1
|
Silswal N, Baumlin N, Haworth S, Montgomery RN, Yoshida M, Dennis JS, Yerrathota S, Kim MD, Salathe M. Therapeutic strategies to reverse cigarette smoke-induced ion channel and mucociliary dysfunction in COPD airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2025; 328:L571-L585. [PMID: 40095970 DOI: 10.1152/ajplung.00258.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/28/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
Cigarette smoke (CS) is a leading cause of chronic obstructive pulmonary disease (COPD). Here, we investigated whether the ion channel amplifier nesolicaftor rescues CS-induced mucociliary and ion channel dysfunction. As CS increases the expression of transforming growth factor-beta1 (TGF-β1), human bronchial epithelial cells (HBECs) from healthy donors were used for TGF-β1 and COPD donors (COPD-HBEC) for CS exposure experiments. CS and TGF-β1 induce mucociliary dysfunction by increasing MUC5AC and decreasing ion channel conductance important for mucus hydration. These include cystic fibrosis transmembrane conductance regulator (CFTR) and apical large-conductance, Ca2+-activated K+ (BK) channels. Nesolicaftor rescued CFTR and BK channel dysfunction, restored ciliary beat frequency (CBF), and decreased mucus viscosity and MUC5AC expression in CS-exposed COPD-HBEC. Nesolicaftor further reversed reductions in airway surface liquid (ASL) volumes, CBF, and CFTR and BK conductance, and blocked the increase in extracellular signal-regulated kinase (ERK) signaling in TGF-β1-exposed normal HBECs. Mechanistically, nesolicaftor increased, as expected, not only binding of PCBP1 to CFTR mRNA but also surprisingly to LRRC26 mRNA, which encodes the gamma subunit required for BK function. Similar to nesolicaftor, the angiotensin receptor blocker (ARB) losartan rescued TGF-β1-mediated decreases in PCBP1 binding to LRRC26 mRNA. In addition, the ARB telmisartan restored PCBP1 binding to CFTR and LRRC26 mRNAs to rescue CFTR and BK function in CS-exposed COPD-HBEC. Thus, nesolicaftor and ARBs act on the same target and were therefore neither additive nor synergistic in their actions. These data demonstrate that nesolicaftor and ARBs may provide benefits in COPD by improving ion channel function important for mucus hydration.NEW & NOTEWORTHY Cigarette smoke (CS) increases transforming growth factor-beta1 (TGF-β1) expression that causes mucociliary dysfunction by decreasing ion channel function. In our study, a CFTR amplifier (nesolicaftor) and angiotensin II receptor blockers (losartan and telmisartan) improve CS-induced ion channel dysfunction, by increasing binding of PCBP1 to CFTR and LRRC26 mRNAs. Therefore, nesolicaftor and ARBs, acting on the same target, may provide therapeutic benefits for treating smoking-related diseases.
Collapse
Affiliation(s)
- Neerupma Silswal
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Nathalie Baumlin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Steven Haworth
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Robert N Montgomery
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Makoto Yoshida
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - John S Dennis
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Sireesha Yerrathota
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Michael D Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Matthias Salathe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
2
|
Kim MJ, Hwang HS, Choi JH, Yoo ES, Jang MI, Lee J, Oh SM. Development of a multi-analysis model using an epithelial-fibroblast co-culture system as an alternative to animal testing. Environ Anal Health Toxicol 2024; 39:e2024024-0. [PMID: 39536704 PMCID: PMC11560297 DOI: 10.5620/eaht.2024024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
The evaluation of respiratory chemical substances has been mostly performed in animal tests (OECD TG 403, TG 412, TG 413, etc.). However, there have been ongoing discussions about the limited use of these inhalation toxicity tests due to differences in the anatomical structure of the respiratory tract, difficulty in exposure, laborious processes, and ethical reasons. Alternative animal testing methods that mimic in vivo testing are required. Therefore, in this study, we established a co-culture system composed of differentiated epithelial cells under an air-liquid interface (ALI) system in the apical part and fibroblasts in the basal part. This system was designed to mimic the wound-healing mechanism in the respiratory system. In addition, we developed a multi-analysis system that simultaneously performs toxicological and functional evaluations. Several individual assays were used sequentially in a multi-analysis model for pulmonary toxicity. Briefly, cytokine analysis, histology, and cilia motility were measured in the apical part, and cell migration and gel contraction assay were performed by exposing MRC-5 cells to the basal culture. First, human airway epithelial cells from bronchial (hAECB) were cultured under air-liquid interface (ALI) system conditions and validated pseudostratified epithelium by detecting differentiation-related epithelial markers using Transepithelial Electrical Resistance (TEER) measurement, Hematoxylin and Eosin (H&E) staining, and immunocytochemistry (ICC) staining. Afterward, the co-culture cells exposed to Transforming growth factor-beta 1 (TGF-β1), a key mediator of pulmonary fibrosis, induced significant toxicological responses such as cytotoxicity, cell migration, and gel contraction, which are wound-healing markers. In addition, cilia motility in epithelial cells was significantly decreased compared to control. Therefore, the multi-analysis model with a 3D epithelial-fibroblast co-culture system is expected to be useful in predicting pulmonary toxicity as a simple and efficient high-throughput screening method and as an alternative to animal testing.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Bio-application toxicity, Hoseo University, Asan, Republic of Korea
| | - Hee-Sung Hwang
- Department of Bio-application toxicity, Hoseo University, Asan, Republic of Korea
| | - Jee Hoon Choi
- Department of Bio-application toxicity, Hoseo University, Asan, Republic of Korea
| | - Eun-Seon Yoo
- Department of Bio-application toxicity, Hoseo University, Asan, Republic of Korea
| | - Mi-Im Jang
- Department of Bio-application toxicity, Hoseo University, Asan, Republic of Korea
| | - Juhee Lee
- Department of ICT Automotive Engineering, Hoseo University, Asan, Republic of Korea
| | - Seung Min Oh
- Department of Bio-application toxicity, Hoseo University, Asan, Republic of Korea
- Department of Animal Health and Welfare, Hoseo University, Asan, Republic of Korea
| |
Collapse
|
3
|
Mall MA, Burgel PR, Castellani C, Davies JC, Salathe M, Taylor-Cousar JL. Cystic fibrosis. Nat Rev Dis Primers 2024; 10:53. [PMID: 39117676 DOI: 10.1038/s41572-024-00538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Cystic fibrosis is a rare genetic disease caused by mutations in CFTR, the gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). The discovery of CFTR in 1989 has enabled the unravelling of disease mechanisms and, more recently, the development of CFTR-directed therapeutics that target the underlying molecular defect. The CFTR protein functions as an ion channel that is crucial for correct ion and fluid transport across epithelial cells lining the airways and other organs. Consequently, CFTR dysfunction causes a complex multi-organ disease but, to date, most of the morbidity and mortality in people with cystic fibrosis is due to muco-obstructive lung disease. Cystic fibrosis care has long been limited to treating symptoms using nutritional support, airway clearance techniques and antibiotics to suppress airway infection. The widespread implementation of newborn screening for cystic fibrosis and the introduction of a highly effective triple combination CFTR modulator therapy that has unprecedented clinical benefits in up to 90% of genetically eligible people with cystic fibrosis has fundamentally changed the therapeutic landscape and improved prognosis. However, people with cystic fibrosis who are not eligible based on their CFTR genotype or who live in countries where they do not have access to this breakthrough therapy remain with a high unmet medical need.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Paediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany.
- German Centre for Lung Research (DZL), Associated Partner Site Berlin, Berlin, Germany.
