1
|
Rafei R, Zaylaa M, Diab M, Kassem II, El Omari K, Halimeh FB, El Moujaber G, Achour A, Ismail B, Mallat H, Hamze M, Dabboussi F, Osman M. Nasopharyngeal Carriage, Antimicrobial Resistance, and Serotype Distribution of Streptococcus pneumoniae in Children Under Five in Lebanon: Baseline Data Prior to PCV13 Introduction. Antibiotics (Basel) 2025; 14:168. [PMID: 40001412 PMCID: PMC11851980 DOI: 10.3390/antibiotics14020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The nasopharyngeal carriage of Streptococcus pneumoniae can be the source of transmission between humans and the starting step towards invasive pneumococcal diseases. Data on the carriage of pneumococci in children before and after the pneumococcal conjugate vaccines (PCV) integration in a country are essential for monitoring any change in pneumococcal carriage serotypes and their antimicrobial-resistance profiles. METHODS We investigated the epidemiology of S. pneumoniae carriage among children younger than five years old in Tripoli, Lebanon, in 2016, the same year of integration of PCV13 in the country's Expanded Program on Immunization. RESULTS Of 104 participating children, 57 (54.8%) gave a positive culture for S. pneumoniae. Antimicrobial susceptibility testing revealed that 26.3% of isolates were multidrug-resistant. Resistance was detected mainly against oxacillin (77.2%), tetracycline (29.8%), erythromycin (22.8%), trimethoprim-sulfamethoxazole (22.8%), clindamycin (19.3%), minocycline (19.3%), and teicoplanin (1.8%). Serotyping analysis identified 14 distinct serotypes, with only 31.3% and 50% of isolates corresponding to vaccine serotypes covered by PCV13 and PCV20, respectively. The most common serotypes were 11A, 19F, 23A, and those of serogroup 24 (Sg24) accounted for 37.5% of the serotyped isolates. CONCLUSIONS Our findings have revealed the circulation of a pool of pneumococci isolates with high levels of antibiotic resistance and different degrees of likelihood of causing invasive diseases in children under five years old in Tripoli in 2016. The overall limited PCV13 vaccine coverage in this study highlighted the need for vaccines with greater coverage in the immunization programs in Lebanon. Longitudinal national studies investigating the carriage of pneumococci in children are required to further assess the impact of the PCV vaccine on pneumococci carriage in children and steer new vaccine development.
Collapse
Affiliation(s)
- Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Mazen Zaylaa
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Mohamad Diab
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Issmat I. Kassem
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30223-1797, USA
- Faculty of Agricultural and Food Sciences, American University of Beirut, Riad El Solh, Beirut, Lebanon
| | - Khaled El Omari
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
- Quality Control Center Laboratories at the Chamber of Commerce, Industry and Agriculture of Tripoli and North Lebanon, Tripoli, Lebanon
| | - Fatima B. Halimeh
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Grace El Moujaber
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Afaf Achour
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Bassel Ismail
- College of Health and Medical Technologies, Alayen Iraqi University (AUIQ), Thi Qar, Iraq
| | - Hassan Mallat
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan Osman
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Lewnard JA, Hong V, Grant LR, Ackerson BK, Bruxvoort KJ, Pomichowski M, Arguedas A, Cané A, Jodar L, Gessner BD, Tartof SY. Association of Pneumococcal Conjugate Vaccination With Severe Acute Respiratory Syndrome Coronavirus 2 Infection Among Older Adult Recipients of Coronavirus Disease 2019 Vaccines: A Longitudinal Cohort Study. J Infect Dis 2024; 230:e1082-e1091. [PMID: 39101606 PMCID: PMC11566223 DOI: 10.1093/infdis/jiae387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Pneumococcal carriage is associated with increased acquisition and duration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among adults. While pneumococcal conjugate vaccines (PCVs) prevent carriage of vaccine-serotype pneumococci, their potential impact on coronavirus disease 2019 (COVID-19)-related outcomes remains poorly understood in populations with prevalent immunity against SARS-CoV-2. METHODS We undertook a retrospective cohort study of adults aged ≥65 years in the Kaiser Permanente Southern California healthcare system who had received ≥2 COVID-19 vaccine doses, comparing risk of SARS-CoV-2 infection between 1 January 2021 and 31 December 2022 among recipients and nonrecipients of 13-valent PCV (PCV13) employing multiple strategies to mitigate bias from differential test-seeking behavior. RESULTS The ajusted hazard ratio of confirmed SARS-CoV-2 infection comparing PCV13 recipients to nonrecipients was 0.92 (95% confidence interval [CI], .90-.95), corresponding to prevention of 3.9 (95% CI, 2.6-5.3) infections per 100 person-years. Following receipt of 2, 3, and ≥4 COVID-19 vaccine doses, aHRs (95% CI) were 0.85 (.81-.89), 0.94 (.90-.97), and 0.99 (.93-1.04), respectively. The aHR (95% CI) for persons who had not received COVID-19 vaccination in the preceding 6 months was 0.90 (.86-.93), versus 0.94 (.91-.98) within 6 months after COVID-19 vaccination. Similarly, aHRs (95% CI) were 0.92 (.89-.94) for persons without history of documented SARS-CoV-2 infection, versus 1.00 (.90-1.12) for persons with documented prior infection. CONCLUSIONS Among older adults who had received ≥2 COVID-19 vaccine doses, PCV13 was associated with modest protection against SARS-CoV-2 infection. Protective effects of PCV13 were greater among individuals expected to have weaker immune protection against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Joseph A Lewnard
- Center for Computational Biology, School of Public Health
- College of Statistics, Data Science, and Society
- Augmented Graduate Group in Computational Precision Health, University of California, Berkeley
| | - Vennis Hong
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena
| | | | - Bradley K Ackerson
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena
| | - Katia J Bruxvoort
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham
| | - Magdalena Pomichowski
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena
| | | | | | - Luis Jodar
- Pfizer Vaccines, Collegeville, Pennsylvania
| | | | - Sara Y Tartof
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California
| |
Collapse
|
3
|
Parker AM, Jackson N, Awasthi S, Kim H, Alwan T, Wyllie AL, Kogut K, Holland N, Mora AM, Eskenazi B, Riley LW, Lewnard JA. Upper respiratory Streptococcus pneumoniae colonization among working-age adults with prevalent exposure to overcrowding. Microbiol Spectr 2024; 12:e0087924. [PMID: 39012111 PMCID: PMC11302326 DOI: 10.1128/spectrum.00879-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/07/2024] [Indexed: 07/17/2024] Open
Abstract
Most pneumococcal disease occurs among infants and older adults and is thought to be driven by the transmission of Streptococcus pneumoniae from young children to these vulnerable age groups. However, pneumococcal disease outbreaks also affect non-elderly adults living or working in congregate, close-contact settings. Little is known about pneumococcal carriage in such populations. From July to November 2020, we collected saliva from low-income adult farmworkers in Monterey County, California, and tested for pneumococcal carriage following culture enrichment via quantitative PCR assays targeting the pneumococcal lytA and piaB genes. Participants were considered to carry pneumococci if lytA and piaB cycle threshold values were both below 40. Among 1,283 participants enrolled in our study, 117 (9.1%) carried pneumococci. Carriers tended more often than non-carriers to be exposed to children aged <5 years [odds ratio (OR) = 1.45 (0.95-2.20)] and overcrowding [OR = 1.48 (0.96-2.30) and 2.84 (1.20-6.73), respectively, for participants in households with >2-4 and >4 persons per bedroom vs ≤2 persons per bedroom]. Household overcrowding remained associated with increased risk of carriage among participants not exposed to children aged <5 years [OR = 2.05 (1.18-3.59) for participants living in households with >2 vs ≤2 persons per bedroom]. Exposure to children aged <5 years and overcrowding were each associated with increased pneumococcal density among carriers [piaB cT difference of 2.04 (0.36-3.73) and 2.44 (0.80-4.11), respectively]. While exposure to young children was a predictor of pneumococcal carriage, associations of overcrowding with increased prevalence and density of carriage in households without young children suggest that transmission also occurs among adults in close-contact settings.IMPORTANCEAlthough infants and older adults are the groups most commonly affected by pneumococcal disease, outbreaks are known to occur among healthy, working-age populations exposed to overcrowding, including miners, shipyard workers, military recruits, and prisoners. Carriage of Streptococcus pneumoniae is the precursor to pneumococcal disease, and its relation to overcrowding in adult populations is poorly understood. We used molecular methods to characterize pneumococcal carriage in culture-enriched saliva samples from low-income adult farmworkers in Monterey County, CA. While exposure to children in the household was an important risk factor for pneumococcal carriage, living in an overcrowded household without young children was an independent predictor of carriage as well. Moreover, participants exposed to children or overcrowding carried pneumococci at higher density than those without such exposures, suggesting recent transmission. Our findings suggest that, in addition to transmission from young children, pneumococcal transmission may occur independently among adults in overcrowded settings.
