1
|
Li L, Zhang H, Xiong P, Liu C, Wan L, Liu M, Mao J, Li R, Shang M, Liu H, Luo Y, Yin J, Wu X, Chen J. Virus profiling of bronchoalveolar lavage fluid in hospitalized non-COVID-19 adult patients with pulmonary infection from November 2020 to November 2021. Virol Sin 2025; 40:166-175. [PMID: 40120941 PMCID: PMC12131015 DOI: 10.1016/j.virs.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Identifying the cause of respiratory tract infections is important for reducing the burden of diagnosis and treatment. To assess viral etiologies of hospitalized patients with pulmonary infection, bronchoalveolar lavage fluid (BALF) specimens were collected from non-COVID-19 adult patients (n = 333, including patients with lower respiratory tract infection, tuberculosis, lung cancer, and pulmonary nodules) between November 2020 and November 2021. Multiple common respiratory pathogens were detected using multiplex reverse-transcription polymerase chain reaction. The result showed that at least one virus was identified in 35.44% (118/333) of the cases. Among these, influenza virus was the most commonly identified, followed by the parainfluenza virus, coronavirus, human rhinoviruses, and human respiratory syncytial viruses. The tuberculosis group demonstrated the highest viral detection rate, yet paradoxically exhibited the lowest co-infection rate. In contrast, the highest co-infection frequency was observed in the pulmonary nodules group. Patients with viral infections exhibited more severe clinical symptoms compared to those without detected viral infections. However, this observation was only noted in the lower respiratory tract infection group among the different disease groups. Notably, among patients infected with a specific virus, there were no significant differences in viral load between single and co-infections. Our study identified the major causative agents in hospitalized adult patients with pulmonary infection, offering insights for precise disease diagnosis and the prevention of unnecessary use of antimicrobial drugs.
Collapse
Affiliation(s)
- Liangyu Li
- Department of Pulmonary and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Haiyue Zhang
- Department of Pulmonary and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Pei Xiong
- Department of Pulmonary and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chan Liu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lu Wan
- Tianjin University, Jinnan Hospital, Department of Respiratory and Critical Care Medicine, Tianjin, 200350, China
| | - Mengling Liu
- Department of Pulmonary and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jieyu Mao
- Department of Pulmonary and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ruiyun Li
- Department of Pulmonary and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Min Shang
- Department of Pulmonary and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hailing Liu
- Department of Pulmonary and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuchuan Luo
- Department of Pulmonary and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Yin
- Department of Pulmonary and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaojun Wu
- Department of Pulmonary and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jianjun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
2
|
Painter H, Larsen SE, Williams BD, Abdelaal HFM, Baldwin SL, Fletcher HA, Fiore-Gartland A, Coler RN. Backtranslation of human RNA biosignatures of tuberculosis disease risk into the preclinical pipeline is condition dependent. mSphere 2025; 10:e0086424. [PMID: 39651886 PMCID: PMC11774039 DOI: 10.1128/msphere.00864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/03/2024] [Indexed: 12/18/2024] Open
Abstract
It is unclear whether human progression to active tuberculosis disease (TB) risk signatures are viable endpoint criteria for evaluations of treatments in development. TB is the deadliest infectious disease globally and more efficacious vaccines are needed to reduce this mortality. However, the immune correlates of protection for either preventing infection with Mycobacterium tuberculosis or preventing TB disease have yet to be completely defined, making the advancement of candidate vaccines through the pipeline slow, costly, and fraught with risk. Human-derived correlate of risk (COR) gene signatures, which identify an individual's risk of progressing to active TB disease, provide an opportunity for evaluating new therapies for TB with clear and defined endpoints. Though prospective clinical trials with longitudinal sampling are prohibitively expensive, the characterization of COR gene signatures is practical with preclinical models. Using a 3Rs (replacement, reduction, and refinement) approach we reanalyzed heterogeneous publicly available transcriptional data sets to determine whether a specific set of COR signatures are viable endpoints in the preclinical pipeline. We selected RISK6, Sweeney3, and BATF2 human-derived blood-based RNA biosignatures because they require relatively few genes and have been carefully evaluated across several clinical cohorts. These data suggest that in certain experimental designs and in several tissue types, human COR signatures correlate with disease progression as measured by the bacterial burden in the preclinical TB model pipeline. We observed the best performance when the model most closely reflected human infection or disease conditions. Human-derived COR signatures offer an opportunity for high-throughput preclinical endpoint criteria of vaccine and drug therapy evaluations. IMPORTANCE Understanding the strengths or limitations of back-translating human-derived correlate of risk (COR) RNA signatures into the preclinical pipeline may help streamline down-selection of therapeutic vaccine and drug candidates and better align preclinical models with proposed clinical trial efficacy endpoints.
Collapse
Affiliation(s)
- Hannah Painter
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Hazem F. M. Abdelaal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Helen A. Fletcher
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrew Fiore-Gartland
- Biostatistics, Bioinformatics and Epidemiology Program, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
3
|
Sarkar M. Incipient and subclinical tuberculosis: a narrative review. Monaldi Arch Chest Dis 2025. [PMID: 39783831 DOI: 10.4081/monaldi.2025.2982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/21/2024] [Indexed: 01/12/2025] Open
Abstract
Mycobacterium tuberculosis has been known to infect humans for eons. It is an airborne infectious disease transmitted through droplet nuclei of 1 to 5 µm in diameter. Historically, tuberculosis (TB) was considered a distinct condition characterized by TB infection and active TB disease. However, recently, the concept of a dynamic spectrum of infection has emerged, wherein the pathogen is initially eradicated by the innate or adaptive immune system, either in conjunction with or independently of T cell priming. Other categories within this spectrum include TB infection, incipient TB, subclinical TB, and active TB disease. Various host- and pathogen-related factors influence these categories. Furthermore, subclinical TB can facilitate the spread of infection within the community. Due to its asymptomatic nature, there is a risk of delayed diagnosis, and some patients may remain undiagnosed. Individuals with subclinical TB may stay in this stage for an indeterminate period without progressing to active TB disease, and some may even experience regression. Early diagnosis and treatment of TB are essential to meet the 2035 targets outlined in the end-TB strategy. This strategy should also include incipient and subclinical TB. This review will focus on the definition, natural history, burden, trajectory, transmissibility, detection, and management of early-stage TB.