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany.
| | - Pierre-Régis Burgel
- Université Paris Cité and Institut Cochin, Inserm U1016, Paris, France
- Department of Respiratory Medicine and National Reference Center for Cystic Fibrosis, Cochin Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Carlo Castellani
- IRCCS Istituto Giannina Gaslini, Cystic Fibrosis Center, Genoa, Italy
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London, London, UK
- St Thomas' NHS Trust, London, UK
- Royal Brompton Hospital, Part of Guy's & St Thomas' Trust, London, UK
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Jennifer L Taylor-Cousar
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
- Division of Paediatric Pulmonary Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
4
|
Chen Y, Markov N, Gigon L, Hosseini A, Yousefi S, Stojkov D, Simon HU. The BK Channel Limits the Pro-Inflammatory Activity of Macrophages. Cells 2024; 13:322. [PMID: 38391935 PMCID: PMC10886595 DOI: 10.3390/cells13040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Macrophages play a crucial role in the innate immune response, serving as key effector cells in the defense against pathogens. Although the role of the large-conductance voltage and calcium-activated potassium channel, also known as the KCa1.1 or BK channel, in regulating neurotransmitter release and smooth muscle contraction is well known, its potential involvement in immune regulation remains unclear. We employed BK-knockout macrophages and noted that the absence of a BK channel promotes the polarization of macrophages towards a pro-inflammatory phenotype known as M1 macrophages. Specifically, the absence of the BK channel resulted in a significant increase in the secretion of the pro-inflammatory cytokine IL-6 and enhanced the activity of extracellular signal-regulated kinases 1 and 2 (Erk1/2 kinases), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and the transcription factor ATF-1 within M1 macrophages. Additionally, the lack of the BK channel promoted the activation of the AIM2 inflammasome without affecting the activation of the NLRC4 and NLRP3 inflammasomes. To further investigate the role of the BK channel in regulating AIM2 inflammasome activation, we utilized BK channel inhibitors, such as paxilline and iberiotoxin, along with the BK channel activator NS-11021. Pharmacological inactivation of the BK channel increased, and its stimulation inhibited IL-1β production following AIM2 inflammasome activation in wild-type macrophages. Moreover, wild-type macrophages displayed increased calcium influx when activated with the AIM2 inflammasome, whereas BK-knockout macrophages did not due to the impaired extracellular calcium influx upon activation. Furthermore, under conditions of a calcium-free medium, IL-1β production following AIM2 inflammasome activation was increased in both wild-type and BK-knockout macrophages. This suggests that the BK channel is required for the influx of extracellular calcium in macrophages, thus limiting AIM2 inflammasome activation. In summary, our study reveals a regulatory role of the BK channel in macrophages under inflammatory conditions.
Collapse
Affiliation(s)
- Yihe Chen
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Nikita Markov
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Lea Gigon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Aref Hosseini
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, 16816 Neuruppin, Germany
| |
Collapse
|
5
|
Kim MD, Chung S, Baumlin N, Qian J, Montgomery RN, Sabater J, Berkland C, Salathe M. The combination of propylene glycol and vegetable glycerin e-cigarette aerosols induces airway inflammation and mucus hyperconcentration. Sci Rep 2024; 14:1942. [PMID: 38253598 PMCID: PMC10803801 DOI: 10.1038/s41598-024-52317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Despite concerns over their safety, e-cigarettes (e-cigs) remain a popular tobacco product. Although nicotine and flavors found in e-cig liquids (e-liquids) can cause harm in the airways, whether the delivery vehicles propylene glycol (PG) and vegetable glycerin (VG) are innocuous when inhaled remains unclear. Here, we investigated the effects of e-cig aerosols generated from e-liquid containing only PG/VG on airway inflammation and mucociliary function in primary human bronchial epithelial cells (HBEC) and sheep. Primary HBEC were cultured at the air-liquid interface (ALI) and exposed to e-cig aerosols of 50%/50% v/v PG/VG. Ion channel conductance, ciliary beat frequency, and the expression of inflammatory markers, cell type-specific markers, and the major mucins MUC5AC and MUC5B were evaluated after seven days of exposure. Sheep were exposed to e-cig aerosols of PG/VG for five days and mucus concentration and matrix metalloproteinase-9 (MMP-9) activity were measured from airway secretions. Seven-day exposure of HBEC to e-cig aerosols of PG/VG caused a significant reduction in the activities of apical ion channels important for mucus hydration, including the cystic fibrosis transmembrane conductance regulator (CFTR) and large conductance, Ca2+-activated, and voltage-dependent K+ (BK) channels. PG/VG aerosols significantly increased the mRNA expression of the inflammatory markers interleukin-6 (IL6), IL8, and MMP9, as well as MUC5AC. The increase in MUC5AC mRNA expression correlated with increased immunostaining of MUC5AC protein in PG/VG-exposed HBEC. On the other hand, PG/VG aerosols reduced MUC5B expression leading overall to higher MUC5AC/MUC5B ratios in exposed HBEC. Other cell type-specific markers, including forkhead box protein J1 (FOXJ1), keratin 5 (KRT5), and secretoglobin family 1A member 1 (SCGB1A1) mRNAs, as well as overall ciliation, were significantly reduced by PG/VG exposure. Finally, PG/VG aerosols increased MMP-9 activity and caused mucus hyperconcentration in sheep in vivo. E-cig aerosols of PG/VG induce airway inflammation, increase MUC5AC expression, and cause dysfunction of ion channels important for mucus hydration in HBEC in vitro. Furthermore, PG/VG aerosols increase MMP-9 activity and mucus concentration in sheep in vivo. Collectively, these data show that e-cig aerosols containing PG/VG are likely to be harmful in the airways.
Collapse
Affiliation(s)
- Michael D Kim
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Samuel Chung
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Nathalie Baumlin
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jian Qian
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
| | - Robert N Montgomery
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Juan Sabater
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, 33140, USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
| | - Matthias Salathe
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
6
|
Douglas LEJ, Reihill JA, Montgomery BM, Martin SL. Furin as a therapeutic target in cystic fibrosis airways disease. Eur Respir Rev 2023; 32:32/168/220256. [PMID: 37137509 PMCID: PMC10155048 DOI: 10.1183/16000617.0256-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/22/2023] [Indexed: 05/05/2023] Open
Abstract
Clinical management of cystic fibrosis (CF) has been greatly improved by the development of small molecule modulators of the CF transmembrane conductance regulator (CFTR). These drugs help to address some of the basic genetic defects of CFTR; however, no suitable CFTR modulators exist for 10% of people with CF (PWCF). An alternative, mutation-agnostic therapeutic approach is therefore still required. In CF airways, elevated levels of the proprotein convertase furin contribute to the dysregulation of key processes that drive disease pathogenesis. Furin plays a critical role in the proteolytic activation of the epithelial sodium channel; hyperactivity of which causes airways dehydration and loss of effective mucociliary clearance. Furin is also responsible for the processing of transforming growth factor-β, which is increased in bronchoalveolar lavage fluid from PWCF and is associated with neutrophilic inflammation and reduced pulmonary function. Pathogenic substrates of furin include Pseudomonas exotoxin A, a major toxic product associated with Pseudomonas aeruginosa infection and the spike glycoprotein of severe acute respiratory syndrome coronavirus 2, the causative pathogen for coronavirus disease 2019. In this review we discuss the importance of furin substrates in the progression of CF airways disease and highlight selective furin inhibition as a therapeutic strategy to provide clinical benefit to all PWCF.
Collapse
Affiliation(s)
- Lisa E J Douglas
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - James A Reihill
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | - S Lorraine Martin
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
7
|
Sedaghat MH, Behnia M, Abouali O. Nanoparticle Diffusion in Respiratory Mucus Influenced by Mucociliary Clearance: A Review of Mathematical Modeling. J Aerosol Med Pulm Drug Deliv 2023. [PMID: 37184652 DOI: 10.1089/jamp.2022.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Background: Inhalation and deposition of particles in human airways have attracted considerable attention due to importance of particulate pollutants, transmission of infectious diseases, and therapeutic delivery of drugs at targeted areas. We summarize current state-of-the art research in particle deposition on airway surface liquid (ASL) influenced by mucociliary clearance (MCC) by identifying areas that need further investigation. Methodology: We aim to review focus on governing and constitutive equations describing MCC geometry followed by description of mathematical modeling of ciliary forces, mucus rheology properties, and numerical approaches to solve modified time-dependent Navier-Stokes equations. We also review mathematical modeling of particle deposition in ASL influenced by MCC, particle transport in ASL in terms of Eulerian and Lagrangian approaches, and discuss the corresponding mass transport issues in this layer. Whenever required, numerical predictions are contrasted with the pertinent experimental data. Results: Results indicate that mean mucus and periciliary liquid velocities are strongly influenced by mucus rheological characteristics as well as ciliary abnormalities. However, most of the currently available literature on mucus fiber spacing, ciliary beat frequency, and particle surface chemistry is based on particle deposition on ASL by considering a fixed value of ASL velocity. The effects of real ASL flow regimes on particle deposition in this layer are limited. In addition, no other study is available on modeling nonhomogeneous and viscoelastic characteristics of mucus layer on ASL drug delivery. Conclusion: Simplification of assumptions on governing equations of drug delivery in ASL influenced by MCC leads to imposing some limitations on numerical results.
