1
|
Urban BC, Gonçalves ANA, Loukov D, Passos FM, Reiné J, Gonzalez-Dias P, Solórzano C, Mitsi E, Nikolaou E, O'Connor D, Collins AM, Adler H, Pollard A, Rylance J, Gordon SB, Jochems SP, Nakaya HI, Ferreira DM. Inflammation of the nasal mucosa is associated with susceptibility to experimental pneumococcal challenge in older adults. Mucosal Immunol 2024; 17:973-989. [PMID: 38950826 PMCID: PMC11464406 DOI: 10.1016/j.mucimm.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Streptococcus pneumoniae colonization in the upper respiratory tract is linked to pneumococcal disease development, predominantly affecting young children and older adults. As the global population ages and comorbidities increase, there is a heightened concern about this infection. We investigated the immunological responses of older adults to pneumococcal-controlled human infection by analyzing the cellular composition and gene expression in the nasal mucosa. Our comparative analysis with data from a concurrent study in younger adults revealed distinct gene expression patterns in older individuals susceptible to colonization, highlighted by neutrophil activation and elevated levels of CXCL9 and CXCL10. Unlike younger adults challenged with pneumococcus, older adults did not show recruitment of monocytes into the nasal mucosa following nasal colonization. However, older adults who were protected from colonization showed increased degranulation of cluster of differentiation 8+ T cells, both before and after pneumococcal challenge. These findings suggest age-associated cellular changes, in particular enhanced mucosal inflammation, that may predispose older adults to pneumococcal colonization.
Collapse
Affiliation(s)
- Britta C Urban
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - André N A Gonçalves
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Dessi Loukov
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Fernando M Passos
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jesús Reiné
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Patrícia Gonzalez-Dias
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Carla Solórzano
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Elena Mitsi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Elissavet Nikolaou
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Infection, Immunity and Global Health, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrea M Collins
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; University Hospital Aintree, Liverpool University Hospitals Trust, Liverpool, UK
| | - Hugh Adler
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Andrew Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jamie Rylance
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stephen B Gordon
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Malawi-Liverpool-Wellcome Clinical Research Programme, Blantyre, Malawi
| | - Simon P Jochems
- Leiden University Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Helder I Nakaya
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela M Ferreira
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
2
|
Mitsi E, Nikolaou E, Goncalves A, Blizard A, Hill H, Farrar M, Hyder-Wright A, Akeju O, Hamilton J, Howard A, Elterish F, Solorzano C, Robinson R, Reiné J, Collins AM, Gordon SB, Moxon RE, Weiser JN, Bogaert D, Ferreira DM. RSV and rhinovirus increase pneumococcal carriage acquisition and density, whereas nasal inflammation is associated with bacterial shedding. Cell Host Microbe 2024; 32:1608-1620.e4. [PMID: 39181126 DOI: 10.1016/j.chom.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/14/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
Epidemiological studies report the impact of co-infection with pneumococcus and respiratory viruses upon disease rates and outcomes, but their effect on pneumococcal carriage acquisition and bacterial load is scarcely described. Here, we assess this by combining natural viral infection with controlled human pneumococcal infection in 581 healthy adults screened for upper respiratory tract viral infection before intranasal pneumococcal challenge. Across all adults, respiratory syncytial virus (RSV) and rhinovirus asymptomatic infection confer a substantial increase in secondary infection with pneumococcus. RSV also has a major impact on pneumococcal density up to 9 days post challenge. We also study rates and kinetics of bacterial shedding through the nose and oral route in a subset. High levels of pneumococcal colonization density and nasal inflammation are strongly correlated with increased odds of nasal shedding as opposed to cough shedding. Protection against respiratory viral infections and control of pneumococcal density may contribute to preventing pneumococcal disease and reducing bacterial spread.
Collapse
Affiliation(s)
- Elena Mitsi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| | - Elissavet Nikolaou
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Andre Goncalves
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Annie Blizard
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Helen Hill
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Madlen Farrar
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Angela Hyder-Wright
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Oluwasefunmi Akeju
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Josh Hamilton
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ashleigh Howard
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Filora Elterish
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Carla Solorzano
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ryan Robinson
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jesus Reiné
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Andrea M Collins
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Stephen B Gordon
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; Malawi Liverpool Wellcome-Trust Programme, Queen Elizabeth Central Hospital Campus, P.O. Box 30096, Blantyre, Malawi
| | - Richard E Moxon
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Debby Bogaert
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, the Netherlands
| | - Daniela M Ferreira
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| |
Collapse
|
3
|
Zhu K, Jin Y, Zhao Y, He A, Wang R, Cao C. Proteomic scrutiny of nasal microbiomes: implications for the clinic. Expert Rev Proteomics 2024; 21:169-179. [PMID: 38420723 DOI: 10.1080/14789450.2024.2323983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION The nasal cavity is the initial site of the human respiratory tract and is one of the habitats where microorganisms colonize. The findings from a growing number of studies have shown that the nasal microbiome is an important factor for human disease and health. 16S rRNA sequencing and metagenomic next-generation sequencing (mNGS) are the most commonly used means of microbiome evaluation. Among them, 16S rRNA sequencing is the primary method used in previous studies of nasal microbiomes. However, neither 16S rRNA sequencing nor mNGS can be used to analyze the genes specifically expressed by nasal microorganisms and their functions. This problem can be addressed by proteomic analysis of the nasal microbiome. AREAS COVERED In this review, we summarize current advances in research on the nasal microbiome, introduce the methods for proteomic evaluation of the nasal microbiome, and focus on the important roles of proteomic evaluation of the nasal microbiome in the diagnosis and treatment of related diseases. EXPERT OPINION The detection method for microbiome-expressed proteins is known as metaproteomics. Metaproteomic analysis can help us dig deeper into the nasal microbiomes and provide new targets and ideas for clinical diagnosis and treatment of many nasal dysbiosis-related diseases.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yan Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Yun Zhao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Andong He
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Hazenberg P, Robinson RE, Farrar M, Solorzano C, Hyder-Wright A, Liatsikos K, Brunning J, Fleet H, Bettam A, Howard A, Kenny-Nyazika T, Urban B, Mitsi E, El Safadi D, Davies K, Lesosky M, Gordon SB, Ferreira DM, Collins AM. Serotype 3 Experimental Human Pneumococcal Challenge (EHPC) study protocol: dose ranging and reproducibility in a healthy volunteer population (challenge 3). BMJ Open 2024; 14:e075948. [PMID: 38199622 PMCID: PMC10806732 DOI: 10.1136/bmjopen-2023-075948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/19/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Since the introduction of pneumococcal conjugate vaccines, pneumococcal disease rates have declined for many vaccine-type serotypes. However, serotype 3 (SPN3) continues to cause significant disease and is identified in colonisation epidemiological studies as one of the top circulating serotypes in adults in the UK. Consequently, new vaccines that provide greater protection against SPN3 colonisation/carriage are urgently needed. The Experimental Human Pneumococcal Challenge (EHPC) model is a unique method of determining pneumococcal colonisation rates, understanding acquired immunity, and testing vaccines in a cost-effective manner. To enhance the development of effective pneumococcal vaccines against SPN3, we aim to develop a new relevant and safe SPN3 EHPC model with high attack rates which could be used to test vaccines using small sample size. METHODS AND ANALYSIS This is a human challenge study to establish a new SPN3 EHPC model, consisting of two parts. In the dose-ranging/safety study, cohorts of 10 healthy participants will be challenged with escalating doses of SPN3. If first challenge does not lead into colonisation, participants will receive a second challenge 2 weeks after. Experimental nasopharyngeal (NP) colonisation will be determined using nasal wash sampling. Using the dose that results in ≥50% of participants being colonised, with a high safety profile, we will complete the cohort with another 33 participants to check for reproducibility of the colonisation rate. The primary outcome of this study is to determine the optimal SPN3 dose and inoculation regime to establish the highest rates of NP colonisation in healthy adults. Secondary outcomes include determining density and duration of experimental SPN3 NP colonisation and characterising mucosal and systemic immune responses to SPN3 challenge. ETHICS AND DISSEMINATION This study is approved by the NHS Research and Ethics Committee (reference 22/NW/0051). Findings will be published in peer-reviewed journals and reports will be made available to participants.
