1
|
Naus AE, Moskowitzova K, Lin SB, Dang TT, Zurakowski D, Fauza DO. Transamniotic Fetal Delivery of Human Alpha-1 Antitrypsin mRNA in a Healthy Rodent Model. FASEB J 2025; 39:e70596. [PMID: 40331829 DOI: 10.1096/fj.202500540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
Alpha-1 antitrypsin deficiency (AATD) can manifest at any age, including the perinatal period. Its manifestations include obstructive lung disease, which can be severe and for which current therapies are of limited benefit. We sought to determine whether the transamniotic route could be a viable alternative for administering AAT mRNA to the fetus. Twelve pregnant dams underwent volume-matched intra-amniotic injections in all their fetuses (n = 139) of either a suspension of human AAT (hAAT) mRNA encapsulated by a synthetic cationic polymer-based composite, lipopolyplex (mRNA group; n = 99) or of lipopolyplex free of mRNA (controls; n = 40), on gestational day 17 (E17; term = E21). Fetal lung and liver samples were procured daily thereafter until term to screen for hAAT by ELISA. Liver function panels were performed at term. Statistical analysis included median regression (p < 0.05). Fetal survival was 79% (110/139), significantly higher in the mRNA group (p = 0.012). Controlled by mRNA-free injections, hAAT was found in the fetal lungs at all time points (p = 0.005 to < 0.001) but in the liver only at E20, suggesting interspecies homology manifesting at that site. The term liver function panels were comparable between groups. Encapsulated exogenous mRNA encoding for human alpha-1 antitrypsin protein can be incorporated and translated by fetal lung cells following simple intra-amniotic injection in a healthy rat model. Fetal hepatic incorporation and translation remain to be determined in a model with minimal to no human homology. Transamniotic mRNA delivery could become a novel strategy for the perinatal management of alpha-1 antitrypsin deficiency.
Collapse
Affiliation(s)
- Abbie E Naus
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kamila Moskowitzova
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shuqi B Lin
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tanya T Dang
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David Zurakowski
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dario O Fauza
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Wang T, Shuai P, Wang Q, Guo C, Huang S, Li Y, Wu W, Yi L. α‑1 Antitrypsin is a potential target of inflammation and immunomodulation (Review). Mol Med Rep 2025; 31:107. [PMID: 40017119 PMCID: PMC11881679 DOI: 10.3892/mmr.2025.13472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/12/2024] [Indexed: 03/01/2025] Open
Abstract
α‑1 Antitrypsin (AAT) is an acute phase protein encoded by the serine protease inhibitor family A member 1 gene. This multifunctional protein serves several roles, including anti‑inflammatory, antibacterial, antiapoptotic and immune regulatory functions. The primary role of AAT is to protect tissues and organs from protease‑induced damage due to its function as a serine protease inhibitor. AAT is associated with the development of lung inflammation, liver inflammation and immune‑mediated inflammatory diseases, which are influenced by environmental and genetic factors. For instance, AAT acts as an anti‑inflammatory protein to prevent and reverse type I diabetes. The present study briefly reviewed the molecular properties and mechanisms of AAT, as well as advances in the study of lung, liver and inflammatory diseases associated with AAT. The potential of AAT as a diagnostic and therapeutic target for inflammatory and immune‑mediated inflammatory diseases was reviewed. In addition, the damaging and protective effects of AAT, and its effects on organ function were discussed.
Collapse
Affiliation(s)
- Tiantian Wang
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Peimeng Shuai
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qingyu Wang
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Caimao Guo
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shuqi Huang
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuanyuan Li
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wenyu Wu
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lan Yi
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
3
|
Sun S, Wang C, Hu J, Zhao P, Wang X, Balch WE. Spatial covariance reveals isothiocyanate natural products adjust redox stress to restore function in alpha-1-antitrypsin deficiency. Cell Rep Med 2025; 6:101917. [PMID: 39809267 PMCID: PMC11866504 DOI: 10.1016/j.xcrm.2024.101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 06/09/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Alpha-1 antitrypsin (AAT) deficiency (AATD) is a monogenic disease caused by misfolding of AAT variants resulting in gain-of-toxic aggregation in the liver and loss of monomer activity in the lung leading to chronic obstructive pulmonary disease (COPD). Using high-throughput screening, we discovered a bioactive natural product, phenethyl isothiocyanate (PEITC), highly enriched in cruciferous vegetables, including watercress and broccoli, which improves the level of monomer secretion and neutrophil elastase (NE) inhibitory activity of AAT-Z through the endoplasmic reticulum (ER) redox sensor protein disulfide isomerase (PDI) A4 (PDIA4). The intracellular polymer burden of AAT-Z can be managed by combination treatment of PEITC and an autophagy activator. Using Gaussian process (GP)-based spatial covariance (SCV) (GP-SCV) machine learning to map on a residue-by-residue basis at atomic resolution all variants in the worldwide AATD clinical population, we reveal a global rescue of monomer secretion and NE inhibitory activity for most variants triggering disease. We present a proof of concept that GP-SCV mapping of restoration of AAT variant function serves as a standard model to discover natural products such as the anti-oxidant PEITC that could potentially impact the redox/inflammatory environment of the ER to provide a nutraceutical approach to help minimize disease in AATD patients.
Collapse
Affiliation(s)
- Shuhong Sun
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, Nanjing 211166, China.
| | - Chao Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Junyan Hu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Pei Zhao
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Xi Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - William E Balch
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
4
|
Brantly M, Stocks J, Lascano J, Flagg T, Jeffers AM, Owens SZ, Tucker TA, Devine M, Alagem N, Tov N. Inhaled alpha-1 antitrypsin (AAT) restores lower respiratory tract protease-antiprotease homoeostasis and reduces inflammation in AAT-deficient individuals: a randomised phase 2 study. ERJ Open Res 2025; 11:00537-2024. [PMID: 39811545 PMCID: PMC11726588 DOI: 10.1183/23120541.00537-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/20/2024] [Indexed: 01/16/2025] Open
Abstract
Background Alpha-1 antitrypsin (AAT)-deficient individuals have a greater risk for developing COPD than individuals with normal AAT levels. Methods This was a double-blind, randomised, parallel group, placebo-controlled trial to examine the safety and tolerability of "Kamada-AAT for Inhalation" (inhaled AAT) in subjects with AAT deficiency, and to explore its effect on AAT and biomarkers in the lung epithelial lining fluid (ELF). 36 patients with severe AAT deficiency were randomised 2:1 to receive 80 mg or 160 mg inhaled AAT or placebo once daily for 12 weeks. The primary outcomes were AAT and antineutrophil elastase capacity (ANEC) in bronchoalveolar lavage and plasma after treatment. Secondary outcomes included safety, levels of normal M-type AAT in the plasma and concentrations of AAT, neutrophil elastase (NE), AAT-NE complexes and neutrophil count in the ELF. Results 12 weeks of active treatment significantly increased AAT, ANEC and AAT-NE complexes in the ELF. Mean antigenic AAT levels in the ELF were restored to 5.2±2.3 μM in the 80 mg arm and to 17.7±2 μM in the 160 mg arm. Both doses significantly restored AAT antiprotease activity within the lung and reduced NE levels. M-specific AAT levels in plasma increased in a dose-dependent manner. A clinically meaningful reduction in ELF neutrophil % was observed in the 80 mg arm. AAT for inhalation was well tolerated. Conclusions Inhaled AAT restores protease-antiprotease homoeostasis and may represent a safe and effective therapy.
Collapse
Affiliation(s)
- Mark Brantly
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL, USA
| | - James Stocks
- University of Texas Health Science Center at Tyler Center for Clinical Research, Tyler, TX, USA
| | - Jorge Lascano
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tammy Flagg
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ann M. Jeffers
- University of Texas Health Science Center at Tyler Center for Clinical Research, Tyler, TX, USA
| | - Shuzi Z. Owens
- University of Texas Health Science Center at Tyler Center for Clinical Research, Tyler, TX, USA
| | - Torry A. Tucker
- University of Texas Health Science Center at Tyler Center for Clinical Research, Tyler, TX, USA
| | - Megan Devine
- University of Texas Health Science Center at Tyler Center for Clinical Research, Tyler, TX, USA
| | | | | |
Collapse
|
5
|
Turner AM, Ficker JH, Vianello A, Clarenbach CF, Janciauskiene S, Chorostowska-Wynimko J, Stolk J, McElvaney NG. Advancing the understanding and treatment of lung pathologies associated with alpha 1 antitrypsin deficiency. Ther Adv Respir Dis 2025; 19:17534666251318841. [PMID: 39980299 PMCID: PMC11843710 DOI: 10.1177/17534666251318841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025] Open
Abstract
Alpha 1 antitrypsin deficiency (AATD) is a genetic disorder that alters the functionality and/or serum levels of alpha 1 antitrypsin (AAT). Dysfunctional forms of AAT, or low levels of serum AAT, predispose affected individuals to pulmonary complications. When AATD-associated lung disease develops, the most common pulmonary pathology is emphysema. The development of emphysema and decline in lung function varies by AATD genotype and is accelerated by risk factors, such as smoking. To improve the understanding and treatment of AATD, emerging knowledge and unresolved questions need to be discussed. Here we focus on developments in the areas of disease pathogenesis, biomarkers, and clinical endpoints for trials in AATD, as well as barriers to treatment. The clinical impact of AATD on lung function is highly variable and highlights the complexity of AATD pathogenesis, in which multiple underlying processes are involved. Reduced levels of functional AAT disrupt the protease-antiprotease homeostasis, leading to a loss of neutrophil elastase inhibition and the breakdown of elastin within the lung interstitium. Inflammatory processes also play a critical role in the development of AATD-associated lung disease, which is not yet fully understood. Biomarkers associated with the disease and its complications may have an important role in helping to address AATD underdiagnosis and evaluating response to treatment. To improve access to treatment, the problem of underdiagnosis needs to be addressed and the provision of therapeutic options needs to become uniform. Patients should also be empowered to play a key role in the self-management of the disease. Advancing our understanding of the disease will ultimately improve the life expectancy and quality of life for patients affected by AATD.
Collapse
Affiliation(s)
- Alice M. Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Joachim H. Ficker
- Department of Respiratory Medicine, Allergology and Sleep Medicine, General Hospital Nuernberg and Paracelsus Medical University, Nuernberg, Germany
| | - Andrea Vianello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Christian F. Clarenbach
- Department of Pulmonology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Leiden, Zuid-Holland, Netherlands
| | - Noel Gerard McElvaney
- Department of Medicine, Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Dublin, Ireland
| |
Collapse
|
6
|
Gogoi D, Yu H, Casey M, Baird R, Yusuf A, Forde L, O' Brien ME, West JR, Flagg T, McElvaney NG, Eden E, Mueller C, Brantly ML, Geraghty P, Reeves EP. Monocyte NLRP3 inflammasome and interleukin-1β activation modulated by alpha-1 antitrypsin therapy in deficient individuals. Thorax 2024; 79:822-833. [PMID: 38418195 PMCID: PMC11347198 DOI: 10.1136/thorax-2023-221071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
INTRODUCTION Altered complement component 3 (C3) activation in patients with alpha-1 antitrypsin (AAT) deficiency (AATD) has been reported. To understand the potential impact on course of inflammation, the aim of this study was to investigate whether C3d, a cleavage-product of C3, triggers interleukin (IL)-1β secretion via activation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome. The objective was to explore the effect of AAT augmentation therapy in patients with AATD on the C3d/complement receptor 3 (CR3) signalling axis of monocytes and on circulating pro-inflammatory markers. METHODS Inflammatory mediators were detected in blood from patients with AATD (n=28) and patients with AATD receiving augmentation therapy (n=19). Inflammasome activation and IL-1β secretion were measured in monocytes of patients with AATD, and following C3d stimulation in the presence or absence of CR3 or NLRP3 inhibitors. RESULTS C3d acting via CR3 induces NLRP3 and pro-IL-1β production, and through induction of endoplasmic reticulum (ER) stress and calcium flux, triggers caspase-1 activation and IL-1β secretion. Treatment of individuals with AATD with AAT therapy results in decreased plasma levels of C3d (3.0±1.2 µg/mL vs 1.3±0.5 µg/mL respectively, p<0.0001) and IL-1β (115.4±30 pg/mL vs 73.3±20 pg/mL, respectively, p<0.0001), with a 2.0-fold decrease in monocyte NLRP3 protein expression (p=0.0303), despite continued ER stress activation. DISCUSSION These results provide strong insight into the mechanism of complement-driven inflammation associated with AATD. Although the described variance in C3d and NLRP3 activation decreased post AAT augmentation therapy, results demonstrate persistent C3d and monocyte ER stress, with implications for new therapeutics and clinical practice.