Collapse
Affiliation(s)
- Mohammad Hadi Sedaghat
- Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran
| | - Mehrdad Behnia
- University of Central Florida School of Medicine, Orlando, Florida, USA
| | - Omid Abouali
- Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
- School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
8
|
Kim MD, Chung S, Baumlin N, Sun L, Silswal N, Dennis JS, Yoshida M, Sabater J, Horrigan FT, Salathe M. E-cigarette aerosols of propylene glycol impair BK channel activity and parameters of mucociliary function. Am J Physiol Lung Cell Mol Physiol 2023; 324:L468-L479. [PMID: 36809074 PMCID: PMC10042605 DOI: 10.1152/ajplung.00157.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/26/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Propylene glycol (PG) is a common delivery vehicle for nicotine and flavorings in e-cigarette (e-cig) liquids and is largely considered safe for ingestion. However, little is known about its effects as an e-cig aerosol on the airway. Here, we investigated whether pure PG e-cig aerosols in realistic daily amounts impact parameters of mucociliary function and airway inflammation in a large animal model (sheep) in vivo and primary human bronchial epithelial cells (HBECs) in vitro. Five-day exposure of sheep to e-cig aerosols of 100% PG increased mucus concentrations (% mucus solids) of tracheal secretions. PG e-cig aerosols further increased the activity of matrix metalloproteinase-9 (MMP-9) in tracheal secretions. In vitro exposure of HBECs to e-cig aerosols of 100% PG decreased ciliary beating and increased mucus concentrations. PG e-cig aerosols further reduced the activity of large conductance, Ca2+-activated, and voltage-dependent K+ (BK) channels. We show here for the first time that PG can be metabolized to methylglyoxal (MGO) in airway epithelia. PG e-cig aerosols increased levels of MGO and MGO alone reduced BK activity. Patch-clamp experiments suggest that MGO can disrupt the interaction between the major pore-forming BK subunit human Slo1 (hSlo1) and the gamma regulatory subunit LRRC26. PG exposures also caused a significant increase in mRNA expression levels of MMP9 and interleukin 1 beta (IL1B). Taken together, these data show that PG e-cig aerosols cause mucus hyperconcentration in sheep in vivo and HBECs in vitro, likely by disrupting the function of BK channels important for airway hydration.
Collapse
Affiliation(s)
- Michael D Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Samuel Chung
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Nathalie Baumlin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Liang Sun
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States
| | - Neerupma Silswal
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - John S Dennis
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Makoto Yoshida
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Juan Sabater
- Department of Research, Mount Sinai Medical Center, Miami Beach, Florida, United States
| | - Frank T Horrigan
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States
| | - Matthias Salathe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
9
|
Oldakovskiy V, Murashkin N, Lokhmatov M, Gusev A, Tupylenko A, Budkina T, Yatzik S, Dyakonova E, Abaykhanov R, Fisenko A. Our experience of using Losartan for esophageal stenosis in children with dystrophic form of congenital epidermolysis bullosa. J Pediatr Surg 2023; 58:619-623. [PMID: 36566169 DOI: 10.1016/j.jpedsurg.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Dystrophic epidermolysis bullosa (DEB) is one of the most severe forms of congenital epidermolysis bullosa and characterized by the formation of many surgical complications. Esophageal stenosis is a common complication of DEB and occurs in almost 76% of cases. Balloon dilatation (BD) under X-ray control is the main therapeutic technique, however conservative treatment is necessary to prevent restenosis. The use of the drug losartan is promising due to its antifibrotic effect through the suppression of transforming growth factor-β1 (TGF-β1). PURPOSE To evaluate the efficacy of losartan in the prevention of restenosis after BD of esophageal stenosis in children with DEB. MATERIALS AND METHODS The study included 19 children from 2 to 16 years old (mean age 9.2 ± 3.58 years) with DEB and X-ray confirmed esophageal stenosis. All children underwent BD. In the main group 9 children after BD have received losartan, in the control group of 10 children - only standard therapy. The observation period was 12 months. RESULTS In the main group, 1 child (11.1%) required repeated dilatation, in the control group - 4 children (40%). Indicators of nutritional deficiency (THINC scale) and the disease severity index (EBDASI) were significantly lower in the group of children treated with losartan. No undesirable actions of the drug were recorded. CONCLUSIONS In this study losartan showed its safety, contributed to a decrease in the restenosis frequency and an improvement in the nutritional status of children with DEB after BD. However, further studies are required to confirm its effectiveness. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Vladislav Oldakovskiy
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Nikolay Murashkin
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Maksim Lokhmatov
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Aleksey Gusev
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya str. 6, 117198, Moscow, Russia.
| | - Artem Tupylenko
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Tatiana Budkina
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Sergey Yatzik
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Elena Dyakonova
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Rasul Abaykhanov
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Andrey Fisenko
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| |
Collapse
|
10
|
Meindl C, Absenger-Novak M, Jeitler R, Roblegg E, Fröhlich E. Assessment of Carbon Nanotubes on Barrier Function, Ciliary Beating Frequency and Cytokine Release in In Vitro Models of the Respiratory Tract. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:682. [PMID: 36839050 PMCID: PMC9962067 DOI: 10.3390/nano13040682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The exposure to inhaled carbon nanotubes (CNT) may have adverse effects on workers upon chronic exposure. In order to assess the toxicity of inhaled nanoparticles in a physiologically relevant manner, an air-liquid interface culture of mono and cocultures of respiratory cells and assessment in reconstructed bronchial and alveolar tissues was used. The effect of CNT4003 reference particles applied in simulated lung fluid was studied in bronchial (Calu-3 cells, EpiAirway™ and MucilAir™ tissues) and alveolar (A549 +/-THP-1 and EpiAlveolar™ +/-THP-1) models. Cytotoxicity, transepithelial electrical resistance, interleukin 6 and 8 secretion, mucociliary clearance and ciliary beating frequency were used as readout parameters. With the exception of increased secretion of interleukin 6 in the EpiAlveolar™ tissues, no adverse effects of CNT4003 particles, applied at doses corresponding to the maximum estimated lifetime exposure of workers, in the bronchial and alveolar models were noted, suggesting no marked differences between the models. Since the doses for whole-life exposure were applied over a shorter time, it is not clear if the interleukin 6 increase in the EpiAlveolar™ tissues has physiological relevance.
Collapse
Affiliation(s)
- Claudia Meindl
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Markus Absenger-Novak
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Ramona Jeitler
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| | - Eva Roblegg
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| | - Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| |
Collapse
|
11
|
METTL3 boosts glycolysis and cardiac fibroblast proliferation by increasing AR methylation. Int J Biol Macromol 2022; 223:899-915. [PMID: 36370857 DOI: 10.1016/j.ijbiomac.2022.11.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
Dysregulated glycolysis has been noted in several pathological processes characterized by supporting cell proliferation. Nonetheless, the role of glycolysis reprogramming is not well appreciated in cardiac fibrosis which is accompanied by increased fibroblasts proliferation. In this study, we investigated the cause and consequence of glycolysis reprogramming in cardiac fibrosis, using clinical samples, animal models, and cultured cells. Herein, we report that methyltransferase-like 3 (METTL3) facilitates glycolysis and cardiac fibroblasts proliferation, leading to cardiac fibrosis. The augmentation of glycolysis, an essential event during cardiac fibroblasts proliferation, is dependent on an increased expression of METTL3. A knockdown of METTL3 suppressed glycolysis, and inhibited cardiac fibroblast proliferation and cardiac fibrosis. Mechanistically, METTL3 epigenetically repressed androgen receptor (AR) expression in an m6A-YTHDF2- dependent manner, by targeting the specific AR m6A site. AR could interact with the glycolysis marker HIF-1α, and down-regulation of AR activates HIF-1α signaling, resulting in enhanced glycolysis and cardiac fibroblast proliferation. In contrast, the overexpression of AR significantly reduced the HIF-1α axis, decreased expression of glycolytic enzymes HK3, inhibited glycolysis, and repressed cardiac fibroblasts proliferation. Notably, increased METTL3 and YTHDF2 levels, decreased AR expression, increased HIF-1α and Postn expression and augmented glycolysis, and increased cardiac fibrosis were detected in human atrial fibrillation heart tissues. Our results found a novel mechanism by which METTL3-catalyzed m6A modification in cardiac fibrosis, wherein it facilitated glycolysis and cardiac fibroblasts proliferation by increasing AR methylation in an m6A-YTHDF2- dependent manner and provided new insights strategies to intervene cardiac fibrosis.
