1
|
Chilosi M, Piciucchi S, Ravaglia C, Spagnolo P, Sverzellati N, Tomassetti S, Wuyts W, Poletti V. "Alveolar stem cell exhaustion, fibrosis and bronchiolar proliferation" related entities. A narrative review. Pulmonology 2025; 31:2416847. [PMID: 39277539 DOI: 10.1016/j.pulmoe.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/17/2024] Open
Affiliation(s)
- M Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - S Piciucchi
- Department of Radiology, Ospedale GB Morgagni, Forlì I
| | - C Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
| | - P Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - N Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University Hospital Parma, Parma, Italy
| | - S Tomassetti
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - W Wuyts
- Pulmonology Department, UZ Leuven, Leuven, Belgium
| | - V Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
- Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Hou W, Zhao Y, Yang L, Duan C, Li F, Liu X, Sun W, Gao L. SIRT5-mediated desuccinylation prevents mitochondrial dysfunction in alveolar epithelial cells senescence and pulmonary fibrosis. Cell Signal 2025; 132:111830. [PMID: 40311988 DOI: 10.1016/j.cellsig.2025.111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
Senescence of alveolar epithelial cells (AEC) is a key event in the onset and progression of Idiopathic pulmonary fibrosis (IPF). The pathogenic mechanisms that underlie the effects of AEC senescence remain largely unexplained. Some age-related diseases have an etiology linked to mitochondrial dysfunction induced by excessive lysine succinylation (Ksucc). SIRT5 can remove excessive Ksucc levels to maintain mitochondrial homeostasis. Therefore, this study aimed to determine the effects of SIRT5-mediated de-Ksucc on mitochondrial function and pulmonary fibrosis after AEC senescence. We found AEC in the lungs derived from IPF patients exhibit a marked accumulation of dysmorphic and dysfunctional mitochondria and excessive Ksucc levels. These mitochondrial abnormalities in AEC of normal mice with advancing age were associated with the downregulation of SIRT5. Increased SIRT5 expression by LV-SIRT5pcDNA in senescent AEC sustains mitochondrial integrity and reduces fibrotic effects of AEC senescence in established bleomycin (BLM)-aging mouse model. The level of ITGB1 K238 was upregulation in senescent AEC, LV-SIRT5pcDNA down-regulates the Ksucc level of ITGB1 K238 blocking the activation of ITGB1/STAT3 signaling pathway associated pulmonary fibrosis. Collectively, our findings indicate excessive lysine succinylation (hyperKsucc) is a fundamental basis for mitochondrial dysfunction in pulmonary fibrosis induced by the AEC senescence and SIRT5 alleviates AEC senescence by stabilizing the mitochondrial function.
Collapse
Affiliation(s)
- Wenyu Hou
- The University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Yunmulan Zhao
- The University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Liqing Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Chunyan Duan
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Fei Li
- Department of Pulmonary and Critical Care Medicine, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xiaoman Liu
- Department of Pulmonary and Critical Care Medicine, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Wei Sun
- Department of Pulmonary and Critical Care Medicine, Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Lingyun Gao
- Department of Pulmonary and Critical Care Medicine, Second Hospital of Tianjin Medical University, Tianjin 300211, China; Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, Chengdu 610072, China; Department of Pulmonary and Critical Care Medicine, Ziyang People's Hospital, Ziyang 641300, China.
| |
Collapse
|
3
|
Huo C, Jia Q, Jiao X, Jiang Q, Zeng X, Zhang J, Wang Y, Zhu Z, Tian L. Pulmonary microbiota affects silica-induced pulmonary fibrosis through activation of the PI3K/AKT-mediated senescence in alveolar epithelial cells. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138238. [PMID: 40233454 DOI: 10.1016/j.jhazmat.2025.138238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/29/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
The rise of new industries has led to the increased manufacture and use of silica, posing a significant threat to public health. Lung microbiota is closely associated with chronic respiratory diseases, particularly pulmonary fibrosis. However, the role of lung microbiota in the progression of silicosis remains inadequately explored. This study established a model of C57BL/6 J mice exposed to silica via inhalation through intratracheal drip, while the lung microbiota was modified using antibiotics via intratracheal drip. Silica exposure induced dysbiosis of the lung microbiota and the triggered cellular senescence. Transcriptomic analysis of lung tissue revealed enrichment of the PI3K/AKT pathway. Mechanistically, lipopolysaccharide (LPS) produced by lung microbiota drives cellular senescence, which plays a key role in pulmonary fibrosis, as demonstrated by LPS stimulation and indirect co-culture experiments. In conclusion, silica affects the progression of pulmonary fibrosis by altering the composition of lung microbiota, leading to increased LPS production, which promotes senescence of type Ⅱ alveolar epithelial cells (ATⅡ) through activation of the PI3K/AKT pathway. This study provides novel insights and rationale for targeted intervention aimed at mitigating ATⅡ senescence to counteract silica-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Chuanyi Huo
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, China
| | - Qiyue Jia
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, China
| | - Xukun Jiao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, China
| | - Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, China
| | - Xinying Zeng
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, China
| | - Jiaxin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
4
|
Wang J, Zhao Y, Wei Y, Li T, Huang T, Pan T, Wu J, Bai L, Zhu D, Zhao Q, Wang Z, Feng F, Zhou X. Mai-wei-yang-fei decoction protects against pulmonary fibrosis by reducing telomere shortening and inhibiting AECII senescence via FBW7/TPP1 regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156682. [PMID: 40215816 DOI: 10.1016/j.phymed.2025.156682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/17/2024] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a fatal disease associated with ageing. The senescence of alveolar epithelial type II cells (AECIIs) can drive PF. Therefore, reducing AECII senescence is a promising treatment to prevent PF. Mai-wei-yang-fei decoction (MWYF) has shown significant clinical efficacy in the treatment of patients with PF. However, its mechanism of action remains unclear. PURPOSE To investigate the role and underlying mechanism of MWYF in protecting against PF. METHODS The main chemical components of MWYF were identified using UPLC-MS. The mouse and in vitro cell models of PF were established using BLM. Micro-CT, H&E, and Masson staining were used to observe the protective effect of MWYF on mice with PF. Immunohistochemistry, β-galactosidase staining, and IF-FISH were used to observe the inhibitory effect of MWYF on senescence and telomere shortening in mouse lung tissue or A549 cells. The Transwell assay and cell co-culture method were used to observe the effect of MWYF on the migration and activation of lung fibroblasts by inhibiting AECII senescence. Finally, lentiviral vector was used to overexpress FBW7 gene in A549 cells in vitro to observe the mechanism pathway of MWYF inhibiting AECII senescence and telomere shortening. RESULTS MWYF was effective in protecting against bleomycin (BLM)-induced PF. Furthermore, MWYF alleviated cellular senescence by reducing the DNA damage response (DDR) and shortening of the telomere in AECⅡs in mouse lung tissues. Mechanistically, genes related to telomere disorders were detected in BLM-induced PF mouse models using q-PCR. MWYF mainly inhibited telomere shortening by regulating FBW7 and reducing the degradation of TPP1. In vitro, MWYF reduced BLM-induced senescence in A549 cells, as well as proliferation and migration of MRC5 cells, by inhibiting DDR and telomere shortening via regulation of the FBW7/TPP1 axis. CONCLUSION MWYF is a potential therapeutic agent against PF, as it inhibits telomere shortening and reduces AECII senescence by regulating FBW7/TPP1.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Wei
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingyuan Li
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tongxing Huang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingyu Pan
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jieyu Wu
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Le Bai
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongwei Zhu
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Zhao
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhichao Wang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Fanchao Feng
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xianmei Zhou
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
5
|
Zhao Y, Duan M, Qi Y, Xia J, Hao C, Yao W. Innate immune checkpoint SIRPα/CD47 blockade ameliorates silica-induced pulmonary fibrosis by modulating macrophage immunity. Int Immunopharmacol 2025; 156:114723. [PMID: 40279943 DOI: 10.1016/j.intimp.2025.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/12/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Silicosis is a fibrotic disease caused by prolonged inhalation of silica particles. Signal regulatory protein alpha (SIRPα) and its ligand CD47, key innate immune checkpoints mediating inhibition of phagocytosis, have been reported to regulate organ fibrosis. However, the role of SIRPα/CD47 in silicosis remains unexplored. In this study, a silicosis mouse model was constructed and revealed a significant upregulation of SIRPα and CD47 expression in lung tissue with disease progression. In addition, the expression patterns of SIRPα and CD47 in various silicosis effector cells exhibit distinct cell specificity. Using RRx-001 to block SIRPα/CD47 signaling in mice, we observed a marked reduction in lung injury, decreased collagen deposition, and improved pulmonary function. Mechanistically, blocking SIRPα/CD47 affected T cell activation, macrophage polarization and the expression of pro-inflammatory and pro-fibrotic factors. In vitro, we found that inhibiting SIRPα/CD47 countered the silica-induced suppression of macrophage phagocytosis and induced macrophage polarization towards the M1 phenotype. Additionally, levels of soluble SIRPα and CD47 in the peripheral blood of silicosis patients were significantly higher than those in healthy controls. In summary, this study demonstrates that SIRPα/CD47-mediated immunomodulatory signaling is the driving factor for the progression of silicosis, and this pathway might serve as a therapeutic target for silicosis treatment.
Collapse
Affiliation(s)
- Youliang Zhao
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Meixiu Duan
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuanmeng Qi
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiarui Xia
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Changfu Hao
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| | - Wu Yao
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
6
|
Ren C, Zi Y, Zhang X, Liao X, Chen H. Basal and AT2 cells promote IPF-lung cancer co-occurrence via EMT: Single-cell analysis. Exp Cell Res 2025; 448:114578. [PMID: 40294812 DOI: 10.1016/j.yexcr.2025.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial lung disease. With IPF, the probability of complication with lung cancer (LCA) increases considerably, and the prognosis is worse than that of simple IPF. To understand the pathological mechanisms and molecular pathways shared by these two diseases, we used the single-cell analysis from the Gene Expression Omnibus (GEO) database, and find that basal cells (BCs) and alveolar type 2 cells (AT2 cells) are important components of lung epithelial cells. Changes in molecular pathways in BCs and AT2 cells may be involved in the common pathogenesis of IPF and LCA. KRT17 and S100A14 in BCs may promote the IPF co-occurrence with LCA by mediating the EMT. WFDC2 and KRT19 may be the elements in AT2 cells that activate the EMT process to promote IPF co-occurrence with LCA. In both IPF and LCA, FN1-WNT axis may be involved in the interaction between BCs and AT2 cells. Importantly, the results of immunofluorescence colocalization experiments on tissue samples from patients with IPF and LCA were consistent with these conclusions. Basal-macrophage interactions may have also induced the IPF co-occurrence with LCA via the CYBA-ERK1/2 axis. The regulation of M2 macrophage polarization by JUN/SOD2-glycolysis axis may therefore be involved in the co-morbidity mechanism of IPF and LCA. Therefore, our results suggest that molecular changes in BCs, AT2 cells and macrophages may play important roles in the pathogenesis of IPF co-occurrence with LCA, and the cellular interactions between these cells may be critical for the progression of both diseases.
Collapse
Affiliation(s)
- Cheng Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, 400016, China; Department of Respiratory and Critical Care Medicine, Chongqing University Fuling Hospital, Fuling, Chongqing, 408000, China
| | - Yawan Zi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Xiaobin Zhang
- Department of Respiratory and Critical Care Medicine, Chongqing University Fuling Hospital, Fuling, Chongqing, 408000, China
| | - Xiuqing Liao
- Department of Respiratory and Critical Care Medicine, Chongqing University Fuling Hospital, Fuling, Chongqing, 408000, China
| | - Hong Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, 400016, China.
| |
Collapse
|
7
|
McGee LE, Pereira JS, McEachron TA, Mazcko C, LeBlanc AK, Beck JA. The tumor microenvironment of metastatic osteosarcoma in the human and canine lung. Commun Biol 2025; 8:756. [PMID: 40374715 DOI: 10.1038/s42003-025-07992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/24/2025] [Indexed: 05/17/2025] Open
Abstract
Osteosarcoma is a rare but aggressive bone tumor that develops spontaneously in human and canine patients and most commonly metastasizes to the lung. The presence of lung metastases significantly decreases the survival rate of patients, with minimal benefit seen with available treatments. Canine osteosarcoma is clinically and molecularly similar to human osteosarcoma and develops approximately ten times more frequently than human osteosarcoma making dogs a promising natural model to study disease progression. The development of new therapies for pulmonary metastases requires an understanding of the interplay between tissue resident cells as well as recruited cell types and how those interactions impact seeding and progression within the new metastatic site. This review explores the tumor microenvironment surrounding pulmonary metastases and how current knowledge in canine and human patients can inform better treatments and outcomes for both populations.