Collapse
Affiliation(s)
- Malay Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh
| |
Collapse
|
4
|
Mendelsohn SC, Andrade BB, Mbandi SK, Andrade AMS, Muwanga VM, Figueiredo MC, Erasmus M, Rolla VC, Thami PK, Cordeiro-Santos M, Penn-Nicholson A, Kritski AL, Hatherill M, Sterling TR, Scriba TJ. Transcriptomic Signatures of Progression to Tuberculosis Disease Among Close Contacts in Brazil. J Infect Dis 2024; 230:e1355-e1365. [PMID: 38709708 PMCID: PMC11646616 DOI: 10.1093/infdis/jiae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Approximately 5% of people infected with Mycobacterium tuberculosis progress to tuberculosis (TB) disease without preventive therapy. There is a need for a prognostic test to identify those at highest risk of incident TB so that therapy can be targeted. We evaluated host blood transcriptomic signatures for progression to TB disease. METHODS Close contacts (≥4 hours of exposure per week) of adult patients with culture-confirmed pulmonary TB were enrolled in Brazil. Investigation for incident, microbiologically confirmed, or clinically diagnosed pulmonary or extrapulmonary TB disease through 24 months of follow-up was symptom triggered. Twenty previously validated blood TB transcriptomic signatures were measured at baseline by real-time quantitative polymerase chain reaction. Prognostic performance for incident TB was tested by receiver operating characteristic curve analysis at 6, 9, 12, and 24 months of follow-up. RESULTS Between June 2015 and June 2019, 1854 close contacts were enrolled. Twenty-five progressed to incident TB, of whom 13 had microbiologically confirmed disease. Baseline transcriptomic signature scores were measured in 1789 close contacts. Prognostic performance for all signatures was best within 6 months of diagnosis. Seven signatures (Gliddon4, Suliman4, Roe3, Roe1, Penn-Nicholson6, Francisco2, and Rajan5) met the minimum World Health Organization target product profile for a prognostic test through 6 months and 3 signatures (Gliddon4, Rajan5, and Duffy9) through 9 months. None met the target product profile threshold through ≥12 months of follow-up. CONCLUSIONS Blood transcriptomic signatures may be useful for predicting TB risk within 9 months of measurement among TB-exposed contacts to target preventive therapy administration.
Collapse
Affiliation(s)
- Simon C Mendelsohn
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Bruno B Andrade
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Alice M S Andrade
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Vanessa M Muwanga
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | - Mzwandile Erasmus
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Valeria C Rolla
- Laboratorio de Pesquisa Clinica em Micobacterioses, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Prisca K Thami
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | - Adam Penn-Nicholson
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- FIND, Geneva, Switzerland
| | - Afranio L Kritski
- Centro de Pesquisa em Tuberculose, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Scriba TJ, Maseeme M, Young C, Taylor L, Leslie AJ. Immunopathology in human tuberculosis. Sci Immunol 2024; 9:eado5951. [PMID: 39671470 DOI: 10.1126/sciimmunol.ado5951] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/15/2024] [Indexed: 12/15/2024]
Abstract
Mycobacterium tuberculosis (M.tb) is a bacterial pathogen that has evolved in humans, and its interactions with the host are complex and best studied in humans. Myriad immune pathways are involved in infection control, granuloma formation, and progression to tuberculosis (TB) disease. Inflammatory cells, such as macrophages, neutrophils, conventional and unconventional T cells, B cells, NK cells, and innate lymphoid cells, interact via cytokines, cell-cell communication, and eicosanoid signaling to contain or eliminate infection but can alternatively mediate pathological changes required for pathogen transmission. Clinical manifestations include pulmonary and extrapulmonary TB, as well as post-TB lung disease. Risk factors for TB progression, in turn, largely relate to immune status and, apart from traditional chemotherapy, interventions primarily target immune mechanisms, highlighting the critical role of immunopathology in TB. Maintaining a balance between effector mechanisms to achieve protective immunity and avoid detrimental inflammation is central to the immunopathogenesis of TB. Many research gaps remain and deserve prioritization to improve our understanding of human TB immunopathogenesis.
Collapse
Affiliation(s)
- Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mahlatse Maseeme
- Africa Health Research Institute, Durban, South Africa
- College of Heath Sciences, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Carly Young
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Laura Taylor
- Forensic Pathology Services, Western Cape Government/University of Cape Town, Cape Town, South Africa
| | - Alasdair J Leslie
- Africa Health Research Institute, Durban, South Africa
- University College London, London, UK
| |
Collapse
|
6
|
Darboe F, Reijneveld JF, Maison DP, Martinez L, Suliman S. Unmasking the hidden impact of viruses on tuberculosis risk. Trends Immunol 2024; 45:649-661. [PMID: 39181733 PMCID: PMC11769684 DOI: 10.1016/j.it.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024]
Abstract
Tuberculosis (TB) is a leading cause of mortality from an infectious disease. In this opinion article, we focus on accumulating scientific evidence indicating that viral infections may contribute to TB progression, possibly allowing novel preventive interventions. Viruses can remodel the mammalian immune system, potentially modulating the risk of reactivating latent microbes such as Mycobacterium tuberculosis (Mtb). Evidence is mixed regarding the impact of emergent viruses such as SARS-CoV-2 on the risk of TB. Therefore, we posit that important knowledge gaps include elucidating which viral families increase TB risk and whether these provide unique or shared immune mechanisms. We also propose potential future research to define the contribution of viruses to TB pathogenesis.