Collapse
Affiliation(s)
- Phoebe Hazenberg
- Liverpool Vaccine Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ryan E Robinson
- Liverpool Vaccine Group, Liverpool School of Tropical Medicine, Liverpool, UK
- Respiratory Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Madlen Farrar
- Liverpool Vaccine Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Carla Solorzano
- Liverpool Vaccine Group, Liverpool School of Tropical Medicine, Liverpool, UK
- Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - Angela Hyder-Wright
- Liverpool Vaccine Group, Liverpool School of Tropical Medicine, Liverpool, UK
- Respiratory Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | | | - Jaye Brunning
- Liverpool Vaccine Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hannah Fleet
- Liverpool Vaccine Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Amy Bettam
- Liverpool Vaccine Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ashleigh Howard
- Liverpool Vaccine Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Britta Urban
- Liverpool Vaccine Group, Liverpool School of Tropical Medicine, Liverpool, UK
- Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - Elena Mitsi
- Liverpool Vaccine Group, Liverpool School of Tropical Medicine, Liverpool, UK
- Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - Dima El Safadi
- Liverpool Vaccine Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kelly Davies
- Liverpool Vaccine Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Maia Lesosky
- Global Health Trials Unit, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stephen B Gordon
- Liverpool Vaccine Group, Liverpool School of Tropical Medicine, Liverpool, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Daniela M Ferreira
- Liverpool Vaccine Group, Liverpool School of Tropical Medicine, Liverpool, UK
- Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - Andrea M Collins
- Liverpool Vaccine Group, Liverpool School of Tropical Medicine, Liverpool, UK
- Respiratory Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
5
|
Chen Z, Liu Y, Huang W. Alveolar macrophage modulation via the gut-lung axis in lung diseases. Front Immunol 2023; 14:1279677. [PMID: 38077401 PMCID: PMC10702770 DOI: 10.3389/fimmu.2023.1279677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Several studies have demonstrated great potential implications for the gut-lung axis in lung disease etiology and treatment. The gut environment can be influenced by diet, metabolites, microbiotal composition, primary diseases, and medical interventions. These changes modulate the functions of alveolar macrophages (AMs) to shape the pulmonary immune response, which greatly impacts lung health. The immune modulation of AMs is implicated in the pathogenesis of various lung diseases. However, the mechanism of the gut-lung axis in lung diseases has not yet been determined. This mini-review aimed to shed light on the critical nature of communication between the gut and AMs during the development of pulmonary infection, injury, allergy, and malignancy. A better understanding of their crosstalk may provide new insights into future therapeutic strategies targeting the gut-AM interaction.
Collapse
Affiliation(s)
| | | | - Weizhe Huang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
6
|
Montassier E, Kitsios GD, Radder JE, Le Bastard Q, Kelly BJ, Panzer A, Lynch SV, Calfee CS, Dickson RP, Roquilly A. Robust airway microbiome signatures in acute respiratory failure and hospital-acquired pneumonia. Nat Med 2023; 29:2793-2804. [PMID: 37957375 DOI: 10.1038/s41591-023-02617-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/27/2023] [Indexed: 11/15/2023]
Abstract
Respiratory microbial dysbiosis is associated with acute respiratory distress syndrome (ARDS) and hospital-acquired pneumonia (HAP) in critically ill patients. However, we lack reproducible respiratory microbiome signatures that can increase our understanding of these conditions and potential treatments. Here, we analyze 16S rRNA sequencing data from 2,177 respiratory samples collected from 1,029 critically ill patients (21.7% with ARDS and 26.3% with HAP) and 327 healthy controls, sourced from 17 published studies. After data harmonization and pooling of individual patient data, we identified microbiota signatures associated with ARDS, HAP and prolonged mechanical ventilation. Microbiota signatures for HAP and prolonged mechanical ventilation were characterized by depletion of a core group of microbes typical of healthy respiratory samples, and the ARDS microbiota signature was distinguished by enrichment of potentially pathogenic respiratory microbes, including Pseudomonas and Staphylococcus. Using machine learning models, we identified clinically informative, three- and four-factor signatures that predicted ARDS, HAP and prolonged mechanical ventilation with relatively high accuracy (area under the curve of 0.751, 0.72 and 0.727, respectively). We validated the signatures in an independent prospective cohort of 136 patients on mechanical ventillation and found that patients with microbiome signatures associated with ARDS, HAP or prolonged mechanical ventilation had longer times to successful extubation than patients lacking these signatures (hazard ratios of 1.56 (95% confidence interval (CI) 1.07-2.27), 1.51 (95% CI 1.02-2.23) and 1.50 (95% CI 1.03-2.18), respectively). Thus, we defined and validated robust respiratory microbiome signatures associated with ARDS and HAP that may help to identify promising targets for microbiome therapeutic modulation in critically ill patients.
Collapse
Affiliation(s)
- Emmanuel Montassier
- Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes Université, Inserm, CHU Nantes, Nantes, France.
- Service des Urgences, Nantes Université, CHU Nantes, Nantes, France.
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josiah E Radder
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Brendan J Kelly
- Department of Medicine, Division of Infectious Diseases, University of Pennsylvania, Philadelphia, PA, USA
| | - Ariane Panzer
- Department of Medicine, Division of Gastroenterology, University of California, San Francisco, CA, USA
| | - Susan V Lynch
- Department of Medicine, Division of Gastroenterology, University of California, San Francisco, CA, USA
| | - Carolyn S Calfee
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Robert P Dickson
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, MI, USA
| | - Antoine Roquilly
- Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes Université, Inserm, CHU Nantes, Nantes, France.
- Service d'Anesthesie Réanimation, Nantes Université, CHU Nantes, Nantes, France.
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Mitsi E, Diniz MO, Reiné J, Collins AM, Robinson RE, Hyder-Wright A, Farrar M, Liatsikos K, Hamilton J, Onyema O, Urban BC, Solórzano C, Belij-Rammerstorfer S, Sheehan E, Lambe T, Draper SJ, Weiskopf D, Sette A, Maini MK, Ferreira DM. Respiratory mucosal immune memory to SARS-CoV-2 after infection and vaccination. Nat Commun 2023; 14:6815. [PMID: 37884506 PMCID: PMC10603102 DOI: 10.1038/s41467-023-42433-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Respiratory mucosal immunity induced by vaccination is vital for protection from coronavirus infection in animal models. In humans, the capacity of peripheral vaccination to generate sustained immunity in the lung mucosa, and how this is influenced by prior SARS-CoV-2 infection, is unknown. Here we show using bronchoalveolar lavage samples that donors with history of both infection and vaccination have more airway mucosal SARS-CoV-2 antibodies and memory B cells than those only vaccinated. Infection also induces populations of airway spike-specific memory CD4+ and CD8+ T cells that are not expanded by vaccination alone. Airway mucosal T cells induced by infection have a distinct hierarchy of antigen specificity compared to the periphery. Spike-specific T cells persist in the lung mucosa for 7 months after the last immunising event. Thus, peripheral vaccination alone does not appear to induce durable lung mucosal immunity against SARS-CoV-2, supporting an argument for the need for vaccines targeting the airways.