Collapse
Affiliation(s)
- L E McGee
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - J S Pereira
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - T A McEachron
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - C Mazcko
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - A K LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - J A Beck
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Seasock MJ, Shafiquzzaman M, Ruiz-Echartea ME, Kanchi RS, Tran BT, Simon LM, Meyer MD, Erice PA, Lotlikar SL, Wenlock SC, Ochsner SA, Enright A, Carisey AF, Romero F, Rosas IO, King KY, McKenna NJ, Coarfa C, Rodriguez A. Let-7 restrains an epigenetic circuit in AT2 cells to prevent fibrogenic intermediates in pulmonary fibrosis. Nat Commun 2025; 16:4353. [PMID: 40348760 PMCID: PMC12065893 DOI: 10.1038/s41467-025-59641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 04/30/2025] [Indexed: 05/14/2025] Open
Abstract
MicroRNA-mediated post-transcriptional regulation of lung alveolar type 2 (AT2) and AT1 cell differentiation remains understudied. Here, we demonstrate that the let-7 miRNA family plays a homeostatic role in AT2 quiescence by preventing the uncontrolled accumulation of AT2 transitional cells and promoting AT1 differentiation. Using mouse and organoid models, we show that genetic ablation of let-7a1/let-7f1/let-7d cluster (let-7afd) in AT2 cells prevents AT1 differentiation and leads to KRT8 transitional cell accumulation in progressive pulmonary fibrosis. Integration of AGO2-eCLIP with RNA-sequencing identified direct let-7 targets within an oncogene feed-forward regulatory network, including BACH1/EZH2/MYC, which drives an aberrant fibrotic cascade. Additional CUT&RUN-sequencing analyses revealed that let-7afd loss disrupts histone acetylation and methylation, driving epigenetic reprogramming and altered gene transcription in profibrotic AT2 cells. This study identifies let-7 as a central hub linking unchecked oncogenic signaling to impaired AT2 cell plasticity and fibrogenesis.
Collapse
Grants
- HL140398 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35 HL155672 NHLBI NIH HHS
- S10 RR024574 NCRR NIH HHS
- HL155672 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F31 HL164287 NHLBI NIH HHS
- R01 HL140398 NHLBI NIH HHS
- HL167814 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32 GM136554 NIGMS NIH HHS
- HL164287 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL167814 NHLBI NIH HHS
- P42 ES027725 NIEHS NIH HHS
- GM136554 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- P30 ES030285 NIEHS NIH HHS
- P30 CA125123 NCI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
Collapse
Affiliation(s)
- Matthew J Seasock
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine, Houston, TX, USA
| | - Md Shafiquzzaman
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine, Houston, TX, USA
| | - Maria E Ruiz-Echartea
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rupa S Kanchi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Brandon T Tran
- Cancer & Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Infectious Diseases, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Lukas M Simon
- Verna & Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX, USA
| | - Phillip A Erice
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine, Houston, TX, USA
| | - Shivani L Lotlikar
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine, Houston, TX, USA
| | | | - Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Anton Enright
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Alex F Carisey
- William T. Shearer Center for Immunobiology, Texas Children's Hospital, Houston, TX, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Freddy Romero
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
- Vertex Pharmaceuticals, 3215 Merryfield Row, San Diego, CA, USA
| | - Ivan O Rosas
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Katherine Y King
- Department of Pediatrics, Division of Infectious Diseases, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Antony Rodriguez
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Translational Research on Inflammatory Diseases, Michael E. Debakey VA Medical Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Zhong WJ, Xiong JB, Zhang CY, Jin L, Yang NSY, Sha HX, Liu YB, Duan JX, Guan CX, Zhou Y, Su F. Blocking triggering receptors expressed on myeloid cell-1 alleviates alveolar epithelial cell senescence by inhibiting oxidative stress in pulmonary fibrosis. Histochem Cell Biol 2025; 163:45. [PMID: 40240638 DOI: 10.1007/s00418-025-02374-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Pulmonary fibrosis (PF) is an insidious, progressive, and fatal age-associated disease that occurs primarily in older adults and has a poor prognosis. Alveolar epithelial cell (AEC) senescence is the critical pathological mechanism of PF. The accumulation of oxygen radicals, commonly referred to as reactive oxygen species (ROS), strongly contributes to cellular senescence. The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor. Triggering via TREM-1 results in ROS, leading to the amplification of inflammation. However, whether TREM-1 is involved in PF by inducing oxidative stress to exacerbate AEC senescence remains unclear. We first observed that blockade of TREM-1 during the fibrotic phase attenuated bleomycin (BLM)-induced PF in mice, with decreased expression of senescence-related proteins, including p16, p21, p53, and γ-H2AX, in the lung tissue. Moreover, TREM-1 blockade during the fibrosis stage restored antioxidant levels by increasing the percentage of Nrf2- and HO-1-positive cells in mice with PF. Notably, TREM-1 was highly expressed in surfactant-associated protein (SPC)-positive AECs in mice with PF. In vitro, blocking TREM-1 activated Nrf2 antioxidant signaling, thereby decreasing intracellular ROS levels and diminishing BLM-induced senescence in AECs. Furthermore, inhibition of Nrf2/HO-1 partially counteracted the anti-senescence effect of blocking TREM-1 in BLM-treated AECs. In this study, we reported that TREM-1 stimulated the senescence of AECs, induced ROS and exacerbated PF. We also provide compelling evidence suggesting that the Nrf2/HO-1 signaling pathway underpins TREM-1-triggered senescence. Therefore, our findings provide new insights into the molecular mechanisms associated with TREM-1 and AEC senescence in the pathogenesis of PF.
Collapse
Affiliation(s)
- Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Jian-Bing Xiong
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Ling Jin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Nan-Shi-Yu Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Han-Xi Sha
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Yu-Biao Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Jia-Xi Duan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Feng Su
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
10
|
Zhou Y, Su W, Xu M, Zhang A, Li S, Guo H, Gong K, Lu K, Yu X, Zhu J, Zhu Q, Liu C. Maimendong decoction modulates the PINK1/Parkin signaling pathway alleviates type 2 alveolar epithelial cells senescence and enhances mitochondrial autophagy to offer potential therapeutic effects for idiopathic pulmonary fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119568. [PMID: 40037475 DOI: 10.1016/j.jep.2025.119568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/21/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maimendong decoction (MMDD) originates from the ancient Chinese medical text Synopsis of the Golden Chamber and is a well-established remedy for treating lung diseases. It has demonstrated efficacy in the long-term clinical management of idiopathic pulmonary fibrosis (IPF); however, its underlying mechanisms remain unclear. AIM OF THE STUDY This study investigates whether MMDD alleviates IPF by reducing type 2 alveolar epithelial cell (AEC2) senescence and enhancing mitochondrial autophagy. It also explores whether these effects are mediated through the PTEN-induced putative kinase 1 (PINK1)/Parkinson juvenile disease protein 2 (Parkin) pathway. MATERIALS AND METHODS An IPF mouse model was established with bleomycin (BLM). Mice were administered MMDD, pirfenidone (PFD), or saline for 7 or 28 days. Body weight, lung coefficient, and lung appearance were monitored, and lung tissue pathology was assessed. The expression levels of p53, p21, p16, SA-β-gal activity, and senescence-associated secretory phenotype (SASP) markers were measured. Ultrastructural changes in AEC2 mitochondria were analyzed using transmission electron microscopy. Protein levels of autophagy markers sequestosome-1 and light chain 3 were assessed. The protein levels of PINK1, Parkin, and phosphorylated Parkin were further assessed using network pharmacology analysis and molecular docking technology. RESULTS MMDD alleviated BLM-induced IPF by improving body weight, lung appearance, and histopathological features. It reduced AEC2 senescence markers, including p53, p21, p16, SA-β-gal, and SASP, while enhancing mitochondrial autophagy and repairing mitochondrial damage. Network pharmacology and molecular docking identified PINK1 as a major target, and Western blot (WB) analysis confirmed that MMDD regulates the PINK1/Parkin signaling pathway in the treatment of IPF. CONCLUSIONS MMDD regulates the PINK1/Parkin signaling pathway, alleviates AEC2 senescence, and enhances mitochondrial autophagy, providing significant therapeutic potential for IPF treatment.
Collapse
Affiliation(s)
- Yuhe Zhou
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Wen Su
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Mengzhen Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Aijun Zhang
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co, Ltd.Jinan, Jinan, 250100, China.
| | - Shaoli Li
- Jinan Lixia District People's Hospital, Jinan, 250014, China.
| | - Hong Guo
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Kai Gong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Kaihui Lu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Xin Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jiang Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
11
|
Iliakis CS, Crotta S, Wack A. The Interplay Between Innate Immunity and Nonimmune Cells in Lung Damage, Inflammation, and Repair. Annu Rev Immunol 2025; 43:395-422. [PMID: 40036704 DOI: 10.1146/annurev-immunol-082323-031852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
As the site of gas exchange, the lung is critical for organismal survival. It is also subject to continual environmental insults inflicted by pathogens, particles, and toxins. Sometimes, these insults result in structural damage and the initiation of an innate immune response. Operating in parallel, the immune response aims to eliminate the threat, while the repair process ensures continual physiological function of the lung. The inflammatory response and repair processes are thus inextricably linked in time and space but are often studied in isolation. Here, we review the interplay of innate immune cells and nonimmune cells during lung insult and repair. We highlight how cellular cross talk can fine-tune the circuitry of the immune response, how innate immune cells can facilitate or antagonize proper organ repair, and the prolonged changes to lung immunity and physiology that can result from acute immune responses and repair processes.
Collapse
Affiliation(s)
- Chrysante S Iliakis
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom;
| | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom;
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom;
| |
Collapse
|
12
|
Wu X, Xiao X, Su Y, Zhang Y, Li G, Wang F, Du Q, Yang H. Use quercetin for pulmonary fibrosis: a preclinical systematic review and meta-analysis. Inflammopharmacology 2025; 33:1879-1897. [PMID: 40038212 DOI: 10.1007/s10787-025-01678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is an age-related interstitial lung disease, which lacks effective drug treatment at present. Quercetin has been shown to have favorable anti-inflammatory and anti-fibrotic properties, and preliminary evidence suggests its potential efficacy and tolerability in PF patients. However, a comprehensive systematic review and evaluation of the protective effects and potential mechanisms of quercetin in PF models remains to be completed. Therefore, we conducted this study. METHODS The PubMed, Cochrane Library, Embase, and Web of Science databases were searched up to the April 1, 2024. CAMARADES was the methodological quality assessment tool. And statistical analyses were conducted with R and Stata 16.0. Origin was used for a three-dimensional (3D) dosage-intervention duration-efficacy model for quercetin treatment of PF. RESULTS A total of 20 studies, encompassing 44 independent experiments and involving 1019 animals, were included in the analysis. Meta-analysis revealed that quercetin significantly mitigated lung pathological tissue scores and the expression of lung fibrosis markers in PF animal models. Furthermore, quercetin significantly ameliorated inflammatory responses, oxidative stress, epithelial-mesenchymal transition and myofibroblast activation, cell senescence and apoptosis, and the markers expression of extracellular matrix (ECM) deposition. Quercetin did not show significant hepatic and nephrotoxicity. The 3D dosage-intervention duration-efficacy model indicated that a dosing period over 20 days and dosages range of 5-100 mg/kg were appropriate modalities. CONCLUSION Herein, our study highlights the potential of quercetin in the treatment of PF and the available mechanisms.
Collapse
Affiliation(s)
- Xuanyu Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiang Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yuchen Su
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yuwei Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ganggang Li
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Quanyu Du
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Han Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
13
|
Zhong Z, Gao Y, He C, Li W, Sang L, Huang Y, Chen X, Xie M, Zhang C, Yu Y, Zhu T, Sun J. Nintedanib improves bleomycin-induced pulmonary fibrosis by inhibiting the Clec7a/SPP1 pathway in interstitial macrophages. Cell Signal 2025; 128:111635. [PMID: 39892726 DOI: 10.1016/j.cellsig.2025.111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a terminal lung disease with high mortality rate. Although Nintedanib (Nin) is an effective treatment for IPF, its precise mechanism of action remains unclear. In this study, we performed an integrated analysis of single-cell sequencing and RNA-seq data from lung tissues of both fibrotic and Nin-treated fibrotic mice to uncover new therapeutic mechanisms of Nin in IPF. Our results revealed an increase in interstitial macrophages following bleomycin (BLM) treatment. We used Monocle2, Cellchat, and in vivo experiments to demonstrate that Nin can inhibit Clec7a in interstitial macrophages, thereby suppressing the SPP1-mediated profibrotic pathway. Additionally, we utilized Scenic to predict transcription factors and identified NFκB as a major transcription factor in interstitial macrophages. In the in vitro experiments, we found that inhibiting Clec7a improved the secretion of SPP1 by M2 macrophages through the NFκB pathway. In subsequent in vivo experiments, we found that inhibiting of Clec7a improves pulmonary fibrosis through the NFκB/SPP1 pathway, and Nin alleviated BLM-induced pulmonary fibrosis by inhibiting Clec7a in interstitial macrophages. In summary, our study indicates that interstitial macrophages are upregulated in pulmonary fibrosis, and Nin reduces fibrosis by inhibiting Clec7a in interstitial macrophages, which in turn diminishes the NFκB /SPP1 pathway. These findings provided a new perspective on the mechanism of action of Nin in treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Zuoquan Zhong
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Yefei Gao
- Shaoxing People's Hospital, Shaoxing, China
| | - Chunxiao He
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Weijie Li
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Le Sang
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Yunlei Huang
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Xing Chen
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Mengyao Xie
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Chu Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, China
| | - Yuefang Yu
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, China.
| | - Jian Sun
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, China.