Collapse
Affiliation(s)
- Fatoumatta Darboe
- Zuckerberg San Francisco General Hospital, Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Josephine F Reijneveld
- Zuckerberg San Francisco General Hospital, Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - David P Maison
- Zuckerberg San Francisco General Hospital, Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Leonardo Martinez
- Boston University School of Public Health, Department of Epidemiology, Boston, MA, USA.
| | - Sara Suliman
- Zuckerberg San Francisco General Hospital, Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
7
|
Greenan-Barrett J, Gupta RK, Noursadeghi M. The end of the road for blood RNA biomarkers as triage tests for symptomatic pulmonary tuberculosis among spontaneous sputum producers? Eur Respir J 2024; 64:2401365. [PMID: 39147423 DOI: 10.1183/13993003.01365-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Affiliation(s)
| | - Rishi K Gupta
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
8
|
Painter H, Larsen SE, Williams BD, Abdelaal HFM, Baldwin SL, Fletcher HA, Fiore-Gartland A, Coler RN. Backtranslation of human RNA biosignatures of tuberculosis disease risk into the preclinical pipeline is condition dependent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600067. [PMID: 38948876 PMCID: PMC11212953 DOI: 10.1101/2024.06.21.600067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
It is not clear whether human progression to active tuberculosis disease (TB) risk signatures are viable endpoint criteria for evaluations of treatments in clinical or preclinical development. TB is the deadliest infectious disease globally and more efficacious vaccines are needed to reduce this mortality. However, the immune correlates of protection for either preventing infection with Mycobacterium tuberculosis or preventing TB disease have yet to be completely defined, making the advancement of candidate vaccines through the pipeline slow, costly, and fraught with risk. Human-derived correlate of risk (COR) gene signatures, which identify an individual's risk to progressing to active TB disease, provide an opportunity for evaluating new therapies for TB with clear and defined endpoints. Though prospective clinical trials with longitudinal sampling are prohibitively expensive, characterization of COR gene signatures is practical with preclinical models. Using a 3Rs (Replacement, Reduction and Refinement) approach we reanalyzed heterogeneous publicly available transcriptional datasets to determine whether a specific set of COR signatures are viable endpoints in the preclinical pipeline. We selected RISK6, Sweeney3 and BATF2 human-derived blood-based RNA biosignatures because they require relatively few genes to assign a score and have been carefully evaluated across several clinical cohorts. Excitingly, these data provide proof-of-concept that human COR signatures seem to have high fidelity across several tissue types in the preclinical TB model pipeline and show best performance when the model most closely reflected human infection or disease conditions. Human-derived COR signatures offer an opportunity for high-throughput preclinical endpoint criteria of vaccine and drug therapy evaluations. One Sentence Summary Human-derived biosignatures of tuberculosis disease progression were evaluated for their predictive fidelity across preclinical species and derived tissues using available public data sets.
Collapse
|
9
|
Davies LRL, Wang C, Steigler P, Bowman KA, Fischinger S, Hatherill M, Fisher M, Mbandi SK, Rodo M, Ottenhoff THM, Dockrell HM, Sutherland JS, Mayanja-Kizza H, Boom WH, Walzl G, Kaufmann SHE, Nemes E, Scriba TJ, Lauffenburger D, Alter G, Fortune SM. Age and sex influence antibody profiles associated with tuberculosis progression. Nat Microbiol 2024; 9:1513-1525. [PMID: 38658786 PMCID: PMC11153143 DOI: 10.1038/s41564-024-01678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Antibody features vary with tuberculosis (TB) disease state. Whether clinical variables, such as age or sex, influence associations between Mycobacterium tuberculosis-specific antibody responses and disease state is not well explored. Here we profiled Mycobacterium tuberculosis-specific antibody responses in 140 TB-exposed South African individuals from the Adolescent Cohort Study. We identified distinct response features in individuals progressing to active TB from non-progressing, matched controls. A multivariate antibody score differentially associated with progression (SeroScore) identified progressors up to 2 years before TB diagnosis, earlier than that achieved with the RISK6 transcriptional signature of progression. We validated these antibody response features in the Grand Challenges 6-74 cohort. Both the SeroScore and RISK6 correlated better with risk of TB progression in adolescents compared with adults, and in males compared with females. This suggests that age and sex are important, underappreciated modifiers of antibody responses associated with TB progression.
Collapse
Affiliation(s)
- Leela R L Davies
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Chuangqi Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pia Steigler
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kathryn A Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | | | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Michelle Fisher
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Miguel Rodo
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Hazel M Dockrell
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Jayne S Sutherland
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Harriet Mayanja-Kizza
- Department of Medicine and Department of Microbiology, Makerere University, Kampala, Uganda
| | - W Henry Boom
- Tuberculosis Research Unit, Case Western Reserve University, Cleveland, OH, USA
| | - Gerhard Walzl
- Department of Science and Technology National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
- Moderna Therapeutics, Cambridge, MA, USA.
