1
|
Vicuña L. Genetic associations with disease in populations with Indigenous American ancestries. Genet Mol Biol 2024; 47Suppl 1:e20230024. [PMID: 39254840 PMCID: PMC11384980 DOI: 10.1590/1678-4685-gmb-2023-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/13/2024] [Indexed: 09/11/2024] Open
Abstract
The genetic architecture of complex diseases affecting populations with Indigenous American ancestries is poorly understood due to their underrepresentation in genomics studies. While most of the genetic diversity associated with disease trait variation is shared among worldwide populations, a fraction of this component is expected to be unique to each continental group, including Indigenous Americans. Here, I describe the current state of knowledge from genome-wide association studies on Indigenous populations, as well as non-Indigenous populations with partial Indigenous ancestries from the American continent, focusing on disease susceptibility and anthropometric traits. While some studies identified risk alleles unique to Indigenous populations, their effects on trait variation are mostly small. I suggest that the associations rendered by many inter-population studies are probably inflated due to the absence of socio-cultural-economic covariates in the association models. I encourage the inclusion of admixed individuals in future GWAS studies to control for inter-ancestry differences in environmental factors. I suggest that some complex diseases might have arisen as trade-off costs of adaptations to past evolutionary selective pressures. Finally, I discuss how expanding panels with Indigenous ancestries in GWAS studies is key to accurately assess genetic risk in populations from the American continent, thus decreasing global health disparities.
Collapse
Affiliation(s)
- Lucas Vicuña
- University of Chicago, Department of Medicine, Section of Genetic Medicine, Chicago, USA
| |
Collapse
|
2
|
Herrera-Luis E, Martin-Almeida M, Pino-Yanes M. Asthma-Genomic Advances Toward Risk Prediction. Clin Chest Med 2024; 45:599-610. [PMID: 39069324 PMCID: PMC11284279 DOI: 10.1016/j.ccm.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Asthma is a common complex airway disease whose prediction of disease risk and most severe outcomes is crucial in clinical practice for adequate clinical management. This review discusses the latest findings in asthma genomics and current obstacles faced in moving forward to translational medicine. While genome-wide association studies have provided valuable insights into the genetic basis of asthma, there are challenges that must be addressed to improve disease prediction, such as the need for diverse representation, the functional characterization of genetic variants identified, variant selection for genetic testing, and refining prediction models using polygenic risk scores.
Collapse
Affiliation(s)
- Esther Herrera-Luis
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe Street, Baltimore, MD 21205, USA.
| | - Mario Martin-Almeida
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n. Facultad de Ciencias, San Cristóbal de La Laguna, S/C de Tenerife La Laguna 38200, Tenerife, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n. Facultad de Ciencias, San Cristóbal de La Laguna, S/C de Tenerife La Laguna 38200, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), San Cristóbal de La Laguna 38200, Tenerife, Spain
| |
Collapse
|
3
|
Clay S, Alladina J, Smith NP, Visness CM, Wood RA, O'Connor GT, Cohen RT, Khurana Hershey GK, Kercsmar CM, Gruchalla RS, Gill MA, Liu AH, Kim H, Kattan M, Bacharier LB, Rastogi D, Rivera-Spoljaric K, Robison RG, Gergen PJ, Busse WW, Villani AC, Cho JL, Medoff BD, Gern JE, Jackson DJ, Ober C, Dapas M. Gene-based association study of rare variants in children of diverse ancestries implicates TNFRSF21 in the development of allergic asthma. J Allergy Clin Immunol 2024; 153:809-820. [PMID: 37944567 PMCID: PMC10939893 DOI: 10.1016/j.jaci.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Most genetic studies of asthma and allergy have focused on common variation in individuals primarily of European ancestry. Studying the role of rare variation in quantitative phenotypes and in asthma phenotypes in populations of diverse ancestries can provide additional, important insights into the development of these traits. OBJECTIVE We sought to examine the contribution of rare variants to different asthma- or allergy-associated quantitative traits in children with diverse ancestries and explore their role in asthma phenotypes. METHODS We examined whole-genome sequencing data from children participants in longitudinal studies of asthma (n = 1035; parent-identified as 67% Black and 25% Hispanic) to identify rare variants (minor allele frequency < 0.01). We assigned variants to genes and tested for