Collapse
Affiliation(s)
- Debananda Gogoi
- Pulmonary Clinical Science, Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Howard Yu
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
| | - Michelle Casey
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rory Baird
- Pulmonary Clinical Science, Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Azeez Yusuf
- Pulmonary Clinical Science, Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Luke Forde
- Pulmonary Clinical Science, Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael E O' Brien
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jesse R West
- Division of Pulmonary, Critical Care and Sleep Medicine, J. Hillis Miller Health Science Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Tammy Flagg
- Division of Pulmonary, Critical Care and Sleep Medicine, J. Hillis Miller Health Science Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Edward Eden
- Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Christian Mueller
- The Li Weibo Institute for Rare Diseases Research, Horae Gene Therapy Center, Worcester, MA, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mark L Brantly
- Division of Pulmonary, Critical Care and Sleep Medicine, J. Hillis Miller Health Science Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
| | - Emer P Reeves
- Pulmonary Clinical Science, Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
7
|
Stockley RA, Parr DG. Antitrypsin deficiency: still more to learn about the lung after 60 years. ERJ Open Res 2024; 10:00139-2024. [PMID: 39040588 PMCID: PMC11261379 DOI: 10.1183/23120541.00139-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/22/2024] [Indexed: 07/24/2024] Open
Abstract
The past 60 years have seen multiple publications related to lung disease in α1-antitrypsin deficiency largely reflecting the pathophysiology, biochemical effect and outcomes of augmentation therapy. However, the complexity of disease phenotype and the impact of the natural history presents problems of patient management, study design and hence interpretation of outcome. Although many national and some international registries exist, the lack of consistent in-depth assessment and importantly, the impact of augmentation therapy likely influences our perception of the true natural history. Development of new therapeutic strategies, and even assessment of the role and efficacy of augmentation, remain a challenge as powering such studies for conventional COPD outcomes is impractical due to relative rarity of the genetic condition and the presence of clinical phenotypic variation. The current review approaches these issues, discusses the nature and complexity of assessing patient variability, and provides guidance on further studies required to address them.
Collapse
Affiliation(s)
- Robert A. Stockley
- Lung Investigation Unit, Medicine – University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, UK
| | - David G. Parr
- Respiratory Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| |
Collapse
|
8
|
Pierce LR. Assessing the efficacy of Alpha 1-Proteinase inhibitor (human) augmentation therapy for Alpha 1-Antitrypsin deficiency - Related emphysema: Challenges and opportunities. Heliyon 2024; 10:e31183. [PMID: 38912501 PMCID: PMC11190464 DOI: 10.1016/j.heliyon.2024.e31183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 06/25/2024] Open
Abstract
Clinical benefit of Alpha1-Proteinase Inhibitor (Human) (A1-PI) products for Alpha1-antitrypsin deficiency (AATD) is uncertain, based on a systematic review of observational studies and randomized controlled trials (RCTs) in AATD of Alpha1-Proteinase Inhibitor (Human) (A1-PI) products. At the recommended dose, A1-PI products raise its serum concentration but do not normalize levels. Observational studies suggest A1-PI might modestly slow progression of airflow limitation in patients with intermediate airflow obstruction, a finding not confirmed by three placebo-controlled RCTs of limited power, which showed non-significant rates of forced expiratory volume in 1 s (FEV1) change favoring placebo. These RCTs found trends favoring A1-PI in loss of high-resolution computerized tomographic (HRCT) lung density. While two meta-analyses of HRCT lung density change in RCTs achieved significance favoring A1-PI arms, clinical benefit remains uncertain. HRCT lung density measurements don't distinguish changes in measured density due to fluid shifts into and out of the lungs and changes in lung inflammation from those due to progressive loss of alveolar mass. A meta-analysis of RCTs found exacerbations significantly increased in A1-PI groups compared to placebo. No RCTs have shown favorable effects of A1-PI on mortality, FEV1, 6-min walking distance, quality of life, change in diffusion capacity of carbon monoxide (DLCO), or exacerbation frequency. A fourth RCT comparing two dose regimens of A1-PI is underway. RCTs have not provided evidence of clinical benefit in terms of how patients feel, function, or survive. Results have implications for the design of future clinical trials of A1-PI and potentially other products targeting AATD-associated emphysema.
Collapse
Affiliation(s)
- L. Ross Pierce
- Ross Pierce MD, LLC, 1330 West Avenue Unit 506, Miami Beach, FL 33139, USA
| |
Collapse
|
9
|
Brantly ML, Kuhn BT, Farah HW, Mahadeva R, Cole A, Chang CL, Brown CD, Campos MA, Lascano JE, Babcock EK, Bhagwat SP, Boyea TF, Veldstra CA, Andrianov V, Kalabus JL, Eckelman BP, Veale AG. Recombinant Alpha-1 Antitrypsin-Fc Fusion Protein INBRX-101 in Adults With Alpha-1 Antitrypsin Deficiency: A Phase 1 Study. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2024; 11:282-292. [PMID: 38809792 PMCID: PMC11216232 DOI: 10.15326/jcopdf.2023.0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 05/31/2024]
Abstract
Background Alpha-1 antitrypsin deficiency (AATD) is characterized by low alpha-1 antitrypsin (AAT) levels, predisposing individuals to lung disease. The standard of care, plasma-derived AAT (pdAAT), is delivered as weekly infusions to maintain serum AAT concentrations ≥11µM (≈50% of those in healthy individuals). INBRX-101, a recombinant human AAT-Fc fusion protein, was designed to have a longer half-life and achieve higher AAT levels than pdAAT. Methods In this phase 1 dose-escalation study (N=31), adults with AATD received 1 dose (part 1) or 3 doses (part 2) of 10 (part 1), 40, 80, or 120mg/kg INBRX-101 every 3 weeks (Q3W) via intravenous infusion. The primary endpoint was safety and tolerability. Secondary endpoints were pharmacokinetics (PK), pharmacodynamics (PD), and immunogenicity of INBRX-101. Results INBRX-101 was well tolerated. Most treatment-emergent adverse events were grade ≤2. In part 2 (n=18; each dose, n=6), dose-related increases in serum functional AAT (fAAT) were observed; mean fAAT levels remained above the 21 µM target for up to 4 weeks after the final dose in the 120-mg/kg cohort. Antidrug antibodies had no meaningful impact on PK or PD. INBRX-101 was detected in pulmonary epithelial lining fluid (PELF) from all patients assessed (n=11), and PELF fAAT increased after dosing. PK/PD modeling projected steady-state serum fAAT ≥21µM at 120 mg/kg Q3W (average concentration ≈43µM; trough concentration ≈28µM) and Q4W (≈34µM; ≈21µM). Conclusion The favorable safety profile and ability to maintain serum fAAT levels >21µM with extended-interval dosing, support a phase 2 trial evaluating Q3W and Q4W dosing of INBRX-101.
Collapse
Affiliation(s)
- Mark L. Brantly
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Brooks T. Kuhn
- Department of Internal Medicine, University of California- Davis School of Medicine, Sacramento, California, United States
| | - Humam W. Farah
- Department of Internal Medicine, Pulmonary and Critical Care, Hannibal Clinic, Hannibal, Missouri, United States
| | - Ravi Mahadeva
- Department of Respiratory Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alexandra Cole
- Medical Department, Christchurch Clinical Studies Trust, Christchurch, New Zealand
| | - Catherina L. Chang
- Department of Respiratory Medicine, Waikato Hospital, Hamilton, New Zealand
| | - Cynthia D. Brown
- Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Michael A. Campos
- Department of Medicine, University of Miami School of Medicine, Miami, Florida, United States
| | - Jorge E. Lascano
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States
| | | | | | | | | | | | | | | | - Andrew G. Veale
- New Zealand Respiratory and Sleep Institute, Greenlane East, Auckland, New Zealand
| |
Collapse
|
10
|
McElvaney OJ, Cleary B, Fraughen DD, Kelly G, McElvaney OF, Murphy MP, Branagan P, Gunaratnam C, Carroll TP, Goss CH, McElvaney NG. Safety and Reactogenicity of COVID-19 Vaccination in Severe Alpha-1 Antitrypsin Deficiency. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2024; 11:3-12. [PMID: 37676644 PMCID: PMC10913930 DOI: 10.15326/jcopdf.2023.0432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Background Patients with alpha-1 antitrypsin deficiency (AATD) exhibit dysregulated inflammatory responses and a predilection for autoimmunity. While the adverse event (AE) profiles of COVID-19 vaccines in several chronic inflammatory conditions are now available, safety and tolerability data for patients with severe AATD have yet to be described. The feasibility of coadministering vaccines against COVID-19 and influenza in this population is similarly unclear. Methods We conducted a prospective study of 170 patients with Pi*ZZ genotype AATD receiving their initial vaccination series with ChAdOx1 nCoV-19 (AstraZeneca). Patients were monitored clinically for AEs over the week that followed their first and second doses. In parallel, we conducted the same assessments in patients with Pi*MM genotype chronic obstructive pulmonary disease (COPD) (n=160) and Pi*MM individuals without lung disease (n=150). The Pi*ZZ cohort was subsequently followed through 2 consecutive mRNA-based booster vaccines (monovalent and bivalent BNT162b2, Pfizer/BioNTech). To assess the safety of combined vaccination against COVID-19 and influenza, the quadrivalent influenza vaccine was administered to participants attending for their second COVID-19 booster vaccination, either on the same day or following a 1-week interval. Results Pi*ZZ AATD participants did not display increased AEs compared to Pi*MM COPD or Pi*MM non-lung disease controls. Although unexpected and serious vaccine-associated AEs did occur, the majority of AEs experienced across the 3 groups were mild and self-limiting. The AATD demographic at highest risk for AEs (especially systemic and prolonged AEs) was young females. No increase in AE risk was observed in patients with established emphysema, sonographic evidence of liver disease, or in those receiving intravenous augmentation therapy. AE incidence declined sharply following the initial vaccine series. Same-day coadministration of the COVID-19 mRNA bivalent booster vaccine and the annual influenza vaccine did not result in increased AEs compared to sequential vaccines 1 week apart. Conclusions Despite their pro-inflammatory state, patients with severe AATD are not at increased risk of AEs or serious AEs compared to patients with nonhereditary COPD and patients without lung disease. Same-day coadministration of COVID-19 booster vaccines with the annual influenza vaccine is feasible, safe, and well-tolerated in this population.
Collapse
Affiliation(s)
- Oliver J. McElvaney
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Centre for Alpha-1 Antitrypsin Deficiency, Beaumont Hospital, Dublin, Ireland
- Seattle Children’s Research Institute, Seattle, Washington, United States
- Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Brian Cleary
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Daniel D. Fraughen
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Centre for Alpha-1 Antitrypsin Deficiency, Beaumont Hospital, Dublin, Ireland
| | | | - Oisin F. McElvaney
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mark P. Murphy
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Peter Branagan
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Centre for Alpha-1 Antitrypsin Deficiency, Beaumont Hospital, Dublin, Ireland
| | - Cedric Gunaratnam
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Centre for Alpha-1 Antitrypsin Deficiency, Beaumont Hospital, Dublin, Ireland
| | - Tomás P. Carroll
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Alpha-1 Foundation of Ireland, Dublin, Ireland
| | - Christopher H. Goss
- Seattle Children’s Research Institute, Seattle, Washington, United States
- Department of Medicine, University of Washington, Seattle, Washington, United States
- Department of Pediatrics, University of Washington, Seattle, Washington, United States
| | - Noel G. McElvaney
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Centre for Alpha-1 Antitrypsin Deficiency, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
11
|
Aljama C, Martin T, Granados G, Miravitlles M, Barrecheguren M. Personalised indication of augmentation therapy for emphysema associated with severe alpha-1 antitrypsin deficiency: a case series. Ther Adv Respir Dis 2024; 18:17534666241271917. [PMID: 39132722 PMCID: PMC11320671 DOI: 10.1177/17534666241271917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024] Open
Abstract
Severe alpha-1 antitrypsin deficiency (AATD) is associated with an increased risk of emphysema. However, the clinical manifestations are very heterogeneous, and an individual prognosis is very difficult to establish. Intravenous augmentation therapy with alpha-1 antitrypsin (AAT) from pooled blood donors is the only specific treatment available, but it requires weekly or biweekly administration for life. Several guidelines provide the indication criteria for the initiation of AAT augmentation therapy. However, in clinical practice, there are situations in which the decision as to when to start treatment becomes uncertain and some studies have shown great variability in the indication of this treatment even among specialists. The usual dilemma is between initiating augmentation therapy in individuals who may not develop significant lung disease or in whom disease will not progress or delaying it in patients who may otherwise rapidly and irreversibly progress. We illustrate this dilemma with five clinical cases: from the case of a patient with normal lung function who requests initiation of therapy to a moderately stable patient without augmentation or a mild patient who, after several years of remaining stable without treatment, deterioration in lung function initiated and, consequently, augmentation therapy was begun. All the nuances associated with the indication of augmentation justify a personalised approach and the decision about initiating augmentation therapy must be made after careful consideration of the pros and cons with the patient in reference centres with experience in treatment. These reference centres can work in collaboration with local hospitals where patients can be closely followed and augmentation therapy can be administered to avoid unnecessary travelling, making periodical administrations more comfortable for the patient.
Collapse
Affiliation(s)
- Cristina Aljama
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Teresa Martin
- Pneumology Department, Hospital Beatriz Ângelo, Loures, Portugal
| | - Galo Granados
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), P. Vall d’Hebron 119-129, Barcelona 08035, Spain
| | - Miriam Barrecheguren
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| |
Collapse
|
12
|
Miravitlles M, Anzueto A, Barrecheguren M. Nine controversial questions about augmentation therapy for alpha-1 antitrypsin deficiency: a viewpoint. Eur Respir Rev 2023; 32:230170. [PMID: 38056890 DOI: 10.1183/16000617.0170-2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 12/08/2023] Open
Abstract
Augmentation therapy with intravenous alpha-1 antitrypsin is the only specific treatment for alpha-1 antitrypsin deficiency (AATD)-associated emphysema. This treatment has been available and remained basically unchanged for more than 35 years, but many questions persist regarding its indications, regimen of administration and efficacy. Because AATD is a rare disease, it has not been possible to conduct randomised, placebo-controlled trials that are adequately powered for the usual outcomes analysed in non-AATD-related COPD, such as lung function decline, exacerbations, symptoms or quality of life. New outcomes such as lung densitometry measured by computed tomography are more sensitive for identifying emphysema progression but are not widely accepted by regulatory agencies. In addition, clinical manifestations, severity and the natural history of lung disease associated with AATD are very heterogeneous, which means that individual prediction of prognosis is challenging. Therefore, the indication for augmentation is sometimes a dilemma between initiating treatment in individuals who may not develop significant lung disease or in whom disease will not progress and delaying it in patients who will otherwise rapidly and irreversibly progress.Other areas of debate are the possible indication for augmentation in patients with severe AATD and respiratory diseases other than emphysema, such as bronchiectasis or asthma, and the use of therapy after lung transplant in AATD patients. All these uncertainties imply that the indication for treatment must be personalised in expert reference centres after in-depth discussion of the pros and cons of augmentation with the patient.