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
10
|
Mann T, Gupta RK, Reeve BWP, Ndlangalavu G, Chandran A, Krishna AP, Calderwood CJ, Tshivhula H, Palmer Z, Naidoo S, Mbu DL, Theron G, Noursadeghi M. Blood RNA biomarkers for tuberculosis screening in people living with HIV before antiretroviral therapy initiation: a diagnostic accuracy study. Lancet Glob Health 2024; 12:e783-e792. [PMID: 38583459 DOI: 10.1016/s2214-109x(24)00029-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 01/11/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Undiagnosed tuberculosis remains a major threat for people living with HIV. Multiple blood transcriptomic biomarkers have shown promise for tuberculosis diagnosis. We sought to evaluate their diagnostic accuracy and clinical utility for systematic pre-antiretroviral therapy (ART) tuberculosis screening. METHODS We enrolled consecutive adults (age ≥18 years) referred to start ART at a community health centre in Cape Town, South Africa, irrespective of symptoms. Sputa were obtained (using induction if required) for two liquid cultures. Whole-blood RNA samples underwent transcriptional profiling using a custom Nanostring gene panel. We measured the diagnostic accuracy of seven candidate RNA signatures (one single gene biomarker [BATF2] and six multigene biomarkers) for the reference standard of Mycobacterium tuberculosis culture status, using area under the receiver-operating characteristic curve (AUROC) analysis, and sensitivity and specificity at prespecified thresholds (two standard scores above the mean of healthy controls; Z2). Clinical utility was assessed by calculating net benefit in decision curve analysis. We compared performance with C-reactive protein (CRP; threshold ≥5 mg/L), WHO four-symptom screen (W4SS), and the WHO target product profile for tuberculosis triage tests. FINDINGS A total of 707 people living with HIV (407 [58%] female and 300 [42%] male) were included, with median CD4 count 306 cells per mm3 (IQR 184-486). Of 676 participants with available sputum culture results, 89 (13%) had culture-confirmed tuberculosis. The seven RNA signatures were moderately to highly correlated (Spearman rank coefficients 0·42-0·93) and discriminated tuberculosis culture positivity with similar AUROCs (0·73-0·80), but none statistically better than CRP (AUROC 0·78, 95% CI 0·72-0·83). Diagnostic accuracy was similar across CD4 count strata, but lower among participants with negative W4SS (AUROCs 0·56-0·65) compared with positive (AUROCs 0·75-0·84). The RNA biomarker with the highest AUROC point estimate was a four-gene signature (Suliman4; AUROC 0·80, 95% CI 0·75-0·86), with sensitivity 83% (95% CI 74-90) and specificity 59% (55-63) at the Z2 threshold. In decision curve analysis, Suliman4 and CRP had similar clinical utility to guide confirmatory tuberculosis testing, but both had higher net benefit than W4SS. In exploratory analyses, an approach combining CRP (≥5 mg/L) and Suliman4 (≥Z2) had sensitivity of 80% (70-87), specificity of 70% (66-74), and higher net benefit than either biomarker alone. INTERPRETATION RNA biomarkers showed better clinical utility to guide confirmatory tuberculosis testing for people living with HIV before ART initiation than symptom-based screening, but their performance did not exceed that of CRP and fell short of WHO recommended targets. Interferon-independent approaches might be required to improve accuracy of host-response biomarkers to support tuberculosis screening before ART initiation. FUNDING South African Medical Research Council, European and Developing Countries Clinical Trials Partnership 2, National Institutes of Health National Institute of Allergy and Infectious Diseases, The Wellcome Trust, National Institute for Health and Care Research, Royal College of Physicians London.
Collapse
Affiliation(s)
- Tiffeney Mann
- Division of Infection and Immunity, University College London, London, UK
| | - Rishi K Gupta
- Institute of Health Informatics, University College London, London, UK
| | - Byron W P Reeve
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gcobisa Ndlangalavu
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Aneesh Chandran
- Division of Infection and Immunity, University College London, London, UK
| | - Amirtha P Krishna
- Division of Infection and Immunity, University College London, London, UK
| | - Claire J Calderwood
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Happy Tshivhula
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Zaida Palmer
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Selisha Naidoo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Desiree L Mbu
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
11
|
Bloom BR. A half-century of research on tuberculosis: Successes and challenges. J Exp Med 2023; 220:e20230859. [PMID: 37552470 PMCID: PMC10407785 DOI: 10.1084/jem.20230859] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023] Open
Abstract
Great progress has been made over the past half-century, but TB remains a formidable global health problem, particularly in low- and middle-income countries. Understanding the mechanisms of pathogenesis and necessary and sufficient conditions for protection are critical. The need for inexpensive and sensitive point-of-care diagnostic tests for earlier detection of infection and disease, shorter and less-toxic drug regimens for drug-sensitive and -resistant TB, and a more effective vaccine than BCG is immense. New and better tools, greater support for international research, collaborations, and training will be required to dramatically reduce the burden of this devastating disease which still kills 1.6 million people annually.
Collapse
Affiliation(s)
- Barry R. Bloom
- Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
12
|
Chen L, Hua J, He X. Identification of cuproptosis-related molecular subtypes as a biomarker for differentiating active from latent tuberculosis in children. BMC Genomics 2023; 24:368. [PMID: 37393262 DOI: 10.1186/s12864-023-09491-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Cell death plays a crucial role in the progression of active tuberculosis (ATB) from latent infection (LTBI). Cuproptosis, a novel programmed cell death, has been reported to be associated with the pathology of various diseases. We aimed to identify cuproptosis-related molecular subtypes as biomarkers for distinguishing ATB from LTBI in pediatric patients. METHOD The expression profiles of cuproptosis regulators and immune characteristics in pediatric patients with ATB and LTBI were analyzed based on GSE39939 downloaded from the Gene Expression Omnibus. From the 52 ATB samples, we investigated the molecular subtypes based on differentially expressed cuproptosis-related genes (DE-CRGs) via consensus clustering and related immune cell infiltration. Subtype-specific differentially expressed genes (DEGs) were found using the weighted gene co-expression network analysis. The optimum machine model was then determined by comparing the performance of the eXtreme Gradient Boost (XGB), the random forest model (RF), the general linear model (GLM), and the support vector machine model (SVM). Nomogram and test datasets (GSE39940) were used to verify the prediction accuracy. RESULTS Nine DE-CRGs (NFE2L2, NLRP3, FDX1, LIPT1, PDHB, MTF1, GLS, DBT, and DLST) associated with active immune responses were ascertained between ATB and LTBI patients. Two cuproptosis-related molecular subtypes were defined in ATB pediatrics. Single sample gene set enrichment analysis suggested that compared with Subtype 2, Subtype 1 was characterized by decreased lymphocytes and increased inflammatory activation. Gene set variation analysis showed that cluster-specific DEGs in Subtype 1 were closely associated with immune and inflammation responses and energy and amino acids metabolism. The SVM model exhibited the best discriminative performance with a higher area under the curve (AUC = 0.983) and relatively lower root mean square and residual error. A final 5-gene-based (MAN1C1, DKFZP434N035, SIRT4, BPGM, and APBA2) SVM model was created, demonstrating satisfactory performance in the test datasets (AUC = 0.905). The decision curve analysis and nomogram calibration curve also revealed the accuracy of differentiating ATB from LTBI in children. CONCLUSION Our study suggested that cuproptosis might be associated with the immunopathology of Mycobacterium tuberculosis infection in children. Additionally, we built a satisfactory prediction model to assess the cuproptosis subtype risk in ATB, which can be used as a reliable biomarker for the distinguishment between pediatric ATB and LTBI.