Collapse
|
12
|
Wang L, Jiang T, Yang Y, Mao J, Wang Q, Yu R, Wang B, Yin J. Angiotensin-(1-7) alleviates acute lung injury by activating the Mas receptor in neutrophil. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1395. [PMID: 36660718 PMCID: PMC9843327 DOI: 10.21037/atm-22-6193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
Background Acute lung injury (ALI) is a major cause of mortality and morbidity in the clinic. None of the current pharmacological interventions has achieved a detectable benefit. The renin-angiotensin system (RAS) is a complex humoral system essentially involved in the regulation of ALI. In the RAS family, angiotensin (Ang)-(1-7) was found to provide protection by counteracting the effects of Ang II in various cardiopulmonary disease models. The downstream receptor of Ang-(1-7) is the G protein-coupled receptor (GPCR) Mas. We hypothesize that the Ang-(1-7)-Mas pathway would protect patients from ALI. Methods To establish a 2-hit ALI model, the mice underwent intratracheal instillation of hydrochloric acid followed by ventilator-induced lung injury (VILI). ALI was evaluated based on lung edema, histology, myeloperoxidase activity, and proinflammatory cytokine production. The effects of the infusion or inhalation of Ang-(1-7) and Mas receptor blocker A779 were examined. The human neutrophils were isolated, and Mas receptor expression was examined. The neutrophil responses to platelet-activating factor (PAF) stimulation were tested by measuring the formation of reactive oxygen species (ROS), neutrophil adhesion, and chemotaxis. Next, in the mouse model, the neutrophils were depleted using an anti-ly6G antibody. Results The infusion or inhalation of Ang-(1-7) protected mice from ALI as evidenced by decreases in lung edema, the histological lung injury score, myeloperoxidase activity, and proinflammatory cytokine production. Such effects were largely blocked by the Mas receptor blocker A779. Mas receptor expression in the neutrophils was identified at both the messenger ribonucleic acid and protein levels. Ang-(1-7) prevented neutrophil responses to PAF stimulation, including the formation of ROS, neutrophil adhesion, and chemotaxis, while A779 alleviated these effects. The importance of neutrophils in ALI was further confirmed by neutrophil depletion using the anti-ly6G antibody; however, A779 partially reversed the protective role of neutrophil depletion in ALI, indicating the critical role of Ang-(1-7)-Mas signaling in other pulmonary cells. Conclusions Ang-(1-7)/Mas receptor attenuates the key features of ALI by regulating neutrophil activation. Our study provides new evidence of their role in the pathogenesis of ALI and may lead to the development of a promising therapeutic strategy.
Collapse
Affiliation(s)
- Liming Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Tian Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China;,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China;,Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| | - Yilin Yang
- Department of Oncology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Junjie Mao
- Department of Respiratory and Critical Care Medicine, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Qiong Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Ronghuan Yu
- Department of Respiratory and Critical Care Medicine, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Baoqing Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Xuhui Central Hospital, Shanghai, China;,Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Yin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China;,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China;,Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| |
Collapse
|
13
|
Angiotensin II receptor type 1 blockade regulates Klotho expression to induce TSC2-deficient cell death. J Biol Chem 2022; 298:102580. [DOI: 10.1016/j.jbc.2022.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022] Open
|
14
|
Kim MD, Chung S, Dennis JS, Yoshida M, Aguiar C, Aller SP, Mendes ES, Schmid A, Sabater J, Baumlin N, Salathe M. Vegetable glycerin e-cigarette aerosols cause airway inflammation and ion channel dysfunction. Front Pharmacol 2022; 13:1012723. [PMID: 36225570 PMCID: PMC9549247 DOI: 10.3389/fphar.2022.1012723] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 02/02/2023] Open
Abstract
Vegetable glycerin (VG) and propylene glycol (PG) serve as delivery vehicles for nicotine and flavorings in most e-cigarette (e-cig) liquids. Here, we investigated whether VG e-cig aerosols, in the absence of nicotine and flavors, impact parameters of mucociliary function in human volunteers, a large animal model (sheep), and air-liquid interface (ALI) cultures of primary human bronchial epithelial cells (HBECs). We found that VG-containing (VG or PG/VG), but not sole PG-containing, e-cig aerosols reduced the activity of nasal cystic fibrosis transmembrane conductance regulator (CFTR) in human volunteers who vaped for seven days. Markers of inflammation, including interleukin-6 (IL6), interleukin-8 (IL8) and matrix metalloproteinase-9 (MMP9) mRNAs, as well as MMP-9 activity and mucin 5AC (MUC5AC) expression levels, were also elevated in nasal samples from volunteers who vaped VG-containing e-liquids. In sheep, exposures to VG e-cig aerosols for five days increased mucus concentrations and MMP-9 activity in tracheal secretions and plasma levels of transforming growth factor-beta 1 (TGF-β1). In vitro exposure of HBECs to VG e-cig aerosols for five days decreased ciliary beating and increased mucus concentrations. VG e-cig aerosols also reduced CFTR function in HBECs, mechanistically by reducing membrane fluidity. Although VG e-cig aerosols did not increase MMP9 mRNA expression, expression levels of IL6, IL8, TGFB1, and MUC5AC mRNAs were significantly increased in HBECs after seven days of exposure. Thus, VG e-cig aerosols can potentially cause harm in the airway by inducing inflammation and ion channel dysfunction with consequent mucus hyperconcentration.
Collapse
Affiliation(s)
- Michael D. Kim
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Samuel Chung
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - John S. Dennis
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Makoto Yoshida
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Carolina Aguiar
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sheyla P. Aller
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eliana S. Mendes
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Andreas Schmid
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Juan Sabater
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Nathalie Baumlin
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Matthias Salathe
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States,*Correspondence: Matthias Salathe,
| |
Collapse
|
15
|
The CFTR Amplifier Nesolicaftor Rescues TGF-β1 Inhibition of Modulator-Corrected F508del CFTR Function. Int J Mol Sci 2022; 23:ijms231810956. [PMID: 36142862 PMCID: PMC9504033 DOI: 10.3390/ijms231810956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Highly effective cystic fibrosis transmembrane conductance regulator (CFTR) modulators have led to dramatic improvements in lung function in many people with cystic fibrosis (PwCF). However, the efficacy of CFTR modulators may be hindered by persistent airway inflammation. The cytokine transforming growth factor-beta1 (TGF-β1) is associated with worse pulmonary disease in PwCF and can diminish modulator efficacy. Thus, strategies to augment the CFTR response to modulators in an inflammatory environment are needed. Here, we tested whether the CFTR amplifier nesolicaftor (or PTI-428) could rescue the effects of TGF-β1 on CFTR function and ciliary beating in primary human CF bronchial epithelial (CFBE) cells. CFBE cells homozygous for F508del were treated with the combination of elexacaftor/tezacaftor/ivacaftor (ETI) and TGF-β1 in the presence and absence of nesolicaftor. Nesolicaftor augmented the F508del CFTR response to ETI and reversed TGF-β1-induced reductions in CFTR conductance by increasing the expression of CFTR mRNA. Nesolicaftor further rescued the reduced ciliary beating and increased expression of the cytokines IL-6 and IL-8 caused by TGF-β1. Finally, nesolicaftor augmented the F508del CFTR response to ETI in CFBE cells overexpressing miR-145, a negative regulator of CFTR expression. Thus, CFTR amplifiers, but only when used with highly effective modulators, may provide benefit in an inflamed environment.
Collapse
|
16
|
Premkumar A, Anatone A, Illescas A, Memtsoudis S, Cross MB, Sculco PK, Gonzalez Della Valle A. Perioperative Use of Antifibrotic Medications Associated With Lower Rate of Manipulation After Primary TKA: An Analysis of 101,366 Patients. J Arthroplasty 2022; 37:S1010-S1015.e1. [PMID: 35283229 DOI: 10.1016/j.arth.2022.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Several commonly prescribed medications have known antifibrotic properties and have been shown to reduce postoperative scar formation in other clinical areas, but it is unknown whether the use of such medications perioperatively in patients undergoing TKA may improve rates of postoperative stiffness. METHODS A large US employer-sponsored healthcare database (Truven Marketscan) was queried for patients who underwent elective primary TKA for primary osteoarthritis between 2015-2019. Demographic information and comorbidities were recorded, along with whether patients were prescribed one of several medications with known antifibrotic properties during the three months before or after surgery. RESULTS Complete data were available for 101,366 patients undergoing TKA, of which 4,536 underwent MUA (4.5%). Perioperative use of any antifibrotic medication was associated with a lower likelihood of undergoing MUA (P < .001). When controlling for age, sex, comorbidities, opioid use, length of stay, among other variables, perioperative use of specific ACE inhibitors (OR 0.91, CI 0.84-1, P = .042), COX-2 inhibitors (OR 0.88, CI 0.81-0.96, P = .002), and angiotensin II receptor blockers, specifically losartan (OR 0.80, CI 0.70-0.91, P = .007) all remained significantly associated with lower rates of MUA. CONCLUSION This study, spanning over a hundred thousand primary TKA procedures over a recent five-year period, demonstrates an association between perioperative use of specific medications with antifibrotic properties and a decreased rate of MUA. These data will help inform future studies aimed to prospectively evaluate the potential of antifibrotic medications in preventing postoperative stiffness in high-risk patients undergoing knee arthroplasty.