Collapse
Affiliation(s)
- Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Antonio Anzueto
- Pulmonary Disease/Critical Care, University of Texas Health, and South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Miriam Barrecheguren
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| |
Collapse
|
13
|
Li Z, Gaurav M, Yel L. Evaluation of body weight-based dosing, alternative dosing regimens, and treatment interruptions for α1-proteinase inhibitors and implications on biochemical efficacy in patients with α1-antitrypsin deficiency. Pulm Pharmacol Ther 2023; 83:102265. [PMID: 37923165 DOI: 10.1016/j.pupt.2023.102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION The recommended standard dose for α1-proteinase inhibitor (A1PI) augmentation therapy is 60 mg/kg once-weekly (QW) intravenous (IV) infusions that aim to maintain systemic A1PI levels >11 μM, the biochemical efficacy threshold, in patients with α1-antitrypsin deficiency (AATD). However, this standard dose may not be optimal for all patients. Body weight-based dosing, alternative dosing regimens, and treatment interruption periods were evaluated using population pharmacokinetic (PopPK) modeling and simulations. METHODS A nonlinear mixed-effects PopPK model with covariate effects was developed using data from 3 clinical studies investigating 60 mg/kg QW IV A1PI infusions in patients with AATD (n = 65) to evaluate A1PI pharmacokinetic (PK) characteristics. Model-based simulations were conducted for predefined body weight categories, alternative dosing regimens (60-180 mg/kg QW or once every 2 weeks [Q2W]), and treatment interruption periods ranging from 3 to 14 days. RESULTS A1PI PK characteristics were well described by a 2-compartment turnover model with zero-order input and linear elimination. Body weight was a statistically significant determinant of variability in central volume of distribution. Model-based simulations suggested that patients with a higher body weight may attain the 11 μM threshold quicker than patients with a lower body weight and that QW dosing was better at maintaining A1PI levels >11 μM, even when higher Q2W doses were administered. Missing a dose for as few as 3 days could result in A1PI levels <11 μM. DISCUSSION Findings suggest that doses higher than 60 mg/kg administered QW might be more clinically beneficial in some patients with AATD, and that body weight should be considered in dose optimization.
Collapse
Affiliation(s)
- Zhaoyang Li
- Takeda Development Center Americas, Inc., Cambridge, MA, United States.
| | - Mitali Gaurav
- Cognigen Division of Simulations Plus, Inc., Buffalo, NY, United States
| | - Leman Yel
- Takeda Development Center Americas, Inc., Cambridge, MA, United States
| |
Collapse
|
14
|
Fraughen DD, Ghosh AJ, Hobbs BD, Funk GC, Meischl T, Clarenbach CF, Sievi NA, Schmid-Scherzer K, McElvaney OJ, Murphy MP, Roche AD, Clarke L, Strand M, Vafai-Tabrizi F, Kelly G, Gunaratnam C, Carroll TP, McElvaney NG. Augmentation Therapy for Severe Alpha-1 Antitrypsin Deficiency Improves Survival and Is Decoupled from Spirometric Decline-A Multinational Registry Analysis. Am J Respir Crit Care Med 2023; 208:964-974. [PMID: 37624745 PMCID: PMC10870866 DOI: 10.1164/rccm.202305-0863oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/24/2023] [Indexed: 08/27/2023] Open
Abstract
Rationale: Intravenous plasma-purified alpha-1 antitrypsin (IV-AAT) has been used as therapy for alpha-1 antitrypsin deficiency (AATD) since 1987. Previous trials (RAPID and RAPID-OLE) demonstrated efficacy in preserving computed tomography of lung density but no effect on FEV1. This observational study evaluated 615 people with severe AATD from three countries with socialized health care (Ireland, Switzerland, and Austria), where access to standard medical care was equal but access to IV-AAT was not. Objectives: To assess the real-world longitudinal effects of IV-AAT. Methods: Pulmonary function and mortality data were utilized to perform longitudinal analyses on registry participants with severe AATD. Measurements and Main Results: IV-AAT confers a survival benefit in severe AATD (P < 0.001). We uncovered two distinct AATD phenotypes based on an initial respiratory diagnosis: lung index and non-lung index. Lung indexes demonstrated a more rapid FEV1 decline between the ages of 20 and 50 and subsequently entered a plateau phase of minimal decline from 50 onward. Consequentially, IV-AAT had no effect on FEV1 decline, except in patients with a Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 2 lung index. Conclusions: This real-world study demonstrates a survival advantage from IV-AAT. This improved survival is largely decoupled from FEV1 decline. The observation that patients with severe AATD fall into two major phenotypes has implications for clinical trial design where FEV1 is a primary endpoint. Recruits into trials are typically older lung indexes entering the plateau phase and, therefore, unlikely to show spirometric benefits. IV-AAT attenuates spirometric decline in lung indexes in GOLD stage 2, a spirometric group commonly outside current IV-AAT commencement recommendations.
Collapse
Affiliation(s)
- Daniel D. Fraughen
- Department of Medicine, Irish Center for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Auyon J. Ghosh
- Division of Pulmonary, Critical Care, and Sleep Medicine, SUNY Upstate University Hospital, Syracuse, New York
| | - Brian D. Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Georg-Christian Funk
- Karl Landsteiner Institute for Lung Research and Pulmonary Oncology and Department of Medicine II with Pneumology, Klinik Ottakring, Vienna, Austria
| | - Tobias Meischl
- Karl Landsteiner Institute for Lung Research and Pulmonary Oncology and Department of Medicine II with Pneumology, Klinik Ottakring, Vienna, Austria
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Noriane A. Sievi
- Department of Pneumology, University Hospital Zurich, Zurich, Switzerland
| | - Karin Schmid-Scherzer
- Karl Landsteiner Institute for Lung Research and Pulmonary Oncology and Department of Medicine II with Pneumology, Klinik Ottakring, Vienna, Austria
| | - Oliver J. McElvaney
- Department of Medicine, Irish Center for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington
| | - Mark P. Murphy
- Department of Medicine, Irish Center for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Adam D. Roche
- Department of Medicine, Irish Center for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Louise Clarke
- Department of Respiratory Physiology, Beaumont Hospital, Dublin, Ireland; and
| | - Matthew Strand
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado
| | - Florian Vafai-Tabrizi
- Karl Landsteiner Institute for Lung Research and Pulmonary Oncology and Department of Medicine II with Pneumology, Klinik Ottakring, Vienna, Austria
| | - Geraldine Kelly
- Department of Medicine, Irish Center for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cedric Gunaratnam
- Department of Respiratory Physiology, Beaumont Hospital, Dublin, Ireland; and
| | - Tomás P. Carroll
- Department of Medicine, Irish Center for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Noel G. McElvaney
- Department of Medicine, Irish Center for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
15
|
Feitosa PH. Diagnosis and augmentation therapy for alpha-1 antitrypsin deficiency: current knowledge and future potential. Drugs Context 2023; 12:2023-3-1. [PMID: 37521109 PMCID: PMC10379007 DOI: 10.7573/dic.2023-3-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
The underdiagnosis of alpha-1 antitrypsin (AAT) deficiency (AATD) has been recognized for many years, yet little progress has been made in treatment of the disease. In this review, we summarize the AATD disease process as well as its diagnosis and treatment by AAT augmentation therapy. AATD is a rare autosomal disease that primarily affects the lungs and liver. AATD is associated with an increased susceptibility to developing pulmonary emphysema. The specific pharmacological treatment for AATD is intravenous administration of exogenous AAT. Augmentation therapy with AAT increases serum and pulmonary epithelial AAT levels, restores anti-elastase capacity, and decreases inflammatory mediators in the lung. Augmentation therapy reduces the loss of lung density over time, thus slowing progression of the disease. The effects of augmentation therapy on outcomes, such as frequency/duration of flare-ups, quality of life, lung function decline and mortality, are assessed. Wider testing for AATD, potentially through primary care physicians, could result in earlier treatment and better outcomes for individuals with AATD-induced lung respiratory disease.
Collapse
|
16
|
Pires Ferreira D, Gruntman AM, Flotte TR. Gene therapy for alpha-1 antitrypsin deficiency: an update. Expert Opin Biol Ther 2023; 23:283-291. [PMID: 36825473 DOI: 10.1080/14712598.2023.2183771] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
INTRODUCTION Altering the human genetic code has been explored since the early 1990s as a definitive answer for the treatment of monogenic and acquired diseases which do not respond to conventional therapies. In Alpha-1 antitrypsin deficiency (AATD) the proper synthesis and secretion of alpha-1 antitrypsin (AAT) protein is impaired, leading to its toxic hepatic accumulation along with its pulmonary insufficiency, which is associated with parenchymal proteolytic destruction. Because AATD is caused by mutations in a single gene whose correction alone would normalize the mutant phenotype, it has become a popular target for both augmentation gene therapy and gene editing. Although gene therapy products are already a reality for the treatment of some pathologies, such as inherited retinal dystrophy and spinal muscular atrophy, AATD-related pulmonary and, especially, liver diseases still lack effective therapeutic options. AREAS COVERED Here, we review the course, challenges, and achievements of AATD gene therapy as well as update on new strategies being developed. EXPERT OPINION Reaching safe and clinically effective expression of the AAT is currently the greatest challenge for AATD gene therapy. The improvement and emergence of technologies that use gene introduction, silencing and correction hold promise for the treatment of AATD.
Collapse
Affiliation(s)
- Debora Pires Ferreira
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Alisha M Gruntman
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Terence R Flotte
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
17
|
Conde B, Costa F, Gomes J, Lopes AP, Mineiro MA, Rodrigues O, Santos C, Semedo L, Sucena M, Guimarães C. Expert Perspectives on the Management of Alpha 1-Antitrypsin Deficiency. ACTA MEDICA PORT 2023; 36:49-54. [PMID: 35848753 DOI: 10.20344/amp.18497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 01/05/2023]
Abstract
Alpha 1-antitrypsin deficiency is an inherited autosomal codominant disorder, which predisposes patients to lung and/or liver disease. Even though it is considered rare, it is one of the most frequent genetic disorders worldwide, albeit remaining underdiagnosed. Several organizations and societies, including the Portuguese Society of Pulmonology have been elaborating guidelines and recommendations for the diagnosis and management of alpha 1-antitrypsin deficiency. Nevertheless, some important matters are yet to be included in those, mainly due to lack of robust scientific evidence, and continue to represent a point of discussion. This article reviews some important scientific publications and expresses the perspectives of a group of Portuguese experts regarding the management of alpha 1-antitrypsin deficiency, namely in terms of the pre and neonatal diagnosis, the impact of the COVID-19 pandemic, the validity of replacement therapy in lung transplant-receiving, and finally, alternative strategies of alpha 1-antitrypsin deficiency treatment to improve the patients' quality of life.
Collapse
Affiliation(s)
- Bebiana Conde
- Centro Hospitalar Trás-os-Montes e Alto Douro. Vila Real; Universidade de Trás-os-Montes e Alto Douro. Vila Real. Portugal
| | - Filipa Costa
- Serviço de Pneumologia. Centro Hospitalar e Universitário de Coimbra. Coimbra. Portugal
| | - Joana Gomes
- Serviço de Pneumologia. Centro Hospitalar e Universitário do Porto. Porto. Portugal
| | - António Paulo Lopes
- Serviço de Pneumologia. Centro Hospitalar e Universitário de Coimbra. Coimbra. Portugal
| | | | - Orlando Rodrigues
- Serviço de Genética Médica. Hospital Pediátrico do Centro Hospitalar e Universitário de Coimbra. Coimbra. Portugal
| | - Cristina Santos
- Serviço de Pneumologia. Centro Hospitalar e Universitário Lisboa Norte. Lisboa. Portugal
| | - Luísa Semedo
- Serviço de Pneumologia. Centro Hospitalar Universitário Lisboa Central. Lisboa. Portugal
| | - Maria Sucena
- Serviço de Pneumologia. Centro Hospitalar e Universitário do Porto. Porto. Portugal
| | - Catarina Guimarães
- Serviço de Pneumologia. Hospital Senhora da Oliveira. Guimarães. Portugal
| |
Collapse
|
18
|
COVID-19 Pathology Sheds Further Light on Balance between Neutrophil Proteases and Their Inhibitors. Biomolecules 2022; 13:biom13010082. [PMID: 36671467 PMCID: PMC9855895 DOI: 10.3390/biom13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Excessive neutrophil influx and activation in lungs during infections, such as manifest during the ongoing SARS CoV-2 pandemic, have brought neutrophil extracellular traps (NETs) and the concomitant release of granule contents that damage surrounding tissues into sharp focus. Neutrophil proteases, which are known to participate in NET release, also enable the binding of the viral spike protein to cellular receptors and assist in the spread of infection. Blood and tissue fluids normally also contain liver-derived protease inhibitors that balance the activity of proteases. Interestingly, neutrophils themselves also express the protease inhibitor alpha-1-antitrypsin (AAT), the product of the SERPINA-1 gene, and store it in neutrophil cytoplasmic granules. The absence of AAT or mutations in the SERPINA-1 gene promotes lung remodeling and fibrosis in diseases such as chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS) and increases the risk of allergic responses. Recent observations point to the fact that reduced activity of AAT presents a major susceptibility factor for severe COVID-19. Here, we focus attention on the mechanism of neutrophil elastase (NE) in NET release and its inhibition by AAT as an additional factor that may determine the severity of COVID-19.
