibrosis (CF) and other mucoobstructive diseases. Objectives: To determine the effects of TMEM16A potentiation on epithelial fluid secretion and mucociliary clearance. Methods: The effects of a novel low-molecular-weight TMEM16A potentiator (ETX001) were evaluated in human cell and animal models of airway epithelial function and mucus transport. Measurements and Main Results: Potentiating the activity of TMEM16A with ETX001 increased the Ca2+-activated Cl− channel activity and anion secretion in human bronchial epithelial (HBE) cells from patients with CF without impacting calcium signaling. ETX001 rapidly increased fluid secretion and airway surface liquid height in CF-HBE cells under both static conditions and conditions designed to mimic the shear stress associated with tidal breathing. In ovine models of mucus clearance (tracheal mucus velocity and mucociliary clearance), inhaled ETX001 was able to accelerate clearance both when CFTR function was reduced by administration of a pharmacological blocker and when CFTR was fully functional. Conclusions: Enhancing the activity of TMEM16A increases epithelial fluid secretion and enhances mucus clearance independent of CFTR function. TMEM16A potentiation is a novel approach for the treatment of patients with CF and non-CF mucoobstructive diseases.
Collapse
Affiliation(s)
| | - Sarah Lilley
- Sussex Drug Discovery Centre, University of Sussex, Brighton, United Kingdom
| | - Roy Fox
- Sussex Drug Discovery Centre, University of Sussex, Brighton, United Kingdom
| | - Holly Charlton
- Sussex Drug Discovery Centre, University of Sussex, Brighton, United Kingdom
| | - Juan Sabater
- Mount Sinai Medical Center of Florida, Miami, Florida; and
| | - Brian Button
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | - Martin Gosling
- Enterprise Therapeutics, Brighton, United Kingdom.,Sussex Drug Discovery Centre, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
22
|
Kim MD, Salathe M. TMEM16A Potentiators: Is There a Need for New Modulators in Cystic Fibrosis? Am J Respir Crit Care Med 2020; 201:888-889. [PMID: 31913655 PMCID: PMC7159432 DOI: 10.1164/rccm.201912-2519ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Michael D Kim
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas City, Kansas
| | - Matthias Salathe
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas City, Kansas
| |
Collapse
|
23
|
Kim MD, Baumlin N, Yoshida M, Polineni D, Salathe SF, David JK, Peloquin CA, Wanner A, Dennis JS, Sailland J, Whitney P, Horrigan FT, Sabater JR, Abraham WM, Salathe M. Losartan Rescues Inflammation-related Mucociliary Dysfunction in Relevant Models of Cystic Fibrosis. Am J Respir Crit Care Med 2020; 201:313-324. [PMID: 31613648 PMCID: PMC6999107 DOI: 10.1164/rccm.201905-0990oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022] Open
Abstract
Rationale: Despite therapeutic progress in treating cystic fibrosis (CF) airway disease, airway inflammation with associated mucociliary dysfunction remains largely unaddressed. Inflammation reduces the activity of apically expressed large-conductance Ca2+-activated and voltage-dependent K+ (BK) channels, critical for mucociliary function in the absence of CFTR (CF transmembrane conductance regulator).Objectives: To test losartan as an antiinflammatory therapy in CF using CF human bronchial epithelial cells and an ovine model of CF-like airway disease.Methods: Losartan's antiinflammatory effectiveness to rescue BK activity and thus mucociliary function was tested in vitro using primary, fully redifferentiated human airway epithelial cells homozygous for F508del and in vivo using a previously validated, now expanded pharmacologic sheep model of CF-like, inflammation-associated mucociliary dysfunction.Measurements and Main Results: Nasal scrapings from patients with CF showed that neutrophilic inflammation correlated with reduced expression of LRRC26 (leucine rich repeat containing 26), the γ subunit mandatory for BK function in the airways. TGF-β1 (transforming growth factor β1), downstream of neutrophil elastase, decreased mucociliary parameters in vitro. These were rescued by losartan at concentrations achieved by nebulization in the airway and oral application in the bloodstream: BK dysfunction recovered acutely and over time (the latter via an increase in LRRC26 expression), ciliary beat frequency and airway surface liquid volume improved, and mucus hyperconcentration and cellular inflammation decreased. These effects did not depend on angiotensin receptor blockade. Expanding on a validated and published nongenetic, CF-like sheep model, ewes inhaled CFTRinh172 and neutrophil elastase for 3 days, which resulted in prolonged tracheal mucus velocity reduction, mucus hyperconcentration, and increased TGF-β1. Nebulized losartan rescued both mucus transport and mucus hyperconcentration and reduced TGF-β1.Conclusions: Losartan effectively reversed CF- and inflammation-associated mucociliary dysfunction, independent of its angiotensin receptor blockade.