Collapse
Affiliation(s)
- Liang Chen
- Department of Infectious Diseases, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, No.86, Chongwen Street, Lishui District, Nanjing City, 211002, China.
| | - Jie Hua
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaopu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Mann T, Gupta RK, Reeve BWP, Ndlangalavu G, Chandran A, Krishna AP, Calderwood CJ, Tshivhula H, Palmer Z, Naidoo S, Mbu DL, Theron G, Noursadeghi M. Blood RNA biomarkers for tuberculosis screening in people living with HIV prior to anti-retroviral therapy initiation: A diagnostic accuracy study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.01.23290783. [PMID: 37397982 PMCID: PMC10312886 DOI: 10.1101/2023.06.01.23290783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background Undiagnosed tuberculosis (TB) remains a major threat for people living with HIV (PLHIV). Multiple blood transcriptomic biomarkers have shown promise for TB diagnosis. We sought to evaluate their diagnostic accuracy and clinical utility for systematic pre-antiretroviral therapy (ART) TB screening. Methods We enrolled consecutive adults referred to start ART at a community health centre in Cape Town, South Africa, irrespective of symptoms. Sputa were obtained (using induction if required) for two liquid cultures. Whole-blood RNA samples underwent transcriptional profiling using a custom Nanostring gene-panel. We measured the diagnostic accuracy of seven candidate RNA biomarkers for the reference standard of Mycobacterium tuberculosis culture status, using area under the receiver-operating characteristic curve (AUROC) analysis, and sensitivity/specificity at pre-specified thresholds (two standard scores above the mean of healthy controls; Z2). Clinical utility was assessed using decision curve analysis. We compared performance to CRP (threshold ≥5mg/L), World Health Organisation (WHO) four-symptom screen (W4SS) and the WHO target product profile for TB triage tests. Results A total of 707 PLHIV were included, with median CD4 count 306 cells/mm3. Of 676 with available sputum culture results, 89 (13%) had culture-confirmed TB. The seven RNA biomarkers were moderately to highly correlated (Spearman rank coefficients 0.42-0.93) and discriminated TB culture-positivity with similar AUROCs (0.73-0.80), but none statistically better than CRP (AUROC 0.78; 95% CI 0.72-0.83). Diagnostic accuracy was similar across CD4 count strata, but lower among W4SS-negative (AUROCs 0.56-0.65) compared to W4SS-positive participants (AUROCs 0.75-0.84). The RNA biomarker with highest AUROC point estimate was a 4-gene signature (Suliman4; AUROC 0.80; 95% CI 0.75-0.86), with sensitivity 0.83 (0.74-0.90) and specificity 0.59 (0.55-0.63) at Z2 threshold. In decision curve analysis, Suliman4 and CRP had similar clinical utility to guide confirmatory TB testing, but both had higher net benefit than W4SS. In exploratory analyses, an approach combining CRP (≥5mg/L) and Suliman4 (≥Z2) had sensitivity of 0.80 (0.70-0.87), specificity of 0.70 (0.66-0.74) and higher net benefit than either biomarker alone. Interpretation RNA biomarkers showed better clinical utility to guide confirmatory TB testing for PLHIV prior to ART initiation than symptom-based screening, but their performance did not exceed that of CRP, and fell short of WHO recommended targets. Interferon-independent approaches may be required to improve accuracy of host-response biomarkers to support TB screening pre-ART initiation. Funding South African MRC, EDCTP2, NIH/NIAID, Wellcome Trust, NIHR, Royal College of Physicians London.
Collapse
Affiliation(s)
- Tiffeney Mann
- Division of Infection and Immunity, University College London, London, UK
| | - Rishi K Gupta
- Institute of Health Informatics, University College London, London, UK
| | - Byron WP Reeve
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town
| | - Gcobisa Ndlangalavu
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town
| | - Aneesh Chandran
- Division of Infection and Immunity, University College London, London, UK
| | - Amirtha P Krishna
- Division of Infection and Immunity, University College London, London, UK
| | - Claire J Calderwood
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Happy Tshivhula
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town
| | - Zaida Palmer
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town
| | - Selisha Naidoo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town
| | - Desiree L Mbu
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town
| | | | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
14
|
Nick JA, Malcolm KC, Hisert KB, Wheeler EA, Rysavy NM, Poch K, Caceres S, Lovell VK, Armantrout E, Saavedra MT, Calhoun K, Chatterjee D, Aboellail I, De P, Martiniano SL, Jia F, Davidson RM. Culture independent markers of nontuberculous mycobacterial (NTM) lung infection and disease in the cystic fibrosis airway. Tuberculosis (Edinb) 2023; 138:102276. [PMID: 36417800 PMCID: PMC10965158 DOI: 10.1016/j.tube.2022.102276] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Nontuberculous mycobacteria (NTM) are opportunistic pathogens that affect a relatively small but significant portion of the people with cystic fibrosis (CF), and may cause increased morbidity and mortality in this population. Cultures from the airway are the only test currently in clinical use for detecting NTM. Culture techniques used in clinical laboratories are insensitive and poorly suited for population screening or to follow progression of disease or treatment response. The lack of sensitive and quantitative markers of NTM in the airway impedes patient care and clinical trial design, and has limited our understanding of patterns of acquisition, latency and pathogenesis of disease. Culture-independent markers of NTM infection have the potential to overcome many of the limitations of standard NTM cultures, especially the very slow growth, inability to quantitate bacterial burden, and low sensitivity due to required decontamination procedures. A range of markers have been identified in sputum, saliva, breath, blood, urine, as well as radiographic studies. Proposed markers to detect presence of NTM or transition to NTM disease include bacterial cell wall products and DNA, as well as markers of host immune response such as immunoglobulins and the gene expression of circulating leukocytes. In all cases the sensitivity of culture-independent markers is greater than standard cultures; however, most do not discriminate between various NTM species. Thus, each marker may be best suited for a specific clinical application, or combined with other markers and traditional cultures to improve diagnosis and monitoring of treatment response.