associations using an omnibus variant-set test between each of 24,902 genes and 8 asthma-associated quantitative traits. On combining our results with external data on predicted gene expression in humans and mouse knockout studies, we identified 3 candidate genes. A burden of rare variants in each gene and in a combined 3-gene score was tested for its associations with clinical phenotypes of asthma. Finally, published single-cell gene expression data in lower airway mucosal cells after allergen challenge were used to assess transcriptional responses to allergen. RESULTS Rare variants in USF1 were significantly associated with blood neutrophil count (P = 2.18 × 10-7); rare variants in TNFRSF21 with total IgE (P = 6.47 × 10-6) and PIK3R6 with eosinophil count (P = 4.10 × 10-5) reached suggestive significance. These 3 findings were supported by independent data from human and mouse studies. A burden of rare variants in TNFRSF21 and in a 3-gene score was associated with allergy-related phenotypes in cohorts of children with mild and severe asthma. Furthermore, TNFRSF21 was significantly upregulated in bronchial basal epithelial cells from adults with allergic asthma but not in adults with allergies (but not asthma) after allergen challenge. CONCLUSIONS We report novel associations between rare variants in genes and allergic and inflammatory phenotypes in children with diverse ancestries, highlighting TNFRSF21 as contributing to the development of allergic asthma.
Collapse
Affiliation(s)
- Selene Clay
- Department of Human Genetics, University of Chicago, Chicago, Ill.
| | - Jehan Alladina
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Neal P Smith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | | | - Robert A Wood
- Pediatric Allergy and Immunology Department, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md
| | - George T O'Connor
- Department of Pediatrics, Boston University School of Medicine, Boston, Mass
| | - Robyn T Cohen
- Department of Pediatrics, Boston University School of Medicine, Boston, Mass
| | | | - Carolyn M Kercsmar
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rebecca S Gruchalla
- Internal Medicine and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Michelle A Gill
- Pediatric Infectious Diseases, St. Louis Children's Hospital, St Louis, Mo
| | - Andrew H Liu
- Breathing Institute, Children's Hospital Colorado, Aurora, Colo
| | - Haejin Kim
- Allergy and Immunology, Henry Ford Health, Detroit, Mich
| | - Meyer Kattan
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - Leonard B Bacharier
- Department of Pediatrics, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn
| | - Deepa Rastogi
- Division of Pulmonology and Sleep Medicine, Children's National Hospital, Washington, DC
| | - Katherine Rivera-Spoljaric
- Department of Pediatric Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine, St Louis, Mo
| | - Rachel G Robison
- Department of Pediatrics, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn; Ann & Robert H. Lurie Children's Hospital, Chicago, Ill
| | - Peter J Gergen
- National Institute of Allergy and Infectious Diseases, Rockville, Md
| | - William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Alexandra-Chloe Villani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | - Josalyn L Cho
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago, Ill
| |
Collapse
|
4
|
Lee EY, Choi W, Burkholder AB, Perera L, Mack JA, Miller FW, Fessler MB, Cook DN, Karmaus PWF, Nakano H, Garantziotis S, Madenspacher JH, House JS, Akhtari FS, Schmitt CS, Fargo DC, Hall JE, Motsinger-Reif AA. Race/ethnicity-stratified fine-mapping of the MHC locus reveals genetic variants associated with late-onset asthma. Front Genet 2023; 14:1173676. [PMID: 37415598 PMCID: PMC10321602 DOI: 10.3389/fgene.2023.1173676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction: Asthma is a chronic disease of the airways that impairs normal breathing. The etiology of asthma is complex and involves multiple factors, including the environment and genetics, especially the distinct genetic architecture associated with ancestry. Compared to early-onset asthma, little is known about genetic predisposition to late-onset asthma. We investigated the race/ethnicity-specific relationship among genetic variants within the major histocompatibility complex (MHC) region and late-onset asthma in a North Carolina-based multiracial cohort of adults. Methods: We stratified all analyses by self-reported race (i.e., White and Black) and adjusted all regression models for age, sex, and ancestry. We conducted association tests within the MHC region and performed fine-mapping analyses conditioned on the race/ethnicity-specific lead variant using whole-genome sequencing (WGS) data. We applied computational methods to infer human leukocyte