Collapse
Affiliation(s)
- Elena Mitsi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Mariana O Diniz
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Jesús Reiné
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Andrea M Collins
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ryan E Robinson
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Angela Hyder-Wright
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Madlen Farrar
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Josh Hamilton
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Onyia Onyema
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Britta C Urban
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Carla Solórzano
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Emma Sheehan
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, USA
| | - Mala K Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Daniela M Ferreira
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
8
|
Hill H, Mitsi E, Nikolaou E, Blizard A, Pojar S, Howard A, Hyder-Wright A, Devin J, Reiné J, Robinson R, Solórzano C, Jochems SP, Kenny-Nyazika T, Ramos-Sevillano E, Weight CM, Myerscough C, McLenaghan D, Morton B, Gibbons E, Farrar M, Randles V, Burhan H, Chen T, Shandling AD, Campo JJ, Heyderman RS, Gordon SB, Brown JS, Collins AM, Ferreira DM. A Randomized Controlled Clinical Trial of Nasal Immunization with Live Virulence Attenuated Streptococcus pneumoniae Strains Using Human Infection Challenge. Am J Respir Crit Care Med 2023; 208:868-878. [PMID: 37556679 DOI: 10.1164/rccm.202302-0222oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023] Open
Abstract
Rationale: Pneumococcal pneumonia remains a global health problem. Pneumococcal colonization increases local and systemic protective immunity, suggesting that nasal administration of live attenuated Streptococcus pneumoniae (Spn) strains could help prevent infections. Objectives: We used a controlled human infection model to investigate whether nasopharyngeal colonization with attenuated S. pneumoniae strains protected against recolonization with wild-type (WT) Spn (SpnWT). Methods: Healthy adults aged 18-50 years were randomized (1:1:1:1) for nasal administration twice (at a 2-wk interval) with saline solution, WT Spn6B (BHN418), or one of two genetically modified Spn6B strains, SpnA1 (Δfhs/piaA) or SpnA3 (ΔproABC/piaA) (Stage I). After 6 months, participants were challenged with SpnWT to assess protection against the homologous serotype (Stage II). Measurements and Main Results: 125 participants completed both study stages per intention to treat. No serious adverse events were reported. In Stage I, colonization rates were similar among groups: SpnWT, 58.1% (18 of 31); SpnA1, 60% (18 of 30); and SpnA3, 59.4% (19 of 32). Anti-Spn nasal IgG levels after colonization were similar in all groups, whereas serum IgG responses were higher in the SpnWT and SpnA1 groups than in the SpnA3 group. In colonized individuals, increases in IgG responses were identified against 197 Spn protein antigens and serotype 6 capsular polysaccharide using a pangenome array. Participants given SpnWT or SpnA1 in Stage I were partially protected against homologous challenge with SpnWT (29% and 30% recolonization rates, respectively) at stage II, whereas those exposed to SpnA3 achieved a recolonization rate similar to that in the control group (50% vs. 47%, respectively). Conclusions: Nasal colonization with genetically modified live attenuated Spn was safe and induced protection against recolonization, suggesting that nasal administration of live attenuated Spn could be an effective strategy for preventing pneumococcal infections. Clinical trial registered with the ISRCTN registry (ISRCTN22467293).
Collapse
Affiliation(s)
- Helen Hill
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elena Mitsi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Annie Blizard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ashleigh Howard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Angela Hyder-Wright
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Jack Devin
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jesus Reiné
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Ryan Robinson
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Carla Solórzano
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Simon P Jochems
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tinashe Kenny-Nyazika
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elisa Ramos-Sevillano
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Caroline M Weight
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Chris Myerscough
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Daniella McLenaghan
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ben Morton
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Emily Gibbons
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Madlen Farrar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Victoria Randles
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Hassan Burhan
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Tao Chen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Joe J Campo
- Antigen Discovery Inc, Irvine, California; and
| | - Robert S Heyderman
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Stephen B Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Malawi Liverpool Wellcome-Trust Programme, Blantyre, Malawi
| | - Jeremy S Brown
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Andrea M Collins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Bowdish DM, Rossi L, Loeb M, Johnstone J, Schenck LP, Fontes M, Surette MG, Whelan FJ. The impact of respiratory infections and probiotic use on the nasal microbiota of frail residents in long-term care homes. ERJ Open Res 2023; 9:00212-2023. [PMID: 37753289 PMCID: PMC10518876 DOI: 10.1183/23120541.00212-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/19/2023] [Indexed: 09/28/2023] Open
Abstract
Background Residents in long-term care homes, who tend to be of advanced age and frail, are at increased risk of respiratory infections. The respiratory microbiota is known to change with age, but whether these changes contribute to the risk of infection is not known. Our goal was to determine how the nasal microbiota of frail older adults changes during symptoms of influenza-like illness (ILI) and how this may be impacted by enrolment in a placebo-controlled trial testing the feasibility of administering a Lactobacillus rhamnosus GG probiotic to prevent respiratory infection (2014-2017). Methods The microbiome of the nasal (mid-turbinate) of 150 residents of long-term care homes was interrogated using 16S rRNA gene sequencing. Results We identified a diverse and individualised microbiota which could be separated into nine distinct clusters based on Bray-Curtis distances. Samples collected during symptoms of ILI differed statistically from those collected pre- and post-cold and influenza season, and we observed decreased temporal stability (as measured by movement between clusters) in individuals who experienced ILI compared to those who did not. Conclusions The use of probiotics decreased ILI-induced changes to the microbiota; however, it is not clear whether this decrease is sufficient to prevent respiratory illness.