Collapse
Affiliation(s)
- Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Katherine B Hisert
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Emily A Wheeler
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Noel M Rysavy
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Katie Poch
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Silvia Caceres
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Valerie K Lovell
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Emily Armantrout
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Milene T Saavedra
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Kara Calhoun
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Ibrahim Aboellail
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Prithwiraj De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Stacey L Martiniano
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Fan Jia
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Rebecca M Davidson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, 80206, USA
| |
Collapse
|
15
|
Kaipilyawar V, Zhao Y, Wang X, Joseph NM, Knudsen S, Prakash Babu S, Muthaiah M, Hochberg NS, Sarkar S, Horsburgh CR, Ellner JJ, Johnson WE, Salgame P. Development and Validation of a Parsimonious Tuberculosis Gene Signature Using the digital NanoString nCounter Platform. Clin Infect Dis 2022; 75:1022-1030. [PMID: 35015839 PMCID: PMC9522394 DOI: 10.1093/cid/ciac010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Blood-based biomarkers for diagnosing active tuberculosis (TB), monitoring treatment response, and predicting risk of progression to TB disease have been reported. However, validation of the biomarkers across multiple independent cohorts is scarce. A robust platform to validate TB biomarkers in different populations with clinical end points is essential to the development of a point-of-care clinical test. NanoString nCounter technology is an amplification-free digital detection platform that directly measures mRNA transcripts with high specificity. Here, we determined whether NanoString could serve as a platform for extensive validation of candidate TB biomarkers. METHODS The NanoString platform was used for performance evaluation of existing TB gene signatures in a cohort in which signatures were previously evaluated on an RNA-seq dataset. A NanoString codeset that probes 107 genes comprising 12 TB signatures and 6 housekeeping genes (NS-TB107) was developed and applied to total RNA derived from whole blood samples of TB patients and individuals with latent TB infection (LTBI) from South India. The TBSignatureProfiler tool was used to score samples for each signature. An ensemble of machine learning algorithms was used to derive a parsimonious biomarker. RESULTS Gene signatures present in NS-TB107 had statistically significant discriminative power for segregating TB from LTBI. Further analysis of the data yielded a NanoString 6-gene set (NANO6) that when tested on 10 published datasets was highly diagnostic for active TB. CONCLUSIONS The NanoString nCounter system provides a robust platform for validating existing TB biomarkers and deriving a parsimonious gene signature with enhanced diagnostic performance.
Collapse
Affiliation(s)
- Vaishnavi Kaipilyawar
- Department of Medicine, Center for Emerging Pathogens, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Yue Zhao
- Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Xutao Wang
- Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Noyal M Joseph
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | | | - Senbagavalli Prakash Babu
- Department of Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Muthuraj Muthaiah
- Department of Microbiology, State TB Training and Demonstration Center, Government Hospital for Chest Disease, Gorimedu, Puducherry, India
| | - Natasha S Hochberg
- Boston Medical Center, Boston, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sonali Sarkar
- Department of Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Charles R Horsburgh
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Jerrold J Ellner
- Department of Medicine, Center for Emerging Pathogens, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - W Evan Johnson
- Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
16
|
Valinetz ED, Matemo D, Gersh JK, Joudeh LL, Mendelsohn SC, Scriba TJ, Hatherill M, Kinuthia J, Wald A, Cangelosi GA, Barnabas RV, Hawn TR, Horne DJ. Isoniazid preventive therapy and tuberculosis transcriptional signatures in people with HIV. AIDS 2022; 36:1363-1371. [PMID: 35608118 PMCID: PMC9329226 DOI: 10.1097/qad.0000000000003262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To examine the association between isoniazid preventive therapy (IPT) or nontuberculous mycobacteria (NTM) sputum culture positivity and tuberculosis (TB) transcriptional signatures in people with HIV. DESIGN Cross-sectional study. METHODS We enrolled adults living with HIV who were IPT-naive or had completed IPT more than 6 months prior at HIV care clinics in western Kenya. We calculated TB signatures using gene expression data from qRT-PCR. We used multivariable linear regression to analyze the association between prior receipt of IPT or NTM sputum culture positivity with a transcriptional TB risk score, RISK6 (range 0-1). In secondary analyses, we explored the association between IPT or NTM positivity and four other TB transcriptional signatures. RESULTS Among 381 participants, 99.7% were receiving antiretroviral therapy and 86.6% had received IPT (completed median of 1.1 years prior). RISK6 scores were lower (mean difference 0.10; 95% confidence interval (CI): 0.06-0.15; P < 0.001) among participants who received IPT than those who did not. In a model that adjusted for age, sex, duration of ART, and plasma HIV RNA, the RISK6 score was 52.8% lower in those with a history of IPT ( P < 0.001). No significant association between year of IPT receipt and RISK6 scores was detected. There was no association between NTM sputum culture positivity and RISK6 scores. CONCLUSION In people with HIV, IPT was associated with significantly lower RISK6 scores compared with persons who did not receive IPT. These data support investigations of its performance as a TB preventive therapy response biomarker.