Collapse
Affiliation(s)
- Michael D. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Nathalie Baumlin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Makoto Yoshida
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Deepika Polineni
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Sebastian F. Salathe
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| | - Joseph K. David
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| | - Charles A. Peloquin
- College of Pharmacy and Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Adam Wanner
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| | - John S. Dennis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Juliette Sailland
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| | - Philip Whitney
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| | - Frank T. Horrigan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas; and
| | | | | | - Matthias Salathe
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| |
Collapse
|
24
|
Fujikawa H, Kawakami T, Nakashima R, Nasu A, Kamei S, Nohara H, Eto Y, Ueno-Shuto K, Takeo T, Nakagata N, Suico MA, Kai H, Shuto T. Azithromycin Inhibits Constitutive Airway Epithelial Sodium Channel Activation in Vitro and Modulates Downstream Pathogenesis in Vivo. Biol Pharm Bull 2020; 43:725-730. [PMID: 32009028 DOI: 10.1248/bpb.b19-01091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epithelial sodium channel (ENaC) is an amiloride-sensitive sodium ion channel that is expressed in epithelial tissues. ENaC overexpression and/or hyperactivation in airway epithelial cells cause sodium over-absorption and dysregulated ciliary movement for mucus clearance; however, the agents that suppress constitutive airway ENaC activation are yet to be clinically available. Here, we focused on macrolides, which are widely used antibiotics that have many potential immunomodulatory effects. We examined whether macrolides could modulate constitutive ENaC activity and downstream events that typify cystic fibrosis (CF) and chronic obstructive pulmonary diseases (COPD) in in vitro and in vivo models of ENaC overexpression. Treatment of ENaC-overexpressing human bronchial epithelial cells (β/γENaC-16HBE14o- cells) with three macrolides (erythromycin, clarithromycin, azithromycin) confirmed dose-dependent suppression of ENaC function. For in vivo studies, mice harboring airway specific βENaC overexpression (C57BL/6J-βENaC-transgenic mice) were treated orally with azithromycin, a well-established antimicrobial agent that has been widely prescribed. Azithromycin treatment modulated pulmonary mechanics, emphysematous phenotype and pulmonary dysfunction. Notably, a lower dose (3 mg kg-1) of azithromycin significantly increased forced expiratory volume in 0.1 s (FEV0.1), an inverse indicator of bronchoconstriction. Although not statistically significant, improvement of pulmonary obstructive parameters such as emphysema and lung dysfunction (FEV0.1%) was observed. Our results demonstrate that macrolides directly attenuate constitutive ENaC function in vitro and may be promising for the treatment of obstructive lung diseases with defective mucociliary clearance, possibly by targeting ENaC hyperactivation.
Collapse
Affiliation(s)
- Haruka Fujikawa
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program," Kumamoto University
| | - Taise Kawakami
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Ryunosuke Nakashima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Aoi Nasu
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Shunsuke Kamei
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program," Kumamoto University.,Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University
| | - Hirofumi Nohara
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program," Kumamoto University
| | - Yuka Eto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Keiko Ueno-Shuto
- Laboratory of Pharmacology, Division of Life Science, Faculty of Pharmaceutical Sciences, Sojo University
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University
| |
Collapse
|
25
|
Jaques R, Shakeel A, Hoyle C. Novel therapeutic approaches for the management of cystic fibrosis. Multidiscip Respir Med 2020; 15:690. [PMID: 33282281 PMCID: PMC7706361 DOI: 10.4081/mrm.2020.690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic condition characterised by the build-up of thick, sticky mucus that can damage many of the body's organs. It is a life-long disease that results in a shortened life expectancy, often due to the progression of advanced lung disease. Treatment has previously targeted the downstream symptoms such as diminished mucus clearance and recurrent infection. More recently, significant advances have been made in treating the cause of the disease by targeting the faulty gene responsible. Hope for the development of potential therapies lies with ongoing research into new pharmacological agents and gene therapy. This review gives an overview of CF, and summarises the current evidence regarding the disease management and upcoming strategies aimed at treating or potentially curing this condition.
Collapse
Affiliation(s)
- Ryan Jaques
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, UK
| | | | | |
Collapse
|
26
|
Sala V, Murabito A, Ghigo A. Inhaled Biologicals for the Treatment of Cystic Fibrosis. ACTA ACUST UNITED AC 2020; 13:19-26. [PMID: 30318010 PMCID: PMC6751348 DOI: 10.2174/1872213x12666181012101444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Abstract
Background: Cystic Fibrosis (CF), one of the most frequent genetic diseases, is characterized by the production of viscous mucus in several organs. In the lungs, mucus clogs the airways and traps bacteria, leading to recurrent/resistant infections and lung damage. For cystic fibrosis patients, respiratory failure is still lethal in early adulthood since available treatments display incomplete efficacy. Objective: The objective of this review is to extend the current knowledge in the field of available treat-ments for cystic fibrosis. A special focus has been given to inhaled peptide-based drugs. Methods: The current review is based on recent and/or relevant literature and patents already available in various scientific databases, which include PubMed, PubMed Central, Patentscope and Science Direct. The information obtained through these diverse databases is compiled, critically interpreted and presented in the current study. An in-depth but not systematic approach to the specific research question has been adopted. Results: Recently, peptides have been proposed as possible pharmacologic agents for the treatment of respiratory diseases. Of note, peptides are suitable to be administered by inhalation to maximize efficacy and reduce systemic side effects. Moreover, innovative delivery carriers have been developed for drug administration through inhalation, allowing not only protection against proteolysis, but also a prolonged and controlled release. Conclusion: Here, we summarize newly patented peptides that have been developed in the last few years and advanced technologies for inhaled drug delivery to treat cystic fibrosis.