Collapse
Affiliation(s)
- Ajay Premkumar
- Hospital for Special Surgery, Adult Reconstruction and Joint Replacement, New York, NY
| | - Alex Anatone
- Hospital for Special Surgery, Adult Reconstruction and Joint Replacement, New York, NY
| | - Alex Illescas
- Hospital for Special Surgery, Biostatistics Core, New York, NY
| | - Stavros Memtsoudis
- Hospital for Special Surgery, Department of Anesthesiology, Critical Care, and Pain Management, New York, NY
| | - Michael B Cross
- Hospital for Special Surgery, Adult Reconstruction and Joint Replacement, New York, NY
| | - Peter K Sculco
- Hospital for Special Surgery, Adult Reconstruction and Joint Replacement, New York, NY
| | | |
Collapse
|
17
|
Zeng S, Li Y, Zhu W, Luo Z, Wu K, Li X, Fang Y, Qin Y, Chen W, Li Z, Zou L, Liu X, Yi L, Fan S. The Advances of Broad-Spectrum and Hot Anti-Coronavirus Drugs. Microorganisms 2022; 10:microorganisms10071294. [PMID: 35889013 PMCID: PMC9317368 DOI: 10.3390/microorganisms10071294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Coronaviruses, mainly including severe acute respiratory syndrome virus, severe acute respiratory syndrome coronavirus 2, Middle East respiratory syndrome virus, human coronavirus OC43, chicken infectious bronchitis virus, porcine infectious gastroenteritis virus, porcine epidemic diarrhea virus, and murine hepatitis virus, can cause severe diseases in humans and livestock. The severe acute respiratory syndrome coronavirus 2 is infecting millions of human beings with high morbidity and mortality worldwide, and the multiplicity of swine epidemic diarrhea coronavirus in swine suggests that coronaviruses seriously jeopardize the safety of public health and that therapeutic intervention is urgently needed. Currently, the most effective methods of prevention and control for coronaviruses are vaccine immunization and pharmacotherapy. However, the emergence of mutated viruses reduces the effectiveness of vaccines. In addition, vaccine developments often lag behind, making it difficult to put them into use early in the outbreak. Therefore, it is meaningful to screen safe, cheap, and broad-spectrum antiviral agents for coronaviruses. This review systematically summarizes the mechanisms and state of anti-human and porcine coronavirus drugs, in order to provide theoretical support for the development of anti-coronavirus drugs and other antivirals.
Collapse
Affiliation(s)
- Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenhui Zhu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zipeng Luo
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yiqi Fang
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (L.Y.); (S.F.); Fax: +86-20-8528-0245 (S.F.)
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (L.Y.); (S.F.); Fax: +86-20-8528-0245 (S.F.)
| |
Collapse
|
18
|
Grubb BR, Livraghi-Butrico A. Animal models of cystic fibrosis in the era of highly effective modulator therapies. Curr Opin Pharmacol 2022; 64:102235. [DOI: 10.1016/j.coph.2022.102235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/17/2022]
|
19
|
Kim MD, Bengtson CD, Yoshida M, Niloy AJ, Dennis JS, Baumlin N, Salathe M. Losartan ameliorates TGF-β1-induced CFTR dysfunction and improves correction by cystic fibrosis modulator therapies. J Clin Invest 2022; 132:155241. [PMID: 35446787 PMCID: PMC9151698 DOI: 10.1172/jci155241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Highly effective modulator therapies dramatically improve the prognosis for those with cystic fibrosis (CF). The triple combination of elexacaftor, tezacaftor, and ivacaftor (ETI) benefits many, but not all, of those with the most common F508del mutation in the CF transmembrane conductance regulator (CFTR). Here, we showed that poor sweat chloride concentration responses and lung function improvements upon initiation of ETI were associated with elevated levels of active TGF-β1 in the upper airway. Furthermore, TGF-β1 impaired the function of ETI-corrected F508del-CFTR, thereby increasing airway surface liquid (ASL) absorption rates and inducing mucus hyperconcentration in primary CF bronchial epithelial cells in vitro. TGF-β1 not only decreased CFTR mRNA, but was also associated with increases in the mRNA expression of TNFA and COX2 and TNF-α protein. Losartan improved TGF-β1-mediated inhibition of ETI-corrected F508del-CFTR function and reduced TNFA and COX2 mRNA and TNF-α protein expression. This likely occurred by improving correction of mutant CFTR rather than increasing its mRNA (without an effect on potentiation), thereby reversing the negative effects of TGF-β1 and improving ASL hydration in the CF airway epithelium in vitro. Importantly, these effects were independent of type 1 angiotensin II receptor inhibition.
Collapse
|
20
|
Ding R, Jiang Y, Yang Y, Shi Y, Ji Y, Zhen T, Fu Z, Bao X, Tan J, Zhang S, Li J, Xing K, Zhou X, Zhu S. Calcitriol ameliorates renal injury with high-salt diet-induced hypertension by upregulating GLIS2 expression and AMPK/mTOR-regulated autophagy. Gene 2022; 820:146239. [PMID: 35114278 DOI: 10.1016/j.gene.2022.146239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/03/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
Abstract
The goal of the present study was to investigate the protective effect of calcitriol on high-salt diet-induced hypertension. The hypertension rat model was established by a long-term high-salt diet (8% NaCl). Rats were treated with calcitriol, losartan, or their combination. Histological staining was used to confirm renal pathology. Global transcriptome analysis of renal tissues was performed, and the mechanism of the therapeutic effect of calcitriol was analysed by functional annotation and pathway analysis of the differentially expressed genes (DEGs) as well as by Western blotting analysis. The core genes for potential therapeutic regulation were identified through the coexpression gene network. For in vitro HK-2 cell experiments, small interfering RNA (siRNA) was used to knockdown key a transcription factor (TF) Glis2 to validate the therapeutic target of calcitriol. MAPK1 and CXCL12 expression was downregulated and the apoptosis pathway was significantly enriched by calcitriol treatment. The western blotting results showed that calcitriol treatment increased AMPK phosphorylation and decreased downstream mTOR phosphorylation, which was accompanied by a decrease in autophagy protein p62 expression and an increase in LC3-II/I expression. GLIS2 was identified as a specific therapeutic target for calcitriol. GLIS2 expression was upregulated by calcitriol and confirmed by HK-2 cells in vitro. Our omics data show that calcitriol can alleviate oxidative stress and fibrosis. Moreover, calcitriol can regulate the CXCL12/ERK1/2 cascade to inhibit the inflammatory response and renal cell apoptosis and induce renal autophagy through the AMPK/mTOR pathway. Our study partially elucidate the pathogenesis and treatment mechanism underlying hypertension, and provide new insights into the treatment of hypertension.
Collapse
Affiliation(s)
- Ruifeng Ding
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yufeng Jiang
- Department of Nephrology, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China
| | - Yi Yang
- Cinoasia Institute, Shanghai 200438, China
| | - Yong Shi
- Cinoasia Institute, Shanghai 200438, China
| | - Yang Ji
- Cinoasia Institute, Shanghai 200438, China
| | | | | | - Xunxia Bao
- Cinoasia Institute, Shanghai 200438, China
| | - Jia Tan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuyong Zhang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiahui Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | | | - Xinli Zhou
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Sibo Zhu
- School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
21
|
Guntur D, Olschewski H, Enyedi P, Csáki R, Olschewski A, Nagaraj C. Revisiting the Large-Conductance Calcium-Activated Potassium (BKCa) Channels in the Pulmonary Circulation. Biomolecules 2021; 11:1629. [PMID: 34827626 PMCID: PMC8615660 DOI: 10.3390/biom11111629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 01/13/2023] Open
Abstract
Potassium ion concentrations, controlled by ion pumps and potassium channels, predominantly govern a cell's membrane potential and the tone in the vessels. Calcium-activated potassium channels respond to two different stimuli-changes in voltage and/or changes in intracellular free calcium. Large conductance calcium-activated potassium (BKCa) channels assemble from pore forming and various modulatory and auxiliary subunits. They are of vital significance due to their very high unitary conductance and hence their ability to rapidly cause extreme changes in the membrane potential. The pathophysiology of lung diseases in general and pulmonary hypertension, in particular, show the implication of either decreased expression and partial inactivation of BKCa channel and its subunits or mutations in the genes encoding different subunits of the channel. Signaling molecules, circulating humoral molecules, vasorelaxant agents, etc., have an influence on the open probability of the channel in pulmonary arterial vascular cells. BKCa channel is a possible therapeutic target, aimed to cause vasodilation in constricted or chronically stiffened vessels, as shown in various animal models. This review is a comprehensive collation of studies on BKCa channels in the pulmonary circulation under hypoxia (hypoxic pulmonary vasoconstriction; HPV), lung pathology, and fetal to neonatal transition, emphasising pharmacological interventions as viable therapeutic options.