Collapse
|
19
|
Genetic and Serum Screening for Alpha-1-Antitrypsin Deficiency in Adult Patients with Cystic Fibrosis: A Single-Center Experience. Biomedicines 2022; 10:biomedicines10123248. [PMID: 36552004 PMCID: PMC9776003 DOI: 10.3390/biomedicines10123248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) and alpha-1 antitrypsin (AAT) deficiency are two of the commonest genetic diseases affecting the Caucasian population. Neutrophil-mediated inflammation due to protease-antiprotease imbalance leads to progressive pulmonary involvement in both diseases. The aim of this study was to investigate the prevalence of AAT deficiency in CF adults. A prospective study enrolling CF adults was conducted at the Adult CF Center based in Milan from January 2018 to March 2019. Patients were tested for AAT serum protein quantification and expanded genotyping characterization of SERPINA1 during clinical stability. Genotyping characterization of SERPIN1 was compared to a control population of 2848 Caucasian individuals with the same geographical origin and similar demographic characteristics. Among 173 patients included in the study, the prevalence of AAT deficiency was 0. Genotype analysis was piMM in 166 (94.9%) patients and piMS in 9 patients (5.1%), respectively. No differences in terms of genotype characterization were found between the CF population and the control population. These data show that AAT deficiency is not common among adults with CF.
Collapse
|
20
|
Serban KA, Pratte KA, Strange C, Sandhaus RA, Turner AM, Beiko T, Spittle DA, Maier L, Hamzeh N, Silverman EK, Hobbs BD, Hersh CP, DeMeo DL, Cho MH, Bowler RP. Unique and shared systemic biomarkers for emphysema in Alpha-1 Antitrypsin deficiency and chronic obstructive pulmonary disease. EBioMedicine 2022; 84:104262. [PMID: 36155958 PMCID: PMC9507992 DOI: 10.1016/j.ebiom.2022.104262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alpha-1 Antitrypsin (AAT) deficiency (AATD), the most common genetic cause of emphysema presents with unexplained phenotypic heterogeneity in affected subjects. Our objectives to identify unique and shared AATD plasma biomarkers with chronic obstructive pulmonary disease (COPD) may explain AATD phenotypic heterogeneity. METHODS The plasma or serum of 5,924 subjects from four AATD and COPD cohorts were analyzed on SomaScan V4.0 platform. Using multivariable linear regression, inverse variance random-effects meta-analysis, and Least Absolute Shrinkage and Selection Operator (LASSO) regression we tested the association between 4,720 individual proteins or combined in a protein score with emphysema measured by 15th percentile lung density (PD15) or diffusion capacity (DLCO) in distinct AATD genotypes (Pi*ZZ, Pi*SZ, Pi*MZ) and non-AATD, PiMM COPD subjects. AAT SOMAmer accuracy for identifying AATD was tested using receiver operating characteristic curve analysis. FINDINGS In PiZZ AATD subjects, 2 unique proteins were associated with PD15 and 98 proteins with DLCO. Of those, 68 were also associated with DLCO in COPD also and enriched for three cellular component pathways: insulin-like growth factor, lipid droplet, and myosin complex. PiMZ AATD subjects shared similar proteins associated with DLCO as COPD subjects. Our emphysema protein score included 262 SOMAmers and predicted emphysema in AATD and COPD subjects. SOMAmer AAT level <7.99 relative fluorescence unit (RFU) had 100% sensitivity and specificity for identifying Pi*ZZ, but it was lower for other AATD genotypes. INTERPRETATION Using SomaScan, we identified unique and shared plasma biomarkers between AATD and COPD subjects and generated a protein score that strongly associates with emphysema in COPD and AATD. Furthermore, we discovered unique biomarkers associated with DLCO and emphysema in PiZZ AATD. FUNDING This work was supported by a grant from the Alpha-1 Foundation to RPB. COPDGene was supported by Award U01 HL089897 and U01 HL089856 from the National Heart, Lung, and Blood Institute. Proteomics for COPDGene was supported by NIH 1R01HL137995. GRADS was supported by Award U01HL112707, U01 HL112695 from the National Heart, Lung, and Blood Institute, and UL1TRR002535 to CCTSI; QUANTUM-1 was supported by the National Heart Lung and Blood Institute, the Office of Rare Diseases through the Rare Lung Disease Clinical Research Network (1 U54 RR019498-01, Trapnell PI), and the Alpha-1 Foundation. COPDGene is also supported by the COPD Foundation through contributions made to an Industry Advisory Board that has included AstraZeneca, Bayer Pharmaceuticals, Boehringer-Ingelheim, Genentech, GlaxoSmithKline, Novartis, Pfizer, and Sunovion.
Collapse
Affiliation(s)
- K A Serban
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, United States.
| | - K A Pratte
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States
| | - C Strange
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - R A Sandhaus
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States
| | - A M Turner
- Institute for Applied Health Research, University of Birmingham, Birmingham, UK
| | - T Beiko
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - D A Spittle
- Institute of Inflammation and Aging, University of Birmingham, UK
| | - L Maier
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, United States
| | - N Hamzeh
- Pulmonary, Critical Care, Allergy and Sleep Medicine, University of Iowa, Iowa City, IA, United States
| | - E K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - B D Hobbs
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - C P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - D L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - M H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - R P Bowler
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, United States.
| |
Collapse
|
21
|
Wettstein L, Immenschuh P, Weil T, Conzelmann C, Almeida‐Hernández Y, Hoffmann M, Kempf A, Nehlmeier I, Lotke R, Petersen M, Stenger S, Kirchhoff F, Sauter D, Pöhlmann S, Sanchez‐Garcia E, Münch J. Native and activated antithrombin inhibits TMPRSS2 activity and SARS-CoV-2 infection. J Med Virol 2022; 95:e28124. [PMID: 36056630 PMCID: PMC9538173 DOI: 10.1002/jmv.28124] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 01/11/2023]
Abstract
Host cell proteases such as TMPRSS2 are critical determinants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tropism and pathogenesis. Here, we show that antithrombin (AT), an endogenous serine protease inhibitor regulating coagulation, is a broad-spectrum inhibitor of coronavirus infection. Molecular docking and enzyme activity assays demonstrate that AT binds and inhibits TMPRSS2, a serine protease that primes the Spike proteins of coronaviruses for subsequent fusion. Consequently, AT blocks entry driven by the Spikes of SARS-CoV, MERS-CoV, hCoV-229E, SARS-CoV-2 and its variants of concern including Omicron, and suppresses lung cell infection with genuine SARS-CoV-2. Thus, AT is an endogenous inhibitor of SARS-CoV-2 that may be involved in COVID-19 pathogenesis. We further demonstrate that activation of AT by anticoagulants, such as heparin or fondaparinux, increases the anti-TMPRSS2 and anti-SARS-CoV-2 activity of AT, suggesting that repurposing of native and activated AT for COVID-19 treatment should be explored.
Collapse
Affiliation(s)
- Lukas Wettstein
- Institute of Molecular VirologyUlm University Medical CenterUlmGermany
| | | | - Tatjana Weil
- Institute of Molecular VirologyUlm University Medical CenterUlmGermany
| | - Carina Conzelmann
- Institute of Molecular VirologyUlm University Medical CenterUlmGermany
| | - Yasser Almeida‐Hernández
- Computational Biochemistry, Center of Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center‐Leibniz Institute for Primate ResearchGöttingenGermany,Faculty of Biology and PsychologyGeorg‐August‐UniversityGöttingenGermany
| | - Amy Kempf
- Infection Biology Unit, German Primate Center‐Leibniz Institute for Primate ResearchGöttingenGermany,Faculty of Biology and PsychologyGeorg‐August‐UniversityGöttingenGermany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center‐Leibniz Institute for Primate ResearchGöttingenGermany
| | - Rishikesh Lotke
- Institute for Medical Virology and Epidemiology of Viral DiseasesUniversity Hospital TübingenTübingenGermany
| | - Moritz Petersen
- Institute for Medical Virology and Epidemiology of Viral DiseasesUniversity Hospital TübingenTübingenGermany
| | - Steffen Stenger
- Institute for Microbiology and HygieneUlm University Medical CenterUlmGermany
| | - Frank Kirchhoff
- Institute of Molecular VirologyUlm University Medical CenterUlmGermany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral DiseasesUniversity Hospital TübingenTübingenGermany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center‐Leibniz Institute for Primate ResearchGöttingenGermany,Faculty of Biology and PsychologyGeorg‐August‐UniversityGöttingenGermany
| | - Elsa Sanchez‐Garcia
- Computational Biochemistry, Center of Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| | - Jan Münch
- Institute of Molecular VirologyUlm University Medical CenterUlmGermany
| |
Collapse
|
22
|
Mornex JF, Balduyck M, Bouchecareilh M, Cuvelier A, Epaud R, Kerjouan M, Le Rouzic O, Pison C, Plantier L, Pujazon MC, Reynaud-Gaubert M, Toutain A, Trumbic B, Willemin MC, Zysman M, Brun O, Campana M, Chabot F, Chamouard V, Dechomet M, Fauve J, Girerd B, Gnakamene C, Lefrançois S, Lombard JN, Maitre B, Maynié-François C, Moerman A, Payancé A, Reix P, Revel D, Revel MP, Schuers M, Terrioux P, Theron D, Willersinn F, Cottin V, Mal H. [French clinical practice guidelines for the diagnosis and management of lung disease with alpha 1-antitrypsin deficiency]. Rev Mal Respir 2022; 39:633-656. [PMID: 35906149 DOI: 10.1016/j.rmr.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Affiliation(s)
- J-F Mornex
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, 69007 Lyon, France; Centre de référence coordonnateur des maladies pulmonaires rares, hospices civils de Lyon, hôpital Louis-Pradel, service de pneumologie, 69500 Bron, France.
| | - M Balduyck
- CHU de Lille, centre de biologie pathologie, laboratoire de biochimie et biologie moléculaire HMNO, faculté de pharmacie, EA 7364 RADEME, université de Lille, service de biochimie et biologie moléculaire, Lille, France
| | - M Bouchecareilh
- Université de Bordeaux, CNRS, Inserm U1053 BaRITon, Bordeaux, France
| | - A Cuvelier
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU de Rouen, Rouen, France; Groupe de recherche sur le handicap ventilatoire et neurologique (GRHVN), université Normandie Rouen, Rouen, France
| | - R Epaud
- Centre de références des maladies respiratoires rares, site de Créteil, Créteil, France
| | - M Kerjouan
- Service de pneumologie, CHU Pontchaillou, Rennes, France
| | - O Le Rouzic
- CHU Lille, service de pneumologie et immuno-allergologie, Lille, France; Université de Lille, CNRS, Inserm, institut Pasteur de Lille, U1019, UMR 9017, CIIL, OpInfIELD team, Lille, France
| | - C Pison
- Service de pneumologie physiologie, pôle thorax et vaisseaux, CHU de Grenoble, Grenoble, France; Université Grenoble Alpes, Saint-Martin-d'Hères, France
| | - L Plantier
- Service de pneumologie et explorations fonctionnelles respiratoires, CHRU de Tours, Tours, France; Université de Tours, CEPR, Inserm UMR1100, Tours, France
| | - M-C Pujazon
- Service de pneumologie et allergologie, pôle clinique des voies respiratoires, hôpital Larrey, Toulouse, France
| | - M Reynaud-Gaubert
- Service de pneumologie, centre de compétence pour les maladies pulmonaires rares, AP-HM, CHU Nord, Marseille, France; Aix-Marseille université, IHU-Méditerranée infection, Marseille, France
| | - A Toutain
- Service de génétique, CHU de Tours, Tours, France; UMR 1253, iBrain, université de Tours, Inserm, Tours, France
| | | | - M-C Willemin
- Service de pneumologie et oncologie thoracique, CHU d'Angers, hôpital Larrey, Angers, France
| | - M Zysman
- Service de pneumologie, CHU Haut-Lévèque, Bordeaux, France; Université de Bordeaux, centre de recherche cardiothoracique, Inserm U1045, CIC 1401, Pessac, France
| | - O Brun
- Centre de pneumologie et d'allergologie respiratoire, Perpignan, France
| | - M Campana
- Service de pneumologie, CHR d'Orléans, Orléans, France
| | - F Chabot
- Département de pneumologie, CHRU de Nancy, Vandœuvre-lès-Nancy, France; Inserm U1116, université de Lorraine, Vandœuvre-lès-Nancy, France
| | - V Chamouard
- Service pharmaceutique, hôpital cardiologique, GHE, HCL, Bron, France
| | - M Dechomet
- Service d'immunologie biologique, centre de biologie sud, centre hospitalier Lyon Sud, HCL, Pierre-Bénite, France
| | - J Fauve
- Cabinet médical, Bollène, France
| | - B Girerd
- Université Paris-Saclay, faculté de médecine, Le Kremlin-Bicêtre, France; AP-HP, centre de référence de l'hypertension pulmonaire, service de pneumologie et soins intensifs respiratoires, hôpital Bicêtre, Le Kremlin-Bicêtre, France; Inserm UMR_S 999, hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - C Gnakamene
- Service de pneumologie, CH de Montélimar, GH Portes de Provence, Montélimar, France
| | | | | | - B Maitre
- Service de pneumologie, centre hospitalier intercommunal, Créteil, France; Inserm U952, UFR de santé, université Paris-Est Créteil, Créteil, France
| | - C Maynié-François
- Université de Lyon, collège universitaire de médecine générale, Lyon, France; Université Claude-Bernard Lyon 1, laboratoire de biométrie et biologie évolutive, UMR5558, Villeurbanne, France
| | - A Moerman
- CHRU de Lille, hôpital Jeanne-de-Flandre, Lille, France; Cabinet de médecine générale, Lille, France
| | - A Payancé
- Service d'hépatologie, CHU Beaujon, AP-HP, Clichy, France; Filière de santé maladies rares du foie de l'adulte et de l'enfant (FilFoie), CHU Saint-Antoine, Paris, France
| | - P Reix
- Service de pneumologie pédiatrique, allergologie, mucoviscidose, hôpital Femme-Mère-Enfant, HCL, Bron, France; UMR 5558 CNRS équipe EMET, université Claude-Bernard Lyon 1, Villeurbanne, France
| | - D Revel
- Université Claude-Bernard Lyon 1, Lyon, France; Hospices civils de Lyon, Lyon, France
| | - M-P Revel
- Université Paris Descartes, Paris, France; Service de radiologie, hôpital Cochin, AP-HP, Paris, France
| | - M Schuers
- Université de Rouen Normandie, département de médecine générale, Rouen, France; Sorbonne université, LIMICS U1142, Paris, France
| | | | - D Theron
- Asten santé, Isneauville, France
| | | | - V Cottin
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, 69007 Lyon, France; Centre de référence coordonnateur des maladies pulmonaires rares, hospices civils de Lyon, hôpital Louis-Pradel, service de pneumologie, 69500 Bron, France
| | - H Mal
- Service de pneumologie B, hôpital Bichat-Claude-Bernard, AP-HP, Paris, France; Inserm U1152, université Paris Diderot, site Xavier Bichat, Paris, France
| |
Collapse
|
23
|
Secretion of functional α1-antitrypsin is cell type dependent: Implications for intramuscular delivery for gene therapy. Proc Natl Acad Sci U S A 2022; 119:e2206103119. [PMID: 35901208 PMCID: PMC9351467 DOI: 10.1073/pnas.2206103119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Heterologous expression of proteins is used widely for the biosynthesis of biologics, many of which are secreted from cells. In addition, gene therapy and messenger RNA (mRNA) vaccines frequently direct the expression of secretory proteins to nonnative host cells. Consequently, it is crucial to understand the maturation and trafficking of proteins in a range of host cells including muscle cells, a popular therapeutic target due to the ease of accessibility by intramuscular injection. Here, we analyzed the production efficiency for α1-antitrypsin (AAT) in Chinese hamster ovary cells, commonly used for biotherapeutic production, and myoblasts (embryonic progenitor cells of muscle cells) and compared it to the production in the major natural cells, liver hepatocytes. AAT is a target protein for gene therapy to address pathologies associated with insufficiencies in native AAT activity or production. AAT secretion and maturation were most efficient in hepatocytes. Myoblasts were the poorest of the cell types tested; however, secretion of active AAT was significantly augmented in myoblasts by treatment with the proteostasis regulator suberoylanilide hydroxamic acid, a histone deacetylase inhibitor. These findings were extended and validated in myotubes (mature muscle cells) where AAT was transduced using an adeno-associated viral capsid transduction method used in gene therapy clinical trials. Overall, our study sheds light on a possible mechanism to enhance the efficacy of gene therapy approaches for AAT and, moreover, may have implications for the production of proteins from mRNA vaccines, which rely on the expression of viral glycoproteins in nonnative host cells upon intramuscular injection.