Collapse
Affiliation(s)
- Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.,S.C. Medicina d'Urgenza, A.O.U. Città della Salute e della Scienza, Molinette Hospital, Torino, Italy
| | - Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
27
|
Abstract
A spectrum of intrapulmonary airway diseases, for example, cigarette smoke-induced bronchitis, cystic fibrosis, primary ciliary dyskinesia, and non-cystic fibrosis bronchiectasis, can be categorized as "mucoobstructive" airway diseases. A common theme for these diseases appears to be the failure to properly regulate mucus concentration, producing mucus hyperconcentration that slows mucus transport and, importantly, generates plaque/plug adhesion to airway surfaces. These mucus plaques/plugs generate long diffusion distances for oxygen, producing hypoxic niches within adherent airway mucus and subjacent epithelia. Data suggest that concentrated mucus plaques/plugs are proinflammatory, in part mediated by release of IL-1α from hypoxic cells. The infectious component of mucoobstructive diseases may be initiated by anaerobic bacteria that proliferate within the nutrient-rich hypoxic mucus environment. Anaerobes ultimately may condition mucus to provide the environment for a succession to classic airway pathogens, including Staphylococcus aureus, Haemophilus influenzae, and ultimately Pseudomonas aeruginosa. Novel therapies to treat mucoobstructive diseases focus on restoring mucus concentration. Strategies to rehydrate mucus range from the inhalation of osmotically active solutes, designed to draw water into airway surfaces, to strategies designed to manipulate the relative rates of sodium absorption versus chloride secretion to endogenously restore epithelial hydration. Similarly, strategies designed to reduce the mucin burden in the airways, either by reducing mucin production/secretion or by clearing accumulated mucus (e.g., reducing agents), are under development. Thus, the new insights into a unifying process, that is, mucus hyperconcentration, that drives a significant component of the pathogenesis of mucoobstructive diseases promise multiple new therapeutic strategies to aid patients with this syndrome.
Collapse
|
28
|
Whole body periodic acceleration in normal and reduced mucociliary clearance of conscious sheep. PLoS One 2019; 14:e0224764. [PMID: 31697733 PMCID: PMC6837306 DOI: 10.1371/journal.pone.0224764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/21/2019] [Indexed: 11/21/2022] Open
Abstract
The purpose of this investigation was to ascertain whether nitric oxide (NO) released into the circulation by a noninvasive technology called whole body periodic acceleration (WBPA) could increase mucociliary clearance (MCC). It was based on observations by others that nitric oxide donor drugs increase ciliary beat frequency of nasal epithelium without increasing mucociliary clearance. Tracheal mucous velocity (TMV), a reflection of MCC, was measured in sheep after 1-hour treatment of WBPA and repeated after pretreatment with the NO synthase inhibitor, L-NAME to demonstrated action of NO. Aerosolized human neutrophil elastase (HNE) was administered to sheep to suppress TMV as might occur in cystic fibrosis and other inflammatory lung diseases. WBPA increased TMV to a peak of 136% of baseline 1h after intervention, an effect blocked by L-NAME. HNE reduced TMV to 55% of baseline but slowing was reversed by WBPA, protection lost in the presence of L-NAME. NO released into the circulation from eNOS by WBPA can acutely access airway epithelium for improving MCC slowed in cystic fibrosis and other inflammatory lung diseases as a means of enhancing host defense against pathogens.
Collapse
|
29
|
Chung S, Baumlin N, Dennis JS, Moore R, Salathe SF, Whitney PL, Sabater J, Abraham WM, Kim MD, Salathe M. Electronic Cigarette Vapor with Nicotine Causes Airway Mucociliary Dysfunction Preferentially via TRPA1 Receptors. Am J Respir Crit Care Med 2019; 200:1134-1145. [PMID: 31170808 PMCID: PMC6888648 DOI: 10.1164/rccm.201811-2087oc] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Rationale: Electronic cigarette (e-cig) use has been widely adopted under the perception of safety. However, possibly adverse effects of e-cig vapor in never-smokers are not well understood.Objectives: To test the effects of nicotine-containing e-cig vapors on airway mucociliary function in differentiated human bronchial epithelial cells isolated from never-smokers and in the airways of a novel, ovine large animal model.Methods: Mucociliary parameters were measured in human bronchial epithelial cells and in sheep. Systemic nicotine delivery to sheep was quantified using plasma cotinine levels, measured by ELISA.Measurements and Main Results:In vitro, exposure to e-cig vapor reduced airway surface liquid hydration and increased mucus viscosity of human bronchial epithelial cells in a nicotine-dependent manner. Acute nicotine exposure increased intracellular calcium levels, an effect primarily dependent on TRPA1 (transient receptor potential ankyrin 1). TRPA1 inhibition with A967079 restored nicotine-mediated impairment of mucociliary parameters including mucus transport in vitro. Sheep tracheal mucus velocity, an in vivo measure of mucociliary clearance, was also reduced by e-cig vapor. Nebulized e-cig liquid containing nicotine also reduced tracheal mucus velocity in a dose-dependent manner and elevated plasma cotinine levels. Importantly, nebulized A967079 reversed the effects of e-cig liquid on sheep tracheal mucus velocity.Conclusions: Our findings show that inhalation of e-cig vapor causes airway mucociliary dysfunction in vitro and in vivo. Furthermore, they suggest that the main nicotine effect on mucociliary function is mediated by TRPA1 and not nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Samuel Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Nathalie Baumlin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - John S. Dennis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Robert Moore
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Sebastian F. Salathe
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Phillip L. Whitney
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Juan Sabater
- Department of Research, Mount Sinai Medical Center, Miami Beach, Florida
| | - William M. Abraham
- Department of Research, Mount Sinai Medical Center, Miami Beach, Florida
| | - Michael D. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| | - Matthias Salathe
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida; and
| |
Collapse
|
30
|
Olivença DV, Fonseca LL, Voit EO, Pinto FR. Thickness of the airway surface liquid layer in the lung is affected in cystic fibrosis by compromised synergistic regulation of the ENaC ion channel. J R Soc Interface 2019; 16:20190187. [PMID: 31455163 DOI: 10.1098/rsif.2019.0187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The lung epithelium is lined with a layer of airway surface liquid (ASL) that is crucial for healthy lung function. ASL thickness is controlled by two ion channels: epithelium sodium channel (ENaC) and cystic fibrosis (CF) transmembrane conductance regulator (CFTR). Here, we present a minimal mathematical model of ENaC, CFTR and ASL regulation that sheds light on the control of ENaC by the short palate lung and nasal epithelial clone 1 (SPLUNC1) protein and by phosphatidylinositol 4,5-biphosphate (PI(4,5)P2). The model, despite its simplicity, yields a good fit to experimental observations and is an effective tool for exploring the interplay between ENaC, CFTR and ASL. Steady-state data and dynamic information constrain the model's parameters without ambiguities. Testing the hypothesis that PI(4,5)P2 protects ENaC from ubiquitination suggests that this protection does not improve the model results and that the control of the ENaC opening probability by PI(4,5)P2 is sufficient to explain all available data. The model analysis further demonstrates that ASL at the steady state is sensitive to small changes in PI(4,5)P2 abundance, particularly in CF conditions, which suggests that manipulation of phosphoinositide metabolism may promote therapeutic benefits for CF patients.