Collapse
Affiliation(s)
- Dawn M.E. Bowdish
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Laura Rossi
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Mark Loeb
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jennie Johnstone
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Louis P. Schenck
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Michelle Fontes
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Michael G. Surette
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Fiona J. Whelan
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
10
|
Korkmaz FT, Traber KE. Innate immune responses in pneumonia. Pneumonia (Nathan) 2023; 15:4. [PMID: 36829255 PMCID: PMC9957695 DOI: 10.1186/s41479-023-00106-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/05/2023] [Indexed: 02/26/2023] Open
Abstract
The lungs are an immunologically unique environment; they are exposed to innumerable pathogens and particulate matter daily. Appropriate clearance of pathogens and response to pollutants is required to prevent overwhelming infection, while preventing tissue damage and maintaining efficient gas exchange. Broadly, the innate immune system is the collection of immediate, intrinsic immune responses to pathogen or tissue injury. In this review, we will examine the innate immune responses of the lung, with a particular focus on their role in pneumonia. We will discuss the anatomic barriers and antimicrobial proteins of the lung, pathogen and injury recognition, and the role of leukocytes (macrophages, neutrophils, and innate lymphocytes) and lung stromal cells in innate immunity. Throughout the review, we will focus on new findings in innate immunity as well as features that are unique to the lung.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology & Infectious Disease, University of Massachusetts, Worcester, MA, USA
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
11
|
Intestinal microbe-derived metabolites instruct macrophages in the lungs. Nat Immunol 2022; 23:1662-1664. [PMID: 36456738 DOI: 10.1038/s41590-022-01358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
12
|
Robinson RE, Mitsi E, Nikolaou E, Pojar S, Chen T, Reiné J, Nyazika TK, Court J, Davies K, Farrar M, Gonzalez-Dias P, Hamilton J, Hill H, Hitchins L, Howard A, Hyder-Wright A, Lesosky M, Liatsikos K, Matope A, McLenaghan D, Myerscough C, Murphy A, Solórzano C, Wang D, Burhan H, Gautam M, Begier E, Theilacker C, Beavon R, Anderson AS, Gessner BD, Gordon SB, Collins AM, Ferreira DM. Human Infection Challenge with Serotype 3 Pneumococcus. Am J Respir Crit Care Med 2022; 206:1379-1392. [PMID: 35802840 DOI: 10.1164/rccm.202112-2700oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rationale: Streptococcus pneumoniae serotype 3 (SPN3) is a cause of invasive pneumococcal disease and associated with low carriage rates. Following the introduction of pediatric 13-valent pneumococcal conjugate vaccine (PCV13) programs, SPN3 declines are less than other vaccine serotypes and incidence has increased in some populations coincident with a shift in predominant circulating SPN3 clade, from I to II. A human challenge model provides an effective means for assessing the impact of PCV13 on SPN3 in the upper airway. Objectives: To establish SPN3's ability to colonize the nasopharynx using different inoculum clades and doses, and the safety of an SPN3 challenge model. Methods: In a human challenge study involving three well-characterized and antibiotic-sensitive SPN3 isolates (PFESP306 [clade Ia], PFESP231 [no clade], and PFESP505 [clade II]), inoculum doses (10,000, 20,000, 80,000, and 160,000 cfu/100 μl) were escalated until maximal colonization rates were achieved, with concurrent acceptable safety. Measurement and Main Results: Presence and density of experimental SPN3 nasopharyngeal colonization in nasal wash samples, assessed using microbiological culture and molecular methods, on Days 2, 7, and 14 postinoculation. A total of 96 healthy participants (median age 21, interquartile range 19-25) were inoculated (n = 6-10 per dose group, 10 groups). Colonization rates ranged from 30.0-70.0% varying with dose and isolate. 30.0% (29/96) reported mild symptoms (82.8% [24/29] developed a sore throat); one developed otitis media requiring antibiotics. No serious adverse events occurred. Conclusions: An SPN3 human challenge model is feasible and safe with comparable carriage rates to an established Serotype 6B human challenge model. SPN3 carriage may cause mild upper respiratory symptoms.
Collapse
Affiliation(s)
- Ryan E Robinson
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Elena Mitsi
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elissavet Nikolaou
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sherin Pojar
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Tao Chen
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jesús Reiné
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Tinashe K Nyazika
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - James Court
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kelly Davies
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Madlen Farrar
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Josh Hamilton
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Helen Hill
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Lisa Hitchins
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ashleigh Howard
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Angela Hyder-Wright
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Maia Lesosky
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Agnes Matope
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Daniella McLenaghan
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Annabel Murphy
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Carla Solórzano
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Duolao Wang
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hassan Burhan
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Manish Gautam
- Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | | | | | | | | | | | - Stephen B Gordon
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Andrea M Collins
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Daniela M Ferreira
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
13
|
Hastak PS, Andersen CR, Kelleher AD, Sasson SC. Frontline workers: Mediators of mucosal immunity in community acquired pneumonia and COVID-19. Front Immunol 2022; 13:983550. [PMID: 36211412 PMCID: PMC9539803 DOI: 10.3389/fimmu.2022.983550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The current COVID-19 pandemic has highlighted a need to further understand lung mucosal immunity to reduce the burden of community acquired pneumonia, including that caused by the SARS-CoV-2 virus. Local mucosal immunity provides the first line of defence against respiratory pathogens, however very little is known about the mechanisms involved, with a majority of literature on respiratory infections based on the examination of peripheral blood. The mortality for severe community acquired pneumonia has been rising annually, even prior to the current pandemic, highlighting a significant need to increase knowledge, understanding and research in this field. In this review we profile key mediators of lung mucosal immunity, the dysfunction that occurs in the diseased lung microenvironment including the imbalance of inflammatory mediators and dysbiosis of the local microbiome. A greater understanding of lung tissue-based immunity may lead to improved diagnostic and prognostic procedures and novel treatment strategies aimed at reducing the disease burden of community acquired pneumonia, avoiding the systemic manifestations of infection and excess morbidity and mortality.
Collapse
Affiliation(s)
- Priyanka S. Hastak
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Christopher R. Andersen
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
- Intensive Care Unit, Royal North Shore Hospital, Sydney, NSW, Australia
- Critical Care and Trauma Division, The George Institute for Global Health, Sydney, NSW, Australia
| | - Anthony D. Kelleher
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Sarah C. Sasson
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
14
|
Nyazika TK, Sibale L, Phiri J, De Ste Croix M, Jasiunaite Z, Mkandawire C, Malamba R, Kankwatira A, Manduwa M, Ferreira DM, Nyirenda TS, Oggioni MR, Mwandumba HC, Jambo KC. Intracellular survival of Streptococcus pneumoniae in human alveolar macrophages is augmented with HIV infection. Front Immunol 2022; 13:992659. [PMID: 36203580 PMCID: PMC9531125 DOI: 10.3389/fimmu.2022.992659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
People Living with HIV (PLHIV) are at an increased risk of pneumococcal pneumonia than HIV-uninfected adults, but the reasons for this are still not well understood. We investigated whether alveolar macrophages (AM) mediated control of pneumococcal infection is impaired in PLHIV compared to HIV-uninfected adults. We assessed anti-bactericidal activity against Streptococcus pneumoniae of primary human AM obtained from PLHIV and HIV-uninfected adults. We found that pneumococcus survived intracellularly in AMs at least 24 hours post ex vivo infection, and this was more frequent in PLHIV than HIV-uninfected adults. Corroborating these findings, in vivo evidence showed that PLHIV had a higher propensity for harboring S. pneumoniae within their AMs than HIV-uninfected adults. Moreover, bacterial intracellular survival in AMs was associated with extracellular propagation of pneumococcal infection. Our data suggest that failure of AMs to eliminate S. pneumoniae intracellularly could contribute to the increased risk of pneumococcal pneumonia in PLHIV.