Collapse
Affiliation(s)
- Divya Guntur
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria;
| | - Horst Olschewski
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria;
| | - Péter Enyedi
- Department of Physiology, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary; (P.E.); (R.C.)
| | - Réka Csáki
- Department of Physiology, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary; (P.E.); (R.C.)
| | - Andrea Olschewski
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria;
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria;
| |
Collapse
|
22
|
Forno E, Abman SH, Singh J, Robbins ME, Selvadurai H, Schumacker PT, Robinson PD. Update in Pediatrics 2020. Am J Respir Crit Care Med 2021; 204:274-284. [PMID: 34126039 DOI: 10.1164/rccm.202103-0605up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Erick Forno
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Steven H Abman
- Department of Pediatrics, Children's Hospital Colorado, Denver, Colorado.,University of Colorado Anschutz School of Medicine, Denver, Colorado
| | - Jagdev Singh
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mary E Robbins
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiran Selvadurai
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Paul T Schumacker
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paul D Robinson
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Rubin SJS, Falkson SR, Degner NR, Blish CA. Safety of ACE-I and ARB medications in COVID-19: A retrospective cohort study of inpatients and outpatients in California. J Clin Transl Sci 2021; 5:e8. [PMID: 34611496 PMCID: PMC7605244 DOI: 10.1017/cts.2020.489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION There is significant interest in the use of angiotensin converting enzyme inhibitors (ACE-I) and angiotensin II receptor blockers (ARB) in coronavirus disease 2019 (COVID-19) and concern over potential adverse effects since these medications upregulate the severe acute respiratory syndrome coronavirus 2 host cell entry receptor ACE2. Recent studies on ACE-I and ARB in COVID-19 were limited by excluding outpatients, excluding patients by age, analyzing ACE-I and ARB together, imputing missing data, and/or diagnosing COVID-19 by chest computed tomography without definitive reverse transcription polymerase chain reaction (RT-PCR), all of which are addressed here. METHODS We performed a retrospective cohort study of 1023 COVID-19 patients diagnosed by RT-PCR at Stanford Hospital through April 8, 2020 with a minimum follow-up time of 14 days to investigate the association between ACE-I or ARB use with outcomes. RESULTS Use of ACE-I or ARB medications was not associated with increased risk of hospitalization, intensive care unit admission, or death. Compared to patients with charted past medical history, there was a lower risk of hospitalization for patients on ACE-I (odds ratio (OR) 0.43; 95% confidence interval (CI) 0.19-0.97; P = 0.0426) and ARB (OR 0.39; 95% CI 0.17-0.90; P = 0.0270). Compared to patients with hypertension not on ACE-I or ARB, patients on ARB medications had a lower risk of hospitalization (OR 0.09; 95% CI 0.01-0.88; P = 0.0381). CONCLUSIONS These findings suggest that the use of ACE-I and ARB is not associated with adverse outcomes and may be associated with improved outcomes in COVID-19, which is immediately relevant to care of the many patients on these medications.
Collapse
Affiliation(s)
- Samuel J. S. Rubin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Samuel R. Falkson
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas R. Degner
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
24
|
Lopes-Pacheco M, Pedemonte N, Veit G. Discovery of CFTR modulators for the treatment of cystic fibrosis. Expert Opin Drug Discov 2021; 16:897-913. [PMID: 33823716 DOI: 10.1080/17460441.2021.1912732] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a life-threatening inherited disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel expressed at the apical membrane of secretory epithelia. CF leads to multiorgan dysfunction with progressive deterioration of lung function being the major cause of untimely death. Conventional CF therapies target only symptoms and consequences downstream of the primary genetic defect and the current life expectancy and quality of life of these individuals are still very limited. AREA COVERED CFTR modulator drugs are novel-specialized therapies that enhance or even restore functional expression of CFTR mutants and have been approved for clinical use for individuals with specific CF genotypes. This review summarizes classical approaches used for the pre-clinical development of CFTR correctors and potentiators as well as emerging strategies aiming to accelerate modulator development and expand theratyping efforts. EXPERT OPINION Highly effective CFTR modulator drugs are expected to deeply modify the disease course for the majority of individuals with CF. A multitude of experimental approaches have been established to accelerate the development of novel modulators. CF patient-derived specimens are valuable cell models to predict therapeutic effectiveness of existing (and novel) modulators in a precision medicine approach.
Collapse
Affiliation(s)
| | | | - Guido Veit
- Department of Physiology, McGill University, Montréal, Canada
| |
Collapse
|
25
|
Reihill JA, Douglas LEJ, Martin SL. Modulation of Ion Transport to Restore Airway Hydration in Cystic Fibrosis. Genes (Basel) 2021; 12:genes12030453. [PMID: 33810137 PMCID: PMC8004921 DOI: 10.3390/genes12030453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is a life-limiting genetic disorder caused by loss-of-function mutations in the gene which codes for the CF transmembrane conductance regulator (CFTR) Cl- channel. Loss of Cl- secretion across the apical membrane of airway lining epithelial cells results in dehydration of the airway surface liquid (ASL) layer which impairs mucociliary clearance (MCC), and as a consequence promotes bacterial infection and inflammation of the airways. Interventions that restore airway hydration are known to improve MCC. Here we review the ion channels present at the luminal surface of airway epithelial cells that may be targeted to improve airway hydration and MCC in CF airways.
Collapse
|
26
|
Salomon JJ, Albrecht T, Graeber SY, Scheuermann H, Butz S, Schatterny J, Mairbäurl H, Baumann I, Mall MA. Chronic rhinosinusitis with nasal polyps is associated with impaired TMEM16A-mediated epithelial chloride secretion. J Allergy Clin Immunol 2021; 147:2191-2201.e2. [PMID: 33609628 DOI: 10.1016/j.jaci.2021.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/16/2021] [Accepted: 02/12/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is one of the most common chronic disorders with limited therapeutic options. However, the pathogenesis of CRSwNP remains poorly understood. OBJECTIVE We sought to determine the role of abnormalities in nasal epithelial ion transport in primary epithelial cultures and patients with CRSwNP. METHODS We studied epithelial ion transport and transcript levels of the Cl- channels cystic fibrosis transmembrane conductance regulator and transmembrane protein 16A (TMEM16A) in human primary nasal epithelial cultures of patients with CRSwNP and healthy controls. Furthermore, we determined expression levels of proinflammatory cytokines that have been implicated in the regulation of epithelial ion channels (IL-1β, INF-γ, TNF-α, IL-13) and studied effects of the key TH2 signaling molecule IL-13 in CRSwNP and control nasal epithelial cultures. Finally, we measured in vivo nasal potential difference to compare epithelial ion transport in patients with CRSwNP and controls. RESULTS Bioelectric studies demonstrated that Ca2+-activated Cl- secretion was reduced in CRSwNP versus control nasal epithelial cultures. Transcript levels of IL-13 and the Ca2+-activated Cl- channel TMEM16A were increased in CRSwNP cultures. Stimulation with IL-13 increased TMEM16A expression further and restored Ca2+-activated Cl- secretion in CRSwNP cultures. Nasal potential difference measurements demonstrated reduced Ca2+-activated Cl- transport in patients with CRSwNP versus controls. CONCLUSIONS This study demonstrates that TMEM16A-mediated Ca2+-activated Cl- secretion is reduced in primary nasal epithelial cultures and nasal epithelia of patients with CRSwNP. Our data suggest that the Ca2+-activated Cl- channel TMEM16A may be implicated in the pathogenesis and serve as a novel therapeutic target in patients with CRSwNP.