antigen (HLA) alleles and residues at amino acid positions. We replicated findings in the UK Biobank. Results: The lead signals, rs9265901 on the 5' end of HLA-B, rs55888430 on HLA-DOB, and rs117953947 on HCG17, were significantly associated with late-onset asthma in all, White, and Black participants, respectively (OR = 1.73, 95%CI: 1.31 to 2.14, p = 3.62 × 10-5; OR = 3.05, 95%CI: 1.86 to 4.98, p = 8.85 × 10-6; OR = 19.5, 95%CI: 4.37 to 87.2, p = 9.97 × 10-5, respectively). For the HLA analysis, HLA-B*40:02 and HLA-DRB1*04:05, HLA-B*40:02, HLA-C*04:01, and HLA-DRB1*04:05, and HLA-DRB1*03:01 and HLA-DQB1 were significantly associated with late-onset asthma in all, White, and Black participants. Conclusion: Multiple genetic variants within the MHC region were significantly associated with late-onset asthma, and the associations were significantly different by race/ethnicity group.
Collapse
Affiliation(s)
- Eunice Y. Lee
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Wonson Choi
- Genomics and Bioinformatics Laboratory, Seoul National University, Seoul, Republic of Korea
| | - Adam B. Burkholder
- National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Lalith Perera
- Genomic Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Jasmine A. Mack
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
- Department of Obstetrics and Gynecology, University of Cambridge, Cambridge, United Kingdom
| | - Frederick W. Miller
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Michael B. Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Donald N. Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
- Immunogenetics Group, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Peer W. F. Karmaus
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Hideki Nakano
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Stavros Garantziotis
- Clinical Research Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Jennifer H. Madenspacher
- Clinical Research Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - John S. House
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Farida S. Akhtari
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
- Clinical Research Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Charles S. Schmitt
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - David C. Fargo
- National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Janet E. Hall
- Clinical Research Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Alison A. Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|
5
|
Kachuri L, Mak ACY, Hu D, Eng C, Huntsman S, Elhawary JR, Gupta N, Gabriel S, Xiao S, Keys KL, Oni-Orisan A, Rodríguez-Santana JR, LeNoir MA, Borrell LN, Zaitlen NA, Williams LK, Gignoux CR, Burchard EG, Ziv E. Gene expression in African Americans, Puerto Ricans and Mexican Americans reveals ancestry-specific patterns of genetic architecture. Nat Genet 2023; 55:952-963. [PMID: 37231098 PMCID: PMC10260401 DOI: 10.1038/s41588-023-01377-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/21/2023] [Indexed: 05/27/2023]
Abstract
We explored ancestry-related differences in the genetic architecture of whole-blood gene expression using whole-genome and RNA sequencing data from 2,733 African Americans, Puerto Ricans and Mexican Americans. We found that heritability of gene expression significantly increased with greater proportions of African genetic ancestry and decreased with higher proportions of Indigenous American ancestry, reflecting the relationship between heterozygosity and genetic variance. Among heritable protein-coding genes, the prevalence of ancestry-specific expression quantitative trait loci (anc-eQTLs) was 30% in African ancestry and 8% for Indigenous American ancestry segments. Most anc-eQTLs (89%) were driven by population differences in allele frequency. Transcriptome-wide association analyses of multi-ancestry summary statistics for 28 traits identified 79% more gene-trait associations using transcriptome prediction models trained in our admixed population than models trained using data from the Genotype-Tissue Expression project. Our study highlights the importance of measuring gene expression across large and ancestrally diverse populations for enabling new discoveries and reducing disparities.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Angel C Y Mak
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer R Elhawary
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Namrata Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Shujie Xiao
- Center for Individualized and Genomic Medicine Research, Henry Ford Health System, Detroit, MI, USA
| | - Kevin L Keys
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Berkeley Institute for Data Science, University of California, Berkeley, Berkeley, CA, USA
| | - Akinyemi Oni-Orisan