Collapse
Affiliation(s)
- Daniel V Olivença
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
| | - Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Francisco R Pinto
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
31
|
Couroux P, Farias P, Rizvi L, Griffin K, Hudson C, Crowder T, Tarran R, Tullis E. First clinical trials of novel ENaC targeting therapy, SPX-101, in healthy volunteers and adults with cystic fibrosis. Pulm Pharmacol Ther 2019; 58:101819. [PMID: 31302339 DOI: 10.1016/j.pupt.2019.101819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/13/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND ENaC inhibition has been investigated as a CF treatment; however, small molecule inhibitors of ENaC lack efficacy and/or have shown dose-limiting hyperkalemia. SPX-101 is a novel, investigational small peptide (SPLUNC1 mimetic) that regulates ENaC density with the potential for efficacy without systemic effects. METHODS Two trials are presented: The first was a Phase 1, 2-part, randomized, double-blind, placebo-controlled, ascending-dose study of nebulized SPX-101 in healthy adults. Part 1 evaluated 4 single doses of SPX-101 ranging from 20 to 240 mg. Part 2 evaluated a 14-day regimen of SPX-101 at 4 doses of SPX-101 ranging from 10 to 120 mg BID. Pharmacokinetics, adverse events, spirometry, vital signs, electrocardiograms, pulse oximetry, and clinical laboratory values were assessed. The second trial was a tolerability-confirming, Phase 1b, open-label study conducted in 5 adult subjects with CF. Ascending doses of SPX-101 inhalation solution (10 mg-120 mg BID) were administered for 7 days. Safety was assessed as described above. RESULTS All 64 healthy volunteers (32 in each Part) completed the single and multiple dose study. SPX-101 was well tolerated with little/no systemic exposure and with no hyperkalemia. Adverse events were generally mild with reported respiratory events associated with the purported pharmacological activity of SPX-101. Tolerability of SPX-101 was similarly observed in adults with CF; all 5 subjects treated with SPX-101 completed the study. CONCLUSIONS SPX-101 was well-tolerated across a range of doses and had little/no systemic exposure in healthy adults and adults with CF, thus supporting further study in patients with CF. CLINICALTRIAL. GOV REGISTRATION NCT03056989.
Collapse
Affiliation(s)
- Peter Couroux
- Inflamax Research Limited, Mississauga, Ontario, Canada
| | | | - Leena Rizvi
- Toronto Adult Cystic Fibrosis Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Katherine Griffin
- Toronto Adult Cystic Fibrosis Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | | - Robert Tarran
- Marsico Lung Institute, Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth Tullis
- Toronto Adult Cystic Fibrosis Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
32
|
Hanrahan JW, Sato Y, Carlile GW, Jansen G, Young JC, Thomas DY. Cystic Fibrosis: Proteostatic correctors of CFTR trafficking and alternative therapeutic targets. Expert Opin Ther Targets 2019; 23:711-724. [PMID: 31169041 DOI: 10.1080/14728222.2019.1628948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Cystic fibrosis (CF) is the most frequent lethal orphan disease and is caused by mutations in the CFTR gene. The most frequent mutation F508del-CFTR affects multiple organs; infections and subsequent infections and complications in the lung lead to death. Areas covered: This review focuses on new targets and mechanisms that are attracting interest for the development of CF therapies. The F508del-CFTR protein is retained in the endoplasmic reticulum (ER) but has some function if it can traffic to the plasma membrane. Cell-based assays have been used to screen chemical libraries for small molecule correctors that restore its trafficking. Pharmacological chaperones are correctors that bind directly to the F508del-CFTR mutant and promote its folding and trafficking. Other correctors fall into a heterogeneous class of proteostasis modulators that act indirectly by altering cellular homeostasis. Expert opinion: Pharmacological chaperones have so far been the most successful correctors of F508del-CFTR trafficking, but their level of correction means that more than one corrector is required. Proteostasis modulators have low levels of correction but hold promise because some can correct several different CFTR mutations. Identification of their cellular targets and the potential for development may lead to new therapies for CF.