Collapse
Affiliation(s)
- Ethan D Valinetz
- Department of Medicine, University of Washington, Seattle, Washington
- Division of Infectious Disease, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Daniel Matemo
- Department of Research and Programs, Kenyatta National Hospital, Nairobi
- School of Public Health and Community Development Maseno University, Kisumu, Kenya
| | - Jill K Gersh
- Department of Medicine, University of Washington, Seattle, Washington
| | - Lara L Joudeh
- Department of Medicine, University of Washington, Seattle, Washington
| | - Simon C Mendelsohn
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - John Kinuthia
- Department of Research and Programs, Kenyatta National Hospital, Nairobi
- Department of Global Health
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Epidemiology
- Department of Lab Medicine & Pathology, University of Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Ruanne V Barnabas
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Global Health
- Department of Epidemiology
| | - Thomas R Hawn
- Department of Medicine, University of Washington, Seattle, Washington
| | - David J Horne
- Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
17
|
Are mRNA based transcriptomic signatures ready for diagnosing tuberculosis in the clinic? - A review of evidence and the technological landscape. EBioMedicine 2022; 82:104174. [PMID: 35850011 PMCID: PMC9294474 DOI: 10.1016/j.ebiom.2022.104174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/11/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
Funding
Collapse
|
18
|
Nathavitharana RR, Garcia-Basteiro AL, Ruhwald M, Cobelens F, Theron G. Reimagining the status quo: How close are we to rapid sputum-free tuberculosis diagnostics for all? EBioMedicine 2022; 78:103939. [PMID: 35339423 PMCID: PMC9043971 DOI: 10.1016/j.ebiom.2022.103939] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 01/26/2023] Open
Abstract
Rapid, accurate, sputum-free tests for tuberculosis (TB) triage and confirmation are urgently needed to close the widening diagnostic gap. We summarise key technologies and review programmatic, systems, and resource issues that could affect the impact of diagnostics. Mid-to-early-stage technologies like artificial intelligence-based automated digital chest X-radiography and capillary blood point-of-care assays are particularly promising. Pitfalls in the diagnostic pipeline, included a lack of community-based tools. We outline how these technologies may complement one another within the context of the TB care cascade, help overturn current paradigms (eg, reducing syndromic triage reliance, permitting subclinical TB to be diagnosed), and expand options for extra-pulmonary TB. We review challenges such as the difficulty of detecting paucibacillary TB and the limitations of current reference standards, and discuss how researchers and developers can better design and evaluate assays to optimise programmatic uptake. Finally, we outline how leveraging the urgency and innovation applied to COVID-19 is critical to improving TB patients' diagnostic quality-of-care.
Collapse
Affiliation(s)
- Ruvandhi R Nathavitharana
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, USA
| | - Alberto L Garcia-Basteiro
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saude de Manhiça, Maputo, Mozambique
| | - Morten Ruhwald
- FIND, the global alliance for diagnostics, Geneva, Switzerland
| | - Frank Cobelens
- Department of Global Health and Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
19
|
Esmail H, Macpherson L, Coussens AK, Houben RMGJ. Mind the gap - Managing tuberculosis across the disease spectrum. EBioMedicine 2022; 78:103928. [PMID: 35339424 PMCID: PMC9044004 DOI: 10.1016/j.ebiom.2022.103928] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/22/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
We currently have a binomial approach to managing tuberculosis. Those with active disease, ideally confirmed microbiologically, are treated with a standard 6-month, multi-drug regimen and those with latent infection and no evidence of disease with shorter, one or two drug regimens. Clinicians frequently encounter patients that fall between these two management pathways with some but not all features of disease and this will occur more often with the increasing emphasis on chest X-ray-based systematic screening. The view of tuberculosis as a spectrum of disease states is being increasingly recognised and is leading to new diagnostic approaches for early disease. However, the 6-month regimen for treating disease was driven by the duration required to treat the most extensive forms of pulmonary TB and shorter durations appear sufficient for less extensive disease. It is time undertake clinical trials to better define the optimal treatment for tuberculosis across the disease spectrum.
Collapse
Affiliation(s)
- Hanif Esmail
- MRC Clinical Trials Unit at University College London, UK; Institute for Global Health, University College London, UK; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa.
| | | | - Anna K Coussens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Infectious Diseases and Immune Defense Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Rein M G J Houben
- TB Modelling Group, TB Centre, London School of Hygiene and Tropical Medicine, UK; Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, UK
| |
Collapse
|
20
|
Mendelsohn SC, Mbandi SK, Fiore-Gartland A, Penn-Nicholson A, Musvosvi M, Mulenga H, Fisher M, Hadley K, Erasmus M, Nombida O, Tameris M, Walzl G, Naidoo K, Churchyard G, Hatherill M, Scriba TJ. Prospective multicentre head-to-head validation of host blood transcriptomic biomarkers for pulmonary tuberculosis by real-time PCR. COMMUNICATIONS MEDICINE 2022; 2:26. [PMID: 35342900 PMCID: PMC8954216 DOI: 10.1038/s43856-022-00086-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/10/2022] [Indexed: 01/31/2023] Open
Abstract
Background Sensitive point-of-care screening tests are urgently needed to identify individuals at highest risk of tuberculosis. We prospectively tested performance of host-blood transcriptomic tuberculosis signatures. Methods Adults without suspicion of tuberculosis were recruited from five endemic South African communities. Eight parsimonious host-blood transcriptomic tuberculosis signatures were measured by microfluidic RT-qPCR at enrolment. Upper respiratory swab specimens were tested with a multiplex bacterial-viral RT-qPCR panel in a subset of participants. Diagnostic and prognostic performance for microbiologically confirmed prevalent and incident pulmonary tuberculosis was tested in all participants at baseline and during active surveillance through 15 months follow-up, respectively. Results Among 20,207 HIV-uninfected and 963 HIV-infected adults screened; 2923 and 861 were enroled. There were 61 HIV-uninfected (weighted prevalence 1.1%) and 10 HIV-infected (prevalence 1.2%) tuberculosis cases at baseline. Parsimonious signature diagnostic performance was superior among symptomatic (AUCs 0.85-0.98) as compared to asymptomatic (AUCs 0.61-0.78) HIV-uninfected participants. Thereafter, 24 HIV-uninfected and 9 HIV-infected participants progressed to incident tuberculosis (1.1 and 1.0 per 100 person-years, respectively). Among HIV-uninfected individuals, prognostic performance for incident tuberculosis occurring within 6-12 months was higher relative to 15 months. 1000 HIV-uninfected participants were tested for respiratory microorganisms and 413 HIV-infected for HIV plasma viral load; 7/8 signature scores were higher (p < 0.05) in participants with viral respiratory infections or detectable HIV viraemia than those without. Conclusions Several parsimonious tuberculosis transcriptomic signatures met triage test targets among symptomatic participants, and incipient test targets within 6 months. However, the signatures were upregulated with viral infection and offered poor specificity for diagnosing sub-clinical tuberculosis.