Collapse
Affiliation(s)
- Tinashe K. Nyazika
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lusako Sibale
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Joseph Phiri
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Zydrune Jasiunaite
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Christopher Mkandawire
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Rose Malamba
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Anstead Kankwatira
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Miriam Manduwa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Daniela M. Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tonney S. Nyirenda
- Department of Pathology, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Marco R. Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Dipartimento di Farmacia e Biotecnologie, Universita di Bologna, Bologna, Italy
| | - Henry C. Mwandumba
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kondwani C. Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
15
|
Diniz MO, Mitsi E, Swadling L, Rylance J, Johnson M, Goldblatt D, Ferreira D, Maini MK. Airway-resident T cells from unexposed individuals cross-recognize SARS-CoV-2. Nat Immunol 2022; 23:1324-1329. [PMID: 36038709 PMCID: PMC9477726 DOI: 10.1038/s41590-022-01292-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022]
Abstract
T cells can contribute to clearance of respiratory viruses that cause acute-resolving infections such as SARS-CoV-2, helping to provide long-lived protection against disease. Recent studies have suggested an additional role for T cells in resisting overt infection: pre-existing cross-reactive responses were preferentially enriched in healthcare workers who had abortive infections1, and in household contacts protected from infection2. We hypothesize that such early viral control would require pre-existing cross-reactive memory T cells already resident at the site of infection; such airway-resident responses have been shown to be critical for mediating protection after intranasal vaccination in a murine model of SARS-CoV3. Bronchoalveolar lavage samples from the lower respiratory tract of healthy donors obtained before the COVID-19 pandemic revealed airway-resident, SARS-CoV-2-cross-reactive T cells, which correlated with the strength of human seasonal coronavirus immunity. We therefore demonstrate the potential to harness functional airway-resident SARS-CoV-2-reactive T cells in next-generation mucosal vaccines.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Elena Mitsi
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Leo Swadling
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Jamie Rylance
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | - Daniela Ferreira
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK.
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Mala K Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK.
| |
Collapse
|
16
|
Moscardini IF, Santoro F, Carraro M, Gerlini A, Fiorino F, Germoni C, Gholami S, Pettini E, Medaglini D, Iannelli F, Pozzi G. Immune Memory After Respiratory Infection With Streptococcus pneumoniae Is Revealed by in vitro Stimulation of Murine Splenocytes With Inactivated Pneumococcal Whole Cells: Evidence of Early Recall Responses by Transcriptomic Analysis. Front Cell Infect Microbiol 2022; 12:869763. [PMID: 35795182 PMCID: PMC9251119 DOI: 10.3389/fcimb.2022.869763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
The in vitro stimulation of immune system cells with live or killed bacteria is essential for understanding the host response to pathogens. In the present study, we propose a model combining transcriptomic and cytokine assays on murine splenocytes to describe the immune recall in the days following pneumococcal lung infection. Mice were sacrificed at days 1, 2, 4, and 7 after Streptococcus pneumoniae (TIGR4 serotype 4) intranasal infection and splenocytes were cultured in the presence or absence of the same inactivated bacterial strain to access the transcriptomic and cytokine profiles. The stimulation of splenocytes from infected mice led to a higher number of differentially expressed genes than the infection or stimulation alone, resulting in the enrichment of 40 unique blood transcription modules, including many pathways related to adaptive immunity and cytokines. Together with transcriptomic data, cytokines levels suggested the presence of a recall immune response promoting both innate and adaptive immunity, stronger from the fourth day after infection. Dimensionality reduction and feature selection identified key variables of this recall response and the genes associated with the increase in cytokine concentrations. This model could study the immune responses involved in pneumococcal infection and possibly monitor vaccine immune response and experimental therapies efficacy in future studies.
Collapse
Affiliation(s)
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
- *Correspondence: Francesco Santoro,
| | - Monica Carraro
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Fabio Fiorino
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Germoni
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Samaneh Gholami
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elena Pettini
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
17
|
Chen M, He S, Miles P, Li C, Ge Y, Yu X, Wang L, Huang W, Kong X, Ma S, Li Y, Jiang Q, Zhang W, Cao C. Nasal Bacterial Microbiome Differs Between Healthy Controls and Those With Asthma and Allergic Rhinitis. Front Cell Infect Microbiol 2022; 12:841995. [PMID: 35310838 PMCID: PMC8928226 DOI: 10.3389/fcimb.2022.841995] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/14/2022] [Indexed: 12/31/2022] Open
Abstract
Perturbation of the microbiome has numerous associations with the phenotypes and progression in chronic airways disease. However, the differences in the nasal microbiome in asthma and allergic rhinitis (AR) have not been defined. We examined whether the nasal microbiome would vary among different comorbidities in asthma and AR and that those differences may be associated with the severity of asthma. Nasal lavage fluid was collected from 110 participants, including 20 healthy controls, 30 subjects with AR, 30 subjects with asthma and 30 subjects with combined asthma + AR. The Asthma Control Questionnaire (ACQ-7) was used to evaluate asthma control status. Using 16S rRNA bacterial gene sequencing, we analyzed nasal microbiome in patients with asthma, AR, combined asthma + AR, and healthy controls. Bacterial diversity was analyzed in corresponding with α diversity indices (Chao and Shannon index). Compared with healthy controls, the Chao index tended to be lower in subjects with AR (P = 0.001), asthma (P = 0.001), and combined asthma + AR (P = 0.001) when compared with healthy controls. Furthermore, the Shannon index was significantly lower in subjects with asthma (P = 0.013) and comorbid asthma with AR (P = 0.004) than the control subjects. Disparity in the structure and composition of nasal bacteria were also observed among the four groups. Furthermore, patients with combined asthma + AR and isolated asthma were divided into two groups according to the level of disease control: partially or well-controlled and uncontrolled asthma. The mean relative abundance observed in the groups mentioned the genera of Pseudoflavonifractor were dominated in patients with well and partially controlled disease, in both isolated asthma and combined asthma + AR. In subjects with uncontrolled asthma and combined asthma + AR, a lower evenness and richness (Shannon index, P = 0.040) was observed in nasal microbiome composition. Importantly, lower evenness and richness in the nasal microbiome may be associated with poor disease control in combined asthma + AR. This study showed the upper airway microbiome is associated with airway inflammation disorders and the level of asthma control.
Collapse
Affiliation(s)
- Meiping Chen
- School of Medicine, Ningbo University, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Shiyi He
- School of Medicine, Ningbo University, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Phoebe Miles
- Faculty of Humanities and Social Sciences, University of Nottingham Ningbo, Ningbo, China
| | - Chunlin Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Ningbo First Hospital, Ningbo, China
| | - Yijun Ge
- School of Medicine, Ningbo University, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Xuechan Yu
- School of Medicine, Ningbo University, Ningbo, China
| | - Linfeng Wang
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Weina Huang
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Xue Kong
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Shanni Ma
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Yiting Li
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Qingwen Jiang
- School of Medicine, Ningbo University, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Wen Zhang
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Ningbo First Hospital, Ningbo, China
- *Correspondence: Chao Cao,
| |
Collapse
|
18
|
Splenic macrophages as the source of bacteraemia during pneumococcal pneumonia. EBioMedicine 2021; 72:103601. [PMID: 34619637 PMCID: PMC8498229 DOI: 10.1016/j.ebiom.2021.103601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022] Open
Abstract
Background Severe community-acquired pneumococcal pneumonia is commonly associated with bacteraemia. Although it is assumed that the bacteraemia solely derives from pneumococci entering the blood from the lungs it is unknown if other organs are important in the pathogenesis of bacteraemia. Using three models, we tested the relevance of the spleen in pneumonia-associated bacteraemia. Methods We used human spleens perfused ex vivo to explore permissiveness to bacterial replication, a non-human primate model to check for splenic involvement during pneumonia and a mouse pneumonia-bacteraemia model to demonstrate that splenic involvement correlates with invasive disease. Findings Here we present evidence that the spleen is the reservoir of bacteraemia during pneumonia. We found that in the human spleen infected with pneumococci, clusters with increasing number of bacteria were detectable within macrophages. These clusters also were detected in non-human primates. When intranasally infected mice were treated with a non-therapeutic dose of azithromycin, which had no effect on pneumonia but concentrated inside splenic macrophages, bacteria were absent from the spleen and blood and importantly mice had no signs of disease. Interpretation We conclude that the bacterial load in the spleen, and not lung, correlates with the occurrence of bacteraemia. This supports the hypothesis that the spleen, and not the lungs, is the major source of bacteria during systemic infection associated with pneumococcal pneumonia; a finding that provides a mechanistic basis for using combination therapies including macrolides in the treatment of severe community-acquired pneumococcal pneumonia. Funding Oxford University, Wolfson Foundation, MRC, NIH, NIHR, and MRC and BBSRC studentships supported the work.