| |
Collapse
|
14
|
Dong Z, Wang X, Wang P, Bai M, Wang T, Chu Y, Qin Y. Idiopathic Pulmonary Fibrosis Caused by Damaged Mitochondria and Imbalanced Protein Homeostasis in Alveolar Epithelial Type II Cell. Adv Biol (Weinh) 2025; 9:e2400297. [PMID: 39390651 PMCID: PMC12001015 DOI: 10.1002/adbi.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/21/2024] [Indexed: 10/12/2024]
Abstract
Alveolar epithelial Type II (ATII) cells are closely associated with early events of Idiopathic pulmonary fibrosis (IPF). Proteostasis dysfunction, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction are known causes of decreased proliferation of alveolar epithelial cells and the secretion of pro-fibrotic mediators. Here, a large body of evidence is systematized and a cascade relationship between protein homeostasis, endoplasmic reticulum stress, mitochondrial dysfunction, and fibrotropic cytokines is proposed, providing a theoretical basis for ATII cells dysfunction as a possible pathophysiological initiating event for idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhaoxiong Dong
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityState Key Laboratory of Respiratory DiseaseSchool of Biomedical EngineeringGuangzhou Medical UniversityGuangzhou510260China
- Institute of BiophysicsChinese Academy of Sciences 15 Datun RoadChaoyang DistrictBeijing100101China
- College of Life ScienceMudanjiang Medical UniversityMudanjiang157000China
| | - Xiaolong Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityState Key Laboratory of Respiratory DiseaseSchool of Biomedical EngineeringGuangzhou Medical UniversityGuangzhou510260China
| | - Peiwen Wang
- College of Life ScienceMudanjiang Medical UniversityMudanjiang157000China
| | - Mingjian Bai
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityState Key Laboratory of Respiratory DiseaseSchool of Biomedical EngineeringGuangzhou Medical UniversityGuangzhou510260China
- School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100101China
| | - Tianyu Wang
- School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100101China
| | - Yanhui Chu
- College of Life ScienceMudanjiang Medical UniversityMudanjiang157000China
| | - Yan Qin
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityState Key Laboratory of Respiratory DiseaseSchool of Biomedical EngineeringGuangzhou Medical UniversityGuangzhou510260China
- Institute of BiophysicsChinese Academy of Sciences 15 Datun RoadChaoyang DistrictBeijing100101China
| |
Collapse
|
15
|
Liu S, Xi Q, Li X, Liu H. Mitochondrial dysfunction and alveolar type II epithelial cell senescence: The destroyer and rescuer of idiopathic pulmonary fibrosis. Front Cell Dev Biol 2025; 13:1535601. [PMID: 40230412 PMCID: PMC11994736 DOI: 10.3389/fcell.2025.1535601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic respiratory disease with an unknown origin and complex pathogenic mechanisms. A deeper understanding of these mechanisms is essential for effective treatment. Pulmonary fibrosis is associated with the senescence of alveolar type II epithelial (ATⅡ) cells. Additionally, ATⅡ senescence can lead to a senescence-associated secretory phenotype, which affects cellular communication and disrupts lung tissue repair, contributing to the development of IPF. The role of mitochondrial dysfunction in senescence-related diseases is increasingly recognized. It can induce ATⅡ senescence through apoptosis, impaired autophagy, and disrupted energy metabolism, potentially playing a key role in IPF progression. This article explores the therapeutic potential of targeting cellular senescence and mitochondrial dysfunction, emphasizing their significant roles in IPF pathogenesis.
Collapse
Affiliation(s)
- Suqi Liu
- The First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qian Xi
- Six Sections of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xuannian Li
- The First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huaman Liu
- Six Sections of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
16
|
Bhatt J, Ghigo A, Hirsch E. PI3K/Akt in IPF: untangling fibrosis and charting therapies. Front Immunol 2025; 16:1549277. [PMID: 40248697 PMCID: PMC12004373 DOI: 10.3389/fimmu.2025.1549277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/13/2025] [Indexed: 04/19/2025] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive lung disease characterized by abnormal epithelial repair, persistent inflammation, and excessive extracellular matrix deposition, leading to irreversible scarring and respiratory failure. Central to its pathogenesis is the dysregulation of the PI3K/Akt signaling pathway, which drives fibroblast activation, epithelial-mesenchymal transition, apoptosis resistance, and cellular senescence. Senescent cells contribute to fibrosis through the secretion of pro-inflammatory and profibrotic factors in the senescence-associated secretory phenotype (SASP). Current antifibrotic therapies, Nintedanib and Pirfenidone, only slow disease progression and are limited by side effects, highlighting the need for novel treatments. This review focuses on the role of PI3K/Akt signaling in IPF pathogenesis, its intersection with inflammation and fibrosis, and emerging therapeutic approaches targeting molecules along this pathway.
Collapse
Affiliation(s)
- Janki Bhatt
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
- Kither Biotech S.r.l., Turin, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
- Kither Biotech S.r.l., Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
- Kither Biotech S.r.l., Turin, Italy
| |
Collapse
|
17
|
Khan A, Alzahrani HA, Felemban SG, Algarni AS, Alenezi ABS, Kamal M, Rehman ZU, Asdaq SMB, Ahmed N, Alharbi BM, Alanazi BS, Imran M. Exploring TGF-β signaling in benign prostatic hyperplasia: from cellular senescence to fibrosis and therapeutic implications. Biogerontology 2025; 26:79. [PMID: 40159577 DOI: 10.1007/s10522-025-10226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
As men get older, they often develop benign prostatic hyperplasia (BPH), an enlarged prostate that is not cancerous or dangerous. Although the etiology of BPH is unknown, increasing evidence indicates that the TGF-β signaling pathway might be a key player in its pathogenesis. TGF-β is a pleiotropic cytokine involved in proliferation, differentiation, and extracellular matrix re-modeling, which are all dysregulated in BPH. Cellular senescence is primarily initiated by TGF-β--induced, irreversible growth arrest and usually limits the prostate gland's hyperplastic growth. Moreover, senescent cells generate a Senescence-Associated Secretory Phenotype (SASP), which consists of numerous proinflammatory and profibrotic factors that can worsen disease ontogeny. In addition, TGF-β is among the most fibrogenic factors. At the same time, fibrosis involves a massive accumulation of extracellular matrix proteins, which can increase tissue stiffness and a loss of normal organ functions. TGF-β-mediated fibrosis in BPH changes the mechanical properties of the prostate and surrounding tissues to contribute to lower urinary tract symptoms. This review discusses the complicated molecular signaling of TGF-β underlying changes in cellular senescence and fibrosis during BPH concerning its therapeutic potential.
Collapse
Affiliation(s)
- Abida Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
- Center for Health Research, Northern Border University, Arar, 73213, Saudi Arabia
| | - Hayat Ali Alzahrani
- Medical Laboratory Technology Department, College of Medical Applied Science, Northern Border University, Arar, Saudi Arabia
| | - Shatha Ghazi Felemban
- Medical Laboratory Sciences Department, Fakeeh College for Medical Sciences, 21461, Jeddah, Saudi Arabia
| | - Alanood Saeed Algarni
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Zia Ur Rehman
- Health Research Centre, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, P.O. Box 114, Jazan, 45142, Kingdom of Saudi Arabia
| | | | - Naveed Ahmed
- Department of Assistance Medical Sciences, Applied College, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Bashayer Mohammed Alharbi
- Department of Pharmacy, Johns Hopkins Aramco Healthcare, P.O. Box 10352, 31311, Dhahran, Eastern Province, Saudi Arabia
| | - Bander Sharqi Alanazi
- Department of Nursing Administration, Northern Area Armed Forces Hospital, 31991, Hafer AlBaten, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, 73213, Saudi Arabia.
| |
Collapse
|
18
|
Li Q, Xiao N, Zhang H, Liang G, Lin Y, Qian Z, Yang X, Yang J, Fu Y, Zhang C, Liu A. Systemic aging and aging-related diseases. FASEB J 2025; 39:e70430. [PMID: 40022602 DOI: 10.1096/fj.202402479rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Aging is a biological process along with systemic and multiple organ dysfunction. It is more and more recognized that aging is a systemic disease instead of a single-organ functional disorder. Systemic aging plays a profound role in multiple diseases including neurodegenerative diseases, cardiovascular diseases, and malignant diseases. Aged organs communicate with other organs and accelerate aging. Skeletal muscle, heart, bone marrow, skin, and liver communicate with each other through organ-organ crosstalk. The crosstalk can be mediated by metabolites including lipids, glucose, short-chain fatty acids (SCFA), inflammatory cytokines, and exosomes. Metabolic disorders including hyperglycemia, hyperinsulinemia, and hypercholesterolemia caused by chronic diseases accelerate hallmarks of aging. Systemic aging leads to the destruction of systemic hemostasis, causes the release of inflammatory cytokines, senescence-associated secretory phenotype (SASP), and the imbalance of microbiota composition. Released inflammatory factors further aggregate senescence, which promotes the aging of multiple solid organs. Targeting senescence or delaying aging is emerging as a critical health strategy for solving age-related diseases, especially in the old population. In the current review, we will delineate the mechanisms of organ crosstalk in systemic aging and age-related diseases to provide therapeutic targets for delaying aging.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Nanyin Xiao
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Heng Zhang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Guangyu Liang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yan Lin
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zonghao Qian
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yanguang Fu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Cuntai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
19
|
Wu J, Wang J, Pei Z, Zhu Y, Zhang X, Zhou Z, Ye C, Song M, Hu Y, Xue P, Zhao G. Endothelial senescence induced by PAI-1 promotes endometrial fibrosis. Cell Death Discov 2025; 11:89. [PMID: 40050610 PMCID: PMC11885584 DOI: 10.1038/s41420-025-02377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
Intrauterine adhesions (IUAs), also known as Asherman's syndrome (AS), represent a significant cause of uterine infertility for which effective treatment remains elusive. The endometrium's ability to regenerate cyclically depends heavily on the growth and regression of its blood vessels. However, trauma to the endometrial basal layer can disrupt the subepithelial capillary plexus, impeding regeneration. This damage results in the replacement of native cells with fibroblasts and myofibroblasts, ultimately leading to fibrosis. Endothelial cells (ECs) play a pivotal role in the vascular system, extending beyond their traditional barrier function. Through single-cell sequencing and experimental validation, we discovered that ECs undergo senescence in IUA patients, impairing angiogenesis and fostering stromal cell fibrosis. Further analysis revealed significant interactions between ECs and PAI-1+ stromal cells. PAI-1, derived from stromal cells, promotes EC senescence via the urokinase-type plasminogen activator receptor (uPAR). Notably, prior to fibrosis onset, TGF-β upregulates PAI-1 expression in stromal cells in a SMAD dependent manner. In an IUA mouse model, inhibiting PAI-1 mitigated EC senescence and endometrial fibrosis. Our findings underscore the crucial role of EC senescence in IUA pathogenesis, contributing to vascular reduction and fibrosis. Targeting PAI-1 represents a promising therapeutic strategy to suppress EC senescence and alleviate endometrial fibrosis, offering new insights into the treatment of IUAs.
Collapse
Affiliation(s)
- Jing Wu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Wang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongrui Pei
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yaru Zhu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xier Zhang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zihan Zhou
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chunying Ye
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Minmin Song
- Obstetrics and Gynaecology Hospital, Fudan University, Shanghai, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Pingping Xue
- Department of Reproductive Medicine Center, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
20
|
St Pierre L, Berhan A, Sung EK, Alvarez JR, Wang H, Ji Y, Liu Y, Yu H, Meier A, Afshar K, Golts EM, Lin GY, Castaldi A, Calvert BA, Ryan A, Zhou B, Offringa IA, Marconett CN, Borok Z. Integrated multiomic analysis identifies TRIP13 as a mediator of alveolar epithelial type II cell dysfunction in idiopathic pulmonary fibrosis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167572. [PMID: 39547519 PMCID: PMC11951472 DOI: 10.1016/j.bbadis.2024.167572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal progressive lung disease urgently needing new therapies. Current treatments only delay disease progression, leaving lung transplant as the sole remaining option. Recent studies support a model whereby IPF arises because alveolar epithelial type II (AT2) cells, which normally mediate distal lung regeneration, acquire airway and/or mesenchymal characteristics, preventing proper repair. Mechanisms driving this abnormal differentiation remain unclear. We performed integrated transcriptomic and epigenomic analysis of purified AT2 cells which revealed genome-wide alterations in IPF lungs. The most prominent epigenetic alteration was activation of an enhancer in thyroid receptor interactor 13 (TRIP13), although TRIP13 was not the most significantly transcriptionally upregulated gene. TRIP13 is broadly implicated in epithelial-mesenchymal plasticity. In cultured human AT2 cells and lung slices, small molecule TRIP13 inhibitor DCZ0415 prevented acquisition of the mesenchymal gene signature characteristic of IPF, suggesting TRIP13 inhibition as a potential therapeutic approach to fibrotic disease.
Collapse
Affiliation(s)
- Laurence St Pierre
- Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Asres Berhan
- Department of Medicine, University of California San Diego, CA 92037, USA
| | - Eun K Sung
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Juan R Alvarez
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Hongjun Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yanbin Ji
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yixin Liu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Haoze Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Angela Meier
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kamyar Afshar
- Department of Medicine, University of California San Diego, CA 92037, USA
| | - Eugene M Golts
- Department of Surgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Grace Y Lin
- Department of Pathology, University of California, San Diego, La Jolla, CA 92037, USA
| | | | - Ben A Calvert
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Amy Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Beiyun Zhou
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Ite A Offringa
- Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Crystal N Marconett
- Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| | - Zea Borok
- Department of Medicine, University of California San Diego, CA 92037, USA.
| |
Collapse
|
21
|
Lian W, Cheng D, Sun W, Wang T, Jia X, Jia Z, Liu Y, Ni C. Senescent alveolar type II epithelial cells-secreted GDF15 promotes silicosis progression via interfering intercellular communication. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117917. [PMID: 39986054 DOI: 10.1016/j.ecoenv.2025.117917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/01/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Silicosis is a chronic fibrotic pulmonary disease caused by consistent inhalation of respirable crystalline-free silica dust. The senescence of alveolar epithelial type II cells (ATII) is considered the initiation of pulmonary fibrosis. As a secreted protein, growth differentiation factor 15 (GDF15) was found intimately associated with the severity of lung diseases via senescence. Therefore, we speculate that GDF15 may involved in silica-induced pulmonary fibrosis. METHODS Co-culture was performed to observe the pro-fibrotic effect of GDF15, which is secreted from the silica-induced senescence ATII cells, on peripheral effector cells. We further explored GDF15-related signaling pathways via ChIP and IP assays. GDF15 siRNA lipid nanoparticles, anti-aging compound β-nicotinamide mononucleotide (NMN), and the Chinese traditional drug Bazibushen (BZBS) were used individually to intervene silicosis progress. RESULTS SiO2 and etoposide-stimulated MLE-12 cells showed senescence phenotype and secreted substantial GDF15, which is consistent with over-expressed GDF15 in lung tissues from silica-induced pulmonary fibrosis. The results further demonstrated that senescence ATII cells could facilitate co-cultured epithelial cell epithelial-mesenchymal transition (EMT) and fibroblast activation in a GDF15-dependent manner. Mechanistically, p53 regulates GDF15 transcription and secretion in senescence ATII cells. Moreover, secreted GFD15 performed its pro-fibrotic role by directly binding to TGF-βR via autocrine and paracrine manners. Also, lipid nanoparticles targeting GDF15 or cell senescence inhibitor NMN and BZBS showed efficient anti-fibrotic effects in vivo. CONCLUSIONS Our results elucidate that senescence ATII cell-secreted GDF15 plays a vital role in promoting silicosis by influencing surrounding cells, and provides scientific clues for the selection of potential therapeutic drugs for silicosis.