Collapse
Affiliation(s)
- Anna M. Parker
- Division of Epidemiology, School of Public Health, University of California, Berkeley, California, USA
| | - Nicole Jackson
- Division of Infectious Diseases & Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Shevya Awasthi
- Division of Infectious Diseases & Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Hanna Kim
- Division of Infectious Diseases & Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Tess Alwan
- Division of Infectious Diseases & Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Anne L. Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Katherine Kogut
- Center for Environmental Research & Community Health, School of Public Health, University of California, Berkeley, California, USA
| | - Nina Holland
- Center for Environmental Research & Community Health, School of Public Health, University of California, Berkeley, California, USA
| | - Ana M. Mora
- Center for Environmental Research & Community Health, School of Public Health, University of California, Berkeley, California, USA
| | - Brenda Eskenazi
- Center for Environmental Research & Community Health, School of Public Health, University of California, Berkeley, California, USA
| | - Lee W. Riley
- Division of Infectious Diseases & Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Joseph A. Lewnard
- Division of Epidemiology, School of Public Health, University of California, Berkeley, California, USA
- Division of Infectious Diseases & Vaccinology, School of Public Health, University of California, Berkeley, California, USA
- Center for Computational Biology, College of Engineering, University of California, Berkeley, California, USA
| |
Collapse
|
4
|
Sandybayev N, Beloussov V, Strochkov V, Solomadin M, Granica J, Yegorov S. Metagenomic profiling of nasopharyngeal samples from adults with acute respiratory infection. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240108. [PMID: 39076360 PMCID: PMC11286146 DOI: 10.1098/rsos.240108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/20/2024] [Indexed: 07/31/2024]
Abstract
Diagnosis of acute respiratory infections (ARIs) is challenging due to the broad diversity of potential microbial causes. We used metagenomic next-generation sequencing (mNGS) to analyze the nasopharyngeal virome of ARI patients, who had undergone testing with a clinical multiplex PCR panel (Amplisens ARVI-screen-FRT). We collected nasopharyngeal swabs from 49 outpatient adults, 32 of whom had ARI symptoms and were PCR-positive, and 4 asymptomatic controls in Kazakhstan during Spring 2021. We assessed the biodiversity of the mNGS-derived virome and concordance with PCR results. PCR identified common ARI viruses in 65% of the symptomatic cases. mNGS revealed viral taxa consisting of human, non-human eukaryotic and bacteriophage groups, comprising 15, 11 and 28 genera, respectively. Notable ARI-associated human viruses included rhinovirus (16.3%), betaherpesvirus 7 (14.3%) and Epstein-Barr virus (8.16%). The primary phage hosts were Streptococcus spp. (32.7%), Pseudomonas aeruginosa (24.5%) and Burkholderia spp. (20.4%). In total, 47% of ARIs were linked solely to bacterial pathogens, a third to viral-bacterial co-infections, and less than 10% to only viral infections by mNGS. PCR showed low concordance with mNGS, except for rhinovirus. These results underscore the importance of broad diagnostic methods and question the effectiveness of commonly used PCR panels in ARI diagnosis.
Collapse
Affiliation(s)
- Nurlan Sandybayev
- Kazakhstan-Japan Innovation Centre, Kazakh National Agrarian Research University (KazNARU), Almaty, Kazakhstan
| | - Vyacheslav Beloussov
- Kazakhstan-Japan Innovation Centre, Kazakh National Agrarian Research University (KazNARU), Almaty, Kazakhstan
- TreeGene Molecular Genetics Laboratory, Almaty, Kazakhstan
| | - Vitaliy Strochkov
- Kazakhstan-Japan Innovation Centre, Kazakh National Agrarian Research University (KazNARU), Almaty, Kazakhstan
| | - Maxim Solomadin
- School of Pharmacy, Karaganda Medical University, Karaganda, Kazakhstan
| | - Joanna Granica
- TreeGene Molecular Genetics Laboratory, Almaty, Kazakhstan
| | - Sergey Yegorov
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
5
|
Hiller NL, Orihuela CJ. Biological puzzles solved by using Streptococcus pneumoniae: a historical review of the pneumococcal studies that have impacted medicine and shaped molecular bacteriology. J Bacteriol 2024; 206:e0005924. [PMID: 38809015 PMCID: PMC11332154 DOI: 10.1128/jb.00059-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
The major human pathogen Streptococcus pneumoniae has been the subject of intensive clinical and basic scientific study for over 140 years. In multiple instances, these efforts have resulted in major breakthroughs in our understanding of basic biological principles as well as fundamental tenets of bacterial pathogenesis, immunology, vaccinology, and genetics. Discoveries made with S. pneumoniae have led to multiple major public health victories that have saved the lives of millions. Studies on S. pneumoniae continue today, where this bacterium is being used to dissect the impact of the host on disease processes, as a powerful cell biology model, and to better understand the consequence of human actions on commensal bacteria at the population level. Herein we review the major findings, i.e., puzzle pieces, made with S. pneumoniae and how, over the years, they have come together to shape our understanding of this bacterium's biology and the practice of medicine and modern molecular biology.
Collapse
Affiliation(s)
- N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Carlos J. Orihuela
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
6
|
Howard LM, Grijalva CG. Impact of respiratory viral infections on nasopharyngeal pneumococcal colonization dynamics in children. Curr Opin Infect Dis 2024; 37:170-175. [PMID: 38437245 DOI: 10.1097/qco.0000000000001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
PURPOSE OF REVIEW Prevention of acute respiratory illnesses (ARI) in children is a global health priority, as these remain a leading cause of pediatric morbidity and mortality throughout the world. As new products and strategies to prevent respiratory infections caused by important pathogens such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza, respiratory syncytial virus and pneumococcus are advancing, increasing evidence suggests that these and other respiratory viruses and pneumococci may exhibit interactions that are associated with altered colonization and disease dynamics. We aim to review recent data evaluating interactions between respiratory viruses and pneumococci in the upper respiratory tract and their potential impact on pneumococcal colonization patterns and disease outcomes. RECENT FINDINGS While interactions between influenza infection and subsequent increased susceptibility and transmissibility of colonizing pneumococci have been widely reported in the literature, emerging evidence suggests that human rhinovirus, SARS-CoV-2, and other viruses may also exhibit interactions with pneumococci and alter pneumococcal colonization patterns. Additionally, colonizing pneumococci may play a role in modifying outcomes associated with respiratory viral infections. Recent evidence suggests that vaccination with pneumococcal conjugate vaccines, and prevention of colonization with pneumococcal serotypes included in these vaccines, may be associated with reducing the risk of subsequent viral infection and the severity of the associated illnesses. SUMMARY Understanding the direction and dynamics of viral-pneumococcal interactions may elucidate the potential effects of existing and emerging viral and bacterial vaccines and other preventive strategies on the health impact of these important respiratory pathogens.
Collapse
Affiliation(s)
- Leigh M Howard
- Department of Pediatrics, Division of Infectious Diseases
| | - Carlos G Grijalva
- Departments of Health Policy and Biomedical Informatics, Division of Pharmacoepidemiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Lalbiaktluangi C, Yadav MK, Singh PK, Singh A, Iyer M, Vellingiri B, Zomuansangi R, Zothanpuia, Ram H. A cooperativity between virus and bacteria during respiratory infections. Front Microbiol 2023; 14:1279159. [PMID: 38098657 PMCID: PMC10720647 DOI: 10.3389/fmicb.2023.1279159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023] Open
Abstract
Respiratory tract infections remain the leading cause of morbidity and mortality worldwide. The burden is further increased by polymicrobial infection or viral and bacterial co-infection, often exacerbating the existing condition. Way back in 1918, high morbidity due to secondary pneumonia caused by bacterial infection was known, and a similar phenomenon was observed during the recent COVID-19 pandemic in which secondary bacterial infection worsens the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) condition. It has been observed that viruses paved the way for subsequent bacterial infection; similarly, bacteria have also been found to aid in viral infection. Viruses elevate bacterial infection by impairing the host's immune response, disrupting epithelial barrier integrity, expression of surface receptors and adhesion proteins, direct binding of virus to bacteria, altering nutritional immunity, and effecting the bacterial biofilm. Similarly, the bacteria enhance viral infection by altering the host's immune response, up-regulation of adhesion proteins, and activation of viral proteins. During co-infection, respiratory bacterial and viral pathogens were found to adapt and co-exist in the airways of their survival and to benefit from each other, i.e., there is a cooperative existence between the two. This review comprehensively reviews the mechanisms involved in the synergistic/cooperativity relationship between viruses and bacteria and their interaction in clinically relevant respiratory infections.