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Luisa N Borrell
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Noah A Zaitlen
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research, Henry Ford Health System, Detroit, MI, USA
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Christopher R Gignoux
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Esteban González Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Elad Ziv
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Herrera-Luis E, Forno E, Celedón JC, Pino-Yanes M. Asthma Exacerbations: The Genes Behind the Scenes. J Investig Allergol Clin Immunol 2023; 33:76-94. [PMID: 36420738 PMCID: PMC10638677 DOI: 10.18176/jiaci.0878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The clinical and socioeconomic burden of asthma exacerbations (AEs) constitutes a major public health problem. In the last 4 years, there has been an increase in ethnic diversity in candidate-gene and genome-wide association studies of AEs, which in the latter case led to the identification of novel genes and underlying pathobiological processes. Pharmacogenomics, admixture mapping analyses, and the combination of multiple "omics" layers have helped to prioritize genomic regions of interest and/or facilitated our understanding of the functional consequences of genetic variation. Nevertheless, the field still lags behind the genomics of asthma, where a vast compendium of genetic approaches has been used (eg, gene-environment nteractions, next-generation sequencing, and polygenic risk scores). Furthermore, the roles of the DNA methylome and histone modifications in AEs have received little attention, and microRNA findings remain to be validated in independent studies. Likewise, the most recent transcriptomic studies highlight the importance of the host-airway microbiome interaction in the modulation of risk of AEs. Leveraging -omics and deep-phenotyping data from subtypes or homogenous subgroups of patients will be crucial if we are to overcome the inherent heterogeneity of AEs, boost the identification of potential therapeutic targets, and implement precision medicine approaches to AEs in clinical practice.
Collapse
Affiliation(s)
- E Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - E Forno
- Division of Pediatric Pulmonary Medicine, UPMC Children´s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - J C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children´s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - M Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain 4 Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| |
Collapse
|
7
|
Dapas M, Thompson EE, Wentworth-Sheilds W, Clay S, Visness CM, Calatroni A, Sordillo JE, Gold DR, Wood RA, Makhija M, Khurana Hershey GK, Sherenian MG, Gruchalla RS, Gill MA, Liu AH, Kim H, Kattan M, Bacharier LB, Rastogi D, Altman MC, Busse WW, Becker PM, Nicolae D, O’Connor GT, Gern JE, Jackson DJ, Ober C. Multi-omic association study identifies DNA methylation-mediated genotype and smoking exposure effects on lung function in children living in urban settings. PLoS Genet 2023; 19:e1010594. [PMID: 36638096 PMCID: PMC9879483 DOI: 10.1371/journal.pgen.1010594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 01/26/2023] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Impaired lung function in early life is associated with the subsequent development of chronic respiratory disease. Most genetic associations with lung function have been identified in adults of European descent and therefore may not represent those most relevant to pediatric populations and populations of different ancestries. In this study, we performed genome-wide association analyses of lung function in a multiethnic cohort of children (n = 1,035) living in low-income urban neighborhoods. We identified one novel locus at the TDRD9 gene in chromosome 14q32.33 associated with percent predicted forced expiratory volume in one second (FEV1) (p = 2.4x10-9; βz = -0.31, 95% CI = -0.41- -0.21). Mendelian randomization and mediation analyses revealed that this genetic effect on FEV1 was partially mediated by DNA methylation levels at this locus in airway epithelial cells, which were also associated with environmental tobacco smoke exposure (p = 0.015). Promoter-enhancer interactions in airway epithelial cells revealed chromatin interaction loops between FEV1-associated variants in TDRD9 and the promoter region of the PPP1R13B gene, a stimulator of p53-mediated apoptosis. Expression of PPP1R13B in airway epithelial cells was significantly associated the FEV1 risk alleles (p = 1.3x10-5; β = 0.12, 95% CI = 0.06-0.17). These combined results highlight a potential novel mechanism for reduced lung function in urban youth resulting from both genetics and smoking exposure.