Collapse
Affiliation(s)
- Wenxiu Lian
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Demin Cheng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Wenqing Sun
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing medical university, Wuxi, China.
| | - Ting Wang
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China.
| | - Xinying Jia
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Zhenhua Jia
- Hebei Yiling Hospital, High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine-Luobing Theory, Shijiazhuang, Hebei 050091, China; National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, Hebei 050035, China.
| | - Yi Liu
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang 320700, China.
| |
Collapse
|
22
|
Shen C, Wang W, Wei D, Yang X, Jiang C, Sheng Y, Chen Y, Sun J, Li X, Li G, Ye S, Chen J. PCR array analysis reveals a novel expression profile of ferroptosis-related genes in idiopathic pulmonary fibrosis. BMC Pulm Med 2025; 25:98. [PMID: 40022042 PMCID: PMC11869717 DOI: 10.1186/s12890-025-03555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/12/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, irreversible, and fatal disease characterized by progressive interstitial lung fibrosis. Given its insidious onset and poor outcome, there is an urgent need to elucidate the molecular mechanisms underlying IPF and identify effective therapeutic targets and diagnosis and prognosis biomarkers. Ferroptosis is an iron-dependent form of programmed cell death that occurs as lipid peroxides accumulate. Growing evidence suggests that ferroptosis is important in IPF. METHODS Human ferroptosis PCR array was performed on IPF and control lung tissue. The differentially expressed ferroptosis-related genes (DE-FRGs) were identified, underwent functional enrichment analyses, protein-protein interaction network construction, and potential drug target prediction. The DE-FRGs were validated and their value as diagnostic and prognostic blood biomarkers were evaluated using the Gene Expression Omnibus dataset GSE28042. RESULTS The array identified 13 DE-FRGs. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the DE-FRGs were mainly related to iron ion transport, blood microparticles, and oxidoreductase activity, and were involved in porphyrin metabolism, necroptosis, and the p53 signaling pathway in addition to ferroptosis. The 13 DE-FRGs were analyzed using the Drug-Gene Interaction Database to explore novel IPF therapeutic agents, yielding 42 potential drugs. Four DE-FRGs (BBC3, STEAP3, EPRS, SLC39A8) in the peripheral blood of IPF patients from the GSE28042 dataset demonstrated the same expression pattern as that observed in the lung tissue array. The receiver operating characteristic analysis demonstrated that the area under the curve of STEAP3 and EPRS were > 0.75. The survival analysis demonstrated that STEAP3 and EPRS were significantly different between the IPF and control groups. CONCLUSIONS The FRG expression profiles in IPF and control lung tissue were characterized. The findings provided valuable ideas to elucidate the role of ferroptosis in IPF and aided the identification of novel IPF therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Chenyou Shen
- Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Wei Wang
- Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Dong Wei
- Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Xusheng Yang
- Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Cheng Jiang
- Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Yating Sheng
- Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Yuan Chen
- Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Jie Sun
- Department of Scientific Research, The Affiliated Wuxi People's Hospital of Nanjing Medical, University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Xiaoshan Li
- Organ Donation and Transplant Management Office, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, WuxiJiangsu, 214023, China
| | - Guirong Li
- Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.
| | - Shugao Ye
- Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.
| | - Jingyu Chen
- Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.
| |
Collapse
|
23
|
Banaschewski BJH, Michki SN, Sitaraman S, Pan R, Wang JY, Stewart D, Goldy MK, Lin SM, Cantu E, Katzen JB, Basil MC, Emtiazjoo AM, Todd JL, Gokey JJ, Kropski JA, Frank DB, Zepp JA, Young LR. Emergence of inflammatory fibroblasts with aging in Hermansky-Pudlak syndrome associated pulmonary fibrosis. Commun Biol 2025; 8:284. [PMID: 39987372 PMCID: PMC11846979 DOI: 10.1038/s42003-025-07589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/21/2025] [Indexed: 02/24/2025] Open
Abstract
The longitudinal cellular interactions that drive pulmonary fibrosis are not well understood. To investigate the disease underpinnings associated with fibrosis onset and progression, we generated a scRNA-seq atlas of lungs from young and aged mouse models of multiple subtypes of Hermansky-Pudlak syndrome (HPS), a collection of rare autosomal recessive diseases associated with albinism, platelet dysfunction, and pulmonary fibrosis. We have identified an age-dependent increase in SAA3+ inflammatory lung fibroblasts in HPS mice, including in double-mutant HPS1-2 mice which develop spontaneous fibrosis. HPS1 fibroblasts show increased expression of IL-1R1, whereas alveolar type II epithelial cells from HPS2 mice induce the inflammatory gene signature in co-cultured fibroblasts. scRNA-seq of lung tissue from three HPS1 patients similarly shows the presence of inflammatory fibroblasts and increased IL1R1 expression on fibroblasts. These data posit complex interactions between dysfunctional epithelial cells, inflammatory fibroblasts, and recruited immune cells, suggesting potential opportunities for mitigation of the fibrotic cascade.
Collapse
Affiliation(s)
- Brandon J H Banaschewski
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sylvia N Michki
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sneha Sitaraman
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ruby Pan
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joanna Y Wang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Dominique Stewart
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mary Kate Goldy
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susan M Lin
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Cantu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeremy B Katzen
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria C Basil
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Amir M Emtiazjoo
- Deparment of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Jamie L Todd
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | - Jason J Gokey
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Veterans Affairs Medical Center, Nashville, TN, USA
| | - David B Frank
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jarod A Zepp
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Lisa R Young
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Guerrero-López R, Manguán-García C, Carrascoso-Rubio C, Lozano ML, Toldos-Torres M, García-Castro L, Sánchez-Dominguez R, Alberquilla O, Sánchez-Pérez I, Molina-Molina M, Bueren JA, Guenechea G, Perona R, Sastre L. Premature ageing of lung alveoli and bone marrow cells from Terc deficient mice with different telomere lengths. Sci Rep 2025; 15:6102. [PMID: 39971959 PMCID: PMC11840044 DOI: 10.1038/s41598-025-90246-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/11/2025] [Indexed: 02/21/2025] Open
Abstract
Telomeres are terminal protective chromosome structures. Genetic variants in genes coding for proteins required for telomere maintenance cause rare, life-threatening Telomere Biology Disorders (TBDs) such as dyskeratosis congenita, aplastic anemia or pulmonary fibrosis. The more frequently used mice strains have telomeres much longer than the human ones which question their use as in vivo models for TBDs. One mice model with shorter telomeres based on the CAST/EiJ mouse strain carrying a mutation in the Terc gene, coding for the telomerase RNA component, has been studied in comparison with C57BL/6J mice, carrying the same mutation and long telomeres. The possible alterations produced in lungs and the haematopoietic system, frequently affected in TBD patients, were determined at different ages of the mice. Homozygous mutant mice presented a very shortened life span, more notorious in the short-telomeres CAST/EiJ strain. The lungs of mutant mice presented a transitory increase in fibrosis and a significant decrease in the relative amount of the alveolar epithelial type 2 cells from six months of age. This decrease was larger in mutant homozygous animals but was also observed in heterozygous animals. On the contrary the expression of the senescence-related protein P21 increased from six months of age in mutant mice of both strains. The analysis of the haematopoietic system indicated a decrease in the number of megakaryocyte-erythroid progenitors in homozygous mutants and an increase in the clonogenic potential of bone marrow and LSK cells. Bone marrow cells from homozygous mutant animals presented decreasing in vitro expansion capacity. The alterations observed are compatible with precocious ageing of lung alveolar cells and the bone marrow cells that correlate with the alterations observed in TBD patients. The alterations seem to be more related to the genotype of the animals that to the basal telomere length of the strains although they are more pronounced in the short-telomere CAST/EiJ-derived strain than in C57BL/6J animals. Therefore, both animal models, at ages over 6-8 months, could represent valuable and convenient models for the study of TBDs and for the assay of new therapeutic products.
Collapse
Affiliation(s)
- Rosa Guerrero-López
- Instituto de Investigaciones Biomedicas Sols/Morreale, CSIC-UAM. Arturo Duperier, Madrid, 28029, Spain.
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.
| | - Cristina Manguán-García
- Instituto de Investigaciones Biomedicas Sols/Morreale, CSIC-UAM. Arturo Duperier, Madrid, 28029, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain
| | - Carlos Carrascoso-Rubio
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT)) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - M Luz Lozano
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT)) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Marta Toldos-Torres
- Instituto de Investigaciones Biomedicas Sols/Morreale, CSIC-UAM. Arturo Duperier, Madrid, 28029, Spain
| | - Laura García-Castro
- Instituto de Investigaciones Biomedicas Sols/Morreale, CSIC-UAM. Arturo Duperier, Madrid, 28029, Spain
| | - Rebeca Sánchez-Dominguez
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT)) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Omaira Alberquilla
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT)) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Isabel Sánchez-Pérez
- Instituto de Investigaciones Biomedicas Sols/Morreale, CSIC-UAM. Arturo Duperier, Madrid, 28029, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain
| | - Maria Molina-Molina
- ILD Unit, Pneumatology Department, University Hospital of Bellvitge, IDIBELL. University of Barcelona, Barcelona, Spain
| | - Juan A Bueren
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT)) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Guillermo Guenechea
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT)) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain.
| | - Rosario Perona
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.
- Instituto de Salud Carlos III, Madrid, 28029, Spain.
| | - Leandro Sastre
- Instituto de Investigaciones Biomedicas Sols/Morreale, CSIC-UAM. Arturo Duperier, Madrid, 28029, Spain.
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, 28029, Spain.
| |
Collapse
|
25
|
Seasock MJ, Shafiquzzaman M, Ruiz-Echartea ME, Kanchi RS, Tran BT, Simon LM, Meyer MD, Erice PA, Lotlikar SL, Wenlock SC, Ochsner SA, Enright A, Carisey AF, Romero F, Rosas IO, King KY, McKenna NJ, Coarfa C, Rodriguez A. Let-7 restrains an oncogenic circuit in AT2 cells to prevent fibrogenic cell intermediates in pulmonary fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.22.595205. [PMID: 38826218 PMCID: PMC11142151 DOI: 10.1101/2024.05.22.595205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Analysis of lung alveolar type 2 (AT2) progenitor stem cells has highlighted fundamental mechanisms that direct their differentiation into alveolar type 1 cells (AT1s) in lung repair and disease. However, microRNA (miRNA) mediated post-transcriptional mechanisms which govern this nexus remain understudied. We show here that the let-7 miRNA family serves a homeostatic role in governance of AT2 quiescence, specifically by preventing the uncontrolled accumulation of AT2 transitional cells and by promoting AT1 differentiation. Using mice and organoid models, we demonstrate genetic ablation of let-7a1/let-7f1/let-7d cluster (let-7afd) in AT2 cells prevents AT1 differentiation and results in accumulation of AT2 transitional cells in progressive pulmonary fibrosis. Integration of AGO2-eCLIP with RNA-sequencing from AT2 cells uncovered the induction of direct targets of let-7 in an oncogene feed-forward regulatory network including BACH1/EZH2/MYC which drives an aberrant fibrotic cascade. Additional analyses using CUT&RUN-sequencing revealed an epigenetic role of let-7 in induction of chromatin histone acetylation and methylation and maladaptive AT2 cell reprogramming. This study identifies let-7 as a key gatekeeper of post-transcriptional and epigenetic chromatin signals to prevent AT2-driven pulmonary fibrosis.