Collapse
Affiliation(s)
- C. Lalbiaktluangi
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College, Aizawl, Mizoram, India
| | - Amit Singh
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Mahalaxmi Iyer
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | | | - Ruth Zomuansangi
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Zothanpuia
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College, Aizawl, Mizoram, India
| | - Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, India
| |
Collapse
|
8
|
Lewnard JA, Bruxvoort KJ, Hong VX, Grant LR, Jódar L, Cané A, Gessner BD, Tartof SY. Effectiveness of Pneumococcal Conjugate Vaccination Against Virus-Associated Lower Respiratory Tract Infection Among Adults: A Case-Control Study. J Infect Dis 2023; 227:498-511. [PMID: 35323906 PMCID: PMC9383607 DOI: 10.1093/infdis/jiac098] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/21/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Interactions of Streptococcus pneumoniae with viruses feature in the pathogenesis of numerous respiratory illnesses. METHODS We undertook a case-control study among adults at Kaiser Permanente Southern California between 2015 and 2019. Case patients had diagnoses of lower respiratory tract infection (LRTI; including pneumonia or nonpneumonia LRTI diagnoses), with viral infections detected by multiplex polymerase chain reaction testing. Controls without LRTI diagnoses were matched to case patients by demographic and clinical attributes. We measured vaccine effectiveness (VE) for 13-valent (PCV13) against virus-associated LRTI by determining the adjusted odds ratio for PCV13 receipt, comparing case patients and controls. RESULTS Primary analyses included 13 856 case patients with virus-associated LRTI and 227 887 matched controls. Receipt of PCV13 was associated with a VE of 24.9% (95% confidence interval, 18.4%-30.9%) against virus-associated pneumonia and 21.5% (10.9%-30.9%) against other (nonpneumonia) virus-associated LRTIs. We estimated VEs of 26.8% (95% confidence interval, 19.9%-33.1%) and 18.6% (9.3%-27.0%) against all virus-associated LRTI episodes diagnosed in inpatient and outpatient settings, respectively. We identified statistically significant protection against LRTI episodes associated with influenza A and B viruses, endemic human coronaviruses, parainfluenza viruses, human metapneumovirus, and enteroviruses but not respiratory syncytial virus or adenoviruses. CONCLUSIONS Among adults, PCV13 conferred moderate protection against virus-associated LRTI. The impacts of pneumococcal conjugate vaccines may be mediated, in part, by effects on polymicrobial interactions between pneumococci and respiratory viruses.
Collapse
Affiliation(s)
- Joseph A Lewnard
- Division of Epidemiology, School of Public Health, University of California, Berkeley, California, USA
- Division of Infectious Diseases & Vaccinology, School of Public Health, University of California, Berkeley, California, USA
- Center for Computational Biology, College of Engineering, University of California, Berkeley, California, USA
| | - Katia J Bruxvoort
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Vennis X Hong
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | | | - Luis Jódar
- Pfizer Vaccines, Collegeville, Pennsylvania, USA
| | | | | | - Sara Y Tartof
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California, USA
| |
Collapse
|
9
|
Ordóñez JE, Ordóñez A. A cost-effectiveness analysis of pneumococcal conjugate vaccines in infants and herd protection in older adults in Colombia. Expert Rev Vaccines 2023; 22:216-225. [PMID: 36812426 DOI: 10.1080/14760584.2023.2184090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
BACKGROUND Pneumococcal diseases have a clinical and economic impact on the population. Until this year, a 10-valent pneumococcal vaccine (PCV10) used to be applied in Colombia, which does not contain serotypes 19A, 3, and 6A, the most prevalent in the country. Therefore, we aimed to assess the cost-effectiveness of the shift to the 13-valent pneumococcal vaccine (PCV13). RESEARCH DESIGN AND METHODS A decision model was used for newborns in Colombia between 2022-2025 and adults over 65 years. The time horizon was life expectancy. Outcomes are Invasive Pneumococcal Diseases (IPD), Community-Acquired Pneumonia (CAP), Acute Otitis Media (AOM), their sequelae, Life Gained Years (LYGs), and herd effect in older adults. RESULTS PCV10 covers 4.27% of serotypes in the country, while PCV13 covers 64.4%. PCV13 would avoid in children 796 cases of IPD, 19,365 of CAP, 1,399 deaths, and generate 44,204 additional LYGs, as well as 9,101 cases of AOM, 13 cases of neuromotor disability and 428 cochlear implants versus PCV10. In older adults, PCV13 would avoid 993 cases of IPD and 17,245 of CAP, versus PCV10. PCV13 saves $51.4 million. The decision model shows robustness in the sensitivity analysis. CONCLUSION PCV13 is a cost-saving strategy versus PCV10 to avoid pneumococcal diseases.
Collapse
Affiliation(s)
| | - Angélica Ordóñez
- Instituto de Evaluación Tecnológica en Salud, Bogotá, D.C, Colombia
| |
Collapse
|
10
|
Parker AM, Jackson N, Awasthi S, Kim H, Alwan T, Wyllie AL, Baldwin AB, Brennick NB, Moehle EA, Giannikopoulos P, Kogut K, Holland N, Mora-Wyrobek A, Eskenazi B, Riley LW, Lewnard JA. Association of upper respiratory Streptococcus pneumoniae colonization with SARS-CoV-2 infection among adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.10.04.22280709. [PMID: 36238718 PMCID: PMC9558443 DOI: 10.1101/2022.10.04.22280709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Background Streptococcus pneumoniae interacts with numerous viral respiratory pathogens in the upper airway. It is unclear whether similar interactions occur with SARS-CoV-2. Methods We collected saliva specimens from working-age adults receiving SARS-CoV-2 molecular testing at outpatient clinics and via mobile community-outreach testing between July and November 2020 in Monterey County, California. Following bacterial culture enrichment, we tested for pneumococci by quantitative polymerase chain reaction (qPCR) targeting the lytA and piaB genes, and measured associations with SARS-CoV-2 infection via conditional logistic regression. Results Analyses included 1,278 participants, with 564 enrolled in clinics and 714 enrolled through outreach-based testing. Prevalence of pneumococcal carriage was 9.2% (117/1,278) among all participants (11.2% [63/564] clinic-based testing; 7.6% [54/714] outreach testing). Prevalence of SARS-CoV-2 infection was 27.4% (32/117) among pneumococcal carriers and 9.6% (112/1,161) among non-carriers (adjusted odds ratio [aOR]: 2.73; 95% confidence interval: 1.58-4.69). Associations between SARS-CoV-2 infection and pneumococcal carriage were enhanced in the clinic-based sample (aOR=4.01 [2.08-7.75]) and among symptomatic participants (aOR=3.38 [1.35-8.40]), when compared to findings within the outreach-based sample and among asymptomatic participants. Adjusted odds of SARS-CoV-2 co-infection increased 1.24 (1.00-1.55)-fold for each 1-unit decrease in piaB qPCR C T value among pneumococcal carriers. Last, pneumococcal carriage modified the association of SARS-CoV-2 infection with recent exposure to a suspected COVID-19 case (aOR=7.64 [1.91-30.7] and 3.29 [1.94-5.59]) among pneumococcal carriers and non-carriers, respectively). Conclusions Associations of pneumococcal carriage detection and density with SARS-CoV-2 suggest a synergistic relationship in the upper airway. Longitudinal studies are needed to determine interaction mechanisms between pneumococci and SARS-CoV-2. Key points In an adult ambulatory and community sample, SARS-CoV-2 infection was more prevalent among pneumococcal carriers than non-carriers.Associations between pneumococcal carriage and SARS-CoV-2 infection were strongest among adults reporting acute symptoms and receiving SARS-CoV-2 testing in a clinical setting.
Collapse
|
11
|
Lewnard JA, Bruxvoort KJ, Fischer H, Hong VX, Grant LR, Jódar L, Gessner BD, Tartof SY. Prevention of Coronavirus Disease 2019 Among Older Adults Receiving Pneumococcal Conjugate Vaccine Suggests Interactions Between Streptococcus pneumoniae and Severe Acute Respiratory Syndrome Coronavirus 2 in the Respiratory Tract. J Infect Dis 2022; 225:1710-1720. [PMID: 33693636 PMCID: PMC7989304 DOI: 10.1093/infdis/jiab128] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND While secondary pneumococcal pneumonia occurs less commonly after coronavirus disease 2019 (COVID-19) than after other viral infections, it remains unclear whether other interactions occur between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Streptococcus pneumoniae. METHODS We probed potential interactions between these pathogens among adults aged ≥65 years by measuring associations of COVID-19 outcomes with pneumococcal vaccination (13-valent conjugate vaccine [PCV13] and 23-valent pneumococcal polysaccharide vaccine [PPSV23]). We estimated adjusted hazard ratios (aHRs) using Cox proportional hazards models with doubly robust inverse-propensity weighting. We assessed effect modification by antibiotic exposure to further test the biologic plausibility of a causal role for pneumococci. RESULTS Among 531 033 adults, there were 3677 COVID-19 diagnoses, leading to 1075 hospitalizations and 334 fatalities, between 1 March and 22 July 2020. Estimated aHRs for COVID-19 diagnosis, hospitalization, and mortality associated with prior PCV13 receipt were 0.65 (95% confidence interval [CI], .59-.72), 0.68 (95% CI, .57-.83), and 0.68 (95% CI, .49-.95), respectively. Prior PPSV23 receipt was not associated with protection against the 3 outcomes. COVID-19 diagnosis was not associated with prior PCV13 within 90 days following antibiotic receipt, whereas aHR estimates were 0.65 (95% CI, .50-.84) and 0.62 (95% CI, .56-.70) during the risk periods 91-365 days and >365 days, respectively, following antibiotic receipt. CONCLUSIONS Reduced risk of COVID-19 among PCV13 recipients, transiently attenuated by antibiotic exposure, suggests that pneumococci may interact with SARS-CoV-2.