Collapse
Affiliation(s)
- John W Hanrahan
- a Department of Physiology , McGill University , Montréal , QC , Canada.,c Research Institute of the McGill University Health Centre , McGill University , Montréal , QC , Canada
| | - Yukiko Sato
- a Department of Physiology , McGill University , Montréal , QC , Canada.,b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada
| | - Graeme W Carlile
- b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada.,d Department of Biochemistry , McGill University , Montréal , QC , Canada
| | - Gregor Jansen
- d Department of Biochemistry , McGill University , Montréal , QC , Canada
| | - Jason C Young
- b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada.,d Department of Biochemistry , McGill University , Montréal , QC , Canada
| | - David Y Thomas
- b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada.,d Department of Biochemistry , McGill University , Montréal , QC , Canada.,e Department of Human Genetics , McGill University , Montréal , QC , Canada
| |
Collapse
|
33
|
Musante I, Scudieri P, Venturini A, Guidone D, Caci E, Castellani S, Conese M, Galietta LJV. Peripheral localization of the epithelial sodium channel in the apical membrane of bronchial epithelial cells. Exp Physiol 2019; 104:866-875. [PMID: 30924990 DOI: 10.1113/ep087590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the precise subcellular localization of the epithelial sodium channel (ENaC) in human airway epithelium? What is the main finding and its importance? ENaC protein has an unexpected localization in the peripheral region of the apical membrane of bronchial epithelial cells, very close to tight junctions. This may be important for the mechanism of Na+ absorption ABSTRACT: The epithelial sodium channel (ENaC) has a key role in absorbing fluid across the human airway epithelium. Altered activity of ENaC may perturb the process of mucociliary clearance, thus impairing the innate defence mechanisms against microbial agents. The proteins forming ENaC are present on the apical membrane of the epithelium. However, their precise localization is unknown. In the present study, we used two antibodies recognizing the α and β ENaC subunits. Both antibodies revealed a restricted localization of ENaC in the peripheral region of the apical membrane of cultured bronchial epithelial cells, close to but not overlapping with tight junctions. In contrast, the cystic fibrosis transmembrane conductance regulator chloride channel was more diffusely expressed on the whole apical membrane. Modulation of ENaC activity by aprotinin or elastase resulted in a decrease or increase in the peripheral localization, respectively. Our results suggest that sodium absorption is mainly occurring close to tight junctions where this cation may be rapidly expelled by the Na+ /K+ pump present in lateral membranes. This arrangement of channels and pumps may limit Na+ build-up in other regions of the cells.
Collapse
Affiliation(s)
- Ilaria Musante
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Paolo Scudieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Arianna Venturini
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Emanuela Caci
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Department of Translational Medical Sciences (DISMET), Federico II University of Naples, Naples, Italy
| |
Collapse
|
34
|
Sesma JI, Wu B, Stuhlmiller TJ, Scott DW. SPX-101 is stable in and retains function after exposure to cystic fibrosis sputum. J Cyst Fibros 2019; 18:244-250. [DOI: 10.1016/j.jcf.2018.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/16/2022]
|
35
|
Shei RJ, Peabody JE, Kaza N, Rowe SM. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis. Curr Opin Pharmacol 2018; 43:152-165. [PMID: 30340955 PMCID: PMC6294660 DOI: 10.1016/j.coph.2018.09.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/11/2018] [Indexed: 01/28/2023]
Abstract
Cystic fibrosis (CF) is a monogenic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR dysfunction is characterized by abnormal mucociliary transport due to a dehydrated airway surface liquid (ASL) and hyperviscous mucus, among other pathologies of host defense. ASL depletion is caused by the absence of CFTR mediated chloride secretion along with continued activity of the epithelial sodium channel (ENaC) activity, which can also be affected by CFTR mediated anion conductance. Therefore, ENaC has been proposed as a therapeutic target to ameliorate ASL dehydration and improve mucus transport. Inhibition of ENaC has been shown to restore ASL hydration and enhance mucociliary transport in induced models of CF lung disease. To date, no therapy inhibiting ENaC has successfully translated to clinical efficacy, in part due to concerns regarding off-target effects, systemic exposure, durability of effect, and adverse effects. Recent efforts have been made to develop novel, rationally designed therapeutics to produce-specific, long-lasting inhibition of ENaC activity in the airways while simultaneously minimizing off target fluid transport effects, systemic exposure and side effects. Such approaches comprise next-generation small molecule direct inhibitors, indirect channel-activating protease inhibitors, synthetic peptide analogs, and oligonucleotide-based therapies. These novel therapeutics represent an exciting step forward in the development of ENaC-directed therapies for CF.
Collapse
Affiliation(s)
- Ren-Jay Shei
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacelyn E Peabody
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Medical Scientist (MD/PhD) Training Program, University of Alabama at Birmingham, Birmingham, AL, USA; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Niroop Kaza
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
36
|
Webster MJ, Reidel B, Tan CD, Ghosh A, Alexis NE, Donaldson SH, Kesimer M, Ribeiro CMP, Tarran R. SPLUNC1 degradation by the cystic fibrosis mucosal environment drives airway surface liquid dehydration. Eur Respir J 2018; 52:13993003.00668-2018. [PMID: 30190268 DOI: 10.1183/13993003.00668-2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
The multi-organ disease cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane regulator gene (CFTR) that lead to diminished transepithelial anion transport. CF lungs are characterised by airway surface liquid (ASL) dehydration, chronic infection/inflammation and neutrophilia. Dysfunctional CFTR may upregulate the epithelial Na+ channel (ENaC), further exacerbating dehydration. We previously demonstrated that short palate lung and nasal epithelial clone 1 (SPLUNC1) negatively regulates ENaC in normal airway epithelia.Here, we used pulmonary tissue samples, sputum and human bronchial epithelial cells (HBECs) to determine whether SPLUNC1 could regulate ENaC in a CF-like environment.We found reduced endogenous SPLUNC1 in CF secretions, and rapid degradation of recombinant SPLUNC1 (rSPLUNC1) by CF secretions. Normal sputum, containing SPLUNC1 and SPLUNC1-derived peptides, inhibited ENaC in both normal and CF HBECs. Conversely, CF sputum activated ENaC, and rSPLUNC1 could not reverse this phenomenon. Additionally, we observed upregulation of ENaC protein levels in human CF bronchi. Unlike SPLUNC1, the novel SPLUNC1-derived peptide SPX-101 resisted protease degradation, bound apically to HBECs, inhibited ENaC and prevented ASL dehydration following extended pre-incubation with CF sputum.Our data indicate that CF mucosal secretions drive ASL hyperabsorption and that protease-resistant peptides, e.g. SPX-101, can reverse this effect to rehydrate CF ASL.