Collapse
Affiliation(s)
- Simon C. Mendelsohn
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Adam Penn-Nicholson
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Munyaradzi Musvosvi
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Humphrey Mulenga
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Michelle Fisher
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Katie Hadley
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Mzwandile Erasmus
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Onke Nombida
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Michèle Tameris
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Gerhard Walzl
- DST/NRF Centre of Excellence for Biomedical TB Research; South African Medical Research Council Centre for TB Research; Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, 7505 Cape Town, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), 4001 Durban, South Africa
- MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 4001 Durban, South Africa
| | - Gavin Churchyard
- The Aurum Institute, 2194 Johannesburg, South Africa
- School of Public Health, University of Witwatersrand, 2193 Johannesburg, South Africa
- Department of Medicine, Vanderbilt University, Nashville, TN 37232 USA
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| |
Collapse
|
21
|
Mulenga H, Fiore-Gartland A, Mendelsohn SC, Penn-Nicholson A, Mbandi SK, Borate B, Musvosvi M, Tameris M, Walzl G, Naidoo K, Churchyard G, Scriba TJ, Hatherill M. The effect of host factors on discriminatory performance of a transcriptomic signature of tuberculosis risk. EBioMedicine 2022; 77:103886. [PMID: 35183869 PMCID: PMC8861653 DOI: 10.1016/j.ebiom.2022.103886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 01/28/2023] Open
Abstract
Background We aimed to understand host factors that affect discriminatory performance of a transcriptomic signature of tuberculosis risk (RISK11). Methods HIV-negative adults aged 18–60 years were evaluated in a prospective study of RISK11 and surveilled for tuberculosis through 15 months. Generalised linear models and receiver-operating characteristic (ROC) regression were used to estimate effect of host factors on RISK11 score (%marginal effect) and on discriminatory performance for tuberculosis disease (area under the curve, AUC), respectively. Findings Among 2923 participants including 74 prevalent and 56 incident tuberculosis cases, percentage marginal effects on RISK11 score were increased among those with prevalent tuberculosis (+18·90%, 95%CI 12·66−25·13), night sweats (+14·65%, 95%CI 5·39−23·91), incident tuberculosis (+7·29%, 95%CI 1·46−13·11), flu-like symptoms (+5·13%, 95%CI 1·58−8·68), and smoking history (+2·41%, 95%CI 0·89−3·93) than those without; and reduced in males (−6·68%, 95%CI −8·31−5·04) and with every unit increase in BMI (−0·13%, −95%CI −0·25−0·01). Adjustment for host factors affecting controls did not change RISK11 discriminatory performance. Cough was associated with 72·55% higher RISK11 score in prevalent tuberculosis cases. Stratification by cough improved diagnostic performance from AUC = 0·74 (95%CI 0·67−0·82) overall, to 0·97 (95%CI 0·90−1·00, p < 0·001) in cough-positive participants. Combining host factors with RISK11 improved prognostic performance, compared to RISK11 alone, (AUC = 0·76, 95%CI 0·69−0·83 versus 0·56, 95%CI 0·46−0·68, p < 0·001) over a 15-month predictive horizon. Interpretation Several host factors affected RISK11 score, but only adjustment for cough affected diagnostic performance. Combining host factors with RISK11 should be considered to improve prognostic performance. Funding Bill and Melinda Gates Foundation, South African Medical Research Council.
Collapse
Affiliation(s)
- Humphrey Mulenga
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Fairview Ave. N., Seattle, WA 98109-1024, USA
| | - Simon C Mendelsohn
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Adam Penn-Nicholson
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Bhavesh Borate
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Fairview Ave. N., Seattle, WA 98109-1024, USA
| | - Munyaradzi Musvosvi
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Michèle Tameris
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Gerhard Walzl
- DST/NRF Centre of Excellence for Biomedical TB Research and SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie Van Zijl Dr, Parow, 7505, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa; MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa
| | - Gavin Churchyard
- The Aurum Institute, 29 Queens Rd, Parktown, Johannesburg, Gauteng 2194, South Africa; School of Public Health, University of Witwatersrand, 27 St Andrews Road, Parktown, Johannesburg 2193, South Africa; Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7925, South Africa.
| |
Collapse
|
22
|
Noursadeghi M, Gupta RK. New Insights into the Limitations of Host Transcriptional Biomarkers of Tuberculosis. Am J Respir Crit Care Med 2021; 204:1363-1365. [PMID: 34705613 PMCID: PMC8865719 DOI: 10.1164/rccm.202109-2146ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Mahdad Noursadeghi
- Division of Infection and Immunity University College London London, United Kingdom
| | - Rishi K Gupta
- Institute for Global Health University College London London, United Kingdom
| |
Collapse
|