Collapse
Affiliation(s)
- Joseph A Lewnard
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Center for Computational Biology, College of Engineering, University of California, Berkeley, Berkeley, California, USA
| | - Katia J Bruxvoort
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Heidi Fischer
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Vennis X Hong
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | | | - Luis Jódar
- Pfizer Vaccines, Collegeville, Pennsylvania, USA
| | | | - Sara Y Tartof
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| |
Collapse
|
12
|
Burstein R, Althouse BM, Adler A, Akullian A, Brandstetter E, Cho S, Emanuels A, Fay K, Gamboa L, Han P, Huden K, Ilcisin M, Izzo M, Jackson ML, Kim AE, Kimball L, Lacombe K, Lee J, Logue JK, Rogers J, Chung E, Sibley TR, Van Raay K, Wenger E, Wolf CR, Boeckh M, Chu H, Duchin J, Rieder M, Shendure J, Starita LM, Viboud C, Bedford T, Englund JA, Famulare M. Interactions among 17 respiratory pathogens: a cross-sectional study using clinical and community surveillance data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.02.04.22270474. [PMID: 35169816 PMCID: PMC8845514 DOI: 10.1101/2022.02.04.22270474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background Co-circulating respiratory pathogens can interfere with or promote each other, leading to important effects on disease epidemiology. Estimating the magnitude of pathogen-pathogen interactions from clinical specimens is challenging because sampling from symptomatic individuals can create biased estimates. Methods We conducted an observational, cross-sectional study using samples collected by the Seattle Flu Study between 11 November 2018 and 20 August 2021. Samples that tested positive via RT-qPCR for at least one of 17 potential respiratory pathogens were included in this study. Semi-quantitative cycle threshold (Ct) values were used to measure pathogen load. Differences in pathogen load between monoinfected and coinfected samples were assessed using linear regression adjusting for age, season, and recruitment channel. Results 21,686 samples were positive for at least one potential pathogen. Most prevalent were rhinovirus (33·5%), Streptococcus pneumoniae (SPn, 29·0%), SARS-CoV-2 (13.8%) and influenza A/H1N1 (9·6%). 140 potential pathogen pairs were included for analysis, and 56 (40%) pairs yielded significant Ct differences (p < 0.01) between monoinfected and co-infected samples. We observed no virus-virus pairs showing evidence of significant facilitating interactions, and found significant viral load decrease among 37 of 108 (34%) assessed pairs. Samples positive with SPn and a virus were consistently associated with increased SPn load. Conclusions Viral load data can be used to overcome sampling bias in studies of pathogen-pathogen interactions. When applied to respiratory pathogens, we found evidence of viral-SPn facilitation and several examples of viral-viral interference. Multipathogen surveillance is a cost-efficient data collection approach, with added clinical and epidemiological informational value over single-pathogen testing, but requires careful analysis to mitigate selection bias.
Collapse
Affiliation(s)
- Roy Burstein
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle WA USA
| | - Benjamin M. Althouse
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle WA USA
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle WA USA
- Department of Biology, New Mexico State University, Las Cruces, NM
| | - Amanda Adler
- Seattle Children’s Research Institute, Seattle WA USA
| | - Adam Akullian
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle WA USA
| | | | - Shari Cho
- Brotman Baty Institute for Precision Medicine, Seattle WA USA
| | - Anne Emanuels
- Department of Medicine, University of Washington, Seattle WA USA
| | - Kairsten Fay
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA USA
| | - Luis Gamboa
- Brotman Baty Institute for Precision Medicine, Seattle WA USA
| | - Peter Han
- Brotman Baty Institute for Precision Medicine, Seattle WA USA
| | - Kristen Huden
- Department of Medicine, University of Washington, Seattle WA USA
| | - Misja Ilcisin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA USA
| | - Mandy Izzo
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle WA USA
| | | | - Ashley E. Kim
- Department of Medicine, University of Washington, Seattle WA USA
| | - Louise Kimball
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA USA
| | | | - Jover Lee
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA USA
| | | | - Julia Rogers
- Department of Medicine, University of Washington, Seattle WA USA
| | - Erin Chung
- Department of Pediatrics, University of Washington, Seattle Children’s Hospital, Seattle
| | - Thomas R. Sibley
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA USA
| | | | - Edward Wenger
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle WA USA
| | - Caitlin R. Wolf
- Department of Medicine, University of Washington, Seattle WA USA
| | - Michael Boeckh
- Department of Medicine, University of Washington, Seattle WA USA
- Brotman Baty Institute for Precision Medicine, Seattle WA USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA USA
| | - Helen Chu
- Department of Medicine, University of Washington, Seattle WA USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA USA
| | - Jeff Duchin
- Department of Medicine, University of Washington, Seattle WA USA
- Public Health Seattle & King County, Seattle WA USA
| | - Mark Rieder
- Brotman Baty Institute for Precision Medicine, Seattle WA USA
| | - Jay Shendure
- Brotman Baty Institute for Precision Medicine, Seattle WA USA
- Department of Genome Sciences, University of Washington, Seattle WA USA
- Howard Hughes Medical Institute, Seattle WA USA
| | - Lea M. Starita
- Brotman Baty Institute for Precision Medicine, Seattle WA USA
- Department of Genome Sciences, University of Washington, Seattle WA USA
| | - Cecile Viboud
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Trevor Bedford
- Brotman Baty Institute for Precision Medicine, Seattle WA USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA USA
- Howard Hughes Medical Institute, Seattle WA USA
| | - Janet A. Englund
- Seattle Children’s Research Institute, Seattle WA USA
- Brotman Baty Institute for Precision Medicine, Seattle WA USA
| | - Michael Famulare
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle WA USA
| |
Collapse
|
13
|
Cao H, Chiu KHY, Chiu SS, Jiang S, Chow KH, Ho PL. Genomic investigation of a Streptococcus pneumoniae serotype 24F strain causing meningoencephalitis in Hong Kong. Int J Med Microbiol 2021; 311:151543. [PMID: 34864352 DOI: 10.1016/j.ijmm.2021.151543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Pneumococcal conjugate vaccines (PCVs) successfully decreased the incidence of invasive pneumococcal disease in children. However, many countries have reported serotype replacement and a rebound in diseases from non-vaccine serotypes. Here, we report the genomic investigation of a Streptococcus pneumoniae strain M215 that caused severe meningoencephalitis in an infant in 2019. The strain was assigned to serotype 24F using the bioinformatic pipeline SeroBA and pneumococcal type specific anti-sera. The strain was resistant to cotrimoxazole from mutations in both folA and folP genes. It was susceptible to penicillin and other non-β-lactam antibiotics. Phylogenetically, it belongs to Global Pneumococcal Sequence Cluster (GPSC) 6 and multi-locus sequence type 162. A total of 38 virulence genes were detected in the genome of M215. Upon comparison of the profile of virulence genes, GPSC6 but not non-GPSC6 strains of serotype 24F and related serotypes were found to possess the major virulence determinant, pilus islet-1, comprising genes encoding sortases (srtB, srtC, srtD), pilus proteins (rrgA, rrgB and rrgC) and one transcriptional regulator (rlrA), which was previously described to be characteristic feature of international clones in the pre-PCV era. In our locality, this represented the first detection of serotype 24F and GPSC6/ST162 causing serious pneumococcal disease. The emergence of the non-vaccine serotype 24F GPSC6/ST162 lineage with molecular feature of high virulence is concerning and emphasizes the need for full characterization of strains causing severe disease.