Collapse
Affiliation(s)
- Megan J Webster
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Boris Reidel
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Chong D Tan
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Arunava Ghosh
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Neil E Alexis
- Center for Asthma and Lung Biology, The University of North Carolina, Chapel Hill, NC, USA
| | - Scott H Donaldson
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA.,Division of Pulmonary and Critical Care Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Mehmet Kesimer
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Carla M P Ribeiro
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA.,Dept of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC, USA
| | - Robert Tarran
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA .,Dept of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Mucociliary Clearance in Mice Measured by Tracking Trans-tracheal Fluorescence of Nasally Aerosolized Beads. Sci Rep 2018; 8:14744. [PMID: 30282981 PMCID: PMC6170422 DOI: 10.1038/s41598-018-33053-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022] Open
Abstract
Mucociliary clearance (MCC) is the first line of defense in clearing airways. In genetically engineered mice, each component of this system (ciliary beat, mucus, airway surface hydration) can be studied separately to determine its contribution to MCC. Because MCC is difficult to measure in mice, MCC measurements are often omitted from these studies. We report a simple method to measure MCC in mice involving nasal inhalation of aerosolized fluorescent beads and trans-tracheal bead tracking. This method has a number of advantages over existing methods: (1) a small volume of liquid is deposited thus minimally disturbing the airway surface; (2) bead behavior on airways can be visualized; (3) useful for adult or neonatal mice; (4) the equipment is relatively inexpensive and easily obtainable. The type of anesthetic had no significant effect on the rate of MCC, but overloading the airways with beads significantly decreased MCC. In addition, the rate of bead transport was not different in alive (3.11 mm/min) vs recently euthanized mice (3.10 mm/min). A 5-min aerosolization of beads in a solution containing UTP significantly increased the rate of MCC, demonstrating that our method would be of value in testing the role of various pharmacological agents on MCC.
Collapse
|
38
|
Webster MJ, Tarran R. Slippery When Wet: Airway Surface Liquid Homeostasis and Mucus Hydration. CURRENT TOPICS IN MEMBRANES 2018; 81:293-335. [PMID: 30243435 DOI: 10.1016/bs.ctm.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to regulate cell volume is crucial for normal physiology; equally the regulation of extracellular fluid homeostasis is of great importance. Alteration of normal extracellular fluid homeostasis contributes to the development of several diseases including cystic fibrosis. With regard to the airway surface liquid (ASL), which lies apically on top of airway epithelia, ion content, pH, mucin and protein abundance must be tightly regulated. Furthermore, airway epithelia must be able to switch from an absorptive to a secretory state as required. A heterogeneous population of airway epithelial cells regulate ASL solute and solvent composition, and directly secrete large mucin molecules, antimicrobials, proteases and soluble mediators into the airway lumen. This review focuses on how epithelial ion transport influences ASL hydration and ASL pH, with a specific focus on the roles of anion and cation channels and exchangers. The role of ions and pH in mucin expansion is also addressed. With regard to fluid volume regulation, we discuss the roles of nucleotides, adenosine and the short palate lung and nasal epithelial clone 1 (SPLUNC1) as soluble ASL mediators. Together, these mechanisms directly influence ciliary beating and in turn mucociliary clearance to maintain sterility and to detoxify the airways. Whilst all of these components are regulated in normal airways, defective ion transport and/or mucin secretion proves detrimental to lung homeostasis as such we address how defective ion and fluid transport, and a loss of homeostatic mechanisms, contributes to the development of pathophysiologies associated with cystic fibrosis.
Collapse
Affiliation(s)
- Megan J Webster
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
39
|
Strug LJ, Stephenson AL, Panjwani N, Harris A. Recent advances in developing therapeutics for cystic fibrosis. Hum Mol Genet 2018; 27:R173-R186. [PMID: 30060192 PMCID: PMC6061831 DOI: 10.1093/hmg/ddy188] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/23/2022] Open
Abstract
Despite hope that a cure was imminent when the causative gene was cloned nearly 30 years ago, cystic fibrosis (CF [MIM: 219700]) remains a life-shortening disease affecting more than 70 000 individuals worldwide. However, within the last 6 years the Food and Drug Administration's approval of Ivacaftor, the first drug that corrects the defective cystic fibrosis transmembrane conductance regulator protein [CFTR (MIM: 602421)] in patients with the G551D mutation, marks a watershed in the development of novel therapeutics for this devastating disease. Here we review recent progress in diverse research areas, which all focus on curing CF at the genetic, biochemical or physiological level. In the near future it seems probable that development of mutation-specific therapies will be the focus, since it is unlikely that any one approach will be efficient in correcting the more than 2000 disease-associated variants. We discuss the new drugs and combinations of drugs that either enhance delivery of misfolded CFTR protein to the cell membrane, where it functions as an ion channel, or that activate channel opening. Next we consider approaches to correct the causative genetic lesion at the DNA or RNA level, through repressing stop mutations and nonsense-mediated decay, modulating splice mutations, fixing errors by gene editing or using novel routes to gene replacement. Finally, we explore how modifier genes, loci elsewhere in the genome that modify CF disease severity, may be used to restore a normal phenotype. Progress in all of these areas has been dramatic, generating enthusiasm that CF may soon become a broadly treatable disease.