Collapse
|
19
|
Morton B, Burr S, Chikaonda T, Nsomba E, Manda-Taylor L, Henrion MYR, Banda NP, Rylance J, Ferreira DM, Jambo K, Gordon SB. A feasibility study of controlled human infection with Streptococcus pneumoniae in Malawi. EBioMedicine 2021; 72:103579. [PMID: 34571365 PMCID: PMC8479630 DOI: 10.1016/j.ebiom.2021.103579] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/18/2021] [Accepted: 09/02/2021] [Indexed: 01/04/2023] Open
Abstract
Background Persistent carriage of pneumococcal vaccine serotypes has occurred after introduction of PCV13 vaccination in Africa but the mechanisms are unclear. We tested the feasibility of using a human pneumococcal challenge model in Malawi to understand immune correlates of protection against carriage and to trial alternative vaccine candidates. We aimed to identify a dose of Streptococcus pneumoniae serotype 6B sufficient to establish nasopharyngeal carriage in 40% of those nasally inoculated and evaluate nasal mucosal immunity before and after experimental inoculation. Methods Healthy student volunteers were recruited and inoculated with saline, 20,000 CFU/naris or 80,000 CFU/naris of Streptococcus pneumoniae serotype 6B Post inoculation carriage was determined by nasal sampling for bacterial culture and lytA PCR. Immunological responses were measured in serum and nasal mucosal biopsies before and after bacterial inoculation. Findings Twenty-four subjects completed the feasibility protocol with minimal side effects. pneumococcal carriage was established in 0/6, 3/9 and 4/9 subjects in the saline, 20,000 CFU/naris and 80,000 CFU/naris groups, respectively. Incidental (natural) serotype carriage was common (7/24 participants carried non-6B strains, 29.2%. Experimentally induced type 6B pneumococcal carriage was associated with pro-inflammatory nasal mucosal responses prior to inoculation and altered mucosal recruitment of immune cells post bacterial challenge. There was no association with serum anti-capsular antibody. Interpretation The serotype 6B experimental human pneumococcal carriage model is feasible in Malawi and can now be used to determine the immunological correlates of protection against carriage and vaccine efficacy in this population.
Collapse
Affiliation(s)
- Ben Morton
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, P.O. Box 30096, Chichiri, Blantyre, Malawi; Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom; Liverpool University Hospitals NHS Foundation Trust Liverpool L9 7AL, United Kingdom; Queen Elizabeth Central Hospital, P.O. Box 95, Blantyre, Malawi.
| | - Sarah Burr
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, P.O. Box 30096, Chichiri, Blantyre, Malawi; Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Tarsizio Chikaonda
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, P.O. Box 30096, Chichiri, Blantyre, Malawi.
| | - Edna Nsomba
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, P.O. Box 30096, Chichiri, Blantyre, Malawi; Queen Elizabeth Central Hospital, P.O. Box 95, Blantyre, Malawi.
| | - Lucinda Manda-Taylor
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, P.O. Box 30096, Chichiri, Blantyre, Malawi; College of Medicine, Private Bag 360, Chichiri, Blantyre, Malawi.
| | - Marc Y R Henrion
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, P.O. Box 30096, Chichiri, Blantyre, Malawi; Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom.
| | - Ndaziona Peter Banda
- Queen Elizabeth Central Hospital, P.O. Box 95, Blantyre, Malawi; College of Medicine, Private Bag 360, Chichiri, Blantyre, Malawi
| | - Jamie Rylance
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, P.O. Box 30096, Chichiri, Blantyre, Malawi; Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom; Queen Elizabeth Central Hospital, P.O. Box 95, Blantyre, Malawi.
| | - Daniela M Ferreira
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom.
| | - Kondwani Jambo
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, P.O. Box 30096, Chichiri, Blantyre, Malawi; Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom.
| | - Stephen B Gordon
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, P.O. Box 30096, Chichiri, Blantyre, Malawi; Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom; Queen Elizabeth Central Hospital, P.O. Box 95, Blantyre, Malawi.
| | | |
Collapse
|
20
|
Slimmen LJM, Janssens HM, van Rossum AMC, Unger WWJ. Antigen-Presenting Cells in the Airways: Moderating Asymptomatic Bacterial Carriage. Pathogens 2021; 10:pathogens10080945. [PMID: 34451409 PMCID: PMC8400527 DOI: 10.3390/pathogens10080945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Bacterial respiratory tract infections (RTIs) are a major global health burden, and the role of antigen-presenting cells (APCs) in mounting an immune response to contain and clear invading pathogens is well-described. However, most encounters between a host and a bacterial pathogen do not result in symptomatic infection, but in asymptomatic carriage instead. The fact that a pathogen will cause infection in one individual, but not in another does not appear to be directly related to bacterial density, but rather depend on qualitative differences in the host response. Understanding the interactions between respiratory pathogens and airway APCs that result in asymptomatic carriage, will provide better insight into the factors that can skew this interaction towards infection. This review will discuss the currently available knowledge on airway APCs in the context of asymptomatic bacterial carriage along the entire respiratory tract. Furthermore, in order to interpret past and futures studies into this topic, we propose a standardized nomenclature of the different stages of carriage and infection, based on the pathogen’s position with regard to the epithelium and the amount of inflammation present.
Collapse
Affiliation(s)
- Lisa J. M. Slimmen
- Laboratory of Pediatrics, Department of Pediatrics, Erasmus MC-Sophia Children’s Hospital, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC-Sophia Children’s Hospital, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Hettie M. Janssens
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC-Sophia Children’s Hospital, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Annemarie M. C. van Rossum
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Erasmus MC-Sophia Children’s Hospital, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Wendy W. J. Unger
- Laboratory of Pediatrics, Department of Pediatrics, Erasmus MC-Sophia Children’s Hospital, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
21
|
Walkowski W, Bassett J, Bhalla M, Pfeifer BA, Ghanem ENB. Intranasal Vaccine Delivery Technology for Respiratory Tract Disease Application with a Special Emphasis on Pneumococcal Disease. Vaccines (Basel) 2021; 9:vaccines9060589. [PMID: 34199398 PMCID: PMC8230341 DOI: 10.3390/vaccines9060589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022] Open
Abstract
This mini-review will cover recent trends in intranasal (IN) vaccine delivery as it relates to applications for respiratory tract diseases. The logic and rationale for IN vaccine delivery will be compared to methods and applications accompanying this particular administration route. In addition, we will focus extended discussion on the potential role of IN vaccination in the context of respiratory tract diseases, with a special emphasis on pneumococcal disease. Here, elements of this disease, including its prevalence and impact upon the elderly population, will be viewed from the standpoint of improving health outcomes through vaccine design and delivery technology and how IN administration can play a role in such efforts.