Collapse
Affiliation(s)
- Johanna J Salomon
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Tobias Albrecht
- Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
| | - Simon Y Graeber
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany; Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; German Centre for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Heike Scheuermann
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Simone Butz
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Jolanthe Schatterny
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Heimo Mairbäurl
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Ingo Baumann
- Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany; Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; German Centre for Lung Research (DZL), associated partner site, Berlin, Germany.
| |
Collapse
|
27
|
Bengtson CD, Montgomery RN, Nazir U, Satterwhite L, Kim MD, Bahr NC, Castro M, Baumlin N, Salathe M. An Open Label Trial to Assess Safety of Losartan for Treating Worsening Respiratory Illness in COVID-19. Front Med (Lausanne) 2021; 8:630209. [PMID: 33681257 PMCID: PMC7926174 DOI: 10.3389/fmed.2021.630209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: Coronavirus disease 2019 (COVID-19) can cause disruption of the renin-angiotensin system in the lungs, possibly contributing to pulmonary capillary leakage. Thus, angiotensin receptor blockers (ARBs) may improve respiratory failure. Objective: Assess safety of losartan for use in respiratory failure related to COVID-19 (NCT04335123). Methods: Single arm, open label trial of losartan in those hospitalized with respiratory failure related to COVID-19. Oral losartan (25 mg daily for 3 days, then 50 mg) was administered from enrollment until day 14 or hospital discharge. A post-hoc external control group with patients who met all inclusion criteria was matched 1:1 to the treatment group using propensity scores for comparison. Measures: Primary outcome was cumulative incidence of any adverse events. Secondary, explorative endpoints included measures of respiratory failure, length of stay and vital status. Results: Of the 34 participants enrolled in the trial, 30 completed the study with a mean age SD of 53.8 ± 17.7 years and 17 males (57%). On losartan, 24/30 (80%) experienced an adverse event as opposed to 29/30 (97%) of controls, with a lower average number of adverse events on losartan relative to control (2.2 vs. 3.3). Using Poisson regression and controlling for age, sex, race, date of enrollment, disease severity at enrollment, and history of high-risk comorbidities, the incidence rate ratio of adverse events on losartan relative to control was 0.69 (95% CI: 0.49-0.97) Conclusions: Losartan appeared safe for COVID-19-related acute respiratory compromise. To assess true efficacy, randomized trials are needed.
Collapse
Affiliation(s)
- Charles D. Bengtson
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Robert N. Montgomery
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Usman Nazir
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Lewis Satterwhite
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael D. Kim
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Nathan C. Bahr
- Department of Internal Medicine, Division of Infectious Diseases, University of Kansas Medical Center, Kansas City, KS, United States
| | - Mario Castro
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Nathalie Baumlin
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Matthias Salathe
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
28
|
Kim MD, Baumlin N, Dennis JS, Yoshida M, Kis A, Aguiar C, Schmid A, Mendes E, Salathe M. Losartan reduces cigarette smoke-induced airway inflammation and mucus hypersecretion. ERJ Open Res 2021; 7:00394-2020. [PMID: 33532463 PMCID: PMC7836504 DOI: 10.1183/23120541.00394-2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 11/05/2022] Open
Abstract
The aim was to determine whether losartan reduces cigarette smoke (CS)-induced airway inflammation and mucus hypersecretion in an in vitro model and a small clinical trial. Primary human bronchial epithelial cells (HBECs) were differentiated at the air-liquid interface (ALI) and exposed to CS. Expression of transforming growth factor (TGF)-β1 and the mucin MUC5AC, and expression or activity of matrix metalloproteinase (MMP)-9 were measured after CS exposure. Parameters of mucociliary clearance were evaluated by measuring airway surface liquid volumes, mucus concentrations, and conductance of cystic fibrosis transmembrane conductance regulator (CFTR) and large conductance, Ca2+-activated and voltage-dependent potassium (BK) channels. Nasal cells were collected from study participants and expression of MUC5AC, TGF-β1, and MMP-9 mRNAs was measured before and after losartan treatment. In vitro, CS exposure of HBECs caused a significant increase in mRNA expression of MUC5AC and TGF-β1 and MMP-9 activity and decreased CFTR and BK channel activities, thereby reducing airway surface liquid volumes and increasing mucus concentrations. Treatment of HBECs with losartan rescued CS-induced CFTR and BK dysfunction and caused a significant decrease in MUC5AC expression and mucus concentrations, partially by inhibiting TGF-β signalling. In a prospective clinical study, cigarette smokers showed significantly reduced mRNA expression levels of MUC5AC, TGF-β1, and MMP-9 in the upper airways after 2 months of losartan treatment. Our findings suggest that losartan may be an effective therapy to reduce inflammation and mucus hypersecretion in CS-induced chronic airway diseases.
Collapse
Affiliation(s)
- Michael D Kim
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,These authors contributed equally
| | - Nathalie Baumlin
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,These authors contributed equally
| | - John S Dennis
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Makoto Yoshida
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Adrian Kis
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carolina Aguiar
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andreas Schmid
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Eliana Mendes
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthias Salathe
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
29
|
Bengtson CD, Kim MD, Anabtawi A, He J, Dennis JS, Miller S, Yoshida M, Baumlin N, Salathe M. Hyperglycaemia in cystic fibrosis adversely affects BK channel function critical for mucus clearance. Eur Respir J 2021; 57:13993003.00509-2020. [PMID: 32732330 DOI: 10.1183/13993003.00509-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/20/2020] [Indexed: 11/05/2022]
Abstract
Large-conductance, Ca2+-activated, voltage-dependent K+ (BK) channel function is critical for adequate airway hydration and mucociliary function. In airway epithelia, BK function is regulated by its γ-subunit, leucine-rich repeat-containing protein 26 (LRRC26). Since patients with cystic fibrosis (CF)-related diabetes mellitus (CFRD) have worse lung function outcomes, this study determined the effects of hyperglycaemia on BK function in CF bronchial epithelial (CFBE) cells in vitro and evaluated the correlation between glycaemic excursions and mRNA expression of LRRC26 in the upper airways of CF and CFRD patients.CFBE cells were redifferentiated at the air-liquid interface (ALI) in media containing either 5.5 mM or 12.5 mM glucose. BK activity was measured in an Ussing chamber. Airway surface liquid (ASL) volume was estimated by meniscus scanning and inflammatory marker expression was measured by quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA). CF patients were assessed by 7 days of continuous glucose monitoring (CGM). LRRC26 mRNA expression was measured by quantitative real-time PCR from nasal cells obtained at the end of glucose monitoring.BK currents were significantly decreased in CFBE cells cultured under high glucose. These cells revealed significantly lower ASL volumes and increased inflammation, including the receptor for advanced glycation endproducts (RAGE), compared to cells cultured in normal glucose. In vivo, nasal cell expression of LRRC26 mRNA was inversely correlated with hyperglycaemic excursions, consistent with the in vitro results.Our findings demonstrate that hyperglycaemia induces inflammation and impairs BK channel function in CFBE cells in vitro These data suggest that declining lung function in CFRD patients may be related to BK channel dysfunction.
Collapse
Affiliation(s)
- Charles D Bengtson
- Dept of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,These authors contributed equally
| | - Michael D Kim
- Dept of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,These authors contributed equally
| | - Abeer Anabtawi
- Dept of Internal Medicine, Division of Endocrinology, Metabolism, and Genetics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jianghua He
- Dept of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - John S Dennis
- Dept of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sara Miller
- Dept of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Makoto Yoshida
- Dept of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nathalie Baumlin
- Dept of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Matthias Salathe
- Dept of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
30
|
Rivas-Barragan D, Mubeen S, Guim Bernat F, Hofmann-Apitius M, Domingo-Fernández D. Drug2ways: Reasoning over causal paths in biological networks for drug discovery. PLoS Comput Biol 2020; 16:e1008464. [PMID: 33264280 PMCID: PMC7735677 DOI: 10.1371/journal.pcbi.1008464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/14/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Elucidating the causal mechanisms responsible for disease can reveal potential therapeutic targets for pharmacological intervention and, accordingly, guide drug repositioning and discovery. In essence, the topology of a network can reveal the impact a drug candidate may have on a given biological state, leading the way for enhanced disease characterization and the design of advanced therapies. Network-based approaches, in particular, are highly suited for these purposes as they hold the capacity to identify the molecular mechanisms underlying disease. Here, we present drug2ways, a novel methodology that leverages multimodal causal networks for predicting drug candidates. Drug2ways implements an efficient algorithm which reasons over causal paths in large-scale biological networks to propose drug candidates for a given disease. We validate our approach using clinical trial information and demonstrate how drug2ways can be used for multiple applications to identify: i) single-target drug candidates, ii) candidates with polypharmacological properties that can optimize multiple targets, and iii) candidates for combination therapy. Finally, we make drug2ways available to the scientific community as a Python package that enables conducting these applications on multiple standard network formats.