Collapse
Affiliation(s)
- Lisa J Strug
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anne L Stephenson
- Department of Respirology, Adult Cystic Fibrosis Program, St. Michael’s Hospital, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Naim Panjwani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
40
|
Moore PJ, Tarran R. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis lung disease. Expert Opin Ther Targets 2018; 22:687-701. [PMID: 30028216 DOI: 10.1080/14728222.2018.1501361] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Cystic fibrosis is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that codes for the CFTR anion channel. In the absence of functional CFTR, the epithelial Na+ channel is also dysregulated. Airway surface liquid (ASL) hydration is maintained by a balance between epithelial sodium channel (ENaC)-led Na+ absorption and CFTR-dependent anion secretion. This finely tuned homeostatic mechanism is required to maintain sufficient airway hydration to permit the efficient mucus clearance necessary for a sterile lung environment. In CF airways, the lack of CFTR and increased ENaC activity lead to ASL/mucus dehydration that causes mucus obstruction, neutrophilic infiltration, and chronic bacterial infection. Rehydration of ASL/mucus in CF airways can be achieved by inhibiting Na+ absorption with pharmacological inhibitors of ENaC. Areas covered: In this review, we discuss ENaC structure and function and its role in CF lung disease and focus on ENaC inhibition as a potential therapeutic target to rehydrate CF mucus. We also discuss the failure of the first generation of pharmacological inhibitors of ENaC and recent alternate strategies to attenuate ENaC activity in the CF lung. Expert opinion: ENaC is an attractive therapeutic target to rehydrate CF ASL that may serve as a monotherapy or function in parallel with other treatments. Given the increased number of strategies being employed to inhibit ENaC, this is an exciting and optimistic time to be in this field.
Collapse
Affiliation(s)
- Patrick J Moore
- a Marsico Lung Institute , University of North Carolina , Chapel Hill , NC , USA
| | - Robert Tarran
- a Marsico Lung Institute , University of North Carolina , Chapel Hill , NC , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
41
|
Figueira MF, Webster MJ, Tarran R. Rebuttal from Miriam F. Figueira, Megan J. Webster and Robert Tarran. J Physiol 2018; 596:3443-3444. [PMID: 30014480 DOI: 10.1113/jp276146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 01/12/2023] Open
Affiliation(s)
- Miriam F Figueira
- Cystic Fibrosis Center/Marsico Lung Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Megan J Webster
- Cystic Fibrosis Center/Marsico Lung Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert Tarran
- Cystic Fibrosis Center/Marsico Lung Institute, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
42
|
Moore PJ, Reidel B, Ghosh A, Sesma J, Kesimer M, Tarran R. Cigarette smoke modifies and inactivates SPLUNC1, leading to airway dehydration. FASEB J 2018; 32:fj201800345R. [PMID: 29890087 PMCID: PMC6219833 DOI: 10.1096/fj.201800345r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/21/2018] [Indexed: 01/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a growing cause of morbidity and mortality worldwide. Cigarette smoke (CS) exposure, a major cause of COPD, dysregulates airway epithelial ion transport and diminishes airway surface liquid (ASL) volume. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is secreted into the airway lumen where it maintains airway hydration via interactions with the epithelial Na+ channel (ENaC). Although ASL hydration is dysregulated in CS-exposed/COPD airways, effects of CS on SPLUNC1 have not been elucidated. We hypothesized that CS alters SPLUNC1 activity, therefore contributing to ASL dehydration. CS exposure caused irreversible SPLUNC1 aggregation and prevented SPLUNC1 from internalizing ENaC and maintaining ASL hydration. Proteomic analysis revealed αβ-unsaturated aldehyde modifications to SPLUNC1's cysteine residues. Removal of these cysteines prevented SPLUNC1 from regulating ENaC/ASL volume. In contrast, SPX-101, a peptide mimetic of natural SPLUNC1, that internalizes ENaC, but does not contain cysteines was unaffected by CS. SPX-101 increased ASL hydration and attenuated ENaC activity in airway cultures after CS exposure and prolonged survival in a chronic airway disease model. These findings suggest that the CS-induced defects in SPLUNC1 can be circumvented, thus making SPX-101 a novel candidate for the treatment of mucus dehydration in COPD. -Moore, P. J., Reidel, B., Ghosh, A., Sesma, J., Kesimer, M., Tarran, R. Cigarette smoke modifies and inactivates SPLUNC1, leading to airway dehydration.
Collapse
Affiliation(s)
- Patrick J. Moore
- Marsico Lung Institute, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Boris Reidel
- Marsico Lung Institute, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Arunava Ghosh
- Marsico Lung Institute, University of North Carolina at Chapel Hill, North Carolina, USA
| | | | - Mehmet Kesimer
- Marsico Lung Institute, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
43
|
Abstract
The number of published articles on Cystic Fibrosis (CF) continues to increase year on year. The evidence base for small molecule therapies in CF has continued to expand, with evidence for lumacaftor/ivacaftor in younger patients and longer-term evidence in adults, and pivotal studies on tezacaftor/ivacaftor. There were reports on emerging CFTR mutation agnostic therapies, and new evidence for long standing therapies.
Collapse
Affiliation(s)
- Iolo Doull
- Department of Paediatric Respiratory Medicine and Paediatric Cystic Fibrosis Centre, Children's Hospital for Wales, Cardiff CF14 4XN, UK.
| |
Collapse
|
44
|
Hamacher J, Hadizamani Y, Borgmann M, Mohaupt M, Männel DN, Moehrlen U, Lucas R, Stammberger U. Cytokine-Ion Channel Interactions in Pulmonary Inflammation. Front Immunol 2018; 8:1644. [PMID: 29354115 PMCID: PMC5758508 DOI: 10.3389/fimmu.2017.01644] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research.