Collapse
Affiliation(s)
- William Walkowski
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (W.W.); (J.B.); (B.A.P.)
| | - Justin Bassett
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (W.W.); (J.B.); (B.A.P.)
| | - Manmeet Bhalla
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
| | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (W.W.); (J.B.); (B.A.P.)
| | - Elsa N. Bou Ghanem
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
- Correspondence:
| |
Collapse
|
22
|
Park DE, Higdon MM, Prosperi C, Baggett HC, Brooks WA, Feikin DR, Hammitt LL, Howie SRC, Kotloff KL, Levine OS, Madhi SA, Murdoch DR, O’Brien KL, Scott JAG, Thea DM, Antonio M, Awori JO, Baillie VL, Bunthi C, Kwenda G, Mackenzie GA, Moore DP, Morpeth SC, Mwananyanda L, Paveenkittiporn W, Ziaur Rahman M, Rahman M, Rhodes J, Sow SO, Tapia MD, Deloria Knoll M. Upper Respiratory Tract Co-detection of Human Endemic Coronaviruses and High-density Pneumococcus Associated With Increased Severity Among HIV-Uninfected Children Under 5 Years Old in the PERCH Study. Pediatr Infect Dis J 2021; 40:503-512. [PMID: 33883479 PMCID: PMC8104011 DOI: 10.1097/inf.0000000000003139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Severity of viral respiratory illnesses can be increased with bacterial coinfection and can vary by sex, but influence of coinfection and sex on human endemic coronavirus (CoV) species, which generally cause mild to moderate respiratory illness, is unknown. We evaluated CoV and pneumococcal co-detection by sex in childhood pneumonia. METHODS In the 2011-2014 Pneumonia Etiology Research for Child Health study, nasopharyngeal and oropharyngeal (NP/OP) swabs and other samples were collected from 3981 children <5 years hospitalized with severe or very severe pneumonia in 7 countries. Severity by NP/OP detection status of CoV (NL63, 229E, OC43 or HKU1) and high-density (≥6.9 log10 copies/mL) pneumococcus (HDSpn) by real-time polymerase chain reaction was assessed by sex using logistic regression adjusted for age and site. RESULTS There were 43 (1.1%) CoV+/HDSpn+, 247 CoV+/HDSpn-, 449 CoV-/HDSpn+ and 3149 CoV-/HDSpn- cases with no significant difference in co-detection frequency by sex (range 51.2%-64.0% male, P = 0.06). More CoV+/HDSpn+ pneumonia was very severe compared with other groups for both males (13/22, 59.1% versus range 29.1%-34.7%, P = 0.04) and females (10/21, 47.6% versus 32.5%-43.5%, P = 0.009), but only male CoV+/HDSpn+ required supplemental oxygen more frequently (45.0% versus 20.6%-28.6%, P < 0.001) and had higher mortality (35.0% versus 5.3%-7.1%, P = 0.004) than other groups. For females with CoV+/HDSpn+, supplemental oxygen was 25.0% versus 24.8%-33.3% (P = 0.58) and mortality was 10.0% versus 9.2%-12.9% (P = 0.69). CONCLUSIONS Co-detection of endemic CoV and HDSpn was rare in children hospitalized with pneumonia, but associated with higher severity and mortality in males. Findings may warrant investigation of differences in severity by sex with co-detection of HDSpn and SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel E. Park
- From the Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia
| | - Melissa M. Higdon
- From the Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Christine Prosperi
- From the Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Henry C. Baggett
- Division of Global Health Protection, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - W. Abdullah Brooks
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh
| | - Daniel R. Feikin
- From the Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Laura L. Hammitt
- From the Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Steve R. C. Howie
- Medical Research Council Unit, Basse, The Gambia
- Department of Paediatrics, University of Auckland, New Zealand
| | - Karen L. Kotloff
- Department of Pediatrics and Department of Medicine, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Orin S. Levine
- From the Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Bill & Melinda Gates Foundation, Seattle, Washington
| | - Shabir A. Madhi
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - David R. Murdoch
- Department of Pathology and Biomedical Sciences, University of Otago
- Microbiology Unit, Canterbury Health Laboratories, Christchurch, New Zealand
| | - Katherine L. O’Brien
- From the Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - J. Anthony G. Scott
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Donald M. Thea
- Department of Global Health and Development, Boston University School of Public Health, Boston, Massachusetts
| | - Martin Antonio
- Medical Research Council Unit, Basse, The Gambia
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine
- Microbiology and Infection Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Juliet O. Awori
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| | - Vicky L. Baillie
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit
| | - Charatdao Bunthi
- Division of Global Health Protection, Thailand Ministry of Public Health–US Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - Geoffrey Kwenda
- Right to Care-Zambia
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Grant A. Mackenzie
- Medical Research Council Unit, Basse, The Gambia
- Murdoch Children’s Research Institute, Melbourne, Australia
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Paediatrics, University of Melbourne, Australia
| | - David P. Moore
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit
- Department of Paediatrics & Child Health, Chris Hani Baragwanath Academic Hospital and University of the Witwatersrand, South Africa
| | - Susan C. Morpeth
- KEMRI Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Microbiology Laboratory, Middlemore Hospital, Counties Manukau District Health Board, Auckland, New Zealand
| | - Lawrence Mwananyanda
- Department of Global Health and Development, Boston University School of Public Health, Boston, Massachusetts
- EQUIP-Zambia, Lusaka, Zambia
| | | | - Mohammed Ziaur Rahman
- Virology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh
| | - Mustafizur Rahman
- Virology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh
| | - Julia Rhodes
- Division of Global Health Protection, Thailand Ministry of Public Health–US Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - Samba O. Sow
- Centre pour le Développement des Vaccins (CVD-Mali), Bamako, Mali
| | - Milagritos D. Tapia
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maria Deloria Knoll
- From the Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
23
|
Barker KA, Etesami NS, Shenoy AT, Arafa EI, Lyon de Ana C, Smith NM, Martin IM, Goltry WN, Barron AM, Browning JL, Kathuria H, Belkina AC, Guillon A, Zhong X, Crossland NA, Jones MR, Quinton LJ, Mizgerd JP. Lung-resident memory B cells protect against bacterial pneumonia. J Clin Invest 2021; 131:e141810. [PMID: 34060477 DOI: 10.1172/jci141810] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Lung-resident memory B cells (BRM cells) are elicited after influenza infections of mice, but connections to other pathogens and hosts - as well as their functional significance - have yet to be determined. We postulate that BRM cells are core components of lung immunity. To test this, we examined whether lung BRM cells are elicited by the respiratory pathogen pneumococcus, are present in humans, and are important in pneumonia defense. Lungs of mice that had recovered from pneumococcal infections did not contain organized tertiary lymphoid organs, but did have plasma cells and noncirculating memory B cells. The latter expressed distinctive surface markers (including CD69, PD-L2, CD80, and CD73) and were poised to secrete antibodies upon stimulation. Human lungs also contained B cells with a resident memory phenotype. In mice recovered from pneumococcal pneumonia, depletion of PD-L2+ B cells, including lung BRM cells, diminished bacterial clearance and the level of pneumococcus-reactive antibodies in the lung. These data define lung BRM cells as a common feature of pathogen-experienced lungs and provide direct evidence of a role for these cells in pulmonary antibacterial immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicole Ms Smith
- Pulmonary Center.,Department of Pathology and Laboratory Medicine, and
| | | | | | | | | | | | - Anna C Belkina