Collapse
Affiliation(s)
- Huiluo Cao
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, China
| | | | - Susan S Chiu
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Shuo Jiang
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Kin-Hung Chow
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Pak-Leung Ho
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, China; Department of Microbiology, Queen Mary Hospital, Hong Kong, China.
| |
Collapse
|
14
|
Baradaran Ghavami S, Pourhamzeh M, Farmani M, Keshavarz H, Shahrokh S, Shpichka A, Asadzadeh Aghdaei H, Hakemi-Vala M, Hossein-khannazer N, Timashev P, Vosough M. Cross-talk between immune system and microbiota in COVID-19. Expert Rev Gastroenterol Hepatol 2021; 15:1281-1294. [PMID: 34654347 PMCID: PMC8567289 DOI: 10.1080/17474124.2021.1991311] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/06/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Human gut microbiota plays a crucial role in providing protective responses against pathogens, particularly by regulating immune system homeostasis. There is a reciprocal interaction between the gut and lung microbiota, called the gut-lung axis (GLA). Any alteration in the gut microbiota or their metabolites can cause immune dysregulation, which can impair the antiviral activity of the immune system against respiratory viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. AREAS COVERED This narrative review mainly outlines emerging data on the mechanisms underlying the interactions between the immune system and intestinal microbial dysbiosis, which is caused by an imbalance in the levels of essential metabolites. The authors will also discuss the role of probiotics in restoring the balance of the gut microbiota and modulation of cytokine storm. EXPERT OPINION Microbiota-derived signals regulate the immune system and protect different tissues during severe viral respiratory infections. The GLA's equilibration could help manage the mortality and morbidity rates associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Hediye Keshavarz
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Shabnam Shahrokh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Mojdeh Hakemi-Vala
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-khannazer
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
15
|
Morilla R, Medrano FJ, Calzada A, Quintana E, Campano E, Friaza V, Calderón EJ, de la Horra C. Pneumocystis jirovecii among patients with cystic fibrosis and their household members. Med Mycol 2021; 59:849-854. [PMID: 33693837 PMCID: PMC8754488 DOI: 10.1093/mmy/myab010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
We conducted a pilot study of patients with cystic fibrosis (CF) to assess intra-family transmission of P. jirovecii and compare it with data on other prevalent pathogens such as P. aeruginosa and S. pneumoniae, in which respiratory transmission has already been documented. Oral swab samples from 10 patients with CF and 15 household members were collected at baseline and 2 weeks later. P. aeruginosa and S. pneumoniae were assessed using standardized culture methods and PCR, and P. jirovecii was assessed using real and nested PCR, genotyping the positive samples by direct sequencing. P. aeruginosa cultures were positive for 7/10 (70%) of patients with CF at baseline and was identified by PCR in 8/10 (80%) of cases at baseline and 2 weeks later. S. pneumoniae cultures were negative for all patients, but the microorganism was identified by PCR in two cases. P. jirovecii was detected by real time and nested PCR in 5/10 (50%) of the patients at the two time points. In the household members, P. aeruginosa and P. jirovecii were identified in 7/15 (46.7%), and S. pneumoniae was identified in 8/15 (53,3%). The concordance of positive or negative pairs of patients with CF and their household members was 33.3% (5/15) for P. aeruginosa, 46.7% (7/15) for S. pneumonia and 93.3% (14/15) for P. jirovecii. The concordance for P. jirovecii genotypes among five pairs with available genotype was 100%. This study suggests for the first time the possible transmission of Pneumocystis in the home of patients with CF, indicating that patients and their household members are reservoirs and possible sources of infection. LAY SUMMARY This study suggests for the first time the possible transmission of Pneumocystis in the family environment of patients with cystic fibrosis, indicating that patients and their household members are reservoirs and possible sources of this infection.
Collapse
Affiliation(s)
- Ruben Morilla
- Instituto de Biomedicina de Sevilla (Hospital Universitario Virgen del Rocío/ CSIC/ Universidad de Sevilla), 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
- Department of Nursing, Universidad de Sevilla, Seville, Spain
| | - Francisco J Medrano
- Instituto de Biomedicina de Sevilla (Hospital Universitario Virgen del Rocío/ CSIC/ Universidad de Sevilla), 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
- Department of Medicine, Universidad de Sevilla, 41013 Seville, Spain
| | - Ana Calzada
- Hospital Virgen de las Montañas de Villamartín, 11650 Cadiz, Spain
| | - Esther Quintana
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Campano
- Instituto de Biomedicina de Sevilla (Hospital Universitario Virgen del Rocío/ CSIC/ Universidad de Sevilla), 41013 Seville, Spain
| | - Vicente Friaza
- Instituto de Biomedicina de Sevilla (Hospital Universitario Virgen del Rocío/ CSIC/ Universidad de Sevilla), 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique J Calderón
- Instituto de Biomedicina de Sevilla (Hospital Universitario Virgen del Rocío/ CSIC/ Universidad de Sevilla), 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
- Department of Medicine, Universidad de Sevilla, 41013 Seville, Spain
| | - Carmen de la Horra
- Instituto de Biomedicina de Sevilla (Hospital Universitario Virgen del Rocío/ CSIC/ Universidad de Sevilla), 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology and Parasitology, School of Pharmacy, University of Seville, 41013 Seville, Spain
| |
Collapse
|
16
|
Li ZJ, Zhang HY, Ren LL, Lu QB, Ren X, Zhang CH, Wang YF, Lin SH, Zhang XA, Li J, Zhao SW, Yi ZG, Chen X, Yang ZS, Meng L, Wang XH, Liu YL, Wang X, Cui AL, Lai SJ, Jiang T, Yuan Y, Shi LS, Liu MY, Zhu YL, Zhang AR, Zhang ZJ, Yang Y, Ward MP, Feng LZ, Jing HQ, Huang LY, Xu WB, Chen Y, Wu JG, Yuan ZH, Li MF, Wang Y, Wang LP, Fang LQ, Liu W, Hay SI, Gao GF, Yang WZ. Etiological and epidemiological features of acute respiratory infections in China. Nat Commun 2021; 12:5026. [PMID: 34408158 PMCID: PMC8373954 DOI: 10.1038/s41467-021-25120-6] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022] Open
Abstract
Nationwide prospective surveillance of all-age patients with acute respiratory infections was conducted in China between 2009‒2019. Here we report the etiological and epidemiological features of the 231,107 eligible patients enrolled in this analysis. Children <5 years old and school-age children have the highest viral positivity rate (46.9%) and bacterial positivity rate (30.9%). Influenza virus, respiratory syncytial virus and human rhinovirus are the three leading viral pathogens with proportions of 28.5%, 16.8% and 16.7%, and Streptococcus pneumoniae, Mycoplasma pneumoniae and Klebsiella pneumoniae are the three leading bacterial pathogens (29.9%, 18.6% and 15.8%). Negative interactions between viruses and positive interactions between viral and bacterial pathogens are common. A Join-Point analysis reveals the age-specific positivity rate and how this varied for individual pathogens. These data indicate that differential priorities for diagnosis, prevention and control should be highlighted in terms of acute respiratory tract infection patients' demography, geographic locations and season of illness in China.
Collapse
Affiliation(s)
- Zhong-Jie Li
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hai-Yang Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Li-Li Ren
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Xiang Ren
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cui-Hong Zhang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi-Fei Wang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Sheng-Hong Lin
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jun Li
- Sun Yat-sen University, Guangzhou, China
| | - Shi-Wen Zhao
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Zhi-Gang Yi
- Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiao Chen
- Zhejiang University, Hangzhou, China
| | - Zuo-Sen Yang
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China
| | - Lei Meng
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Xin-Hua Wang
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | | | - Xin Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ai-Li Cui
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Sheng-Jie Lai
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China.,School of Geography and Environmental Science, University of Southampton, Southampton, UK.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yang Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lu-Sha Shi
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meng-Yang Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu-Liang Zhu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - An-Ran Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhi-Jie Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
| | - Yang Yang
- Department of Biostatistics, College of Public Health and Health Professions, and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Michael P Ward
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Lu-Zhao Feng
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huai-Qi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liu-Yu Huang
- The Institute for Disease Prevention and Control of PLA, Beijing, China
| | - Wen-Bo Xu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yu Chen
- Zhejiang University, Hangzhou, China
| | | | | | | | - Yu Wang
- Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Li-Ping Wang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Simon I Hay
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA.,Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - George F Gao
- Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Wei-Zhong Yang
- Chinese Centre for Disease Control and Prevention, Beijing, China
| | | |
Collapse
|
17
|
Etiology of Clinical Community-Acquired Pneumonia in Swedish Children Aged 1-59 Months with High Pneumococcal Vaccine Coverage-The TREND Study. Vaccines (Basel) 2021; 9:vaccines9040384. [PMID: 33919904 PMCID: PMC8070909 DOI: 10.3390/vaccines9040384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 10/25/2022] Open
Abstract
(1) Immunization with pneumococcal conjugate vaccines has decreased the burden of community-acquired pneumonia (CAP) in children and likely led to a shift in CAP etiology. (2) The Trial of Respiratory infections in children for ENhanced Diagnostics (TREND) enrolled children 1-59 months with clinical CAP according to the World Health Organization (WHO) criteria at Sachs' Children and Youth Hospital, Stockholm, Sweden. Children with rhonchi and indrawing underwent "bronchodilator challenge". C-reactive protein and nasopharyngeal PCR detecting 20 respiratory pathogens, were collected from all children. Etiology was defined according to an a priori defined algorithm based on microbiological, biochemical, and radiological findings. (3) Of 327 enrolled children, 107 (32%) required hospitalization; 91 (28%) received antibiotic treatment; 77 (24%) had a chest X-ray performed; and 60 (18%) responded to bronchodilator challenge. 243 (74%) episodes were classified as viral, 11 (3%) as mixed viral-bacterial, five (2%) as bacterial, two (0.6%) as atypical bacterial and 66 (20%) as undetermined etiology. After exclusion of children responding to bronchodilator challenge, the proportion of bacterial and mixed viral-bacterial etiology was 1% and 4%, respectively. (4) The novel TREND etiology algorithm classified the majority of clinical CAP episodes as of viral etiology, whereas bacterial etiology was uncommon. Defining CAP in children <5 years is challenging, and the WHO definition of clinical CAP is not suitable for use in children immunized with pneumococcal conjugate vaccines.