Collapse
Affiliation(s)
- Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | - Emma E. Thompson
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | | | - Selene Clay
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | | | | | - Joanne E. Sordillo
- Department of Population Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert A. Wood
- Department of Pediatrics, Johns Hopkins University Medical Center, Baltimore, Maryland, United States of America
| | - Melanie Makhija
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children’s Hospital, Chicago, Illinois, United States of America
| | - Gurjit K. Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Michael G. Sherenian
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Rebecca S. Gruchalla
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michelle A. Gill
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew H. Liu
- Department of Allergy and Immunology, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Haejin Kim
- Department of Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Meyer Kattan
- Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Leonard B. Bacharier
- Monroe Carell Jr. Children’s Hospital at Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Deepa Rastogi
- Children’s National Health System, Washington, District of Columbia, United States of America
| | - Matthew C. Altman
- Department of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - William W. Busse
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Patrice M. Becker
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Dan Nicolae
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
| | - George T. O’Connor
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - James E. Gern
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Daniel J. Jackson
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| |
Collapse
|
8
|
Yue H, Yang X, Ji X, Wu X, Li G, Sang N. Time series of transcriptome analysis in entire lung development stages provide insights into the origin of NO 2 related lung diseases. ENVIRONMENT INTERNATIONAL 2022; 168:107454. [PMID: 35963059 DOI: 10.1016/j.envint.2022.107454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Lung growth is a critical window, when exposure to various pollutants can disturb the finely-tuned lung development and enhance risk of long-term structural and functional sequelae of lung. In this study, pregnant C57/6 mice were treated with NO2, and lungs of fetus/offspring were collected at different developmental windows and dynamic lung development was determined. The results showed that maternal NO2 exposure suppressed fetal weight, implying that fetal development can be disturbed. The time-series RNA-seq analysis of lungs showed that maternal NO2 exposure induced significant time-dependent changes in the expression profiles of genes associated with lung vein myocardium development in fetus/offspring. Most of these genes in NO2 exposure group were suppressed at middle gestation and at birth. Our results also indicated that the gene expressions of Nkx2.5 in NO2 exposure were suppressed to 0.27- and 0.44-fold of the corresponding Air group at E13.5 and PND1, and restored at later time points. This indicated that the transcription factor Nkx2.5 played an important role in abnormal lung development in fetus/offspring caused by maternal NO2 exposure. Importantly, gene expressions of lung vein myocardium development were related to transcription factors (TFs) and lung functions, and TFs showed similar trends with lung function. These results provide a comprehensive view of the adverse effects of maternal NO2 exposure on fetal lung development by uncovering molecular targets and related signaling pathways at the transcriptional level.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaowen Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
9
|
Forno E, Brandenburg DD, Castro-Rodriguez JA, Celis-Preciado CA, Holguin F, Licskai C, Lovinsky-Desir S, Pizzichini M, Teper A, Yang C, Celedón JC. Asthma in the Americas: An Update: A Joint Perspective from the Brazilian Thoracic Society, Canadian Thoracic Society, Latin American Thoracic Society, and American Thoracic Society. Ann Am Thorac Soc 2022; 19:525-535. [PMID: 35030062 PMCID: PMC8996271 DOI: 10.1513/annalsats.202109-1068cme] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/14/2022] [Indexed: 11/20/2022] Open
Abstract
Asthma affects a large number of people living in the Americas, a vast and diverse geographic region comprising 35 nations in the Caribbean and North, Central, and South America. The marked variability in the prevalence, morbidity, and mortality from asthma across and within nations in the Americas offers a unique opportunity to improve our understanding of the risk factors and management of asthma phenotypes and endotypes in children and adults. Moreover, a better assessment of the causes and treatment of asthma in less economically developed regions in the Americas would help diagnose and treat individuals migrating from those areas to Canada and the United States. In this focused review, we first assess the epidemiology of asthma, review known and potential risk factors, and examine commonalities and differences in asthma management across the Americas. We then discuss future directions in research and health policies to improve the prevention, diagnosis, and management of pediatric and adult asthma in the Americas, including standardized and periodic assessment of asthma burden across the region; large-scale longitudinal studies including omics and comprehensive environmental data on racially and ethnically diverse populations; and dissemination and implementation of guidelines for asthma management across the spectrum of disease severity. New initiatives should recognize differences in socioeconomic development and health care systems across the region while paying particular attention to novel or more impactful risk factors for asthma in the Americas, including indoor pollutants such as biomass fuel, tobacco use, infectious agents and the microbiome, and psychosocial stressor and chronic stress.