Collapse
|
24
|
Campos MA, Geraghty P. Cytokine Regulation by Alpha-1 Antitrypsin Therapy: A Pathway Analysis of a Pilot Clinical Trial. Am J Respir Cell Mol Biol 2022; 66:697-700. [PMID: 35648091 DOI: 10.1165/rcmb.2021-0503le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Patrick Geraghty
- State University of New York Downstate Medical Center Brooklyn, New York
| |
Collapse
|
25
|
McEnery T, White MM, Gogoi D, Coleman O, Bergin D, Jundi B, Flannery R, Alsaif FAT, Landers SA, Casey M, Dunlea D, Meleady P, McElvaney NG, Reeves EP. Alpha-1 Antitrypsin Therapy Modifies Neutrophil Adhesion in Patients with Obstructive Lung Disease. Am J Respir Cell Mol Biol 2022; 67:76-88. [PMID: 35507773 DOI: 10.1165/rcmb.2021-0433oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Alpha-1 antitrypsin (AAT) deficiency (AATD) is characterized by neutrophil-dominated inflammation resulting in emphysema. The cholesterol-rich neutrophil outer plasma membrane plays a central role in adhesion and subsequent transmigration to underlying tissues. This study aimed to investigate mechanisms of increased neutrophil adhesion in AATD, and whether AAT augmentation therapy abrogates this effect. Plasma and blood neutrophils were donated by healthy controls (n=20), AATD (n=30) and AATD patients post AAT augmentation therapy (n=6). Neutrophil membrane protein expression was investigated using liquid chromatography-tandem mass spectrometry. The effect of once weekly intravenous AAT augmentation therapy was assessed by ELISAs, and calcium fluorometric, μ-calpain and cell adhesion assays. Decreased neutrophil plasma membrane cholesterol content (P=0.03), yet increased abundance of integrin alpha-M (fold change 1.91), integrin alpha-L (fold change 3.76) and cytoskeletal adaptor proteins including talin-1 (fold change 4.04), were detected on AATD neutrophil plasma membrane fractions. The described inflammatory induced structural changes were a result of >2 fold increased cytosolic calcium levels (P=0.02), leading to significant calcium dependent μ-calpain activity (3.5 fold change, P=0.005), resulting in proteolysis of the membrane cholesterol trafficking protein caveolin-1. Treatment of AAT-deficient individuals with AAT augmentation therapy resulted in increased caveolin-1 and membrane cholesterol content (111.8 ± 15.5 vs 64.18 ± 7.8 µg/ 2x107 cells pre- and post-treatment respectively, P=0.02), with concurrent decreased neutrophil integrin expression and adhesion. Results demonstrate an auxiliary benefit of AAT augmentation therapy, evident by a decrease in circulating inflammation and controlled neutrophil adhesion.
Collapse
Affiliation(s)
- Tom McEnery
- Royal College of Surgeons in Ireland, Respiratory Medicine, Dublin, Ireland
| | - Michelle M White
- Royal College of Surgeons in Ireland, Respiratory Research Division - Dept of Medicine, Dublin, Ireland
| | - Debananda Gogoi
- Royal College of Surgeons in Ireland, Respiratory Research Division - Dept of Medicine, Dublin, Ireland
| | | | - David Bergin
- Royal College of Surgeons in Ireland, Respiratory Research Division - Dept of Medicine, Dublin, Ireland
| | - Bakr Jundi
- Brigham and Women's Hospital, 1861, Division of Pulmonary and Critical Care medicine, Boston, Massachusetts, United States
| | - Ryan Flannery
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fatima Abbas T Alsaif
- Royal College of Surgeons in Ireland, Respiratory Research Division - Dept of Medicine, Dublin, Ireland
| | - Sarah A Landers
- Royal College of Surgeons in Ireland, Respiratory Research Division - Dept of Medicine, Dublin, Ireland
| | - Michelle Casey
- Royal College of Surgeons in Ireland, Respiratory Research Division - Dept of Medicine, Dublin, Ireland
| | - Danielle Dunlea
- Royal College of Surgeons in Ireland, Respiratory Research Division - Dept of Medicine, Dublin, Ireland
| | | | | | - Emer P Reeves
- Royal College of Surgeons in Ireland, Respiratory Research Division - Dept of Medicine, Dublin, Ireland;
| |
Collapse
|
26
|
Segal L, Lewis EC. The Lipid Ties of α1-antitrypsin: Structural and Functional Aspects. Cell Immunol 2022; 375:104528. [DOI: 10.1016/j.cellimm.2022.104528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 01/01/2023]
|
27
|
McElvaney OJ, McEvoy NL, Boland F, McElvaney OF, Hogan G, Donnelly K, Friel O, Browne E, Fraughen DD, Murphy MP, Clarke J, Choileáin ON, O'Connor E, McGuinness R, Boylan M, Kelly A, Hayden JC, Collins AM, Cullen A, Hyland D, Carroll TP, Geoghegan P, Laffey JG, Hennessy M, Martin-Loeches I, McElvaney NG, Curley GF. A randomized, double-blind, placebo-controlled trial of intravenous alpha-1 antitrypsin for acute respiratory distress syndrome secondary to COVID-19. MED 2022; 3:233-248.e6. [PMID: 35291694 PMCID: PMC8913266 DOI: 10.1016/j.medj.2022.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
Background Patients with severe coronavirus disease 2019 (COVID-19) develop a febrile pro-inflammatory cytokinemia with accelerated progression to acute respiratory distress syndrome (ARDS). Here we report the results of a phase 2, multicenter, randomized, double-blind, placebo-controlled trial of intravenous (IV) plasma-purified alpha-1 antitrypsin (AAT) for moderate to severe ARDS secondary to COVID-19 (EudraCT 2020-001391-15). Methods Patients (n = 36) were randomized to receive weekly placebo, weekly AAT (Prolastin, Grifols, S.A.; 120 mg/kg), or AAT once followed by weekly placebo. The primary endpoint was the change in plasma interleukin (IL)-6 concentration at 1 week. In addition to assessing safety and tolerability, changes in plasma levels of IL-1β, IL-8, IL-10, and soluble tumor necrosis factor receptor 1 (sTNFR1) and clinical outcomes were assessed as secondary endpoints. Findings Treatment with IV AAT resulted in decreased inflammation and was safe and well tolerated. The study met its primary endpoint, with decreased circulating IL-6 concentrations at 1 week in the treatment group. This was in contrast to the placebo group, where IL-6 was increased. Similarly, plasma sTNFR1 was substantially decreased in the treatment group while remaining unchanged in patients receiving placebo. IV AAT did not definitively reduce levels of IL-1β, IL-8, and IL-10. No difference in mortality or ventilator-free days was observed between groups, although a trend toward decreased time on ventilator was observed in AAT-treated patients. Conclusions In patients with COVID-19 and moderate to severe ARDS, treatment with IV AAT was safe, feasible, and biochemically efficacious. The data support progression to a phase 3 trial and prompt further investigation of AAT as an anti-inflammatory therapeutic. Funding ECSA-2020-009; Elaine Galwey Research Bursary.
Collapse
Affiliation(s)
- Oliver J McElvaney
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| | - Natalie L McEvoy
- Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fiona Boland
- Data Science Centre, Division of Biostatistics and Population Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Oisín F McElvaney
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| | - Grace Hogan
- Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | - Daniel D Fraughen
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| | - Mark P Murphy
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jennifer Clarke
- Beaumont Hospital, Dublin, Ireland
- Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | - John C Hayden
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ann M Collins
- RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Ailbhe Cullen
- RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Deirdre Hyland
- RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Tomás P Carroll
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - John G Laffey
- Department of Anaesthesia, Galway University Hospitals, SAOLTA University Health Group, Galway, Ireland
| | - Martina Hennessy
- Department of Critical Care Medicine, St. James' Hospital, Dublin, Ireland
| | | | - Noel G McElvaney
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| | - Gerard F Curley
- Beaumont Hospital, Dublin, Ireland
- Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
28
|
A Review of Alpha-1 Antitrypsin Binding Partners for Immune Regulation and Potential Therapeutic Application. Int J Mol Sci 2022; 23:ijms23052441. [PMID: 35269582 PMCID: PMC8910375 DOI: 10.3390/ijms23052441] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Alpha-1 antitrypsin (AAT) is the canonical serine protease inhibitor of neutrophil-derived proteases and can modulate innate immune mechanisms through its anti-inflammatory activities mediated by a broad spectrum of protein, cytokine, and cell surface interactions. AAT contains a reactive methionine residue that is critical for its protease-specific binding capacity, whereby AAT entraps the protease on cleavage of its reactive centre loop, neutralises its activity by key changes in its tertiary structure, and permits removal of the AAT-protease complex from the circulation. Recently, however, the immunomodulatory role of AAT has come increasingly to the fore with several prominent studies focused on lipid or protein-protein interactions that are predominantly mediated through electrostatic, glycan, or hydrophobic potential binding sites. The aim of this review was to investigate the spectrum of AAT molecular interactions, with newer studies supporting a potential therapeutic paradigm for AAT augmentation therapy in disorders in which a chronic immune response is strongly linked.
Collapse
|
29
|
Wettstein L, Kirchhoff F, Münch J. The Transmembrane Protease TMPRSS2 as a Therapeutic Target for COVID-19 Treatment. Int J Mol Sci 2022; 23:1351. [PMID: 35163273 PMCID: PMC8836196 DOI: 10.3390/ijms23031351] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023] Open
Abstract
TMPRSS2 is a type II transmembrane protease with broad expression in epithelial cells of the respiratory and gastrointestinal tract, the prostate, and other organs. Although the physiological role of TMPRSS2 remains largely elusive, several endogenous substrates have been identified. TMPRSS2 serves as a major cofactor in SARS-CoV-2 entry, and primes glycoproteins of other respiratory viruses as well. Consequently, inhibiting TMPRSS2 activity is a promising strategy to block viral infection. In this review, we provide an overview of the role of TMPRSS2 in the entry processes of different respiratory viruses. We then review the different classes of TMPRSS2 inhibitors and their clinical development, with a focus on COVID-19 treatment.