Collapse
Affiliation(s)
- Matthew J Seasock
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, 77030
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine Houston TX, 77030
| | - Md Shafiquzzaman
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine Houston TX, 77030
| | - Maria E Ruiz-Echartea
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Rupa S Kanchi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine Houston, TX, 77030
| | - Brandon T Tran
- Graduate Program of Cancer Biology and Cell Biology, Baylor College of Medicine, Houston, TX, 77030
- Department of Pediatrics, Division of Infectious Diseases, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030
| | - Lukas M Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX 77005
| | - Phillip A Erice
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, 77030
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine Houston TX, 77030
| | - Shivani L Lotlikar
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine Houston TX, 77030
| | | | - Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Anton Enright
- Department of Pathology, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Alex F Carisey
- William T. Shearer Center for Immunobiology, Texas Children's Hospital, Houston, TX, 77030
- Current Address: Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Freddy Romero
- Department of Medicine, Section of Pulmonary and Critical Care, Baylor College of Medicine. Houston, TX, 77030
- Current Address: Vertex Pharmaceuticals, 3215 Merryfield Row, San Diego, CA, 92121
| | - Ivan O Rosas
- Department of Medicine, Section of Pulmonary and Critical Care, Baylor College of Medicine. Houston, TX, 77030
| | - Katherine Y King
- Department of Pediatrics, Division of Infectious Diseases, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine Houston, TX, 77030
| | - Antony Rodriguez
- Department of Medicine, Section of Immunology, Allergy & Rheumatology, Baylor College of Medicine Houston TX, 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine Houston, TX, 77030
- Center for Translational Research on Inflammatory Diseases, Michael E. Debakey, Baylor College of Medicine, Houston, TX, 77030
| |
Collapse
|
26
|
Yang Y, Li L, Fei J, Li Z. C2C12 myoblasts differentiate into myofibroblasts via the TGF-β1 signaling pathway mediated by Fibulin2. Gene 2025; 936:149048. [PMID: 39490650 DOI: 10.1016/j.gene.2024.149048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Myoblasts play a critical role in the regeneration of skeletal muscle following injury. It has been reported that local elevation of transforming growth factor-β1 (TGF-β1) after skeletal muscle injury induces differentiation of myoblasts into myofibroblasts. However, the mechanisms underlying this differentiation process remain incompletely understood. In this study, we found that Fibulin2 expression significantly increases in myoblasts in response to TGF-β1 stimulation. Elevated Fibulin2 levels enhance the expression of fibrotic markers. Conversely, downregulation of Fibulin2 in myoblasts inhibits the upregulation of fibrotic markers induced by TGF-β1 stimulation. Extracellular secretion of Fibulin2 activates the TGF-β1-Smad2 pathway, thereby promoting the upregulation of fibrotic markers. Hence, Fibulin2 and TGF-β1 form a positive feedback loop that facilitates differentiation of myoblasts into myofibroblasts.
Collapse
Affiliation(s)
- Yongqiang Yang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Lei Li
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jun Fei
- Department of Emergency, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing , PR China.
| | - Zhong Li
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China.
| |
Collapse
|
27
|
Martín-Vicente P, López-Martínez C, López-Alonso I, Exojo-Ramírez SM, Duarte-Herrera ID, Amado-Rodríguez L, Ordoñez I, Cuesta-Llavona E, Gómez J, Campo N, O'Kane CM, McAuley DF, Huidobro C, Albaiceta GM. Mechanical Stretch Induces Senescence of Lung Epithelial Cells and Drives Fibroblast Activation by Paracrine Mechanisms. Am J Respir Cell Mol Biol 2025; 72:195-205. [PMID: 39133930 DOI: 10.1165/rcmb.2023-0449oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/12/2024] [Indexed: 02/01/2025] Open
Abstract
Severe lung injury requiring mechanical ventilation may lead to secondary fibrosis. Senescence, a cell response characterized by cell cycle arrest and a shift toward a proinflammatory/profibrotic phenotype, is one of the involved mechanisms. In this study, we explore the contribution of mechanical stretch as a trigger of senescence of the respiratory epithelium and its link with fibrosis. Human lung epithelial cells and fibroblasts were exposed in vitro to mechanical stretch, and senescence was assessed. In addition, fibroblasts were exposed to culture media preconditioned by senescent epithelial cells, and their activation was studied. Transcriptomic profiles from stretched, senescent epithelial cells and activated fibroblasts were combined to identify potential activated pathways. Finally, the senolytic effects of digoxin were tested in these models. Mechanical stretch induced senescence in lung epithelial cells, but not in fibroblasts. This stretch-induced senescence has specific features compared with senescence induced by doxorubicin. Fibroblasts were activated after exposure to supernatants conditioned by epithelial senescent cells. Transcriptomic analyses revealed Notch signaling as potentially responsible for the epithelial-mesenchymal cross-talk, because blockade of this pathway inhibits fibroblast activation. Treatment with digoxin reduced the percentage of senescent cells after stretch and ameliorated the fibroblast response to preconditioned media. These results suggest that lung fibrosis in response to mechanical stretch may be caused by the paracrine effects of senescent cells. This pathogenetic mechanism can be pharmacologically manipulated to improve lung repair.
Collapse
Affiliation(s)
- Paula Martín-Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
| | - Cecilia López-Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
| | - Inés López-Alonso
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
| | - Sara M Exojo-Ramírez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
| | - Israel David Duarte-Herrera
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
| | - Laura Amado-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias
- Departamento de Medicina
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
- Unidad de Cuidados Intensivos Cardiológicos and
| | - Irene Ordoñez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias
| | - Elias Cuesta-Llavona
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Servicio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain; and
| | - Juan Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Servicio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain; and
| | - Natalia Campo
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | | | - Guillermo M Albaiceta
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, Madrid, Spain
- Unidad de Cuidados Intensivos Cardiológicos and
| |
Collapse
|
28
|
Liu Z, Zheng Q, Li Z, Huang M, Zhong C, Yu R, Jiang R, Dai H, Zhang J, Gu X, Xu Y, Li C, Shan S, Xu F, Hong Y, Ren T. Epithelial stem cells from human small bronchi offer a potential for therapy of idiopathic pulmonary fibrosis. EBioMedicine 2025; 112:105538. [PMID: 39753035 PMCID: PMC11754162 DOI: 10.1016/j.ebiom.2024.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/21/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial pneumonia with restrictive ventilation. Recently, the structural and functional defects of small airways have received attention in the early pathogenesis of IPF. This study aimed to elucidate the characteristics of small airway epithelial dysfunction in patients with IPF and explore novel therapeutic interventions to impede IPF progression by targeting the dysfunctional small airways. METHODS Airway trees spanning the proximal-distal axis were harvested from control lungs and explanted lungs with end-stage IPF undergoing transplant. Qualified basal cells (BCs, p63/Krt5/ITGA6/NGFR) were expanded, and their cellular functions, feasibility, safety and efficacy for transplantation therapy in IPF were validated with experiments in vitro and mouse model. Single-cell RNA-sequencing was employed to elucidate the underlying mechanisms governing the BCs based therapy. Based upon these evidences, three patients with advanced IPF and small airway dysfunction received autologous-BCs transplantation. Post-transplantation assessments included lung function, exercise capacity and high resolution computed tomography (HRCT) scans were analyzed to quantify the clinical benefits conferred by the BCs transplantation. FINDINGS An overall landscape of senescent phenotype in airway epithelial cells and airway stem/progenitor cells along the proximal-distal axis of the airway tree in IPF were outlined. In contrast to the cells situated in distal airways, BCs located in small bronchi in IPF displayed a non-senescent phenotype, with comparable proliferative, differentiative capabilities, and similar transcriptomic profiles to normal controls. In a mouse model of pulmonary fibrosis, BCs exhibited promising protective efficacy and safety for transplantation therapy. Autologous BCs transplantation in three advanced IPF patients with small airway dysfunction yielded significant clinical improvements in pulmonary function, particularly evidence in lung volume and small airway function. INTERPRETATION Epithelia of small bronchi in IPF contain functional and expandable basal stem cells, which exert therapeutic benefits via bronchoscopic implantation. Our findings offer a potential for IPF treatment by targeting small airways. FUNDING National Natural Science Foundation of China (82430001, 81930001, and 81900059), Shanghai Shenkang Hospital Development Center (SHDC2020CR3063B), Department of Science and Technology of Shandong Province (2024HWYQ-058).
Collapse
Affiliation(s)
- Zeyu Liu
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qi Zheng
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhoubin Li
- Department of Lung Transplantation and Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Moli Huang
- Department of Bioinformatics, School of Biological and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Cheng Zhong
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ruize Yu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Rong Jiang
- Department of Bioinformatics, School of Biological and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Haotian Dai
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jingyuan Zhang
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaohua Gu
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yongle Xu
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shan Shan
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Feng Xu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China.
| | - Yue Hong
- School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China.
| | - Tao Ren
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
29
|
Schaenman JM, Pickering H, Reed EF, Rossetti M, Seligman B, Weigt SS, Shino M, Sayah D, Belperio J, Hu A, Prosper A, Ruchalski K, Ardehali A, Biniwale R. T cell immune senescence is associated with frailty and sarcopenia in lung transplant candidates. JHLT OPEN 2025; 7:100199. [PMID: 40144851 PMCID: PMC11935382 DOI: 10.1016/j.jhlto.2024.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Backgound Older lung transplant recipients experience increased rates of adverse clinical outcomes, including infection compared with younger patients, potentially related to impaired cell-mediated immunity, frailty, and sarcopenia. Methods Patients over age 55 years undergoing evaluation for lung transplantation were evaluated for sarcopenia by cross-sectional area and average attenuation of the pectoralis major muscle on chest computed tomography. Frailty was measured using the Fried Frailty Phenotype. Immune phenotyping was performed using multichannel flow cytometry of peripheral blood mononuclear cells (PBMC) in a total of 26 lung transplant candidates. Results The median patient age was 65, primarily with restrictive lung disease (76.9%). Hospital readmission was associated with lower frequency of naïve CD4 (p = 0.004) and CD8 T cells (p = 0.026). Senescent CD4 (KLRG1+/CD28-) and CD8 T cells were also associated with readmission (p = 0.014 and p = 0.013, respectively), and senescent CD4 T cells were predictive of total hospital time (p = 0.003). TEMRA CD4 T cells were significantly associated with frailty (p = 0.015) and sarcopenia (p = 0.011). Senescent CD4 and CD8 T cells were significantly associated with sarcopenia (p = 0.009 and p = 0.006, respectively). Conclusions These findings suggest that impaired cell-mediated immunity may underlie the associations between frailty and sarcopenia and poor clinical outcomes. A multifaceted approach to evaluation of older patients has the potential to improve risk stratification and inform management of immunosuppression.
Collapse
Affiliation(s)
- Joanna M. Schaenman
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, Los Angeles, California
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Maura Rossetti
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Benjamin Seligman
- Department of Medicine, Division of Geriatrics, David Geffen School of Medicine, Los Angeles, California
| | - S. Samuel Weigt
- Department of Medicine, Division of Pulmonary Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Michael Shino
- Department of Medicine, Division of Pulmonary Medicine, David Geffen School of Medicine, Los Angeles, California
| | - David Sayah
- Department of Medicine, Division of Pulmonary Medicine, David Geffen School of Medicine, Los Angeles, California
| | - John Belperio
- Department of Medicine, Division of Pulmonary Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Ashley Hu
- Department of Radiology, David Geffen School of Medicine, Los Angeles, California
| | - Ashley Prosper
- Department of Radiology, David Geffen School of Medicine, Los Angeles, California
| | - Kathleen Ruchalski
- Department of Radiology, David Geffen School of Medicine, Los Angeles, California
| | - Abbas Ardehali
- Department of Cardiothoracic Surgery, David Geffen School of Medicine, Los Angeles, California
| | - Reshma Biniwale
- Department of Cardiothoracic Surgery, David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
30
|
Zhang T, Hou Z, Ding Z, Wang P, Pan X, Li X. Single Cell RNA-Seq Identifies Cell Subpopulations Contributing to Idiopathic Pulmonary Fibrosis in Humans. J Cell Mol Med 2025; 29:e70402. [PMID: 39928535 PMCID: PMC11809556 DOI: 10.1111/jcmm.70402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/12/2025] Open
Abstract
The cell populations, particularly subpopulations, involved in the onset and progression of idiopathic pulmonary fibrosis (IPF) remain incompletely understood. This study employed single-cell RNA-seq to identify cell populations and subpopulations with significantly altered proportions in the lungs of patients with IPF. In IPF lungs, endothelial cell proportions were significantly increased, while alveolar epithelial cell proportions were markedly decreased. Among the three identified fibroblast subpopulations, the proportion of myofibroblasts was significantly increased, while the proportions of the other two fibroblast subtypes were reduced. Similarly, within the three macrophage subpopulations, the macrophage_SPP1 subpopulation, localised to fibroblastic foci, showed a significant increase in proportion, while the alveolar macrophage subpopulation was significantly reduced. Trajectory analysis revealed that fibroblasts in IPF lungs could differentiate into myofibroblasts, and alveolar macrophages could transition into the macrophage_SPP1 subpopulation. Among T-cell subpopulations, only the CD4 T_FOXP3 subpopulation exhibited a significant change, whereas all four B-cell subpopulations showed significant proportional shifts. These findings provide a comprehensive view of the cellular alterations contributing to IPF pathogenesis. Extensive interactions among various cell populations and subpopulations were identified. The proportions of various cell populations and subpopulations in IPF lungs, including endothelial cells, fibroblasts, macrophages and B cells, were significantly altered. Further in-depth investigation into the roles of cell subpopulations with significantly altered proportions in the onset and progression of IPF will provide valuable insights into the pathological mechanisms underlying the disease. This understanding could facilitate the development of novel therapeutic strategies and medications for IPF treatment.