Collapse
|
18
|
Miellet WR, van Veldhuizen J, Nicolaie MA, Mariman R, Bootsma HJ, Bosch T, Rots NY, Sanders EAM, van Beek J, Trzciński K. Influenza-like Illness Exacerbates Pneumococcal Carriage in Older Adults. Clin Infect Dis 2020; 73:e2680-e2689. [PMID: 33124669 DOI: 10.1093/cid/ciaa1551] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In older adults pneumococcal disease is strongly associated with respiratory viral infections, but the impact of viruses on Streptococcus pneumoniae carriage prevalence and load remains poorly understood. Here, we investigated the effects of influenza-like illness (ILI) on pneumococcal carriage in community-dwelling older adults. METHODS We investigated the presence of pneumococcal DNA in saliva samples collected in the 2014/2015 influenza season from 232 individuals aged ≥60 years at ILI-onset, followed by sampling 2-3 weeks and 7-9 weeks after the first sample. We also sampled 194 age-matched controls twice 2-3 weeks apart. Pneumococcal DNA was detected with quantitative-PCRs targeting piaB and lytA genes in raw and in culture-enriched saliva. Bacterial and pneumococcal abundances were determined in raw saliva with 16S and piaB quantification. RESULTS The prevalence of pneumococcus-positive samples was highest at onset of ILI (18% or 42/232) and lowest among controls (13% or 26/194, and 11% or 22/194, at the first and second sampling moment, respectively), though these differences were not significant. Pneumococcal carriage was associated with exposure to young children (OR:2.71, 95%CI 1.51-5.02, p<0.001), and among asymptomatic controls with presence of rhinovirus infection (OR:4.23; 95%CI 1.16-14.22, p<0.05). When compared with carriers among controls, pneumococcal absolute abundances were significantly higher at onset of ILI (p<0.01), and remained elevated beyond recovery from ILI (p<0.05). Finally, pneumococcal abundances were highest in carriage events newly-detected after ILI-onset (estimated geometric mean 1.21E -5, 95%CI 2.48E -7-2.41E -5, compared with pre-existing carriage). CONCLUSIONS ILI exacerbates pneumococcal colonization of the airways in older adults, and this effect persists beyond recovery from ILI.
Collapse
Affiliation(s)
- Willem R Miellet
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, The Netherlands
| | - Janieke van Veldhuizen
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Mioara A Nicolaie
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Centre for Nutrition, Prevention and Care, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rob Mariman
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Hester J Bootsma
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Thijs Bosch
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Nynke Y Rots
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Elisabeth A M Sanders
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, The Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
19
|
Papanicolaou A, Wang H, Satzke C, Vlahos R, Wilson N, Bozinovski S. Novel Therapies for Pneumonia-Associated Severe Asthma Phenotypes. Trends Mol Med 2020; 26:1047-1058. [PMID: 32828703 DOI: 10.1016/j.molmed.2020.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
Distinct asthma phenotypes are emerging from well-defined cohort studies and appear to be associated with a history of pneumonia. Asthmatics are more susceptible to infections caused by Streptococcus pneumoniae; however, the mechanisms that underlie defective immunity to this pathogen are still being elucidated. Here, we discuss how alternatively activated macrophages (AAMs) in asthmatics are defective in bacterial phagocytosis and how respiratory viruses disrupt essential host immunity to cause bacterial dispersion deeper into the lungs. We also describe how respiratory pathogens instigate neutrophilic inflammation and amplify type-2 inflammation in asthmatics. Finally, we propose novel dual-acting strategies including granulocyte-colony-stimulating factor receptor (G-CSFR) antagonism and specialised pro-resolving mediators (SPMs) to suppress type-2 and neutrophilic inflammation without compromising pathogen clearance.
Collapse
Affiliation(s)
- Angelica Papanicolaou
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Hao Wang
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Catherine Satzke
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Ross Vlahos
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | - Steven Bozinovski
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|
20
|
Wei H, Zhao H, Li R, Yang F, Wu Y. Rhinovirus impairs the immune response of alveolar macrophages to facilitate Streptococcus pneumonia infection. Pathog Dis 2020; 78:5828079. [PMID: 32358959 DOI: 10.1093/femspd/ftaa020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/01/2020] [Indexed: 12/27/2022] Open
Abstract
Pneumonia is one important cause of mortality in neonates. However, the mechanism remains still unclear. Viral infection greatly enhances the morbidity of Streptococcus pneumonia. In this study, we tried to understand how human rhinovirus (HRV) would accelerate Streptococcus pneumonia infection. Alveolar macrophages (AMs) were isolated from neonatal mice. Cytokine concentrations were detected using ELISA. The phagocytosis of Streptococcus pneumonia by AMs was indicated by immunofluorescence. Toll-like receptor 3 (TLR3) and CD68 expression in isolated AMs or infected mice were determined by western blot or immunochemistry. The mortality was explored using Kaplan-Meier analysis. HRV infection enhanced cytokine release by AMs, and decreased Streptococcus pneumonia-induced TNF-α, IL-1β and IL-6 release by AMs, while has no influence on IL-10 release. HRV infection impaired phagocytosis of Streptococcus pneumonia in AMs. Mechanically, HRV infection up-regulated TLR3 expression in AMs. Mortality and pneumococcal burden decreased in TLR3-/- neonatal mice and inflammation and phagocytosis were restored in TLR3-/- AMs. Neonatal rhinovirus impairs the immune response of alveolar macrophages to facilitate Streptococcus pneumonia infection via TLR3 signaling.
Collapse
Affiliation(s)
- Huiping Wei
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Hui Zhao
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Ruifang Li
- Department of Neurology, the Third People's Hospital of Hubei Province, No. 26 Zhongshan Road, Qiaokou District, Wuhan 430030, Hubei, China
| | - Feiyun Yang
- Department of Emergency, the First Affiliated Hospital of Xinxiang Medical College, No. 88 Jiankang Road, Weihui 453100, Henan, China
| | - Yan Wu
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| |
Collapse
|
21
|
Impact of Rhinovirus Infections in Children. Viruses 2019; 11:v11060521. [PMID: 31195744 PMCID: PMC6632063 DOI: 10.3390/v11060521] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/22/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
Rhinovirus (RV) is an RNA virus that causes more than 50% of upper respiratory tract infections in humans worldwide. Together with Respiratory Syncytial Virus, RV is one of the leading causes of viral bronchiolitis in infants and the most common virus associated with wheezing in children aged between one and two years. Because of its tremendous genetic diversity (>150 serotypes), the recurrence of RV infections each year is quite typical. Furthermore, because of its broad clinical spectrum, the clinical variability as well as the pathogenesis of RV infection are nowadays the subjects of an in-depth examination and have been the subject of several studies in the literature. In fact, the virus is responsible for direct cell cytotoxicity in only a small way, and it is now clearer than ever that it may act indirectly by triggering the release of active mediators by structural and inflammatory airway cells, causing the onset and/or the acute exacerbation of asthmatic events in predisposed children. In the present review, we aim to summarize the RV infection's epidemiology, pathogenetic hypotheses, and available treatment options as well as its correlation with respiratory morbidity and mortality in the pediatric population.