Collapse
Affiliation(s)
| | | | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (L.W.); (F.K.)
| |
Collapse
|
30
|
Augmentation therapy with human alpha-1-proteinase inhibitor reduces exacerbations in patient with bronchiectasis and alpha-1-antitrypsin deficiency. Respir Med Case Rep 2022; 39:101740. [PMID: 36161236 PMCID: PMC9489489 DOI: 10.1016/j.rmcr.2022.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
|
31
|
Hawkins P, McEnery T, Gabillard-Lefort C, Bergin DA, Alfawaz B, Shutchaidat V, Meleady P, Henry M, Coleman O, Murphy M, McElvaney NG, Reeves EP. In vitro and in vivo modulation of NADPH oxidase activity and reactive oxygen species production in human neutrophils by α 1-antitrypsin. ERJ Open Res 2021; 7:00234-2021. [PMID: 34881324 PMCID: PMC8645872 DOI: 10.1183/23120541.00234-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress from innate immune cells is a driving mechanism that underlies COPD pathogenesis. Individuals with α-1 antitrypsin (AAT) deficiency (AATD) have a dramatically increased risk of developing COPD. To understand this further, the aim of this study was to investigate whether AATD presents with altered neutrophil NADPH oxidase activation, due to the specific lack of plasma AAT. Experiments were performed using circulating neutrophils isolated from healthy controls and individuals with AATD. Superoxide anion (O2−) production was determined from the rate of reduction of cytochrome c. Quantification of membrane NADPH oxidase subunits was performed by mass spectrometry and Western blot analysis. The clinical significance of our in vitro findings was assessed in patients with AATD and severe COPD receiving intravenous AAT replacement therapy. In vitro, AAT significantly inhibited O2− production by stimulated neutrophils and suppressed receptor stimulation of cyclic adenosine monophosphate and extracellular signal-regulated kinase (ERK)1/2 phosphorylation. In addition, AAT reduced plasma membrane translocation of cytosolic phox components of the NADPH oxidase. Ex vivo, AATD neutrophils demonstrated increased plasma membrane-associated p67phox and p47phox and significantly increased O2− production. The described variance in phox protein membrane assembly was resolved post-AAT augmentation therapy in vivo, the effects of which significantly reduced AATD neutrophil O2− production to that of healthy control cells. These results expand our knowledge on the mechanism of neutrophil-driven airways disease associated with AATD. Therapeutic AAT augmentation modified neutrophil NADPH oxidase assembly and reactive oxygen species production, with implications for clinical use in conditions in which oxidative stress plays a pathogenic role. Circulating neutrophils in COPD due to α1-antitrypsin deficiency illustrate increased NADPH oxidase assembly and reactive oxygen species production, a defect corrected by α1-antitrypsin augmentation therapyhttps://bit.ly/38NNTzM
Collapse
Affiliation(s)
- Padraig Hawkins
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Thomas McEnery
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Claudie Gabillard-Lefort
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - David A Bergin
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Bader Alfawaz
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Vipatsorn Shutchaidat
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Paula Meleady
- National Institute for Cellular Biology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Michael Henry
- National Institute for Cellular Biology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Orla Coleman
- National Institute for Cellular Biology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Mark Murphy
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,These authors contributed equally
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,These authors contributed equally
| |
Collapse
|
32
|
Chen YH, Cheadle CE, Rice LV, Pfeffer PE, Dimeloe S, Gupta A, Bush A, Gooptu B, Hawrylowicz CM. The Induction of Alpha-1 Antitrypsin by Vitamin D in Human T Cells Is TGF-β Dependent: A Proposed Anti-inflammatory Role in Airway Disease. Front Nutr 2021; 8:667203. [PMID: 34458299 PMCID: PMC8397538 DOI: 10.3389/fnut.2021.667203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Vitamin D upregulates anti-inflammatory and antimicrobial pathways that promote respiratory health. Vitamin D synthesis is initiated following skin exposure to sunlight, however nutritional supplementation can be required to address deficiency, for example during the winter months or due to cultural constraints. We recently reported that 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) treatment induced alpha-1 antitrypsin (AAT) expression in CD4+, but not CD8+ T cells, with evidence supporting an immunoregulatory role. Research Question: To understand the relationship between vitamin D, lung AAT levels and T lymphocytes further we investigated whether TGF-β is required as a co-factor for 1,25(OH)2D3-induced upregulation of AAT by vitamin D in CD8+ T cells in vitro and correlated circulating vitamin D levels with lung AAT levels in vivo. Results: 1,25(OH)2D3 in combination with TGF-β1 increased AAT expression by CD8+ T cells, as well as VDR and RXRα gene expression, which may partly explain the requirement for TGF-β. CD4+ T cells may also require autocrine stimulation with TGF-β as a co-factor since 1,25(OH)2D3 was associated with increased TGF-β bioactivity and neutralisation of TGF-β partially abrogated 1,25(OH)2D3-induced SERPINA1 gene expression. Neither CD4+ nor CD8+ T cells responded to the circulating vitamin D precursor, 25-hydroxyvitamin D3 for induction of SERPINA1, suggesting that local generation of 1,25(OH)2D3 is required. Transcriptional gene profiling studies previously demonstrated that human bronchial epithelial cells rapidly increased TGF-β2 gene expression in response to 1,25(OH)2D3. Here, human epithelial cells responded to precursor 25(OH)D3 to increase bioactive TGF-β synthesis. CD8+ T cells responded comparably to TGF-β1 and TGF-β2 to increase 1,25(OH)2D3-induced AAT. However, CD8+ T cells from adults with AAT-deficiency, homozygous for the Z allele of SERPINA1, were unable to mount this response. AAT levels in the airways of children with asthma and controls correlated with circulating 25(OH)D3. Conclusions: Vitamin D increases AAT expression in human T cells and this response is impaired in T cells from individuals homozygous for the Z allele of SERPINA1 in a clinic population. Furthermore, a correlation between circulating vitamin D and airway AAT is reported. We propose that vitamin D-induced AAT contributes to local immunomodulation and airway health effects previously attributed to vitamin D.
Collapse
Affiliation(s)
- Yin-Huai Chen
- Peter Gorer Department of Immunobiology (Formerly Asthma, Allergy and Lung Biology), School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Charlotte E Cheadle
- Peter Gorer Department of Immunobiology (Formerly Asthma, Allergy and Lung Biology), School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,Medical Research Council and Asthma UK Centre for Allergic Mechanisms of Asthma, Guy's Hospital, King's College London, London, United Kingdom
| | - Louise V Rice
- Peter Gorer Department of Immunobiology (Formerly Asthma, Allergy and Lung Biology), School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,Medical Research Council and Asthma UK Centre for Allergic Mechanisms of Asthma, Guy's Hospital, King's College London, London, United Kingdom
| | - Paul E Pfeffer
- Peter Gorer Department of Immunobiology (Formerly Asthma, Allergy and Lung Biology), School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,Medical Research Council and Asthma UK Centre for Allergic Mechanisms of Asthma, Guy's Hospital, King's College London, London, United Kingdom
| | - Sarah Dimeloe
- Peter Gorer Department of Immunobiology (Formerly Asthma, Allergy and Lung Biology), School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Atul Gupta
- Peter Gorer Department of Immunobiology (Formerly Asthma, Allergy and Lung Biology), School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,National Heart and Lung Institute, Royal Brompton & Harefield National Health Service Foundation Trust, London, United Kingdom
| | - Andrew Bush
- Centre for Paediatrics and Child Health, National Heart and Lung Institute, Imperial College, Royal Brompton Hospital, London, United Kingdom
| | - Bibek Gooptu
- Peter Gorer Department of Immunobiology (Formerly Asthma, Allergy and Lung Biology), School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,National Institute for Health Research Leicester Biomedical Research Centre-Respiratory and Leicester Institute of Structural & Chemical Biology, University of Leicester, Leicester, United Kingdom.,London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, London, United Kingdom
| | - Catherine M Hawrylowicz
- Peter Gorer Department of Immunobiology (Formerly Asthma, Allergy and Lung Biology), School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,Medical Research Council and Asthma UK Centre for Allergic Mechanisms of Asthma, Guy's Hospital, King's College London, London, United Kingdom
| |
Collapse
|
33
|
Rahaghi FF. Alpha-1 antitrypsin deficiency research and emerging treatment strategies: what's down the road? Ther Adv Chronic Dis 2021; 12_suppl:20406223211014025. [PMID: 34408832 PMCID: PMC8367209 DOI: 10.1177/20406223211014025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/08/2021] [Indexed: 01/29/2023] Open
Abstract
Intravenous infusion of alpha-1 antitrypsin (AAT) was approved by the United States Food and Drug Administration (FDA) to treat emphysema associated with AAT deficiency (AATD) in 1987 and there are now several FDA-approved therapy products on the market, all of which are derived from pooled human plasma. Intravenous AAT therapy has proven clinical efficacy in slowing the decline of lung function associated with AATD progression; however, it is only recommended for individuals with the most severe forms of AATD as there is a lack of evidence that this treatment is effective in treating wild-type heterozygotes (e.g., PI*MS and PI*MZ genotypes), for which the prevalence may be much higher than previously thought. There are large numbers of individuals that are currently left untreated despite displaying symptoms of AATD. Furthermore, not all countries offer AAT augmentation therapy due to its expense and inconvenience for patients. More cost-effective treatments are now being sought that show efficacy for less severe forms of AATD and many new therapeutic technologies are being investigated, such as gene repair and other interference strategies, as well as the use of chemical chaperones. New sources of AAT are also being investigated to ensure there are enough supplies to meet future demand, and new methods of assessing response to treatment are being evaluated. There is currently extensive research into AATD and its treatment, and this chapter aims to highlight important emerging treatment strategies that aim to improve the lives of patients with AATD.
Collapse
Affiliation(s)
- Franck F Rahaghi
- Advanced Lung Disease Clinic, Cleveland Clinic Florida, 2950 Cleveland Clinic Boulevard, Weston, FL 33331, USA
| |
Collapse
|
34
|
Barjaktarevic I, Campos M. Management of lung disease in alpha-1 antitrypsin deficiency: what we do and what we do not know. Ther Adv Chronic Dis 2021; 12_suppl:20406223211010172. [PMID: 34408831 PMCID: PMC8367208 DOI: 10.1177/20406223211010172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Management of lung disease in patients with alpha-1 antitrypsin deficiency (AATD) includes both non-pharmacological and pharmacological approaches. Lifestyle changes with avoidance of environmental pollutants, including tobacco smoke, improving exercise levels and nutritional status, all encompassed under a disease management program, are crucial pillars of AATD management. Non-pharmacological therapies follow conventional treatment guidelines for chronic obstructive pulmonary disease. Specific pharmacological treatment consists of administering exogenous alpha-1 antitrypsin (AAT) protein intravenously (augmentation therapy). This intervention raises AAT levels in serum and lung epithelial lining fluid, increases anti-elastase capacity, and decreases several inflammatory mediators in the lung. Radiologically, augmentation therapy reduces lung density loss over time, thus delaying disease progression. The effect of augmentation therapy on other lung-related outcomes, such as exacerbation frequency/length, quality of life, lung function decline, and mortality, are less clear and questions regarding dose optimization or route of administration are still debatable. This review discusses the rationale and available evidence for these interventions in AATD.
Collapse
Affiliation(s)
- Igor Barjaktarevic
- Division of Pulmonary and Critical Care
Medicine, David Geffen School of Medicine at University of California Los
Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Michael Campos
- Division of Pulmonary, Allergy, Critical Care
and Sleep Medicine, University of Miami School of Medicine, Miami, FL,
USA
| |
Collapse
|
35
|
The Course of AαVal541 as a Proteinase 3 Specific Neo-Epitope after Alpha-1-Antitrypsin Augmentation in Severe Deficient Patients. Int J Mol Sci 2021; 22:ijms22158031. [PMID: 34360796 PMCID: PMC8347723 DOI: 10.3390/ijms22158031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/19/2022] Open
Abstract
In alpha-1-antitrypsin deficiency (AATD), neutrophil serine proteases such as elastase and proteinase 3 (PR3) are insufficiently inhibited. A previous study in AATD patients showed a higher plasma level of the specific PR3-generated fibrinogen-derived peptide AαVal541, compared with healthy controls. Here, we analyzed the course of AαVal541 plasma levels during 4 weeks after a single iv dose of 240 mg/kg AAT in ten patients with genotype Z/Rare or Rare/Rare. To this end, we developed an immunoassay to measure AαVal541 in plasma and applied population pharmacokinetic modeling for AAT. The median AαVal541 plasma level before treatment was 140.2 nM (IQR 51.5–234.8 nM)). In five patients who received AAT for the first time, AαVal541 levels decreased to 20.6 nM (IQR 5.8–88.9 nM), and in five patients who already had received multiple infusions before, it decreased to 26.2 nM (IQR 22.31–35.0 nM). In 9 of 10 patients, AαVal541 levels were reduced to the median level of healthy controls (21.4 nM; IQR 16.7–30.1 nM). At 7–14 days after treatment, AαVal541 levels started to increase again in all patients. Our results show that fibrinopeptide AαVal541 may serve as a biochemical footprint to assess the efficacy of in vivo inhibition of PR3 activity in patients receiving intravenous AAT augmentation therapy.
Collapse
|
36
|
Voynow JA, Shinbashi M. Neutrophil Elastase and Chronic Lung Disease. Biomolecules 2021; 11:biom11081065. [PMID: 34439732 PMCID: PMC8394930 DOI: 10.3390/biom11081065] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Neutrophil elastase (NE) is a major inflammatory protease released by neutrophils and is present in the airways of patients with cystic fibrosis (CF), chronic obstructive pulmonary disease, non-CF bronchiectasis, and bronchopulmonary dysplasia. Although NE facilitates leukocyte transmigration to the site of infection and is required for clearance of Gram-negative bacteria, it also activates inflammation when released into the airway milieu in chronic inflammatory airway diseases. NE exposure induces airway remodeling with increased mucin expression and secretion and impaired ciliary motility. NE interrupts epithelial repair by promoting cellular apoptosis and senescence and it activates inflammation directly by increasing cytokine expression and release, and indirectly by triggering extracellular trap release and exosome release, which magnify protease activity and inflammation in the airway. NE inhibits innate immune function by digesting opsonins and opsonin receptors, degrading innate immune proteins such as lactoferrin, and inhibiting macrophage phagocytosis. Importantly, NE-directed therapies have not yet been effective in preventing the pathologic sequelae of NE exposure, but new therapies are being developed that offer both direct antiprotease activity and multifunctional anti-inflammatory properties.