Collapse
Affiliation(s)
- Erick Forno
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh School of Medicine and Pediatric Asthma Center, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Diego D. Brandenburg
- Department of Pediatrics, Pediatric Pulmonology Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jose A. Castro-Rodriguez
- Department of Pediatric Pulmonology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos A. Celis-Preciado
- Pulmonary Unit, Internal Medicine Department, Hospital Universitario San Ignacio and Faculty of Medicine, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care, University of Colorado Denver, Denver, Colorado
| | - Christopher Licskai
- Department of Medicine, Western University Canada, Schulich School of Medicine and Dentistry, London Health Sciences Centre, London, Ontario, Canada
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary Medicine, Columbia University Irving Medical Center, New York, New York
| | - Marcia Pizzichini
- Post-Graduate Program of Medical Sciences, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Alejandro Teper
- Respiratory Center, Hospital de Niños Dr. Ricardo Gutiérrez, Ciudad Autónoma de Buenos Aires, Argentina; and
| | - Connie Yang
- Division of Respiratory Medicine, University of British Columbia, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh School of Medicine and Pediatric Asthma Center, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Castellanos CA, Ren X, Gonzalez SL, Li HK, Schroeder AW, Liang HE, Laidlaw BJ, Hu D, Mak AC, Eng C, Rodríguez-Santana JR, LeNoir M, Yan Q, Celedón JC, Burchard EG, Zamvil SS, Ishido S, Locksley RM, Cyster JG, Huang X, Shin JS. Lymph node-resident dendritic cells drive T H2 cell development involving MARCH1. Sci Immunol 2021; 6:eabh0707. [PMID: 34652961 PMCID: PMC8736284 DOI: 10.1126/sciimmunol.abh0707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 2 T helper (TH2) cells are protective against parasitic worm infections but also aggravate allergic inflammation. Although the role of dendritic cells (DCs) in TH2 cell differentiation is well established, the underlying mechanisms are largely unknown. Here, we show that DC induction of TH2 cells depends on membrane-associated RING-CH-1 (MARCH1) ubiquitin ligase. The pro-TH2 effect of MARCH1 relied on lymph node (LN)–resident DCs, which triggered T cell receptor (TCR) signaling and induced GATA-3 expression from naïve CD4+ T cells independent of tissue-driven migratory DCs. Mice with mutations in the ubiquitin acceptor sites of MHCII and CD86, the two substrates of MARCH1, failed to develop TH2 cells. These findings suggest that TH2 cell development depends on ubiquitin-mediated clearance of antigen-presenting and costimulatory molecules by LN-resident DCs and consequent control of TCR signaling.
Collapse
Affiliation(s)
- Carlos A. Castellanos
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xin Ren
- Department of Medicine, Lung Biology Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Steven Lomeli Gonzalez
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hong Kun Li
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew W. Schroeder
- Department of Pulmonology, Genomics CoLabs, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hong-Erh Liang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian J. Laidlaw
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Angel C.Y. Mak
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | - Qi Yan
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Scott S. Zamvil
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan
| | - Richard M. Locksley
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason G. Cyster
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaozhu Huang
- Department of Medicine, Lung Biology Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeoung-Sook Shin
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
11
|
Jones TK, Christie JD. Discovery through Diversity: Insights into the Genetics of Lung Function in Latino Youth. Am J Respir Crit Care Med 2020; 202:913-914. [PMID: 32692576 PMCID: PMC7528776 DOI: 10.1164/rccm.202006-2404ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Tiffanie K Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine and Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jason D Christie
- Division of Pulmonary, Allergy, and Critical Care Medicine and Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|