Collapse
|
22
|
Feldman C, Normark S, Henriques-Normark B, Anderson R. Pathogenesis and prevention of risk of cardiovascular events in patients with pneumococcal community-acquired pneumonia. J Intern Med 2019; 285:635-652. [PMID: 30584680 DOI: 10.1111/joim.12875] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is now well recognized that cardiovascular events (CVE) occur quite commonly, both in the acute phase and in the long-term, in patients with community-acquired pneumonia (CAP). CVE have been noted in up to 30% of patients hospitalized with all-cause CAP. One systematic review and meta-analysis of hospitalized patients with all-cause CAP noted that the incidence rates for overall cardiac events were 17.7%, for incident heart failure were 14.1%, for acute coronary syndromes were 5.3% and for incident cardiac arrhythmias were 4.7%. In the case of pneumococcal CAP, almost 20% of patients studied had one or more of these cardiac events. Recent research has provided insights into the pathogenesis of the acute cardiac events occurring in pneumococcal infections. With respect to the former, key involvements of the major pneumococcal protein virulence factor, pneumolysin, are now well documented, whilst systemic platelet-driven neutrophil activation may also contribute. However, events involved in the pathogenesis of the long-term cardiovascular sequelae remain largely unexplored. Emerging evidence suggests that persistent antigenaemia may predispose to the development of a systemic pro-inflammatory/prothrombotic phenotype underpinning the risk of future cardiovascular events. The current manuscript briefly reviews the occurrence of cardiovascular events in patients with all-cause CAP, as well as in pneumococcal and influenza infections. It highlights the close interaction between influenza and pneumococcal pneumonia. It also includes a brief discussion of mechanisms of the acute cardiac events in CAP. However, the primary focus is on the prevalence, pathogenesis and prevention of the longer-term cardiac sequelae of severe pneumococcal disease, particularly in the context of persistent antigenaemia and associated inflammation.
Collapse
Affiliation(s)
- C Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - S Normark
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC), Singapore Centre on Environmental Life Sciences Engineering (SCELCE), Nanyang Technical University, Singapore, Singapore
| | - B Henriques-Normark
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC), Singapore Centre on Environmental Life Sciences Engineering (SCELCE), Nanyang Technical University, Singapore, Singapore
| | - R Anderson
- Department of Immunology and Institute of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
23
|
Estimating age-stratified influenza-associated invasive pneumococcal disease in England: A time-series model based on population surveillance data. PLoS Med 2019; 16:e1002829. [PMID: 31246954 PMCID: PMC6597037 DOI: 10.1371/journal.pmed.1002829] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/17/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Measures of the contribution of influenza to Streptococcus pneumoniae infections, both in the seasonal and pandemic setting, are needed to predict the burden of secondary bacterial infections in future pandemics to inform stockpiling. The magnitude of the interaction between these two pathogens has been difficult to quantify because both infections are mainly clinically diagnosed based on signs and symptoms; a combined viral-bacterial testing is rarely performed in routine clinical practice; and surveillance data suffer from confounding problems common to all ecological studies. We proposed a novel multivariate model for age-stratified disease incidence, incorporating contact patterns and estimating disease transmission within and across groups. METHODS AND FINDINGS We used surveillance data from England over the years 2009 to 2017. Influenza infections were identified through the virological testing of samples taken from patients diagnosed with influenza-like illness (ILI) within the sentinel scheme run by the Royal College of General Practitioners (RCGP). Invasive pneumococcal disease (IPD) cases were routinely reported to Public Health England (PHE) by all the microbiology laboratories included in the national surveillance system. IPD counts at week t, conditional on the previous time point t-1, were assumed to be negative binomially distributed. Influenza counts were linearly included in the model for the mean IPD counts along with an endemic component describing some seasonal background and an autoregressive component mimicking pneumococcal transmission. Using age-specific counts, Akaike information criterion (AIC)-based model selection suggested that the best fit was obtained when the endemic component was expressed as a function of observed temperature and rainfall. Pneumococcal transmission within the same age group was estimated to explain 33.0% (confidence interval [CI] 24.9%-39.9%) of new cases in the elderly, whereas 50.7% (CI 38.8%-63.2%) of incidence in adults aged 15-44 years was attributed to transmission from another age group. The contribution of influenza on IPD during the 2009 pandemic also appeared to vary greatly across subgroups, being highest in school-age children and adults (18.3%, CI 9.4%-28.2%, and 6.07%, CI 2.83%-9.76%, respectively). Other viral infections, such as respiratory syncytial virus (RSV) and rhinovirus, also seemed to have an impact on IPD: RSV contributed 1.87% (CI 0.89%-3.08%) to pneumococcal infections in the 65+ group, whereas 2.14% (CI 0.87%-3.57%) of cases in the group of 45- to 64-year-olds were attributed to rhinovirus. The validity of this modelling strategy relies on the assumption that viral surveillance adequately represents the true incidence of influenza in the population, whereas the small numbers of IPD cases observed in the younger age groups led to significant uncertainty around some parameter estimates. CONCLUSIONS Our estimates suggested that a pandemic wave of influenza A/H1N1 with comparable severity to the 2009 pandemic could have a modest impact on school-age children and adults in terms of IPD and a small to negligible impact on infants and the elderly. The seasonal impact of other viruses such as RSV and rhinovirus was instead more important in the older population groups.
Collapse
|
24
|
Effectiveness of the ten-valent pneumococcal Haemophilus influenzae protein D conjugate vaccine (PHiD-CV10) against all respiratory tract infections in children under two years of age. Vaccine 2019; 37:2935-2941. [DOI: 10.1016/j.vaccine.2019.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 01/17/2023]
|
25
|
Thors V, Christensen H, Morales-Aza B, Oliver E, Sikora P, Vipond I, Muir P, Finn A. High-density Bacterial Nasal Carriage in Children Is Transient and Associated With Respiratory Viral Infections-Implications for Transmission Dynamics. Pediatr Infect Dis J 2019; 38:533-538. [PMID: 30985547 DOI: 10.1097/inf.0000000000002256] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND This longitudinal study describes the associations between respiratory viral infections, rhinitis and the prevalence and density of the common nasopharyngeal bacterial colonizers, Streptococcus pneumoniae (Sp), Moraxella catarrhalis (Mc), Haemophilus influenzae (Hi) and Staphylococcus aureus. METHODS In an observational cohort study, 161 children attending day care centers in Bristol, United Kingdom, were recruited. Monthly nasopharyngeal swabs were taken and stored frozen in Skim-milk, tryptone, glucose and glycerin broth (STGG) broth. Quantitative polymerase chain reaction was used for detection of respiratory viruses and 4 bacterial species. t tests and logistic regression models were used for analysis. RESULTS The frequent colonisers, Sp, Mc and Hi were more frequently found at high density in contrast to Staphylococcus aureus although temporally, high-density carriage was short lived. Respiratory viral infections and symptoms of rhinitis were both independently and consistently associated with higher bacterial density with an observed 2-fold increase in density for Sp, Mc and Hi (P = 0.004-0.017). CONCLUSIONS For Sp and Hi, the association between young age and higher bacterial DNA density was explained by more frequent viral infection and increased nasal discharge, while the associations between some viral specie's and some bacterial species' density appear to be stronger than others. Increased colonization density and rhinitis may promote transmission of these commonly carried organisms.
Collapse
Affiliation(s)
- Valtyr Thors
- From the School of Cellular and Molecular Medicine, University of Bristol, Education Centre, Bristol, United Kingdom
- Children's Hospital, Landspitali University Hospital Iceland, Reykjavik, Iceland
| | | | - Begonia Morales-Aza
- From the School of Cellular and Molecular Medicine, University of Bristol, Education Centre, Bristol, United Kingdom
| | - Elizabeth Oliver
- From the School of Cellular and Molecular Medicine, University of Bristol, Education Centre, Bristol, United Kingdom
| | - Paulina Sikora
- From the School of Cellular and Molecular Medicine, University of Bristol, Education Centre, Bristol, United Kingdom
| | - Ian Vipond
- Public Health Laboratory Bristol, Public Health England, Southmead Hospital, Bristol, United Kingdom
| | - Peter Muir
- Public Health Laboratory Bristol, Public Health England, Southmead Hospital, Bristol, United Kingdom
| | - Adam Finn
- From the School of Cellular and Molecular Medicine, University of Bristol, Education Centre, Bristol, United Kingdom
- School of Population Health Sciences, University of Bristol
| |
Collapse
|
26
|
Toivonen L, Camargo CA, Gern JE, Bochkov YA, Mansbach JM, Piedra PA, Hasegawa K. Association between rhinovirus species and nasopharyngeal microbiota in infants with severe bronchiolitis. J Allergy Clin Immunol 2019; 143:1925-1928.e7. [PMID: 30654045 PMCID: PMC6504611 DOI: 10.1016/j.jaci.2018.12.1004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Laura Toivonen
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland.