Collapse
Affiliation(s)
- Judith A. Voynow
- Division of Pediatric Pulmonology, Children’s Hospital of Richmond at Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence:
| | - Meagan Shinbashi
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| |
Collapse
|
37
|
Schouten IG, Kasteleyn MJ, Tsonaka R, Bals R, Turner AC, Ferrarotti I, Corsico AG, Lara B, Miravitlles M, Stockley RA, Stolk J. Long-term effect of α 1-antitrypsin augmentation therapy on the decline of FEV 1 in deficient patients: an analysis of the AIR database. ERJ Open Res 2021; 7:00194-2021. [PMID: 34435030 PMCID: PMC8381156 DOI: 10.1183/23120541.00194-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/21/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Patients with ZZ (Glu342Lys) α-1-antitrypsin deficiency (ZZ-AATD) who received augmentation therapy with α-1-antitrypsin (AAT) in randomised controlled trials over 2-3 years failed to show a significant reduction of the annual decline of forced expiratory volume in 1 s (FEV1). METHODS To compare the trajectory of FEV1 change during 4 or more years in ZZ-AATD patients with emphysema receiving or not receiving intravenous augmentation therapy, a retrospective analysis of FEV1 values entered in the Alpha-1 International Registry (AIR) of ZZ-AATD patients from five different European countries (Germany, UK, Spain, Italy and the Netherlands) was performed. The post-bronchodilator FEV1 % predicted values for baseline and follow-up over time from patients were analysed using linear mixed effects models. RESULTS Data of 374 patients were analysed: 246 untreated and 128 treated with intravenous AAT augmentation therapy. The mean±sd follow-up duration of the untreated group was 8.60±3.34 years and 8.59±2.62 years for the treated group. The mixed effects model analysis showed a mean FEV1 decline of -0.931% predicted per year (95% CI -1.144 to -0.718) in the untreated group and a decline of -1.016% predicted per year (95% CI -1.319 to -0.7145) in the treated group. The likelihood ratio test showed no difference between the two groups (p=0.71). CONCLUSION In our study population, we could not detect a significant difference in the annual decline of FEV1 by AAT augmentation treatment over a mean period of 8.6 years. Other approaches are needed to validate any benefit of augmentation therapy.
Collapse
Affiliation(s)
- Iris G.M. Schouten
- Dept of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marise J. Kasteleyn
- Dept of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roula Tsonaka
- Dept of Advanced Data Management and Medical Statistics, Leiden University Medical Center, Leiden, the Netherlands
| | - Robert Bals
- Dept of Pulmonology, Hospital of the University of the Saarland, Homburg, Germany
- These authors are member of the AATD Core Network of European Reference Network LUNG
| | - Alice C. Turner
- University of Birmingham, Institute of Applied Health Research, Edgbaston, UK
| | - Ilaria Ferrarotti
- Fondazione IRCCS Policlinico San Matteo, Centro Diagnosi AATD – Clinica Malattie Apparato Respiratorio, Pavia, Italy
- These authors are member of the AATD Core Network of European Reference Network LUNG
| | - Angelo G. Corsico
- Fondazione IRCCS Policlinico San Matteo, Centro Diagnosi AATD – Clinica Malattie Apparato Respiratorio, Pavia, Italy
- These authors are member of the AATD Core Network of European Reference Network LUNG
| | - Beatriz Lara
- Dept of Respiratory Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Marc Miravitlles
- Pneumology Dept, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona, Spain
- These authors are member of the AATD Core Network of European Reference Network LUNG
- These authors contributed equally
| | - Robert A. Stockley
- Lung Investigation Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- These authors contributed equally
| | - Jan Stolk
- Dept of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
- These authors are member of the AATD Core Network of European Reference Network LUNG
- These authors contributed equally
| |
Collapse
|
38
|
Franciosi AN, Fraughen D, Carroll TP, McElvaney NG. Alpha-1 antitrypsin deficiency: clarifying the role of the putative protective threshold. Eur Respir J 2021; 59:13993003.01410-2021. [PMID: 34172471 DOI: 10.1183/13993003.01410-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 11/05/2022]
Abstract
AATD is the only readily identifiable monogenic cause of COPD. To date the only condition-specific treatment for AATD-associated COPD is weekly administration of intravenous purified pooled human AAT (IV-AAT). Uncertainties regarding which AATD genotypes should benefit from IV-AAT persist. IV-AAT is costly and involves weekly administration of a plasma product. Much of the risk stratification has been centred around the long-accepted hypothesis of a "putative protective threshold" of 11 µM (0.57 g·L-1) in serum. This hypothesis has become central to the paradigm of AATD care, though its derivation and accuracy for defining risk of disease remain unclear.We review the literature and examine the association between the 11 µM threshold and clinical outcomes to provide context and insight into the issues surrounding this topic.We found no data which demonstrates an increased risk of COPD dependent on the 11 µM threshold. Moreover, an abundance of recent clinical data examining this threshold refutes the hypothesis. Conversely, the use of 11 µM as a treatment target in appropriate ZZ individuals is supported by clinical evidence, although more refined dosing regimens are being explored.Continued use of the 11 µM threshold as a determinant of clinical risk is questionable, perpetuates inappropriate AAT-augmentation practices, may drive increased healthcare expenditure and should not be used as an indicator for commencing treatment.Genotype represents a more proven indicator of risk, with ZZ and rare ZZ-equivalent genotypes independently associated with COPD. New and better risk assessment models are needed to provide individuals diagnosed with AATD with reliable risk estimation and optimised treatment goals.
Collapse
Affiliation(s)
- Alessandro N Franciosi
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.,University of British Columbia, Vancouver, BC, Canada.,Share first authorship.,Performed the literature review and jointly prepared the manuscript
| | - Daniel Fraughen
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Medicine, Beaumont Hospital, Dublin, Ireland.,Share first authorship.,Performed the literature review and jointly prepared the manuscript
| | - Tomás P Carroll
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland .,Alpha-1 Foundation Ireland, Royal College of Surgeons in Ireland, Dublin, Ireland.,Provided data from the Irish National Targeted Detection Programme, edited the manuscript, and is the corresponding author
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Medicine, Beaumont Hospital, Dublin, Ireland.,Senior author and edited the final manuscript
| |
Collapse
|
39
|
McKelvey MC, Brown R, Ryan S, Mall MA, Weldon S, Taggart CC. Proteases, Mucus, and Mucosal Immunity in Chronic Lung Disease. Int J Mol Sci 2021; 22:5018. [PMID: 34065111 PMCID: PMC8125985 DOI: 10.3390/ijms22095018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulated protease activity has long been implicated in the pathogenesis of chronic lung diseases and especially in conditions that display mucus obstruction, such as chronic obstructive pulmonary disease, cystic fibrosis, and non-cystic fibrosis bronchiectasis. However, our appreciation of the roles of proteases in various aspects of such diseases continues to grow. Patients with muco-obstructive lung disease experience progressive spirals of inflammation, mucostasis, airway infection and lung function decline. Some therapies exist for the treatment of these symptoms, but they are unable to halt disease progression and patients may benefit from novel adjunct therapies. In this review, we highlight how proteases act as multifunctional enzymes that are vital for normal airway homeostasis but, when their activity becomes immoderate, also directly contribute to airway dysfunction, and impair the processes that could resolve disease. We focus on how proteases regulate the state of mucus at the airway surface, impair mucociliary clearance and ultimately, promote mucostasis. We discuss how, in parallel, proteases are able to promote an inflammatory environment in the airways by mediating proinflammatory signalling, compromising host defence mechanisms and perpetuating their own proteolytic activity causing structural lung damage. Finally, we discuss some possible reasons for the clinical inefficacy of protease inhibitors to date and propose that, especially in a combination therapy approach, proteases represent attractive therapeutic targets for muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Michael C. McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| |
Collapse
|
40
|
α1-Antitrypsin: Key Player or Bystander in Acute Respiratory Distress Syndrome? Anesthesiology 2021; 134:792-808. [PMID: 33721888 DOI: 10.1097/aln.0000000000003727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Acute respiratory distress syndrome is characterized by hypoxemia, altered alveolar-capillary permeability, and neutrophil-dominated inflammatory pulmonary edema. Despite decades of research, an effective drug therapy for acute respiratory distress syndrome remains elusive. The ideal pharmacotherapy for acute respiratory distress syndrome should demonstrate antiprotease activity and target injurious inflammatory pathways while maintaining host defense against infection. Furthermore, a drug with a reputable safety profile, low possibility of off-target effects, and well-known pharmacokinetics would be desirable. The endogenous 52-kd serine protease α1-antitrypsin has the potential to be a novel treatment option for acute respiratory distress syndrome. The main function of α1-antitrypsin is as an antiprotease, targeting neutrophil elastase in particular. However, studies have also highlighted the role of α1-antitrypsin in the modulation of inflammation and bacterial clearance. In light of the current SARS-CoV-2 pandemic, the identification of a treatment for acute respiratory distress syndrome is even more pertinent, and α1-antitrypsin has been implicated in the inflammatory response to SARS-CoV-2 infection.
Collapse
|
41
|
Barjaktarevic I, Miravitlles M. Alpha-1 antitrypsin (AAT) augmentation therapy in individuals with the PI*MZ genotype: a pro/con debate on a working hypothesis. BMC Pulm Med 2021; 21:99. [PMID: 33757485 PMCID: PMC7989144 DOI: 10.1186/s12890-021-01466-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a significantly under-diagnosed genetic condition caused by reduced levels and/or functionality of alpha-1 antitrypsin (AAT), predisposing individuals to lung, liver or other systemic diseases. The management of individuals with the PI*MZ genotype, characterized by mild or moderate AAT deficiency, is less clear than of those with the most common severe deficiency genotype (PI*ZZ). Recent genetic data suggest that the PI*MZ genotype may be significantly more prevalent than currently thought. The only specific treatment for lung disease associated with severe AATD is the intravenous infusion of AAT augmentation therapy, which has been shown to slow disease progression in PI*ZZ individuals. There is no specific evidence for the clinical benefit of AAT therapy in PI*MZ individuals, and the risk of emphysema development in this group remains controversial. As such, current guidelines do not support the use of AAT augmentation in PI*MZ individuals. Here, we discuss the limited data on the PI*MZ genotype and offer pro and con perspectives on pursuing an AAT-specific therapeutic strategy in PI*MZ individuals with lung disease. Ultimately, further research to demonstrate the safety, risk/benefit balance and efficacy of AAT therapy in PI*MZ individuals is needed.
Collapse
Affiliation(s)
- Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall D'Hebron, Vall D'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| |
Collapse
|
42
|
Alpha-1 antitrypsin inhibits TMPRSS2 protease activity and SARS-CoV-2 infection. Nat Commun 2021; 12:1726. [PMID: 33741941 PMCID: PMC7979852 DOI: 10.1038/s41467-021-21972-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
SARS-CoV-2 is a respiratory pathogen and primarily infects the airway epithelium. As our knowledge about innate immune factors of the respiratory tract against SARS-CoV-2 is limited, we generated and screened a peptide/protein library derived from bronchoalveolar lavage for inhibitors of SARS-CoV-2 spike-driven entry. Analysis of antiviral fractions revealed the presence of α1-antitrypsin (α1AT), a highly abundant circulating serine protease inhibitor. Here, we report that α1AT inhibits SARS-CoV-2 entry at physiological concentrations and suppresses viral replication in cell lines and primary cells including human airway epithelial cultures. We further demonstrate that α1AT binds and inactivates the serine protease TMPRSS2, which enzymatically primes the SARS-CoV-2 spike protein for membrane fusion. Thus, the acute phase protein α1AT is an inhibitor of TMPRSS2 and SARS-CoV-2 entry, and may play an important role in the innate immune defense against the novel coronavirus. Our findings suggest that repurposing of α1AT-containing drugs has prospects for the therapy of COVID-19. Here, via screening of a polypeptide library from bronchoalveolar lavage, the authors identify and characterize α1-antitrypsin (α1AT) as SARS-CoV-2 inhibitor and show that α1AT binds and inactivates the serine protease TMPRSS2, which enzymatically primes the SARS-CoV-2 spike protein for membrane fusion.