Collapse
Affiliation(s)
- Daniel Rivas-Barragan
- Barcelona Supercomputing Center, Barcelona, Spain
- Computer Architecture Department, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Sarah Mubeen
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
- Fraunhofer Center for Machine Learning, Germany
| | | | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
- Fraunhofer Center for Machine Learning, Germany
| |
Collapse
|
31
|
Sriram K, Loomba R, Insel PA. Targeting the renin-angiotensin signaling pathway in COVID-19: Unanswered questions, opportunities, and challenges. Proc Natl Acad Sci U S A 2020; 117:29274-29282. [PMID: 33203679 PMCID: PMC7703541 DOI: 10.1073/pnas.2009875117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of the renin-angiotensin signaling (RAS) pathway in COVID-19 has received much attention. A central mechanism for COVID-19 pathophysiology has been proposed: imbalance of angiotensin converting enzymes (ACE)1 and ACE2 (ACE2 being the severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] virus "receptor") that results in tissue injury from angiotensin II (Ang II)-mediated signaling. This mechanism provides a rationale for multiple therapeutic approaches. In parallel, clinical data from retrospective analysis of COVID-19 cohorts has revealed that ACE inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) may be beneficial in COVID-19. These findings have led to the initiation of clinical trials using approved drugs that target the generation (ACEIs) and actions (ARBs) of Ang II. However, treatment of COVID-19 with ACEIs/ARBs poses several challenges. These include choosing appropriate inclusion and exclusion criteria, dose optimization, risk of adverse effects and drug interactions, and verification of target engagement. Other approaches related to the RAS pathway might be considered, for example, inhalational administration of ACEIs/ARBs (to deliver drugs directly to the lungs) and use of compounds with other actions (e.g., activation of ACE2, agonism of MAS1 receptors, β-arrestin-based Angiotensin receptor agonists, and administration of soluble ACE2 or ACE2 peptides). Studies with animal models could test such approaches and assess therapeutic benefit. This Perspective highlights questions whose answers could advance RAS-targeting agents as mechanism-driven ways to blunt tissue injury, morbidity, and mortality of COVID-19.
Collapse
Affiliation(s)
- Krishna Sriram
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
| | - Rohit Loomba
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Paul A Insel
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093;
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
32
|
Observations of, and Insights into, Cystic Fibrosis Mucus Heterogeneity in the Pre-Modulator Era: Sputum Characteristics, DNA and Glycoprotein Content, and Solubilization Time. JOURNAL OF RESPIRATION 2020. [DOI: 10.3390/jor1010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
Abstract
Airway obstruction with chronic inflammation and infection are major contributors to the lung damage and mortality of cystic fibrosis (CF). A better understanding of the congested milieu of CF airways will aid in improving therapeutic strategies. This article retrospectively reports our observations, and discusses insights gained in the handling and analysis of CF sputa. CF and non-CF mucus samples were surveyed for morphological features by electron microscopy and analyzed for the macromolecular dry weight (MDW), total protein, lipid, carbohydrate, and DNA. Mucus character was investigated with chemical solubilization time as a comparative tool. CF mucus appeared distinctly thick, viscous, and heterogeneous, with neutrophils as the dominant immune cell. CF sputum DNA content varied markedly for and between individuals (~1–10% MDW), as did solubilization times (~1–20 h). CF Sputum DNA up to 7.1% MDW correlated positively with solubilization time, whereas DNA >7.1% MDW correlated negatively. 3D analysis of CF sputa DNA, GP, and solubilization times revealed a dynamic and predictive relationship. Reflecting on the heterogeneous content and character of CF mucus, and the possible interplay in space and time in the respiratory tract of polymeric DNA and mucous glycoproteins, we highlight it’s potential to affect infection-related airway pathologies and the success of therapeutic interventions.
Collapse
|
33
|
Leni Z, Cassagnes LE, Daellenbach KR, El Haddad I, Vlachou A, Uzu G, Prévôt ASH, Jaffrezo JL, Baumlin N, Salathe M, Baltensperger U, Dommen J, Geiser M. Oxidative stress-induced inflammation in susceptible airways by anthropogenic aerosol. PLoS One 2020; 15:e0233425. [PMID: 33206642 PMCID: PMC7673561 DOI: 10.1371/journal.pone.0233425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
Ambient air pollution is one of the leading five health risks worldwide. One of the most harmful air pollutants is particulate matter (PM), which has different physical characteristics (particle size and number, surface area and morphology) and a highly complex and variable chemical composition. Our goal was first to comparatively assess the effects of exposure to PM regarding cytotoxicity, release of pro-inflammatory mediators and gene expression in human bronchial epithelia (HBE) reflecting normal and compromised health status. Second, we aimed at evaluating the impact of various PM components from anthropogenic and biogenic sources on the cellular responses. Air-liquid interface (ALI) cultures of fully differentiated HBE derived from normal and cystic fibrosis (CF) donor lungs were exposed at the apical cell surface to water-soluble PM filter extracts for 4 h. The particle dose deposited on cells was 0.9-2.5 and 8.8-25.4 μg per cm2 of cell culture area for low and high PM doses, respectively. Both normal and CF HBE show a clear dose-response relationship with increasing cytotoxicity at higher PM concentrations. The concurrently enhanced release of pro-inflammatory mediators at higher PM exposure levels links cytotoxicity to inflammatory processes. Further, the PM exposure deregulates genes involved in oxidative stress and inflammatory pathways leading to an imbalance of the antioxidant system. Moreover, we identify compromised defense against PM in CF epithelia promoting exacerbation and aggravation of disease. We also demonstrate that the adverse health outcome induced by PM exposure in normal and particularly in susceptible bronchial epithelia is magnified by anthropogenic PM components. Thus, including health-relevant PM components in regulatory guidelines will result in substantial human health benefits and improve protection of the vulnerable population.
Collapse
Affiliation(s)
- Zaira Leni
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | | | - Imad El Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Athanasia Vlachou
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Gaelle Uzu
- Univ. Grenoble Alpes, CNRS, IRD, INP, IGE, Grenoble, France
| | - André S. H. Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | | | - Nathalie Baumlin
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Josef Dommen
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | | |
Collapse
|
34
|
Di Pietro C, Öz HH, Murray TS, Bruscia EM. Targeting the Heme Oxygenase 1/Carbon Monoxide Pathway to Resolve Lung Hyper-Inflammation and Restore a Regulated Immune Response in Cystic Fibrosis. Front Pharmacol 2020; 11:1059. [PMID: 32760278 PMCID: PMC7372134 DOI: 10.3389/fphar.2020.01059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
In individuals with cystic fibrosis (CF), lung hyper-inflammation starts early in life and is perpetuated by mucus obstruction and persistent bacterial infections. The continuous tissue damage and scarring caused by non-resolving inflammation leads to bronchiectasis and, ultimately, respiratory failure. Macrophages (MΦs) are key regulators of immune response and host defense. We and others have shown that, in CF, MΦs are hyper-inflammatory and exhibit reduced bactericidal activity. Thus, MΦs contribute to the inability of CF lung tissues to control the inflammatory response or restore tissue homeostasis. The non-resolving hyper-inflammation in CF lungs is attributed to an impairment of several signaling pathways associated with resolution of the inflammatory response, including the heme oxygenase-1/carbon monoxide (HO-1/CO) pathway. HO-1 is an enzyme that degrades heme groups, leading to the production of potent antioxidant, anti-inflammatory, and bactericidal mediators, such as biliverdin, bilirubin, and CO. This pathway is fundamental to re-establishing cellular homeostasis in response to various insults, such as oxidative stress and infection. Monocytes/MΦs rely on abundant induction of the HO-1/CO pathway for a controlled immune response and for potent bactericidal activity. Here, we discuss studies showing that blunted HO-1 activation in CF-affected cells contributes to hyper-inflammation and defective host defense against bacteria. We dissect potential cellular mechanisms that may lead to decreased HO-1 induction in CF cells. We review literature suggesting that induction of HO-1 may be beneficial for the treatment of CF lung disease. Finally, we discuss recent studies highlighting how endogenous HO-1 can be induced by administration of controlled doses of CO to reduce lung hyper-inflammation, oxidative stress, bacterial infection, and dysfunctional ion transport, which are all hallmarks of CF lung disease.
Collapse
Affiliation(s)
| | | | | | - Emanuela M. Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
35
|
Bonfield TL. Preclinical Modeling for Therapeutic Development in Cystic Fibrosis. Am J Respir Crit Care Med 2020; 201:267-268. [PMID: 31697560 PMCID: PMC6999106 DOI: 10.1164/rccm.201910-2056ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Tracey L Bonfield
- Department of Genetics and Genome SciencesCase Western Reserve UniversityCleveland, Ohio
| |
Collapse
|
36
|
Kim MD, Salathe M. TMEM16A Potentiators: Is There a Need for New Modulators in Cystic Fibrosis? Am J Respir Crit Care Med 2020; 201:888-889. [PMID: 31913655 PMCID: PMC7159432 DOI: 10.1164/rccm.201912-2519ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Michael D Kim
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas City, Kansas
| | - Matthias Salathe
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas City, Kansas
| |
Collapse
|