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - James E Gern
- Departments of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Yury A Bochkov
- Departments of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | | | - Pedro A Piedra
- Departments of Molecular Virology and Microbiology and Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
27
|
Jochems SP, Marcon F, Carniel BF, Holloway M, Mitsi E, Smith E, Gritzfeld JF, Solórzano C, Reiné J, Pojar S, Nikolaou E, German EL, Hyder-Wright A, Hill H, Hales C, de Steenhuijsen Piters WAA, Bogaert D, Adler H, Zaidi S, Connor V, Gordon SB, Rylance J, Nakaya HI, Ferreira DM. Inflammation induced by influenza virus impairs human innate immune control of pneumococcus. Nat Immunol 2018; 19:1299-1308. [PMID: 30374129 PMCID: PMC6241853 DOI: 10.1038/s41590-018-0231-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/07/2018] [Indexed: 12/02/2022]
Abstract
Colonization of the upper respiratory tract by pneumococcus is important both as a determinant of disease and for transmission into the population. The immunological mechanisms that contain pneumococcus during colonization are well studied in mice but remain unclear in humans. Loss of this control of pneumococcus following infection with influenza virus is associated with secondary bacterial pneumonia. We used a human challenge model with type 6B pneumococcus to show that acquisition of pneumococcus induced early degranulation of resident neutrophils and recruitment of monocytes to the nose. Monocyte function was associated with the clearance of pneumococcus. Prior nasal infection with live attenuated influenza virus induced inflammation, impaired innate immune function and altered genome-wide nasal gene responses to the carriage of pneumococcus. Levels of the cytokine CXCL10, promoted by viral infection, at the time pneumococcus was encountered were positively associated with bacterial load.
Collapse
Affiliation(s)
- Simon P Jochems
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Fernando Marcon
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paolo, Brazil
| | - Beatriz F Carniel
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Mark Holloway
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elena Mitsi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Emma Smith
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jenna F Gritzfeld
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Carla Solórzano
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jesús Reiné
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Esther L German
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Angie Hyder-Wright
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Royal Liverpool and Broadgreen University Hospital, Liverpool, UK
| | - Helen Hill
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Royal Liverpool and Broadgreen University Hospital, Liverpool, UK
| | - Caz Hales
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Royal Liverpool and Broadgreen University Hospital, Liverpool, UK
| | - Wouter A A de Steenhuijsen Piters
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
- Department of Paediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Debby Bogaert
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
- Department of Paediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hugh Adler
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Seher Zaidi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Victoria Connor
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Royal Liverpool and Broadgreen University Hospital, Liverpool, UK
| | - Stephen B Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Jamie Rylance
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paolo, Brazil.
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
28
|
Hanada S, Pirzadeh M, Carver KY, Deng JC. Respiratory Viral Infection-Induced Microbiome Alterations and Secondary Bacterial Pneumonia. Front Immunol 2018; 9:2640. [PMID: 30505304 PMCID: PMC6250824 DOI: 10.3389/fimmu.2018.02640] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022] Open
Abstract
Influenza and other respiratory viral infections are the most common type of acute respiratory infection. Viral infections predispose patients to secondary bacterial infections, which often have a more severe clinical course. The mechanisms underlying post-viral bacterial infections are complex, and include multifactorial processes mediated by interactions between viruses, bacteria, and the host immune system. Studies over the past 15 years have demonstrated that unique microbial communities reside on the mucosal surfaces of the gastrointestinal tract and the respiratory tract, which have both direct and indirect effects on host defense against viral infections. In addition, antiviral immune responses induced by acute respiratory infections such as influenza are associated with changes in microbial composition and function (“dysbiosis”) in the respiratory and gastrointestinal tract, which in turn may alter subsequent immune function against secondary bacterial infection or alter the dynamics of inter-microbial interactions, thereby enhancing the proliferation of potentially pathogenic bacterial species. In this review, we summarize the literature on the interactions between host microbial communities and host defense, and how influenza, and other acute respiratory viral infections disrupt these interactions, thereby contributing to the pathogenesis of secondary bacterial infections.
Collapse
Affiliation(s)
- Shigeo Hanada
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States.,Toranomon Hospital, Tokyo, Japan
| | - Mina Pirzadeh
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States.,Veterans Affairs Healthcare System, Ann Arbor, MI, United States
| | - Kyle Y Carver
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States.,Veterans Affairs Healthcare System, Ann Arbor, MI, United States
| | - Jane C Deng
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States.,Veterans Affairs Healthcare System, Ann Arbor, MI, United States
| |
Collapse
|
29
|
Wang H, Anthony D, Selemidis S, Vlahos R, Bozinovski S. Resolving Viral-Induced Secondary Bacterial Infection in COPD: A Concise Review. Front Immunol 2018; 9:2345. [PMID: 30459754 PMCID: PMC6232692 DOI: 10.3389/fimmu.2018.02345] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/21/2018] [Indexed: 11/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of disability and death world-wide, where chronic inflammation accelerates lung function decline. Pathological inflammation is worsened by chronic bacterial lung infections and susceptibility to recurrent acute exacerbations of COPD (AECOPD), typically caused by viral and/or bacterial respiratory pathogens. Despite ongoing efforts to reduce AECOPD rates with inhaled corticosteroids, COPD patients remain at heightened risk of developing serious lung infections/AECOPD, frequently leading to hospitalization and infection-dependent delirium. Here, we review emerging mechanisms into why COPD patients are susceptible to chronic bacterial infections and highlight dysregulated inflammation and production of reactive oxygen species (ROS) as central causes. This underlying chronic infection leaves COPD patients particularly vulnerable to acute viral infections, which further destabilize host immunity to bacteria. The pathogeneses of bacterial and viral exacerbations are significant as clinical symptoms are more severe and there is a marked increase in neutrophilic inflammation and tissue damage. AECOPD triggered by a bacterial and viral co-infection increases circulating levels of the systemic inflammatory marker, serum amyloid A (SAA). SAA is a functional agonist for formyl peptide receptor 2 (FPR2/ALX), where it promotes chemotaxis and survival of neutrophils. Excessive levels of SAA can antagonize the protective actions of FPR2/ALX that involve engagement of specialized pro-resolving mediators, such as resolvin-D1. We propose that the anti-microbial and anti-inflammatory actions of specialized pro-resolving mediators, such as resolvin-D1 should be harnessed for the treatment of AECOPD that are complicated by the co-pathogenesis of viruses and bacteria.
Collapse
Affiliation(s)
- Hao Wang
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Desiree Anthony
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Connor V, German E, Pojar S, Mitsi E, Hales C, Nikolaou E, Hyder-Wright A, Adler H, Zaidi S, Hill H, Jochems SP, Burhan H, French N, Tobery T, Rylance J, Ferreira DM. Hands are vehicles for transmission of Streptococcus pneumoniae in novel controlled human infection study. Eur Respir J 2018; 52:13993003.00599-2018. [PMID: 30305331 DOI: 10.1183/13993003.00599-2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/01/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Victoria Connor
- Liverpool School of Tropical Medicine, Liverpool, UK.,Royal Liverpool University Hospital, Liverpool, UK
| | - Esther German
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sherin Pojar
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elena Mitsi
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Caroline Hales
- Liverpool School of Tropical Medicine, Liverpool, UK.,Royal Liverpool University Hospital, Liverpool, UK
| | | | - Angela Hyder-Wright
- Liverpool School of Tropical Medicine, Liverpool, UK.,Royal Liverpool University Hospital, Liverpool, UK
| | - Hugh Adler
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Seher Zaidi
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Helen Hill
- Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | | | | | - Jamie Rylance
- Liverpool School of Tropical Medicine, Liverpool, UK
| | | |
Collapse
|
31
|
Grigg J. Air Pollution and Respiratory Infection: An Emerging and Troubling Association. Am J Respir Crit Care Med 2018; 198:700-701. [DOI: 10.1164/rccm.201804-0614ed] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jonathan Grigg
- Centre for Child HealthQueen Mary University of LondonLondon, United Kingdom
| |
Collapse
|
32
|
Le Souëf P. Viral infections in wheezing disorders. Eur Respir Rev 2018; 27:27/147/170133. [DOI: 10.1183/16000617.0133-2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
Over the past year, studies into virus-induced wheeze in children have shifted towards investigations that examine the mechanisms by which respiratory viruses cause wheeze and an increase in studies examining the effects of novel interventions to reduce wheezing exacerbations. Studies on rhinovirus species (RV)-C infection have found that this is associated with a decrease in expression of CDHR3, the cellular receptor specific for this virus, and a decrease in interferon-β expression, both of which are likely to favour RV-C infection. Recent clinical trials in children have found a decrease in wheezing exacerbations with both anti-respiratory syncytial virus antibody and anti-immunoglobulin E antibody therapy, and a clinical trial of prednisolone in children with their first RV-induced wheeze showed that only those with an RV viral count >7000 copies·mL−1responded. Further studies on the effects of bacterial lysates on immune system function continue to support the potential of this approach to reduce virus-induced wheezing exacerbations in children. These studies and many previous investigations into immunomodulation using bacterial lysates have led to the funding and commencement of a large study in which long-term administration of a bacterial lysate in young children will be assessed for its ability to prevent asthma.
Collapse
|
33
|
Gern JE. Picornavectors. Viruses That Spread Bacteria. Am J Respir Crit Care Med 2017. [DOI: 10.1164/rccm.201706-1073ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- James E. Gern
- Department of Pediatricsand
- Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadison, Wisconsin
| |
Collapse
|