Collapse
|
43
|
Ostermann L, Maus R, Stolper J, Schütte L, Katsarou K, Tumpara S, Pich A, Mueller C, Janciauskiene S, Welte T, Maus UA. Alpha-1 antitrypsin deficiency impairs lung antibacterial immunity in mice. JCI Insight 2021; 6:140816. [PMID: 33554955 PMCID: PMC7934856 DOI: 10.1172/jci.insight.140816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/17/2020] [Indexed: 01/05/2023] Open
Abstract
Alpha-1 antitrypsin (AAT) is a major inhibitor of serine proteases in mammals. Therefore, its deficiency leads to protease–antiprotease imbalance and a risk for developing lung emphysema. Although therapy with human plasma-purified AAT attenuates AAT deficiency–related emphysema, its impact on lung antibacterial immunity is poorly defined. Here, we examined the effect of AAT therapy on lung protective immunity in AAT-deficient (KO) mice challenged with Streptococcus pneumoniae. AAT-KO mice were highly susceptible to S. pneumoniae, as determined by severe lobar pneumonia and early mortality. Mechanistically, we found that neutrophil-derived elastase (NE) degraded the opsonophagocytically important collectins, surfactant protein A (SP-A) and D (SP-D), which was accompanied by significantly impaired lung bacterial clearance in S. pneumoniae–infected AAT-KO mice. Treatment of S. pneumoniae–infected AAT-KO mice with human AAT protected SP-A and SP-D from NE-mediated degradation and corrected the pulmonary pathology observed in these mice. Likewise, treatment with Sivelestat, a specific inhibitor of NE, also protected collectins from degradation and significantly decreased bacterial loads in S. pneumoniae–infected AAT-KO mice. Our findings show that NE is responsible for the degradation of lung SP-A and SP-D in AAT-KO mice affecting lung protective immunity in AAT deficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andreas Pich
- Institute of Toxicology and Core Facility Proteomics, Hannover Medical School, Hannover, Germany
| | - Christian Mueller
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sabina Janciauskiene
- Clinic for Pneumology, and.,German Center for Lung Research, partner site BREATH, Hannover, Germany
| | - Tobias Welte
- Clinic for Pneumology, and.,German Center for Lung Research, partner site BREATH, Hannover, Germany
| | - Ulrich A Maus
- Division of Experimental Pneumology.,German Center for Lung Research, partner site BREATH, Hannover, Germany
| |
Collapse
|
44
|
McNulty MJ, Silberstein DZ, Kuhn BT, Padgett HS, Nandi S, McDonald KA, Cross CE. Alpha-1 antitrypsin deficiency and recombinant protein sources with focus on plant sources: Updates, challenges and perspectives. Free Radic Biol Med 2021; 163:10-30. [PMID: 33279618 DOI: 10.1016/j.freeradbiomed.2020.11.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Alpha-1 antitrypsin deficiency (A1ATD) is an autosomal recessive disease characterized by low plasma levels of A1AT, a serine protease inhibitor representing the most abundant circulating antiprotease normally present at plasma levels of 1-2 g/L. The dominant clinical manifestations include predispositions to early onset emphysema due to protease/antiprotease imbalance in distal lung parenchyma and liver disease largely due to unsecreted polymerized accumulations of misfolded mutant A1AT within the endoplasmic reticulum of hepatocytes. Since 1987, the only FDA licensed specific therapy for the emphysema component has been infusions of A1AT purified from pooled human plasma at the 2020 cost of up to US $200,000/year with the risk of intermittent shortages. In the past three decades various, potentially less expensive, recombinant forms of human A1AT have reached early stages of development, one of which is just reaching the stage of human clinical trials. The focus of this review is to update strategies for the treatment of the pulmonary component of A1ATD with some focus on perspectives for therapeutic production and regulatory approval of a recombinant product from plants. We review other competitive technologies for treating the lung disease manifestations of A1ATD, highlight strategies for the generation of data potentially helpful for securing FDA Investigational New Drug (IND) approval and present challenges in the selection of clinical trial strategies required for FDA licensing of a New Drug Approval (NDA) for this disease.
Collapse
Affiliation(s)
- Matthew J McNulty
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - David Z Silberstein
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Brooks T Kuhn
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA
| | | | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Carroll E Cross
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA; Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
| |
Collapse
|
45
|
McElvaney OJ, O'Connor E, McEvoy NL, Fraughan DD, Clarke J, McElvaney OF, Gunaratnam C, O'Rourke J, Curley GF, McElvaney NG. Alpha-1 antitrypsin for cystic fibrosis complicated by severe cytokinemic COVID-19. J Cyst Fibros 2021; 20:31-35. [PMID: 33288475 PMCID: PMC7678455 DOI: 10.1016/j.jcf.2020.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/16/2020] [Accepted: 11/16/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND The clinical course of severe COVID-19 in cystic fibrosis (CF) is incompletely understood. We describe the use of alpha-1 antitrypsin (AAT) as a salvage therapy in a critically unwell patient with CF (PWCF) who developed COVID-19 while awaiting lung transplantation. METHODS IV AAT was administered at 120 mg/kg/week for 4 consecutive weeks. Levels of interleukin (IL)-1β, IL-6, IL-8, and soluble TNF receptor 1 (sTNFR1) were assessed at regular intervals in plasma, with IL-1β, IL-6, IL-8 and neutrophil elastase (NE) activity measured in airway secretions. Levels were compared to baseline and historic severe exacerbation measurements. RESULTS Systemic and airway inflammatory markers were increased compared to both prior exacerbation and baseline levels, in particular IL-6, IL-1β and NE activity. Following each AAT dose, rapid decreases in each inflammatory parameter were observed. These were matched by marked clinical and radiographic improvement. CONCLUSIONS The results support further investigation of AAT as a COVID-19 therapeutic, and re-exploration of its use in CF.
Collapse
Affiliation(s)
- Oliver J McElvaney
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland,Beaumont Hospital, Dublin, Ireland
| | | | - Natalie L McEvoy
- Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Jennifer Clarke
- Beaumont Hospital, Dublin, Ireland,Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Oisín F McElvaney
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | - Gerard F Curley
- Beaumont Hospital, Dublin, Ireland,Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Noel G McElvaney
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland,Beaumont Hospital, Dublin, Ireland,Corresponding author at: Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
46
|
Barrecheguren M, O'Hara K, Wilkens M, Boyd J, Kolda E, Lara B, Chorostowska-Wynimko J, Ferrarotti I, Chlumský J, Clarenbach C, Greulich T, Miravitlles M, Sucena M. Research priorities in α 1-antitrypsin deficiency: results of a patients' and healthcare providers' international survey from the EARCO Clinical Research Collaboration. ERJ Open Res 2020; 6:00523-2020. [PMID: 33447613 PMCID: PMC7792815 DOI: 10.1183/23120541.00523-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
α1-antitrypsin deficiency (AATD) is a rare and under-recognised genetic condition. Owing to its low prevalence, international initiatives are key for conducting high-quality research in the field. From July 2018 to December 2019, the European Alpha-1 Research Collaboration (EARCO) developed and conducted two surveys, one for healthcare providers and one for patients and caregivers, aiming to identify research priorities and barriers in access to treatment for AATD. A survey on 164 research questions was electronically sent to 230 AATD experts in Europe, and 94 completed surveys from 24 countries were received. The top research areas identified by healthcare providers were causes of variable progression and poor outcomes, improvement in diagnosis, initiation and optimal dosing of augmentation therapy and effectiveness of self-management interventions. During the same period, 438 surveys were completed by patients and caregivers from 26 countries. The top research areas identified were improving knowledge about AATD, in particular among general practitioners, access to AATD specialised centres and access to reliable, easy to understand information about living with AATD. Regarding barriers to treatment, participants from countries where augmentation therapy was reimbursed prioritised improving knowledge in AATD, while respondents in non-reimbursed countries regarded access to AATD augmentation therapy and to specialised centres as the most relevant. The main research and management priorities identified by healthcare providers and patients included understanding the natural history of AATD, improving information to physicians, improving access to specialised reference centres, personalising treatment and having equal opportunities for access to existing therapies. Surveys for patients and healthcare providers on research priorities in AATD, developed by the @EuroRespSoc CRC EARCO, show that international collaboration and engagement with patients are key development strategies needed for improvementhttps://bit.ly/2ItIzaW
Collapse
Affiliation(s)
- Miriam Barrecheguren
- Pneumology Dept, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | | | | | - Ewa Kolda
- Dept of Respiratory Medicine, Allergology and Pulmonary Oncology, Poznań University of Medical Sciences, Poznan, Poland
| | - Beatriz Lara
- Dept of Respiratory Medicine, University Hospitals of Coventry and Warwickshire, Coventry, UK
| | - Joanna Chorostowska-Wynimko
- Dept of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Ilaria Ferrarotti
- Dept of Internal Medicine and Therapeutics, Pneumology Unit, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Jan Chlumský
- Dept of Pneumology, Thomayer Hospital, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Timm Greulich
- Dept of Medicine, Pulmonary and Critical Care Medicine, University Medical Centre Giessen and Marburg, Philipps-University, Member of the German Centre for Lung Research (DZL), Marburg, Germany
| | - Marc Miravitlles
- Pneumology Dept, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maria Sucena
- Pulmonology Dept, Centro Hospitalar do Porto, Porto, Portugal
| |
Collapse
|
47
|
Santos G, Turner AM. Alpha-1 antitrypsin deficiency: an update on clinical aspects of diagnosis and management. Fac Rev 2020; 9:1. [PMID: 33659933 PMCID: PMC7886062 DOI: 10.12703/b/9-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Clinical heterogeneity has been demonstrated in alpha-1 antitrypsin deficiency (AATD), such that clinical suspicion plays an important role in its diagnosis. The PiZZ genotype is the most common severe deficiency genotype and so tends to result in the worst clinical presentation, hence it has been the major focus of research. However, milder genotypes, especially PiSZ and PiMZ, are also linked to the development of lung and liver disease, mainly when unhealthy behaviors are present, such as smoking and alcohol use. Monitoring and managing AATD patients remains an area of active research. Lung function tests or computed tomography (CT) densitometry may allow physicians to identify progressive disease during follow up of patients, with a view to decision making about AATD-specific therapy, like augmentation therapy, or eventually surgical procedures such as lung volume reduction or transplant. Different types of biological markers have been suggested for disease monitoring and therapy selection, although most need further investigation. Intravenous augmentation therapy reduces the progression of emphysema in PiZZ patients and is available in many European countries, but its effect in milder deficiency is less certain. AATD has also been suggested to represent a risk factor and trigger for pulmonary infections, like those induced by mycobacteria. We summarize the last 5-10 years' key findings in AATD diagnosis, assessment, and management, with a focus on milder deficiency variants.
Collapse
Affiliation(s)
- Gabriela Santos
- Pneumology Department, Hospital Garcia de Orta, Almada, Portugal
| | - Alice M Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
48
|
Martini F, De Mattei M, Contini C, Tognon MG. Potential Use of Alpha-1 Anti-trypsin in the Covid-19 Treatment. Front Cell Dev Biol 2020; 8:577528. [PMID: 33195215 PMCID: PMC7644540 DOI: 10.3389/fcell.2020.577528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Fernanda Martini
- Laboraotories of Cell Biology and Molecular Genetics, University of Ferrara, Ferrara, Italy
| | - Monica De Mattei
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Carlo Contini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro G. Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
49
|
Viglio S, Iadarola P, D’Amato M, Stolk J. Methods of Purification and Application Procedures of Alpha1 Antitrypsin: A Long-Lasting History. Molecules 2020; 25:E4014. [PMID: 32887469 PMCID: PMC7504755 DOI: 10.3390/molecules25174014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023] Open
Abstract
The aim of the present report is to review the literature addressing the methods developed for the purification of alpha1-antitrypsin (AAT) from the 1950s to the present. AAT is a glycoprotein whose main function is to protect tissues from human neutrophil elastase (HNE) and other proteases released by neutrophils during an inflammatory state. The lack of this inhibitor in human serum is responsible for the onset of alpha1-antitrypsin deficiency (AATD), which is a severe genetic disorder that affects lungs in adults and for which there is currently no cure. Being used, under special circumstances, as a medical treatment of AATD in the so-called "replacement" therapy (consisting in the intravenous infusion of the missing protein), AAT is a molecule with a lot of therapeutic importance. For this reason, interest in AAT purification from human plasma or its production in a recombinant version has grown considerably in recent years. This article retraces all technological advances that allowed the manufacturers to move from a few micrograms of partially purified AAT to several grams of highly purified protein. Moreover, the chronic augmentation and maintenance therapy in individuals with emphysema due to congenital AAT deficiency (current applications in the clinical setting) is also presented.
Collapse
Affiliation(s)
- Simona Viglio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (S.V.); (M.D.)
| | - Paolo Iadarola
- Department of Biology and Biotechnologies “L.Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Maura D’Amato
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (S.V.); (M.D.)
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, 2333 Leiden, The Netherlands;
| |
Collapse
|
50
|
Chan LW, Anahtar MN, Ong TH, Hern KE, Kunz RR, Bhatia SN. Engineering synthetic breath biomarkers for respiratory disease. NATURE NANOTECHNOLOGY 2020; 15:792-800. [PMID: 32690884 PMCID: PMC8173716 DOI: 10.1038/s41565-020-0723-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/02/2020] [Indexed: 05/10/2023]
Abstract
Human breath contains many volatile metabolites. However, few breath tests are currently used in the clinic to monitor disease due to bottlenecks in biomarker identification. Here we engineered breath biomarkers for respiratory disease by local delivery of protease-sensing nanoparticles to the lungs. The nanosensors shed volatile reporters upon cleavage by neutrophil elastase, an inflammation-associated protease with elevated activity in lung diseases such as bacterial infection and alpha-1 antitrypsin deficiency. After intrapulmonary delivery into mouse models with acute lung inflammation, the volatile reporters are released and expelled in breath at levels detectable by mass spectrometry. These breath signals can identify diseased mice with high sensitivity as early as 10 min after nanosensor administration. Using these nanosensors, we performed serial breath tests to monitor dynamic changes in neutrophil elastase activity during lung infection and to assess the efficacy of a protease inhibitor therapy targeting neutrophil elastase for the treatment of alpha-1 antitrypsin deficiency.
Collapse
Affiliation(s)
- Leslie W Chan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Melodi N Anahtar
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ta-Hsuan Ong
- Biological and Chemical Technologies Group, Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, USA
| | - Kelsey E Hern
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roderick R Kunz
- Biological and Chemical Technologies Group, Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|