Collapse
Affiliation(s)
- Tangjuan Zhang
- Department of EmergencyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhichao Hou
- Department of Thoracic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zheng Ding
- Department of Thoracic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Peng Wang
- School of Nursing and HealthZhengzhou UniversityZhengzhouChina
| | - Xue Pan
- School of Nursing and HealthZhengzhou UniversityZhengzhouChina
| | - Xiangnan Li
- Department of Thoracic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
31
|
Patarat R, Chuaybudda S, Yasom S, Mutirangura A. HMGB1 Box A gene therapy to alleviate bleomycin-induced pulmonary fibrosis in rats. BMC Pulm Med 2025; 25:52. [PMID: 39891078 PMCID: PMC11786397 DOI: 10.1186/s12890-025-03522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Pulmonary fibrosis is characterized by the destruction of normal lung tissue and then replacement by abnormal fibrous tissue, leading to an overall decrease in gas exchange function. The effective treatment for pulmonary fibrosis remains unknown. The upstream pathogenesis of pulmonary fibrosis may involve cellular senescence of the lung tissue. Previously, a new gene therapy technology using Box A of the HMGB1 plasmid (Box A) was used to reverse cellular senescence and cure liver fibrosis in aged rats. METHODS Here, we show that Box A is a promising medicine for the treatment of lung fibrosis. In a bleomycin-induced pulmonary fibrosis model in the male Wistar rats, Student's t-test and one-way ANOVA were used to compare groups of samples. RESULTS Box A effectively lowered fibrous tissue deposits (from 18.74 ± 0.62 to 3.45 ± 1.19%) and senescent cells (from 3.74 ± 0.40% to 0.89 ± 0.18%) to levels comparable to those of the negative control group. Moreover, after eight weeks, Box A also increased the production of the surfactant protein C (from 3.60 ± 1.68% to 6.82 ± 0.65%). CONCLUSIONS Our results demonstrate that Box A is a promising therapeutic approach for pulmonary fibrosis and other senescence-promoted fibrotic lesions.
Collapse
Affiliation(s)
- Rathasapa Patarat
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Suchanart Chuaybudda
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Sakawdaurn Yasom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand.
| |
Collapse
|
32
|
Sun W, Zhao B, He Z, Chang L, Song W, Chen Y. PLAC8 attenuates pulmonary fibrosis and inhibits apoptosis of alveolar epithelial cells via facilitating autophagy. Commun Biol 2025; 8:48. [PMID: 39810019 PMCID: PMC11733279 DOI: 10.1038/s42003-024-07334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/29/2024] [Indexed: 01/30/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible lung condition that progresses over time, which ultimately results in respiratory failure and mortality. In this study, we found that PLAC8 was downregulated in the lungs of IPF patients based on GEO data, in bleomycin (BLM)-induced lungs of mice, and in primary murine alveolar epithelial type II (pmATII) cells and human lung epithelial cell A549 cells. Overexpression of PLAC8 facilitated autophagy and inhibited apoptosis of pmATII cells and A549 cells in vitro. Moreover, inhibition of autophagy or overexpression of p53 partially abolished the effects of PLAC8 on cell apoptosis. ATII cell-specific overexpression of PLAC8 alleviated BLM-induced pulmonary fibrosis in mice. Mechanistically, PLAC8 interacts with VCP-UFD1-NPLOC4 complex to promote p53 degradation and facilitate autophagy, resulting in inhibiting apoptosis of alveolar epithelial cells and attenuating pulmonary fibrosis. In summary, these findings indicate that PLAC8 may be a key target for therapeutic interventions in pulmonary fibrosis.
Collapse
Affiliation(s)
- Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhong He
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lihua Chang
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Song
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
33
|
Fukada A, Enomoto Y, Horiguchi R, Aoshima Y, Meguro S, Kawasaki H, Kosugi I, Fujisawa T, Enomoto N, Inui N, Suda T, Iwashita T. Integrin α8 is a useful cell surface marker of alveolar lipofibroblasts. Respir Res 2025; 26:14. [PMID: 39806390 PMCID: PMC11731379 DOI: 10.1186/s12931-025-03103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Recent advances in comprehensive gene analysis revealed the heterogeneity of mouse lung fibroblasts. However, direct comparisons between these subpopulations are limited due to challenges in isolating target subpopulations without gene-specific reporter mouse lines. In addition, the properties of lung lipofibroblasts remain unclear, particularly regarding the appropriate cell surface marker and the niche capacity for alveolar epithelial cell type 2 (AT2), an alveolar tissue stem cell. METHODS AND RESULTS Using cell surface markers applicable even into wild-type mouse lungs, we could classify PDGFRα+ total lung resident fibroblasts into at least two major distinct subpopulations: integrin α8 (ITGA8)+ and SCA-1+ fibroblasts. We analyzed their characteristics, including lipid content, transcriptome profiles, and alveolar stem cell niche capacity. ITGA8+ fibroblasts showed higher positivity of intracellular lipid droplets compared to SCA-1+ fibroblasts (91.0 ± 1.5% vs. 5.0 ± 0.5% in LipidTOX staining; 91.3 ± 1.4% vs. 7.1 ± 1.7% in Oil Red O staining). The fluorescence intensity of LipidTOX in the ITGA8+ fibroblasts was highest in newborn compared to adult or aged lungs. The transcriptome profile of ITGA8+ fibroblasts in adult mouse lungs, evaluated through two independent single-cell RNA-seq datasets, consistently showed higher expression of Tcf21 and Plin2, which are canonical markers of lipofibroblasts. ITGA8+ fibroblasts were primarily located in the alveolar area, particularly in the neighborhood of AT2. Compared to SCA-1+ fibroblasts, ITGA8+ fibroblasts showed higher mRNA expression of potential AT2-supportive factors, Fgf10, Fgf7, and Wnt2, but unexpectedly, exhibited lower efficiency in alveolar organoid formation. CONCLUSIONS ITGA8+ lung fibroblasts correspond to alveolar lipofibroblasts, but the alveolar niche capacity may be lower than SCA-1+ lung fibroblasts. Further studies are necessary for the functional distinction between lung fibroblast subpopulations.
Collapse
Affiliation(s)
- Atsuki Fukada
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasunori Enomoto
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Ryo Horiguchi
- Advanced Research Facilities and Services, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoichiro Aoshima
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Respiratory Medicine, Iwata City Hospital, Iwata, Japan
| | - Shiori Meguro
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hideya Kawasaki
- Preeminent Medical Photonics Education and Research Center Institute for NanoSuit Research, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Isao Kosugi
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshihide Iwashita
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
34
|
Bridges JP, Vladar EK, Kurche JS, Krivoi A, Stancil IT, Dobrinskikh E, Hu Y, Sasse SK, Lee JS, Blumhagen RZ, Yang IV, Gerber AN, Peljto AL, Evans CM, Redente EF, Riches DW, Schwartz DA. Progressive lung fibrosis: reprogramming a genetically vulnerable bronchoalveolar epithelium. J Clin Invest 2025; 135:e183836. [PMID: 39744946 PMCID: PMC11684817 DOI: 10.1172/jci183836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is etiologically complex, with well-documented genetic and nongenetic origins. In this Review, we speculate that the development of IPF requires two hits: the first establishes a vulnerable bronchoalveolar epithelium, and the second triggers mechanisms that reprogram distal epithelia to initiate and perpetuate a profibrotic phenotype. While vulnerability of the bronchoalveolar epithelia is most often driven by common or rare genetic variants, subsequent injury of the bronchoalveolar epithelia results in persistent changes in cell biology that disrupt tissue homeostasis and activate fibroblasts. The dynamic biology of IPF can best be contextualized etiologically and temporally, including stages of vulnerability, early disease, and persistent and progressive lung fibrosis. These dimensions of IPF highlight critical mechanisms that adversely disrupt epithelial function, activate fibroblasts, and lead to lung remodeling. Together with better recognition of early disease, this conceptual approach should lead to the development of novel therapeutics directed at the etiologic and temporal drivers of lung fibrosis that will ultimately transform the care of patients with IPF from palliative to curative.
Collapse
Affiliation(s)
- James P. Bridges
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eszter K. Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan S. Kurche
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Andrei Krivoi
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ian T. Stancil
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, School of Medicine, Stanford, California, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yan Hu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sarah K. Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Joyce S. Lee
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel Z. Blumhagen
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Ivana V. Yang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony N. Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Anna L. Peljto
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher M. Evans
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Elizabeth F. Redente
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - David W.H. Riches
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A. Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
35
|
Yoshida M, Arzili R, Nikolić MZ. Immune-epithelial cell interactions in lung development, homeostasis and disease. Int J Biochem Cell Biol 2025; 178:106703. [PMID: 39592067 DOI: 10.1016/j.biocel.2024.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
The importance of the crosstalk between lung epithelial and immune cells, which emerges from early development and lasts throughout life, is corroborated by a growing body of scientific evidence. This communication not only has a role in driving lung morphogenesis during development, but it is also required in adulthood for the maintenance of homeostasis and repair following infection or injury. Disruption of the intricate immune-epithelial crosstalk can lead to diseases such as COPD and IPF. In this review we summarise the current knowledge regarding the communication between various immune and epithelial cells in development, homeostasis, regeneration and disease, while identifying the current gaps in our knowledge required to facilitate the development of more effective therapies.
Collapse
Affiliation(s)
- Masahiro Yoshida
- UCL Respiratory, Division of Medicine, University College London, London, UK; Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Romina Arzili
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine, University College London, London, UK; University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
36
|
Fu L, Wang S, Zhang N, Lin Y, Zhang S, Mao Y, Zhou P. Breaking the vicious cycle of cellular senescence and ROS via a mitochondrial-targeted hydrogel for aged bone regeneration. CHEMICAL ENGINEERING JOURNAL 2025; 503:158540. [DOI: 10.1016/j.cej.2024.158540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
37
|
Spagnolo P, Tonelli R, Mura M, Reisman W, Sotiropoulou V, Tzouvelekis A. Investigational gene expression inhibitors for the treatment of idiopathic pulmonary fibrosis. Expert Opin Investig Drugs 2025; 34:61-80. [PMID: 39916340 DOI: 10.1080/13543784.2025.2462592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/31/2025] [Indexed: 02/12/2025]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial lung disease of unknown cause that occurs primarily in older adults and is associated with poor quality of life and substantial healthcare utilization. IPF has a dismal prognosis. Indeed, first-line therapy, which includes nintedanib and pirfenidone, does not stop disease progression and is often associated with tolerability issues. Therefore, there remains a high medical need for more efficacious and better tolerated treatments. AREAS COVERED Gene therapy is a relatively unexplored field of research in IPF that has the potential to mitigate a range of profibrotic pathways by introducing genetic material into cells. Here, we summarize and critically discuss publications that have explored the safety and efficacy of gene therapy in experimentally-induced pulmonary fibrosis in animals, as clinical studies in humans have not been published yet. EXPERT OPINION The application of gene therapy in pulmonary fibrosis requires further investigation to address several technical and biological hurdles, improve vectors' design, drug delivery, and target selection, mitigate off-target effects and develop markers of gene penetration into target cells. Long-term clinical data are needed to bring gene therapy in IPF one step closer to practice.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Roberto Tonelli
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Marco Mura
- Division of Respirology, Western University, London, Ontario, Canada
| | - William Reisman
- Division of Respirology, Western University, London, Ontario, Canada
| | | | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
38
|
Zheng Q, Lei FP, Hui S, Tong M, Liang LH. Ginsenoside Rb1 Relieves Cellular Senescence and Pulmonary Fibrosis by Promoting NRF2/QKI/SMAD7 Axis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2491-2509. [PMID: 39756830 DOI: 10.1142/s0192415x24500952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Cellular senescence is an adverse factor in the development of pulmonary fibrosis (PF). Ginsenoside Rb1 has been found to inhibit both cellular senescence and PF. This study aimed to elucidate the molecular mechanisms by which ginsenoside Rb1 regulates cellular senescence and PF. A PF mouse model was established by Bleomycin (BLM) administration, and a cell model of senescence was constructed using MRC-5 cells treated with Adriamycin RD (ARD) administration. Hematoxylin and Eosin (HE) staining and Masson staining were employed to evaluate cellular structure and collagen fiber content. RT-qPCR and western blotting were used to detect mRNA and protein expression of the target genes. Enzyme-linked Immunosorbent Assay (ELISA) was applied to measure the protein concentration of IL-1[Formula: see text] and IL-18. SA-[Formula: see text]-gal staining was used to evaluate cellular senescence. Our results show that ginsenoside Rb1 effectively suppressed BLM-induced PF in mice. ARD administration to induce cellular senescence reduced NRF2, QKI, and SMAD7 expression in MRC-5 cells. By inducing NRF2 overexpression, ARD-induced cellular senescence and fibrosis in MRC-5 cells were relieved. Notably, NRF2 knockdown abolished the mitigating effects of ginsenoside Rb1 on ARD-induced cellular senescence and fibrosis in MRC-5 cells. Mechanistically, NRF2 increased SMAD7 mRNA stability through the transcriptional regulation of QKI. As expected, ginsenoside Rb1 alleviated ARD-induced senescence and fibrosis in MRC-5 cells by activating the NRF2/QKI/SMAD7 axis. Therefore, it was found that ginsenoside Rb1 mitigates cellular senescence and fibrosis during PF progression by activating the NRF2/QKI/SMAD7 axis. This study provides a potential therapeutic strategy for the treatment of PF and elucidates its mechanism of action.