Collapse
Affiliation(s)
- Jürg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Internal Medicine V - Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Yalda Hadizamani
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Michèle Borgmann
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Markus Mohaupt
- Internal Medicine, Sonnenhofspital Bern, Bern, Switzerland
| | | | - Ueli Moehrlen
- Paediatric Visceral Surgery, Universitäts-Kinderspital Zürich, Zürich, Switzerland
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Vascular Biology Center, Medical College of Georgia, Augusta, GA, United States
| | - Uz Stammberger
- Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Novartis Institutes for Biomedical Research, Translational Clinical Oncology, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
45
|
Lennox A, Myerburg MM. SPX-101 Is a Promising and Novel Nebulized ENaC Inhibitor. Am J Respir Crit Care Med 2017; 196:671-672. [PMID: 28609635 DOI: 10.1164/rccm.201705-0928ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Alison Lennox
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine University of Pittsburgh Pittsburgh, Pennsylvania
| | - Mike M Myerburg
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine University of Pittsburgh Pittsburgh, Pennsylvania
| |
Collapse
|
46
|
Ion channels as targets to treat cystic fibrosis lung disease. J Cyst Fibros 2017; 17:S22-S27. [PMID: 29102290 DOI: 10.1016/j.jcf.2017.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 11/21/2022]
Abstract
Lung health relies on effective mucociliary clearance and innate immune defence mechanisms. In cystic fibrosis (CF), an imbalance in ion transport due to an absence of chloride ion secretion, caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) and a concomitant sodium hyperabsorption, caused by dyregulation of the epithelial sodium channel (ENaC), results in mucus stasis which predisposes the lungs to cycles of chronic infection and inflammation leading to lung function decline. An increased understanding of CFTR structure and function has provided opportunity for the development of a number of novel modulators targeting mutant CFTR however, it is important to also consider other ion channels and transporters present in the airways as putative targets for drug development. In this review, we discuss recent advances in CFTR biology which will contribute to further drug discovery in the field. We also examine developments to inhibit the epithelial sodium channel (ENaC) and potentially activate alternative chloride channels and transporters as a multi-tracked strategy to hydrate CF airways and restore normal mucociliary clearance mechanisms in a manner independent of CFTR mutation.
Collapse
|
47
|
Li H, Salomon JJ, Sheppard DN, Mall MA, Galietta LJ. Bypassing CFTR dysfunction in cystic fibrosis with alternative pathways for anion transport. Curr Opin Pharmacol 2017; 34:91-97. [PMID: 29065356 DOI: 10.1016/j.coph.2017.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/20/2017] [Accepted: 10/04/2017] [Indexed: 12/20/2022]
Abstract
One therapeutic strategy for cystic fibrosis (CF) seeks to restore anion transport to affected epithelia by targeting other apical membrane Cl- channels to bypass dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. The properties and regulation of the Ca2+-activated Cl- channel TMEM16A argue that long-acting small molecules which target directly TMEM16A are required to overcome CFTR loss. Through genetic studies of lung diseases, SLC26A9, a member of the solute carrier 26 family of anion transporters, has emerged as a promising target to bypass CFTR dysfunction. An alternative strategy to circumvent CFTR dysfunction is to deliver to CF epithelia artificial anion transporters that shuttle Cl- across the apical membrane. Recently, powerful, non-toxic, biologically-active artificial anion transporters have emerged.
Collapse
Affiliation(s)
- Hongyu Li
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Johanna J Salomon
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, University Hospital Heidelberg, Heidelberg, Germany; Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Marcus A Mall
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, University Hospital Heidelberg, Heidelberg, Germany; Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Luis Jv Galietta
- Telethon Institute for Genetics and Medicine (Tigem), Pozzuoli, Italy.
| |
Collapse
|
48
|
Walker MP, Cowlen M, Christensen D, Miyamoto M, Barley P, Crowder T. Nonclinical safety assessment of SPX-101, a novel peptide promoter of epithelial sodium channel internalization for the treatment of cystic fibrosis. Inhal Toxicol 2017; 29:356-365. [PMID: 28984146 DOI: 10.1080/08958378.2017.1366602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND ENaC inhibition has long been an attractive therapeutic target for the treatment of cystic fibrosis. However, previous attempts at developing ENaC inhibitors have been unsuccessful due to complications arising from systemic circulation of the compounds. Here, we describe the preclinical toxicology assessment of a new inhaled peptide promoter of ENaC internalization delivered as a nebulized aerosol. METHODS Preclinical assessment of SPX-101 safety was determined using an in vitro hERG assay, bolus injection of SPX-101 in a canine cardiovascular and respiratory safety pharmacology model and 28-day inhalation toxicology studies of nebulized drug in rats and dogs. RESULTS SPX101 had no effects on the respiratory, cardiac or central nervous systems. The 28-day inhalation toxicology studies of nebulized SPX-101 in rats and dogs revealed no drug-related adverse events. Plasma levels of SPX-101 peaked less than 1 h after the end of treatment in rats and were below the limit of detection in canine models. CONCLUSIONS SPX-101, a novel peptide promoter of ENaC internalization, elicited no adverse effects at doses up to the MFD and in excess of the highest preclinical efficacious and expected clinical doses. In contrast to channel blockers like amiloride and derivative small molecules, SPX-101 does not achieve significant systemic circulation, thus doses are not limited due to toxic side effects like hyperkalemia and weight loss.
Collapse
Affiliation(s)
| | - Matt Cowlen
- b Cowlen Consulting, LLC , Chapel Hill , NC , USA
| | | | | | | | | |
Collapse
|
49
|
Gross N. The COPD Pipeline XXXVI. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2017; 4:320-324. [PMID: 29354676 DOI: 10.15326/jcopdf.4.4.2017.0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Nicholas Gross
- University Medical Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut
| |
Collapse
|