- Pulmonary Center.,Department of Pathology and Laboratory Medicine, and.,Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Antoine Guillon
- Pulmonary Center.,Centre Hospitalier Régional Universitaire de (CHRU) de Tours, Service de Médecine Intensive Réanimation, INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, University of Tours, Tours, France
| | | | | | | | - Lee J Quinton
- Pulmonary Center.,Department of Microbiology.,Department of Medicine.,Department of Pathology and Laboratory Medicine, and
| | - Joseph P Mizgerd
- Pulmonary Center.,Department of Microbiology.,Department of Medicine.,Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Ramos-Sevillano E, Ercoli G, Felgner P, Ramiro de Assis R, Nakajima R, Goldblatt D, Heyderman RS, Gordon SB, Ferreira DM, Brown JS. Preclinical Development of Virulence-attenuated Streptococcus pneumoniae Strains Able to Enhance Protective Immunity against Pneumococcal Infection. Am J Respir Crit Care Med 2021; 203:1037-1041. [PMID: 33332997 DOI: 10.1164/rccm.202011-4161le] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | | | | | - Rie Nakajima
- University of California Irvine Irvine, California
| | | | | | - Stephen B Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme Blantyre, Malawi and
| | | | | |
Collapse
|
25
|
Ramos-Sevillano E, Ercoli G, Guerra-Assunção JA, Felgner P, Ramiro de Assis R, Nakajima R, Goldblatt D, Tetteh KKA, Heyderman RS, Gordon SB, Ferreria DM, Brown JS. Protective Effect of Nasal Colonisation with ∆cps/piaA and ∆cps/proABCStreptococcus pneumoniae Strains against Recolonisation and Invasive Infection. Vaccines (Basel) 2021; 9:vaccines9030261. [PMID: 33804077 PMCID: PMC8000150 DOI: 10.3390/vaccines9030261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Nasopharyngeal administration of live virulence-attenuated Streptococcus pneumoniae strains is a potential novel preventative strategy. One target for creating reduced virulence S. pneumoniae strains is the capsule, but loss of the capsule reduces the duration of S. pneumoniae colonisation in mice which could impair protective efficacy against subsequent infection. OBJECTIVES To assess protective efficacy of nasopharyngeal administration of unencapsulated S. pneumoniae strains in murine infection models. METHODS Strains containing cps locus deletions combined with the S. pneumoniae virulence factors psaA (reduces colonisation) or proABC (no effect on colonisation) were constructed and their virulence phenotypes and ability to prevent recolonisation or invasive infection assessed using mouse infection models. Serological responses to colonisation were compared between strains using ELISAs, immunoblots and 254 S. pneumoniae protein antigen array. MEASUREMENTS AND MAIN RESULTS The ∆cps/piaA and ∆cps/proABC strains were strongly attenuated in virulence in both invasive infection models and had a reduced ability to colonise the nasopharynx. ELISAs, immunoblots and protein arrays showed colonisation with either strain stimulated weaker serological responses than the wild type strain. Mice previously colonised with these strains were protected against septicaemic pneumonia but, unlike mice colonised with the wild type strain, not against S. pneumoniae recolonisation. CONCLUSIONS Colonisation with the ∆cps/piaA and ∆cps/proABC strains prevented subsequent septicaemia, but in contrast, to published data for encapsulated double mutant strains they did not prevent recolonisation with S. pneumoniae. These data suggest targeting the cps locus is a less effective option for creating live attenuated strains that prevent S. pneumoniae infections.
Collapse
Affiliation(s)
- Elisa Ramos-Sevillano
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London WC1E 6JF, UK;
- Correspondence: (E.R.-S.); (J.S.B.); Tel.: +44-20-7679-6008 (J.S.B.); Fax: +44-20-7679-6973 (J.S.B.)
| | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London WC1E 6JF, UK;
| | | | - Philip Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA; (P.F.); (R.R.d.A.); (R.N.)
| | - Rafael Ramiro de Assis
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA; (P.F.); (R.R.d.A.); (R.N.)
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA; (P.F.); (R.R.d.A.); (R.N.)
| | - David Goldblatt
- Immunobiology Section, UCL Great Ormond Street Institute of Child Health, NIHR Biomedical Research Centre, London WC1N 1EH, UK;
| | - Kevin Kweku Adjei Tetteh
- Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, London WC1E 7HT, UK;
| | - Robert Simon Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College London, Rayne Institute, London WC1E 6JF, UK;
| | - Stephen Brian Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 30096, Malawi;
| | - Daniela Mulari Ferreria
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Jeremy Stuart Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London WC1E 6JF, UK;
- Correspondence: (E.R.-S.); (J.S.B.); Tel.: +44-20-7679-6008 (J.S.B.); Fax: +44-20-7679-6973 (J.S.B.)
| |
Collapse
|
26
|
Peignier A, Parker D. Trained immunity and host-pathogen interactions. Cell Microbiol 2020; 22:e13261. [PMID: 32902895 DOI: 10.1111/cmi.13261] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a leading cause of death worldwide with over 8 million fatalities accounted for in 2016. Solicitation of host immune defenses by vaccination is the treatment of choice to prevent these infections. It has long been thought that vaccine immunity was solely mediated by the adaptive immune system. However, over the past decade, numerous studies have shown that innate immune cells can also retain memory of these encounters. This process, called innate immune memory, is mediated by metabolic and epigenetic changes that make cells either hyperresponsive (trained immunity) or hyporesponsive (tolerance) to subsequent challenges. In this review, we discuss the concepts of trained immunity and tolerance in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Adeline Peignier
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
27
|
Brown JS. Improving Pulmonary Immunity to Bacterial Pathogens through Streptococcus pneumoniae Colonization of the Nasopharynx. Am J Respir Crit Care Med 2020; 201:268-270. [PMID: 31664865 PMCID: PMC6999096 DOI: 10.1164/rccm.201910-2047ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jeremy S Brown
- UCL RespiratoryUniversity College LondonLondon, United Kingdom
| |
Collapse
|
28
|
The Dynamics of Respiratory Microbiota during Mechanical Ventilation in Patients with Pneumonia. J Clin Med 2020; 9:jcm9030638. [PMID: 32120914 PMCID: PMC7141134 DOI: 10.3390/jcm9030638] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 11/17/2022] Open
Abstract
Bacterial pneumonia is a major cause of mechanical ventilation in intensive care units. We hypothesized that the presence of particular microbiota in endotracheal tube aspirates during the course of intubation was associated with clinical outcomes such as extubation failure or 28-day mortality. Sixty mechanically ventilated ICU (intensive care unit) patients (41 patients with pneumonia and 19 patients without pneumonia) were included, and tracheal aspirates were obtained on days 1, 3, and 7. Gene sequencing of 16S rRNA was used to measure the composition of the respiratory microbiome. A total of 216 endotracheal aspirates were obtained from 60 patients. A total of 22 patients were successfully extubatedwithin3 weeks, and 12 patients died within 28days. Microbiota profiles differed significantly between the pneumonia group and the non-pneumonia group (Adonis, p < 0.01). While α diversity (Shannon index) significantly decreased between day 1 and day 7 in the successful extubation group, it did not decrease in the failed extubation group among intubated patients with pneumonia. There was a significant difference in the change of βdiversity between the successful extubation group and the failed extubation group for Bray-Curtis distances (p < 0.001). At the genus level, Rothia, Streptococcus, and Prevotella correlated with the change of β diversity. A low relative abundance of Streptococci at the time of intubation was strongly associated with 28-day mortality. The dynamics of respiratory microbiome were associated with clinical outcomes such as extubation failure and mortality. Further large prospective studies are needed to test the predictive value of endotracheal aspirates in intubated patients.
Collapse
|