Collapse
Affiliation(s)
- Qing Zheng
- Department of Geriatrics, Hunan Provincial People's Hospital, (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, P. R. China
| | - Feng-Ping Lei
- Department of Geriatrics, Hunan Provincial People's Hospital, (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, P. R. China
| | - Shan Hui
- Department of Geriatrics, Hunan Provincial People's Hospital, (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, P. R. China
| | - Ming Tong
- Department of Infectious Diseases, Hunan Provincial People's Hospital, (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, P. R. China
| | - Li-Hui Liang
- Department of Geriatrics, Hunan Provincial People's Hospital, (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, P. R. China
| |
Collapse
|
39
|
Aufy M, Abd-Elkareem M, Mustafic M, Abdel-Maksoud MA, Hakamy A, Baresova V, Alfuraydi AA, Ashry M, Lubec J, Amer AS, Studenik CR, Hussein AM, Kotob MH. Age-related lung changes linked to altered lysosomal protease profile, histology, and ultrastructure. PLoS One 2024; 19:e0311760. [PMID: 39705219 DOI: 10.1371/journal.pone.0311760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/24/2024] [Indexed: 12/22/2024] Open
Abstract
INTRODUCTION The aging process is intricately linked to alterations in cellular and tissue structures, with the respiratory system being particularly susceptible to age-related changes. Therefore, this study aimed to profile the activity of proteases using activity-based probes in lung tissues of old and young rats, focusing on the expression levels of different, in particular cathepsins G and X and matrix Metalloproteinases (MMPs). Additionally, the impact on extracellular matrix (ECM) components, particularly fibronectin, in relation to age-related histological and ultrastructural changes in lung tissues was investigated. MATERIALS AND METHODS Lung tissues from old and young rats were subjected to activity-based probe profiling to assess the activity of different proteases. Expression levels of cathepsins G and X were quantified, and zymography was performed to evaluate matrix metalloproteinases activity. Furthermore, ECM components, specifically fibronectin, were examined for signs of degradation in the old lung tissues compared to the young ones. Moreover, histological, immunohistochemical and ultrastructural assessments of old and young lung tissue were also conducted. RESULTS Our results showed that the expression levels of cathepsins G and X were notably higher in old rat lung tissues in contrast to those in young rat lung tissues. Zymography analysis revealed elevated MMP activity in the old lung tissues compared to the young ones. Particularly, significant degradation of fibronectin, an essential ECM component, was observed in the old lung tissues. Numerous histological and ultrastructural alterations were observed in old lung tissues compared to young lung tissues. DISCUSSION AND CONCLUSION The findings indicate an age-related upregulation of cathepsins G and X along with heightened MMP activity in old rat lung tissues, potentially contributing to the degradation of fibronectin within the ECM. These alterations highlight potential mechanisms underlying age-associated changes in lung tissue integrity and provide insights into protease-mediated ECM remodeling in the context of aging lungs.
Collapse
Affiliation(s)
- Mohammed Aufy
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Mahmoud Abd-Elkareem
- Department of Cell and Tissue, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Medina Mustafic
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali Hakamy
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Veronika Baresova
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Faculty of Pharmacy in Hradec Kralove, Charles University, Prague, Czech Republic
| | - Akram A Alfuraydi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Ashry
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Jana Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Ayman S Amer
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al Ahsa, Saudi Arabia
| | - Christian R Studenik
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Ahmed M Hussein
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed H Kotob
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
40
|
Wang JY, Michki SN, Sitaraman S, Banaschewski BJ, Jamal R, Gokey JJ, Lin SM, Katzen JB, Basil MC, Cantu E, Kropski JA, Zepp JA, Frank DB, Young LR. Dysregulated alveolar epithelial cell progenitor function and identity in Hermansky-Pudlak syndrome. JCI Insight 2024; 10:e183483. [PMID: 39699958 PMCID: PMC11948584 DOI: 10.1172/jci.insight.183483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a genetic disorder of endosomal protein trafficking associated with pulmonary fibrosis in specific subtypes, including HPS-1 and HPS-2. Single-mutant HPS1 and HPS2 mice display increased fibrotic sensitivity while double-mutant HPS1/2 mice exhibit spontaneous fibrosis with aging, which has been attributed to HPS mutations in alveolar epithelial type II (AT2) cells. We utilized HPS mouse models and human lung tissue to investigate mechanisms of AT2 cell dysfunction driving fibrotic remodeling in HPS. Starting at 8 weeks of age, HPS mice exhibited progressive loss of AT2 cell numbers. HPS AT2 cell function was impaired ex vivo and in vivo. Incorporating AT2 cell lineage tracing in HPS mice, we observed aberrant differentiation with increased AT2-derived alveolar epithelial type I cells. Transcriptomic analysis of HPS AT2 cells revealed elevated expression of genes associated with aberrant differentiation and p53 activation. Lineage-tracing and organoid-modeling studies demonstrated that HPS AT2 cells were primed to persist in a Keratin-8-positive reprogrammed transitional state, mediated by p53 activity. Intrinsic AT2 progenitor cell dysfunction and p53 pathway dysregulation are mechanisms of disease in HPS-related pulmonary fibrosis, with the potential for early targeted intervention before the onset of fibrotic lung disease.
Collapse
Affiliation(s)
- Joanna Y. Wang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sylvia N. Michki
- Division of Cardiology, Department of Pediatrics, and
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sneha Sitaraman
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Brandon J. Banaschewski
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Reshma Jamal
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jason J. Gokey
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Susan M. Lin
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
| | - Jeremy B. Katzen
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
| | - Maria C. Basil
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward Cantu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jarod A. Zepp
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
| | - David B. Frank
- Division of Cardiology, Department of Pediatrics, and
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lisa R. Young
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
| |
Collapse
|
41
|
Thapa R, Ahmad Bhat A, Shahwan M, Ali H, PadmaPriya G, Bansal P, Rajotiya S, Barwal A, Siva Prasad GV, Pramanik A, Khan A, Hing Goh B, Dureja H, Kumar Singh S, Dua K, Gupta G. Proteostasis disruption and senescence in Alzheimer's disease pathways to neurodegeneration. Brain Res 2024; 1845:149202. [PMID: 39216694 DOI: 10.1016/j.brainres.2024.149202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurological disease associated with behavioral abnormalities, memory loss, and cognitive impairment that cause major causes of dementia in the elderly. The pathogenetic processes cause complex effects on brain function and AD progression. The proper protein homeostasis, or proteostasis, is critical for cell health. AD causes the buildup of misfolded proteins, particularly tau and amyloid-beta, to break down proteostasis, such aggregates are toxic to neurons and play a critical role in AD pathogenesis. The rise of cellular senescence is accompanied by aging, marked by irreversible cell cycle arrest and the release of pro-inflammatory proteins. Senescent cell build-up in the brains of AD patients exacerbates neuroinflammation and neuronal degeneration. These cells senescence-associated secretory phenotype (SASP) also disturbs the brain environment. When proteostasis failure and cellular senescence coalesce, a cycle is generated that compounds each other. While senescent cells contribute to proteostasis breakdown through inflammatory and degradative processes, misfolded proteins induce cellular stress and senescence. The principal aspects of the neurodegenerative processes in AD are the interaction of cellular senescence and proteostasis failure. This review explores the interconnected roles of proteostasis disruption and cellular senescence in the pathways leading to neurodegeneration in AD.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - G PadmaPriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Sumit Rajotiya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Amit Barwal
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali - 140307, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh-531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Abida Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia; Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
42
|
Wang JY, Michki SN, Sitaraman S, Banaschewski BJ, Jamal R, Gokey JJ, Lin SM, Katzen JB, Basil MC, Cantu E, Kropski JA, Zepp JA, Frank DB, Young LR. Dysregulated alveolar epithelial cell progenitor function and identity in Hermansky-Pudlak syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.17.545390. [PMID: 38496421 PMCID: PMC10942273 DOI: 10.1101/2023.06.17.545390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Hermansky-Pudlak syndrome (HPS) is a genetic disorder of endosomal protein trafficking associated with pulmonary fibrosis in specific subtypes, including HPS-1 and HPS-2. Single mutant HPS1 and HPS2 mice display increased fibrotic sensitivity while double mutant HPS1/2 mice exhibit spontaneous fibrosis with aging, which has been attributed to HPS mutations in alveolar epithelial type II (AT2) cells. We utilized HPS mouse models and human lung tissue to investigate mechanisms of AT2 cell dysfunction driving fibrotic remodeling in HPS. Starting at 8 weeks of age, HPS mice exhibited progressive loss of AT2 cell numbers. HPS AT2 cell function was impaired ex vivo and in vivo . Incorporating AT2 cell lineage tracing in HPS mice, we observed aberrant differentiation with increased AT2-derived alveolar epithelial type I cells. Transcriptomic analysis of HPS AT2 cells revealed elevated expression of genes associated with aberrant differentiation and p53 activation. Lineage tracing and organoid modeling studies demonstrated that HPS AT2 cells were primed to persist in a Krt8 + reprogrammed transitional state, mediated by p53 activity. Intrinsic AT2 progenitor cell dysfunction and p53 pathway dysregulation are novel mechanisms of disease in HPS-related pulmonary fibrosis, with the potential for early targeted intervention before the onset of fibrotic lung disease.
Collapse
|
43
|
Warren R, Klinkhammer K, Lyu H, Knopp J, Yuan T, Yao C, Stripp B, De Langhe SP. Cell competition drives bronchiolization and pulmonary fibrosis. Nat Commun 2024; 15:10624. [PMID: 39639058 PMCID: PMC11621346 DOI: 10.1038/s41467-024-54997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive respiratory scarring disease arising from the maladaptive differentiation of lung stem cells into bronchial epithelial cells rather than into alveolar type 1 (AT1) cells, which are responsible for gas exchange. Here, we report that healthy lungs maintain their stem cells through tonic Hippo and β-catenin signaling, which promote Yap/Taz degradation and allow for low-level expression of the Wnt target gene Myc. Inactivation of upstream activators of the Hippo pathway in lung stem cells inhibits this tonic β-catenin signaling and Myc expression and promotes their Taz-mediated differentiation into AT1 cells. Vice versa, increased Myc in collaboration with Yap promotes the differentiation of lung stem cells along the basal and myoepithelial-like lineages allowing them to invade and bronchiolize the lung parenchyma in a process reminiscent of submucosal gland development. Our findings indicate that stem cells exhibiting the highest Myc levels become supercompetitors that drive remodeling, whereas loser cells with lower Myc levels terminally differentiate into AT1 cells.
Collapse
Affiliation(s)
- Rachel Warren
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kylie Klinkhammer
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN, USA
| | - Handeng Lyu
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph Knopp
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tingting Yuan
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Changfu Yao
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Barry Stripp
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stijn P De Langhe
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
44
|
Tang X, Zhu Y, Cao Z, Wang X, Cai X, Tang Y, Zhou J, Wu M, Zhen X, Ding L, Yan G, Wang H, Sun H, Jiang R. CDC42 deficiency leads to endometrial stromal cell senescence in recurrent implantation failure. Hum Reprod 2024; 39:2768-2784. [PMID: 39487595 PMCID: PMC11630066 DOI: 10.1093/humrep/deae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/22/2024] [Indexed: 11/04/2024] Open
Abstract
STUDY QUESTION Does the downregulation of cell division cycle 42 (CDC42) protein in endometrial stroma lead to endometrial senescence in patients with recurrent implantation failure (RIF), and what is the potential mechanism? SUMMARY ANSWER CDC42 deficiency causes endometrial stromal senescence and decidualization defects, impairing uterine receptivity of RIF patients, via activation of Wnt signaling pathway. WHAT IS KNOWN ALREADY Uterine aging is unique due to the cyclic remodeling and decidualization of endometrial tissue. Several transcriptomic studies have reported increased senescence in the endometrium in young patients with RIF. Our previous transcriptomic sequencing study discovered that endometrium from women with RIF showed downregulation of CDC42, which is an essential molecule affected by various senescence-related diseases. STUDY DESIGN, SIZE, DURATION The endometrial samples of a total of 71 fertile control patients and 37 RIF patients were collected to verify the association between CDC42 expression and endometrial senescence of RIF patients. Primary endometrial stromal cells (EnSCs) were isolated from endometrial biopsies taken from patients without any endometrial complications and planning to undergo IVF, then subjected to adenovirus-mediated CDC42 knockdown and decidualization induction to explore the detailed mechanism by which CDC42 governs stromal senescence and decidualization. Wnt inhibitor XAV-939 was used to correct the endometrial senescence and decidualization defect. PARTICIPANTS/MATERIALS, SETTING, METHODS Senescence was determined by cell cycle arrest markers (e.g. P16, P21, and P53), SASP molecules (e.g. IL6 and CXCL8), and SA-β-gal staining. Masson's staining and Sirius Red staining were used to detect the endometrial fibrosis. Decidualization was evaluated by the mRNA expression and protein secretion of PRL and IGFBP1, F-actin immunostaining, and the BeWo spheroids 'in vitro implantation' model. Methods used to assess cell function included adenovirus transduction, RNA-sequencing, bioinformatic analysis, western blotting, RT-qPCR, ELISA, and immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE Here, we observed remarkably increased levels of stromal senescence and fibrosis, along with stromal CDC42 deficiency, in the endometrium of patients with RIF (P < 0.001). Knockdown of CDC42 effectively induced premature senescence in EnSCs, leading to aberrant accumulation of senescent EnSCs and collagen deposition during decidualization. CDC42 deficiency in EnSCs restrained the decidualization differentiation and receptivity to trophoblast cells. Transcriptomic analysis revealed Wnt signaling activation as a critical downstream alteration in CDC42-deficient EnSCs. Mechanistically, CDC42 interacted with AKT competitively to impede the binding of GSK3β to AKT. Knockdown of CDC42 increased AKT-mediated phosphorylation of GSK3β to inactivate the Axin-GSK3β destruction complex, leading to accumulation and nuclear translocation of β-catenin. Importantly, Wnt signaling inhibitors partially corrected the endometrial senescence caused by CDC42 deficiency, and improved both decidualization and trophoblast invasion. LARGE SCALE DATA RNA-seq data sets generated in this study have been deposited at the NCBI database with BioProject accession number PRJNA1102745. LIMITATIONS, REASONS FOR CAUTION The present study was based on in vitro cell cultures. Further studies involving CDC42-regulated endometrial senescence are needed in knockout mice model and human endometrial assembloids. WIDER IMPLICATIONS OF THE FINDINGS In addition to uncovering endometrial senescence in RIF, our findings underscore the significance of CDC42 in modulating EnSC senescence to maintain the decidualization function, and suggest Wnt signaling inhibitors as potential therapeutic agents for alleviating endometrial senescence. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Science Foundation of China [82271698 (R.J.), 82030040 (H.S.), 82288102 (H.W.), and 82371680 (G.Y.)]; the Natural Science Foundation of Jiangsu Province [BK20231117 (R.J.)]; and the Medical Science and Technology Development Foundation of Nanjing Department of Health [YKK23097 (Y.Z.)]. The authors declare no potential conflicts of interest.
Collapse
Affiliation(s)
- Xinyi Tang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yingchun Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Zhiwen Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xiaoying Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xinyu Cai
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yurun Tang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Jidong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Min Wu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Ruiwei Jiang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
45
|
Hirsch MS, Hildebrand CB, Geltinger F, Pich A, Mühlfeld C, Wedekind D, Brandenberger C. Senescence in Alveolar Epithelial Type II Cells Promotes Acute Lung Injury and Impairs Regeneration. Am J Respir Cell Mol Biol 2024; 71:688-701. [PMID: 39088755 DOI: 10.1165/rcmb.2024-0054oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/01/2024] [Indexed: 08/03/2024] Open
Abstract
The mortality associated with acute lung injury (ALI) increases with age. Alveolar epithelial type II (AEII) cells are the progenitor cells of the alveolar epithelium and are crucial for repair after injury. We hypothesize that telomere dysfunction-mediated AEII cell senescence impairs regeneration and promotes the development of ALI. To discriminate between the impact of old age and AEII cell senescence in ALI, young (3 mo) and old (18 mo) Sftpc-Ai9 mice with surfactant protein c mediated tdTomato expression, and young Sftpc-Ai9-Trf1 mice with additional telomeric repeat-binding factor 1 (Trf1) knockout-mediated senescence in AEII cells were treated with 1 μg LPS per gram body weight (n = 9-11). Control mice received saline solution (n = 7). Mice were killed 4 or 7 days later. Lung mechanics, pulmonary inflammation, and proteomes were analyzed, and parenchymal injury, AEII cell proliferation and AEI cell differentiation rate were quantified using stereology. Old mice showed 55% mortality by Day 4, whereas all young mice survived. Pulmonary inflammation was most severe in old Sftpc-Ai9 mice, followed by Sftpc-Ai9-Trf1 mice. Young Sftpc-Ai9 mice recovered almost completely by Day 7, whereas Sftpc-Ai9-Trf1 mice still showed mild signs of injury. An expansion of AEII cells was measured only in young Sftpc-Ai9 mice at Day 7. Aging and telomere dysfunction-mediated senescence had no impact on AEI differentiation rate in controls, but the reduced number of AEII cells in Sftpc-Ai9-Trf1 mice also affected de novo differentiation after injury. In conclusion, telomere dysfunction- mediated AEII cell senescence promoted parenchymal inflammation in ALI, but did not enhance mortality like old age. Although the differentiation rate remained functional with old age and AEII cell senescence, AEII cell proliferative capacity was impaired in ALI, affecting the regenerative ability.
Collapse
Affiliation(s)
- Merle S Hirsch
- Institute of Functional and Applied Anatomy
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
| | - Christina B Hildebrand
- Institute of Functional and Applied Anatomy
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Geltinger
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Pich
- Institute of Toxicology, Core Facility Proteomics, and
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
| | - Dirk Wedekind
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
46
|
Zu Y, Du J, Xu Y, Niu M, Hong C, Yang C. Change in p53 nuclear localization in response to extracellular matrix stiffness. SMART MEDICINE 2024; 3:e20240026. [PMID: 39776592 PMCID: PMC11669774 DOI: 10.1002/smmd.20240026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 01/11/2025]
Abstract
Chondrocytes are commonly applied in regenerative medicine and tissue engineering. Thus, the discovery of optimal culture conditions to obtain cells with good properties and behavior for transplantation is important. In addition to biochemical cues, physical and biomechanical changes can affect the proliferation and protein expression of chondrocytes. Here we investigated the effect of extracellular matrix stiffness on mouse articular chondrocyte phenotype, growth, and subcellular p53 localization. Chondrocytes were seeded on collagen-coated substrates varying in elasticity: 0.5 and 100 kPa. Immunocytochemical staining and immunoblotting showed that a softer substrate significantly increased p53 nuclear localization in chondrocytes. Furthermore, we identified microRNA-532 (miR-532) as a potential p53 target gene to influence cell function, indicating a new target for tissue engineering. These findings provide insight into the influence of physical cues on cell phenotype maintenance and could help improve understanding of cartilage-related pathologies such as osteoarthritis.
Collapse
Affiliation(s)
- Yan Zu
- Institute of Biomechanics and Medical EngineeringSchool of Aerospace EngineeringTsinghua UniversityBeijingChina
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Jing Du
- Institute of Biomechanics and Medical EngineeringSchool of Aerospace EngineeringTsinghua UniversityBeijingChina
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Yipu Xu
- Institute of Biomechanics and Medical EngineeringSchool of Aerospace EngineeringTsinghua UniversityBeijingChina
- Department of General Dentistry and Emergency Dental CareBeijing Stomatological HospitalCapital Medical UniversityBeijingChina
| | - Mengying Niu
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Canlin Hong
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Chun Yang
- Institute of Biomechanics and Medical EngineeringSchool of Aerospace EngineeringTsinghua UniversityBeijingChina
| |
Collapse
|
47
|
Quan M, Guo Q, Yan X, Yu C, Yang L, Zhang Y, Li J, Weng Q, Liu B, Li Q, Dong L, Chen J, Lou Z, Jin X, Chen C, Zhang JS. Parkin deficiency aggravates inflammation-induced acute lung injury by promoting necroptosis in alveolar type II cells. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:265-278. [PMID: 39834583 PMCID: PMC11742354 DOI: 10.1016/j.pccm.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Indexed: 01/22/2025]
Abstract
Background Necroptosis is a form of programmed cell death resulting in tissue inflammation due to the release of intracellular contents. Its role and regulatory mechanism in the context of acute lung injury (ALI) are unclear. Parkin (Prkn), an E3 ubiquitin ligase, has recently been implicated in the regulation of necroptosis. In this study, we aimed to investigate the role and mechanism of Parkin in the process of ALI. Methods Lipopolysaccharides (LPS)-induced mouse ALI model was utilized, and the pathological changes in lung tissues were characterized. To elucidate the roles of Parkin and necroptosis in this context, mixed lineage kinase domain-like (Mlkl) knockout mice, Prkn conditional knockout mice, and the necroptosis inhibitor were employed. Additionally, alveolar type 2 (AT2) cell-specific Parkin deletion and lineage-tracing mice were introduced to explore the specific roles and mechanisms of Parkin in AT2 cells. Results A dose-dependent increase in Parkin expression in mouse lung tissues following LPS administration was observed, correlating with a shift from epithelial apoptosis to necroptosis. Notably, depletion of MLKL significantly mitigated the pathological changes associated with ALI, particularly the inflammatory response. Conversely, the deletion of Parkin exacerbated the injury pathology, significantly enhancing necroptosis, particularly in AT2 cells. This led to increased inflammation and post-LPS fibrosis. However, treatment with GSK872, a necroptosis inhibitor, substantially mitigated the phenotype induced by Parkin deletion. Importantly, Parkin deletion impaired the proliferation and differentiation of AT2 cells into AT1 cells. Conclusions These findings underscore the multifaceted role of Parkin in the progression of lung injury, inflammation, and fibrosis through the regulation of AT2 cell necroptosis. Therefore, Parkin may hold potential as a therapeutic target for managing lung injury and fibrosis.
Collapse
Affiliation(s)
- Meiyu Quan
- Zhejiang Key Laboratory of Interventional Pulmonology; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qiang Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xihua Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chenhua Yu
- Medical Research Center; The Zhejiang Key Laboratory of Intelligent Cancer, Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Linglong Yang
- Medical Research Center; The Zhejiang Key Laboratory of Intelligent Cancer, Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yuting Zhang
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang 324000, China
| | - Jiaqi Li
- Medical Research Center; The Zhejiang Key Laboratory of Intelligent Cancer, Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qiongxia Weng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bin Liu
- Zhejiang Key Laboratory of Interventional Pulmonology; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Quan Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Li Dong
- Zhejiang Key Laboratory of Interventional Pulmonology; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Junjie Chen
- Zhejiang Key Laboratory of Interventional Pulmonology; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xuru Jin
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang 324000, China
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang 324000, China
| | - Jin-San Zhang
- Medical Research Center; The Zhejiang Key Laboratory of Intelligent Cancer, Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang 324000, China
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
48
|
O'Reilly S, Tsou PS, Varga J. Senescence and tissue fibrosis: opportunities for therapeutic targeting. Trends Mol Med 2024; 30:1113-1125. [PMID: 38890028 DOI: 10.1016/j.molmed.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Cellular senescence is a key hallmark of aging. It has now emerged as a key mediator in normal tissue turnover and is associated with a variety of age-related diseases, including organ-specific fibrosis and systemic sclerosis (SSc). This review discusses the recent evidence of the role of senescence in tissue fibrosis, with an emphasis on SSc, a systemic autoimmune rheumatic disease. We discuss the physiological role of these cells, their role in fibrosis, and that targeting these cells specifically could be a new therapeutic avenue in fibrotic disease. We argue that targeting senescent cells, with senolytics or senomorphs, is a viable therapeutic target in fibrotic diseases which remain largely intractable.
Collapse
Affiliation(s)
- Steven O'Reilly
- Bioscience Department, Durham University, South Road, Durham, UK.
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
49
|
Liu J, Tan G, Wang S, Tong B, Wu Y, Zhang L, Jiang B. Artesunate induces HO-1-mediated cell cycle arrest and senescence to protect against ocular fibrosis. Int Immunopharmacol 2024; 141:112882. [PMID: 39151383 DOI: 10.1016/j.intimp.2024.112882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Recent research found artesunate could inhibit ocular fibrosis; however, the underlying mechanisms are not fully known. Since the ocular fibroblast is the main effector cell in fibrosis, we hypothesized that artesunate may exert its protective effects by inhibiting the fibroblasts proliferation. TGF-β1-induced ocular fibroblasts and glaucoma filtration surgery (GFS)-treated rabbits were used as ocular fibrotic models. Firstly, we analyzed fibrosis levels by assessing the expression of fibrotic marker proteins, and used Ki67 immunofluorescence, EdU staining, flow cytometry to determine cell cycle status, and SA-β-gal staining to assess cellular senescence levels. Then to predict target genes and pathways of artesunate, we analyzed the differentially expressed genes and enriched pathways through RNA-seq. Western blot and immunohistochemistry were used to detect the pathway-related proteins. Additionally, we validated the dependence of artesunate's effects on HO-1 expression through HO-1 siRNA. Moreover, DCFDA and MitoSOX fluorescence staining were used to examine ROS level. We found artesunate significantly inhibits the expression of fibrosis-related proteins, induces cell cycle arrest and cellular senescence. Knocking down HO-1 in fibroblasts with siRNA reverses these regulatory effects of artesunate. Mechanistic studies show that artesunate significantly inhibits the activation of the Cyclin D1/CDK4-pRB pathway, induces an increase in cellular and mitochondrial ROS levels and activates the Nrf2/HO-1 pathway. In conclusion, the present study identifies that artesunate induces HO-1 expression through ROS to activate the antioxidant Nrf2/HO-1 pathway, subsequently inhibits the cell cycle regulation pathway Cyclin D1/CDK4-pRB in an HO-1-dependent way, induces cell cycle arrest and senescence, and thereby resists periorbital fibrosis.
Collapse
Affiliation(s)
- Jingyuan Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Guangshuang Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Shutong Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Boding Tong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Ying Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Lusi Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| |
Collapse
|
50
|
Zhang G, Sun N, Li X. Spleen tyrosine kinase inhibition mitigates radiation-induced lung injury through anti-inflammatory effects and downregulation of p38 MAPK and p53. Front Oncol 2024; 14:1406759. [PMID: 39575431 PMCID: PMC11578954 DOI: 10.3389/fonc.2024.1406759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/11/2024] [Indexed: 11/24/2024] Open
Abstract
Background To explore new modulatory intervention targets for radiation-induced lung injury, bioinformatics analysis technology was used to search for the core driving genes in the pathogenesis of radiation pneumonitis, and the results were verified by a radiation-induced murine lung injury model to find possible new targets for the treatment of radiation lung injury. Method Gene Expression Omnibus Database was used to identify differentially expressed genes in radiation pneumonitis. DAVID database was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) enrichment analysis. Gene Set Enrichment Analysis was used to analyze abnormal expressions. Protein-protein interaction networks were constructed using STRING and Cytoscape. Discovery Studio 4.5 software was used to find the preferred inhibitor of the specific gene. A radiation-induced lung injury model was induced in female C57BL/6N mice. The specific inhibitors were administered by intraperitoneal injection 24 h before and for 7 consecutive days after radiation. Lungs were harvested for further analysis 14 days and 10 weeks post-irradiation. Results We screened Syk as one of the most important driver genes of radiation pneumonitis by bioinformatics analysis and screened the preferred Syk inhibitor fostamatinib from the drug database. Syk was highly expressed in irradiated lung tissue, and fostamatinib inhibited the level of Syk expression. Syk inhibitor significantly alleviated the radiation-induced lung injury and downregulated the increased expression of p38 MAPK, p53, IL-1β, and IL-6 in lung tissue at 2 weeks after radiation. The levels of TGF-β, COL1A1, and α-SMA and degree of pulmonary fibrosis at 10 weeks after radiation were also decreased by Syk inhibitor. Conclusion Syk inhibitor may have a potential to be used as a targeted drug to mitigate radiation pneumonitis and inhibit radiation-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Guoxing Zhang
- Department of Intensive Care Unit, Jilin Province Tumor Hospital, Changchun, China
| | - Ni Sun
- Department of Intensive Care Unit, Jilin Province Tumor Hospital, Changchun, China
| | - Xiaohua Li
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|